Spaces:
Running
Running
File size: 10,453 Bytes
caff61e bccf53b dc80d48 2420aaa 0152e0c a186d85 2420aaa a186d85 d791bba 2420aaa 36e1064 2420aaa 0152e0c 2420aaa d5e3d23 2420aaa e82b28e 2420aaa a186d85 8513c99 2420aaa 9b2d010 2420aaa ac43c04 2420aaa ac43c04 0e19825 8513c99 2420aaa a83113c 2420aaa a83113c 2420aaa 9b2d010 2420aaa 9b2d010 a186d85 2420aaa 9b2d010 2420aaa 9b2d010 2420aaa 8513c99 2420aaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import torch
import numpy as np
import gradio as gr
import cv2
import time
import os
import threading
from queue import Queue
from pathlib import Path
# Create cache directory for models
os.makedirs("models", exist_ok=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
model_path = Path("models/yolov5x.pt")
if model_path.exists():
print(f"Loading model from cache: {model_path}")
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True, source="local", path=str(model_path)).to(device)
else:
print("Downloading YOLOv5x model and caching...")
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device)
torch.save(model.state_dict(), model_path)
# Model configurations for better performance
model.conf = 0.5 # Slightly lower confidence threshold for real-time
model.iou = 0.45 # Slightly lower IOU threshold for real-time
model.classes = None # Detect all classes
model.max_det = 20 # Limit detections for speed
if device.type == "cuda":
model.half() # Half precision for CUDA
else:
torch.set_num_threads(os.cpu_count())
model.eval()
# Precompute colors for bounding boxes
np.random.seed(42)
colors = np.random.uniform(0, 255, size=(len(model.names), 3))
# Performance tracking
total_inference_time = 0
inference_count = 0
fps_queue = Queue(maxsize=30) # Store last 30 FPS values for smoothing
# Threading variables
processing_lock = threading.Lock()
stop_event = threading.Event()
frame_queue = Queue(maxsize=2) # Small queue to avoid lag
result_queue = Queue(maxsize=2)
def detect_objects(image):
"""Process a single image for object detection"""
global total_inference_time, inference_count
if image is None:
return None
start_time = time.time()
output_image = image.copy()
input_size = 640
# Optimize input for inference
with torch.no_grad():
results = model(image, size=input_size)
inference_time = time.time() - start_time
total_inference_time += inference_time
inference_count += 1
avg_inference_time = total_inference_time / inference_count
detections = results.pred[0].cpu().numpy()
# Draw detections
for *xyxy, conf, cls in detections:
x1, y1, x2, y2 = map(int, xyxy)
class_id = int(cls)
color = colors[class_id].tolist()
# Bounding box
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA)
# Label with class name and confidence
label = f"{model.names[class_id]} {conf:.2f}"
font_scale, font_thickness = 0.9, 2
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
cv2.rectangle(output_image, (x1, y1 - h - 10), (x1 + w + 10, y1), color, -1)
cv2.putText(output_image, label, (x1 + 5, y1 - 5),
cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness, lineType=cv2.LINE_AA)
fps = 1 / inference_time
# Stylish FPS display
overlay = output_image.copy()
cv2.rectangle(overlay, (10, 10), (300, 80), (0, 0, 0), -1)
output_image = cv2.addWeighted(overlay, 0.6, output_image, 0.4, 0)
cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (20, 70),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
return output_image
def process_frame_thread():
"""Background thread for processing frames"""
while not stop_event.is_set():
if not frame_queue.empty():
frame = frame_queue.get()
# Skip if there's a processing lock (from image upload)
if processing_lock.locked():
result_queue.put(frame) # Return unprocessed frame
continue
# Process the frame
with torch.no_grad(): # Ensure no gradients for inference
input_size = 384 # Smaller size for real-time processing
results = model(frame, size=input_size)
# Calculate FPS
inference_time = time.time() - frame.get('timestamp', time.time())
current_fps = 1 / inference_time if inference_time > 0 else 30
# Update rolling FPS average
fps_queue.put(current_fps)
avg_fps = sum(list(fps_queue.queue)) / fps_queue.qsize()
# Draw detections
output = frame['image'].copy()
