Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -43,22 +43,44 @@ model.eval()
|
|
43 |
|
44 |
# Assign fixed colors to each class for consistent visualization
|
45 |
np.random.seed(42) # For reproducible colors
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
# Track performance metrics
|
49 |
total_inference_time = 0
|
50 |
inference_count = 0
|
51 |
|
52 |
def detect_objects(image):
|
53 |
-
"""
|
54 |
-
Process input image for object detection using YOLOv5
|
55 |
|
56 |
-
Args:
|
57 |
-
image: Input image as numpy array
|
58 |
-
|
59 |
-
Returns:
|
60 |
-
output_image: Image with detection results visualized
|
61 |
-
"""
|
62 |
global total_inference_time, inference_count
|
63 |
|
64 |
if image is None:
|
@@ -86,53 +108,78 @@ def detect_objects(image):
|
|
86 |
# Extract detections from first (and only) image
|
87 |
detections = results.pred[0].cpu().numpy()
|
88 |
|
89 |
-
# Draw each detection on the output image
|
90 |
for *xyxy, conf, cls in detections:
|
91 |
-
# Extract coordinates and convert to integers
|
92 |
x1, y1, x2, y2 = map(int, xyxy)
|
93 |
class_id = int(cls)
|
94 |
|
95 |
-
|
96 |
-
color = colors[class_id].tolist()
|
97 |
|
98 |
-
cv2.rectangle(output_image, (x1, y1), (x2, y2), color,
|
99 |
|
100 |
-
# Create label with class name and confidence score
|
101 |
label = f"{model.names[class_id]} {conf:.2f}"
|
102 |
|
103 |
-
font_scale = 0.
|
104 |
font_thickness = 2
|
105 |
|
106 |
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
109 |
|
110 |
cv2.putText(output_image, label, (x1 + 5, y1 - 5),
|
111 |
cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 0), font_thickness + 1)
|
|
|
112 |
cv2.putText(output_image, label, (x1 + 5, y1 - 5),
|
113 |
cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness)
|
114 |
|
115 |
# Calculate FPS
|
116 |
fps = 1 / inference_time
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
cv2.putText(output_image, f"
|
128 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
|
|
|
|
|
|
129 |
|
130 |
return output_image
|
131 |
|
132 |
# Define example images - these will be stored in the same directory as this script
|
133 |
example_images = [
|
134 |
-
"
|
135 |
-
"
|
136 |
]
|
137 |
|
138 |
# Make sure example directory exists
|
@@ -150,20 +197,19 @@ with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo:
|
|
150 |
- Confidence threshold: 0.3
|
151 |
- IoU threshold: 0.3
|
152 |
|
153 |
-
|
154 |
""")
|
155 |
|
156 |
with gr.Row():
|
157 |
with gr.Column(scale=1):
|
158 |
input_image = gr.Image(label="Input Image", type="numpy")
|
159 |
with gr.Row():
|
160 |
-
|
161 |
-
|
162 |
|
163 |
with gr.Column(scale=1):
|
164 |
output_image = gr.Image(label="Detected Objects", type="numpy")
|
165 |
|
166 |
-
# Example gallery
|
167 |
gr.Examples(
|
168 |
examples=example_images,
|
169 |
inputs=input_image,
|
@@ -172,10 +218,16 @@ with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo:
|
|
172 |
cache_examples=True # Cache for faster response
|
173 |
)
|
174 |
|
175 |
-
# Set up button event handlers
|
176 |
submit_button.click(fn=detect_objects, inputs=input_image, outputs=output_image)
|
177 |
-
clear_button.click(
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
# Launch for Hugging Face Spaces
|
181 |
demo.launch()
|
|
|
43 |
|
44 |
# Assign fixed colors to each class for consistent visualization
|
45 |
np.random.seed(42) # For reproducible colors
|
46 |
+
# Generate more attractive, vibrant colors
|
47 |
+
colors = []
|
48 |
+
for i in range(len(model.names)):
|
49 |
+
# Use HSV color space for more vibrant colors
|
50 |
+
hue = i / len(model.names)
|
51 |
+
# Full saturation and value for vivid colors
|
52 |
+
saturation = 0.9
|
53 |
+
value = 1.0
|
54 |
+
# Convert HSV to RGB
|
55 |
+
h = hue * 360
|
56 |
+
s = saturation
|
57 |
+
v = value
|
58 |
+
c = v * s
|
59 |
+
x = c * (1 - abs((h / 60) % 2 - 1))
|
60 |
+
m = v - c
|
61 |
+
|
62 |
+
if h < 60:
|
63 |
+
r, g, b = c, x, 0
|
64 |
+
elif h < 120:
|
65 |
+
r, g, b = x, c, 0
|
66 |
+
elif h < 180:
|
67 |
+
r, g, b = 0, c, x
|
68 |
+
elif h < 240:
|
69 |
+
r, g, b = 0, x, c
|
70 |
+
elif h < 300:
|
71 |
+
r, g, b = x, 0, c
|
72 |
+
else:
|
73 |
+
r, g, b = c, 0, x
|
74 |
+
|
75 |
+
r, g, b = (r + m) * 255, (g + m) * 255, (b + m) * 255
