Aumkeshchy2003 commited on
Commit
a83113c
·
verified ·
1 Parent(s): c5ecced

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -92
app.py CHANGED
@@ -1,120 +1,83 @@
 
1
  import torch
2
  import numpy as np
3
  import gradio as gr
4
- import cv2
5
  import time
6
  import os
7
  from pathlib import Path
 
8
 
9
- # Create cache directory for models
10
- os.makedirs("models", exist_ok=True)
11
-
12
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
- print(f"Using device: {device}")
14
-
15
- model_path = Path("models/yolov5n.pt")
16
- if model_path.exists():
17
- print(f"Loading model from cache: {model_path}")
18
- model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True, source="local", path=str(model_path)).to(device)
19
- else:
20
- print("Downloading YOLOv5n model and caching...")
21
- model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device)
22
- torch.save(model.state_dict(), model_path)
23
-
24
- # Model configurations
25
- model.conf = 0.6
26
- model.iou = 0.6
27
- model.classes = None
28
 
29
- if device.type == "cuda":
30
- model.half()
31
- else:
32
- torch.set_num_threads(os.cpu_count())
33
-
34
- model.eval()
35
 
 
36
  np.random.seed(42)
37
- colors = np.random.uniform(0, 255, size=(len(model.names), 3))
38
 
39
- total_inference_time = 0
40
- inference_count = 0
 
 
 
41
 
42
  def detect_objects(image):
43
- global total_inference_time, inference_count
44
-
45
- if image is None:
46
- return None
47
-
48
  start_time = time.time()
 
 
 
49
  output_image = image.copy()
50
- input_size = 640
51
-
52
- with torch.no_grad():
53
- results = model(image, size=input_size)
54
 
55
- inference_time = time.time() - start_time
56
- total_inference_time += inference_time
57
- inference_count += 1
58
- avg_inference_time = total_inference_time / inference_count
59
-
60
- detections = results.pred[0].cpu().numpy()
61
-
62
- for *xyxy, conf, cls in detections:
63
- x1, y1, x2, y2 = map(int, xyxy)
64
- class_id = int(cls)
65
- color = colors[class_id].tolist()
66
-
67
- # Thicker bounding boxes
68
- cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA)
69
-
70
- label = f"{model.names[class_id]} {conf:.2f}"
71
- font_scale, font_thickness = 0.9, 2
72
- (w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
73
-
74
- cv2.rectangle(output_image, (x1, y1 - h - 10), (x1 + w + 10, y1), color, -1)
75
- cv2.putText(output_image, label, (x1 + 5, y1 - 5),
76
- cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness, lineType=cv2.LINE_AA)
77
-
78
- fps = 1 / inference_time
79
-
80
- # Stylish FPS display
81
- overlay = output_image.copy()
82
- cv2.rectangle(overlay, (10, 10), (300, 80), (0, 0, 0), -1)
83
- output_image = cv2.addWeighted(overlay, 0.6, output_image, 0.4, 0)
84
- cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40),
85
- cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
86
- cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (20, 70),
87
- cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
88
 
 
 
89
  return output_image
90
 
91
- example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
92
- os.makedirs("examples", exist_ok=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
- with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo:
95
  gr.Markdown("""
96
- # Optimized YOLOv5 Object Detection
97
- Detects objects using YOLOv5 with enhanced visualization and FPS tracking.
98
  """)
99
 
100
  with gr.Row():
101
- with gr.Column(scale=1):
102
- input_image = gr.Image(label="Input Image", type="numpy")
103
- submit_button = gr.Button("Submit", variant="primary")
104
- clear_button = gr.Button("Clear")
105
 
106
- with gr.Column(scale=1):
107
- output_image = gr.Image(label="Detected Objects", type="numpy")
108
-
109
- gr.Examples(
110
- examples=example_images,
111
- inputs=input_image,
112
- outputs=output_image,
113
- fn=detect_objects,
114
- cache_examples=True
115
- )
116
 
117
- submit_button.click(fn=detect_objects, inputs=input_image, outputs=output_image)
118
- clear_button.click(lambda: (None, None), None, [input_image, output_image])
119
 
120
  demo.launch()
 
1
+ import cv2
2
  import torch
3
  import numpy as np
4
  import gradio as gr
 
5
  import time
6
  import os
7
  from pathlib import Path
8
+ import onnxruntime as ort
9
 
10
+ # Set device for ONNX Runtime
11
+ providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if torch.cuda.is_available() else ['CPUExecutionProvider']
12
+ session = ort.InferenceSession("models/yolov5n.onnx", providers=providers)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
+ # Load model class names
15
+ class_names = ["person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light"] # Modify based on model
 
 
 
 
16
 
17
+ # Generate random colors for classes
18
  np.random.seed(42)
19
+ colors = np.random.uniform(0, 255, size=(len(class_names), 3))
20
 
21
+ def preprocess(image):
22
+ image = cv2.resize(image, (640, 640))
23
+ image = image.transpose((2, 0, 1)) / 255.0 # Normalize
24
+ image = np.expand_dims(image, axis=0).astype(np.float32)
25
+ return image
26
 
27
  def detect_objects(image):
 
 
 
 
 
28
  start_time = time.time()
29
+ image_input = preprocess(image)
30
+ outputs = session.run(None, {session.get_inputs()[0].name: image_input})
31
+ detections = outputs[0][0]
32
  output_image = image.copy()
 
 
 
 
33
 
34
+ for det in detections:
35
+ x1, y1, x2, y2, conf, cls = map(int, det[:6])
36
+ if conf > 0.6: # Confidence threshold
37
+ color = colors[cls].tolist()
38
+ cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 2)
39
+ label = f"{class_names[cls]} {conf:.2f}"
40
+ cv2.putText(output_image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
+ fps = 1 / (time.time() - start_time)
43
+ cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
44
  return output_image
45
 
46
+ def real_time_detection():
47
+ cap = cv2.VideoCapture(0)
48
+ cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
49
+ cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
50
+ cap.set(cv2.CAP_PROP_FPS, 60)
51
+
52
+ while cap.isOpened():
53
+ start_time = time.time()
54
+ ret, frame = cap.read()
55
+ if not ret:
56
+ break
57
+ output_frame = detect_objects(frame)
58
+ cv2.imshow("Real-Time Object Detection", output_frame)
59
+ if cv2.waitKey(1) & 0xFF == ord('q'):
60
+ break
61
+ print(f"FPS: {1 / (time.time() - start_time):.2f}")
62
+ cap.release()
63
+ cv2.destroyAllWindows()
64
 
65
+ with gr.Blocks(title="YOLOv5 Real-Time Object Detection") as demo:
66
  gr.Markdown("""
67
+ # Real-Time Object Detection with YOLOv5
68
+ **Upload an image or run real-time detection**
69
  """)
70
 
71
  with gr.Row():
72
+ with gr.Column():
73
+ input_image = gr.Image(label="Upload Image", type="numpy")
74
+ detect_button = gr.Button("Detect Objects")
75
+ start_rt_button = gr.Button("Start Real-Time Detection")
76
 
77
+ with gr.Column():
78
+ output_image = gr.Image(label="Detection Results", type="numpy")
 
 
 
 
 
 
 
 
79
 
80
+ detect_button.click(detect_objects, inputs=input_image, outputs=output_image)
81
+ start_rt_button.click(lambda: real_time_detection(), None, None)
82
 
83
  demo.launch()