Aumkeshchy2003 commited on
Commit
9ac3666
·
verified ·
1 Parent(s): b1205e9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -64
app.py CHANGED
@@ -4,109 +4,99 @@ import gradio as gr
4
  import cv2
5
  import time
6
  import os
 
7
  from pathlib import Path
8
 
9
- # Create cache directory for models
10
  os.makedirs("models", exist_ok=True)
11
 
12
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
  print(f"Using device: {device}")
14
 
15
- # Load YOLOv5x model
16
- model_path = Path("models/yolov5x.pt")
17
- if model_path.exists():
18
- print(f"Loading model from cache: {model_path}")
19
- model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True, source="local", path=str(model_path)).to(device)
20
- else:
21
- print("Downloading YOLOv5x model and caching...")
22
- model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device)
23
- torch.save(model.state_dict(), model_path)
24
 
25
- # Model configurations
26
- model.conf = 0.3 # Confidence threshold
27
- model.iou = 0.3 # IoU threshold
28
- model.classes = None # Detect all classes
29
-
30
- if device.type == "cuda":
31
- model.half()
32
- else:
33
- torch.set_num_threads(os.cpu_count())
34
 
35
- model.eval()
 
36
 
 
37
  np.random.seed(42)
38
- colors = np.random.uniform(0, 255, size=(len(model.names), 3))
39
 
40
  total_inference_time = 0
41
  inference_count = 0
42
 
43
  def detect_objects(image):
44
  global total_inference_time, inference_count
45
-
46
  if image is None:
47
  return None
48
-
49
  start_time = time.time()
50
- output_image = image.copy()
51
- input_size = 640
52
-
53
- with torch.no_grad():
54
- results = model(image, size=input_size)
55
-
 
 
 
 
 
56
  inference_time = time.time() - start_time
57
  total_inference_time += inference_time
58
  inference_count += 1
59
  avg_inference_time = total_inference_time / inference_count
60
-
61
- detections = results.pred[0].cpu().numpy()
62
-
63
- for *xyxy, conf, cls in detections:
64
- x1, y1, x2, y2 = map(int, xyxy)
65
- class_id = int(cls)
66
- color = colors[class_id].tolist()
67
-
68
- # Thicker bounding boxes
69
- cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA)
70
-
71
- label = f"{model.names[class_id]} {conf:.2f}"
72
- font_scale, font_thickness = 0.9, 2 # Increased for better readability
73
- (w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
74
-
75
- cv2.rectangle(output_image, (x1, y1 - h - 10), (x1 + w + 10, y1), color, -1)
76
- cv2.putText(output_image, label, (x1 + 5, y1 - 5),
77
- cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness, lineType=cv2.LINE_AA)
78
-
79
  fps = 1 / inference_time
80
-
81
- # Stylish FPS display
82
- overlay = output_image.copy()
83
- cv2.rectangle(overlay, (10, 10), (300, 80), (0, 0, 0), -1)
84
- output_image = cv2.addWeighted(overlay, 0.6, output_image, 0.4, 0)
 
 
 
 
 
 
 
 
 
 
 
 
85
  cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40),
86
- cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
87
  cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (20, 70),
88
- cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
89
-
90
  return output_image
91
 
 
92
  example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
93
  os.makedirs("examples", exist_ok=True)
94
 
95
  with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo:
96
- gr.Markdown("""
97
- # Optimized YOLOv5 Object Detection
98
- Detects objects using YOLOv5 with enhanced visualization and FPS tracking.
99
- """)
100
 
101
  with gr.Row():
102
  with gr.Column(scale=1):
103
  input_image = gr.Image(label="Input Image", type="numpy")
104
- submit_button = gr.Button("Submit", variant="primary")
105
  clear_button = gr.Button("Clear")
106
-
107
  with gr.Column(scale=1):
108
  output_image = gr.Image(label="Detected Objects", type="numpy")
109
-
110
  gr.Examples(
111
  examples=example_images,
112
  inputs=input_image,
@@ -114,7 +104,7 @@ with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo:
114
  fn=detect_objects,
115
  cache_examples=True
116
  )
117
-
118
  submit_button.click(fn=detect_objects, inputs=input_image, outputs=output_image)
119
  clear_button.click(lambda: (None, None), None, [input_image, output_image])
120
 