|
76 |
+
colors.append([int(b), int(g), int(r)]) # OpenCV uses BGR
|
77 |
|
78 |
# Track performance metrics
|
79 |
total_inference_time = 0
|
80 |
inference_count = 0
|
81 |
|
82 |
def detect_objects(image):
|
|
|
|
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
global total_inference_time, inference_count
|
85 |
|
86 |
if image is None:
|
|
|
108 |
# Extract detections from first (and only) image
|
109 |
detections = results.pred[0].cpu().numpy()
|
110 |
|
|
|
111 |
for *xyxy, conf, cls in detections:
|
|
|
112 |
x1, y1, x2, y2 = map(int, xyxy)
|
113 |
class_id = int(cls)
|
114 |
|
115 |
+
color = colors[class_id]
|
|
|
116 |
|
117 |
+
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3)
|
118 |
|
|
|
119 |
label = f"{model.names[class_id]} {conf:.2f}"
|
120 |
|
121 |
+
font_scale = 0.7
|
122 |
font_thickness = 2
|
123 |
|
124 |
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
|
125 |
+
|
126 |
+
alpha = 0.7
|
127 |
+
overlay = output_image.copy()
|
128 |
+
cv2.rectangle(overlay, (x1, y1 - h - 10), (x1 + w + 10, y1), color, -1)
|
129 |
+
output_image = cv2.addWeighted(overlay, alpha, output_image, 1 - alpha, 0)
|
130 |
|
131 |
cv2.putText(output_image, label, (x1 + 5, y1 - 5),
|
132 |
cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 0), font_thickness + 1)
|
133 |
+
|
134 |
cv2.putText(output_image, label, (x1 + 5, y1 - 5),
|
135 |
cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness)
|
136 |
|
137 |
# Calculate FPS
|
138 |
fps = 1 / inference_time
|
139 |
|
140 |
+
|
141 |
+
h, w = output_image.shape[:2]
|
142 |
+
|
143 |
+
overlay = output_image.copy()
|
144 |
+
|
145 |
+
fps_bg_height = 90
|
146 |
+
fps_bg_width = 200
|
147 |
+
fps_bg_corner = 15
|
148 |
+
|
149 |
+
for i in range(fps_bg_height):
|
150 |
+
alpha = 0.8 - (i / fps_bg_height * 0.3)
|
151 |
+
color_value = int(220 * (1 - i / fps_bg_height))
|
152 |
+
cv2.rectangle(overlay,
|
153 |
+
(10, 10 + i),
|
154 |
+
(fps_bg_width, 10 + i),
|
155 |
+
(40, color_value, 40),
|
156 |
+
-1)
|
157 |
+
|
158 |
+
cv2.addWeighted(overlay, 0.8, output_image, 0.2, 0, output_image,
|
159 |
+
dst=output_image[10:10+fps_bg_height, 10:10+fps_bg_width])
|
160 |
+
|
161 |
+
cv2.rectangle(output_image,
|
162 |
+
(10, 10),
|
163 |
+
(fps_bg_width, 10 + fps_bg_height),
|
164 |
+
(255, 255, 255),
|
165 |
+
2,
|
166 |
+
cv2.LINE_AA)
|
167 |
|
168 |
+
cv2.putText(output_image, "Performance", (20, 35),
|
169 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
|
170 |
+
|
171 |
+
cv2.putText(output_image, f"Current: {fps:.1f} FPS", (20, 65),
|
172 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
|
173 |
+
|
174 |
+
cv2.putText(output_image, f"Average: {1/avg_inference_time:.1f} FPS", (20, 90),
|
175 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
|
176 |
|
177 |
return output_image
|
178 |
|
179 |
# Define example images - these will be stored in the same directory as this script
|
180 |
example_images = [
|
181 |
+
"spring_street_after.jpg",
|
182 |
+
"pexels-hikaique-109919.jpg"
|
183 |
]
|
184 |
|
185 |
# Make sure example directory exists
|
|
|
197 |
- Confidence threshold: 0.3
|
198 |
- IoU threshold: 0.3
|
199 |
|
200 |
+
Upload an image, then click Submit to see the detections!
|
201 |
""")
|
202 |
|
203 |
with gr.Row():
|
204 |
with gr.Column(scale=1):
|
205 |
input_image = gr.Image(label="Input Image", type="numpy")
|
206 |
with gr.Row():
|
207 |
+
clear_button = gr.Button("Clear", size="sm")
|
208 |
+
submit_button = gr.Button("Submit", variant="primary", size="lg")
|
209 |
|
210 |
with gr.Column(scale=1):
|
211 |
output_image = gr.Image(label="Detected Objects", type="numpy")
|
212 |
|
|
|
213 |
gr.Examples(
|
214 |
examples=example_images,
|
215 |
inputs=input_image,
|
|
|
218 |
cache_examples=True # Cache for faster response
|
219 |
)
|
220 |
|
|
|
221 |
submit_button.click(fn=detect_objects, inputs=input_image, outputs=output_image)
|
222 |
+
clear_button.click(
|
223 |
+
fn=lambda: (None, None),
|
224 |
+
outputs=[input_image, output_image],
|
225 |
+
queue=False
|
226 |
+
).then(
|
227 |
+
fn=detect_objects,
|
228 |
+
inputs=input_image,
|
229 |
+
outputs=output_image
|
230 |
+
)
|
231 |
|
232 |
# Launch for Hugging Face Spaces
|
233 |
demo.launch()
|