detections = results.pred[0].cpu().numpy()
for *xyxy, conf, cls in detections:
x1, y1, x2, y2 = map(int, xyxy)
class_id = int(cls)
color = colors[class_id].tolist()
# Draw rectangle and label
cv2.rectangle(output, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA)
label = f"{model.names[class_id]} {conf:.2f}"
font_scale, font_thickness = 0.6, 1 # Smaller for real-time
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
cv2.rectangle(output, (x1, y1 - h - 5), (x1 + w + 5, y1), color, -1)
cv2.putText(output, label, (x1 + 3, y1 - 3),
cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness, lineType=cv2.LINE_AA)
# Add FPS counter
cv2.rectangle(output, (10, 10), (210, 80), (0, 0, 0), -1)
cv2.putText(output, f"FPS: {current_fps:.1f}", (20, 40),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2, lineType=cv2.LINE_AA)
cv2.putText(output, f"Avg FPS: {avg_fps:.1f}", (20, 70),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2, lineType=cv2.LINE_AA)
# Put the processed frame in the result queue
result_queue.put({'image': output, 'fps': current_fps})
else:
time.sleep(0.001) # Small sleep to prevent CPU spinning
def webcam_feed():
"""Generator function for webcam feed"""
# Start the processing thread if not already running
if not any(thread.name == "frame_processor" for thread in threading.enumerate()):
stop_event.clear()
processor = threading.Thread(target=process_frame_thread, name="frame_processor", daemon=True)
processor.start()
# Open webcam
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
try:
while True:
success, frame = cap.read()
if not success:
break
# Put frame in queue for processing
if not frame_queue.full():
frame_queue.put({'image': frame, 'timestamp': time.time()})
# Get processed frame from result queue
if not result_queue.empty():
result = result_queue.get()
yield result['image']
else:
# If no processed frame is available, yield the raw frame
yield frame
# Control frame rate to not overwhelm the system
time.sleep(0.01)
finally:
cap.release()
def process_uploaded_image(image):
"""Process an uploaded image (this will be separate from real-time)"""
with processing_lock: # Acquire lock to pause real-time processing
return detect_objects(image)
# Setup Gradio interface
example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
os.makedirs("examples", exist_ok=True)
with gr.Blocks(title="YOLOv5 Object Detection - Real-time & Image Upload") as demo:
gr.Markdown("""
# YOLOv5 Object Detection
## Real-time webcam detection and image upload processing
""")
with gr.Tabs():
with gr.TabItem("Real-time Detection"):
gr.Markdown("""
### Real-time Object Detection
Using your webcam for continuous object detection at 30+ FPS.
""")
webcam_output = gr.Image(label="Real-time Detection", type="numpy")
with gr.TabItem("Image Upload"):
gr.Markdown("""
### Image Upload Detection
Upload an image to detect objects.
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Input Image", type="numpy")
submit_button = gr.Button("Submit", variant="primary")
clear_button = gr.Button("Clear")
with gr.Column(scale=1):
output_image = gr.Image(label="Detected Objects", type="numpy")
gr.Examples(
examples=example_images,
inputs=input_image,
outputs=output_image,
fn=process_uploaded_image,
cache_examples=True
)
# Set up event handlers
submit_button.click(fn=process_uploaded_image, inputs=input_image, outputs=output_image)
clear_button.click(lambda: (None, None), None, [input_image, output_image])
# Connect webcam feed
demo.load(lambda: None, None, webcam_output, _js="""
() => {
// Keep the webcam tab refreshing at high frequency
setInterval(() => {
if (document.querySelector('.tabitem:first-child').style.display !== 'none') {
const webcamImg = document.querySelector('.tabitem:first-child img');
if (webcamImg) {
const src = webcamImg.src;
webcamImg.src = src.includes('?') ? src.split('?')[0] + '?t=' + Date.now() : src + '?t=' + Date.now();
}
}
}, 33); // ~30 FPS refresh rate
return [];
}
""")
# Start webcam feed
webcam_output.update(webcam_feed)
# Cleanup function to stop threads when app closes
def cleanup():
stop_event.set()
print("Cleaning up threads...")
demo.close = cleanup
demo.launch() |