 
4
  import cv2
5
  import time
6
  import os
7
+ import onnxruntime
8
  from pathlib import Path
9
 
 
10
  os.makedirs("models", exist_ok=True)
11
 
12
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
  print(f"Using device: {device}")
14
 
15
+ model_path = Path("models/yolov5n.onnx")
 
 
 
 
 
 
 
 
16
 
17
+ if not model_path.exists():
18
+ print("Downloading YOLOv5n model and converting to ONNX...")
19
+ model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True).to(device)
20
+ model.eval()
21
+
22
+ # Exporting to ONNX
23
+ model.export(format="onnx", dynamic=True)
24
+ os.rename("yolov5n.onnx", model_path)
25
+ del model # Free memory
26
 
27
+ # Loading ONNX model for ultra-fast inference
28
+ session = onnxruntime.InferenceSession(str(model_path), providers=['CUDAExecutionProvider'])
29
 
30
+ # Generate random colors for each class
31
  np.random.seed(42)
32
+ colors = np.random.uniform(0, 255, size=(80, 3)) # COCO dataset has 80 classes
33
 
34
  total_inference_time = 0
35
  inference_count = 0
36
 
37
  def detect_objects(image):
38
  global total_inference_time, inference_count
39
+
40
  if image is None:
41
  return None
42
+
43
  start_time = time.time()
44
+
45
+ image = cv2.resize(image, (416, 416))
46
+ image = image.astype(np.float32) / 255.0 e
47
+ image = np.transpose(image, (2, 0, 1))
48
+ image = np.expand_dims(image, axis=0)
49
+
50
+ # Run inference
51
+ inputs = {session.get_inputs()[0].name: image}
52
+ output = session.run(None, inputs)
53
+ detections = output[0][0]
54
+
55
  inference_time = time.time() - start_time
56
  total_inference_time += inference_time
57
  inference_count += 1
58
  avg_inference_time = total_inference_time / inference_count
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  fps = 1 / inference_time
60
+
61
+ # Draw bounding boxes
62
+ output_image = image[0].transpose(1, 2, 0) * 255
63
+ output_image = output_image.astype(np.uint8)
64
+
65
+ for det in detections:
66
+ x1, y1, x2, y2, conf, class_id = map(int, det[:6])
67
+ if conf < 0.3: # Confidence threshold
68
+ continue
69
+
70
+ color = colors[class_id].tolist()
71
+ cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3)
72
+ label = f"Class {class_id} {conf:.2f}"
73
+ cv2.putText(output_image, label, (x1, y1 - 10),
74
+ cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)
75
+
76
+ # Display FPS
77
  cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40),
78
+ cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
79
  cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (20, 70),
80
+ cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
81
+
82
  return output_image
83
 
84
+ # Gradio Interface
85
  example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
86
  os.makedirs("examples", exist_ok=True)
87
 
88
  with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo:
89
+ gr.Markdown("# **Optimized YOLOv5 Object Detection** 🚀")
 
 
 
90
 
91
  with gr.Row():
92
  with gr.Column(scale=1):
93
  input_image = gr.Image(label="Input Image", type="numpy")
94
+ submit_button = gr.Button("Detect Objects", variant="primary")
95
  clear_button = gr.Button("Clear")
96
+
97
  with gr.Column(scale=1):
98
  output_image = gr.Image(label="Detected Objects", type="numpy")
99
+
100
  gr.Examples(
101
  examples=example_images,
102
  inputs=input_image,
 
104
  fn=detect_objects,
105
  cache_examples=True
106
  )
107
+
108
  submit_button.click(fn=detect_objects, inputs=input_image, outputs=output_image)
109
  clear_button.click(lambda: (None, None), None, [input_image, output_image])
110