Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,120 +1,83 @@
|
|
|
|
1 |
import torch
|
2 |
import numpy as np
|
3 |
import gradio as gr
|
4 |
-
import cv2
|
5 |
import time
|
6 |
import os
|
7 |
from pathlib import Path
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
-
print(f"Using device: {device}")
|
14 |
-
|
15 |
-
model_path = Path("models/yolov5n.pt")
|
16 |
-
if model_path.exists():
|
17 |
-
print(f"Loading model from cache: {model_path}")
|
18 |
-
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True, source="local", path=str(model_path)).to(device)
|
19 |
-
else:
|
20 |
-
print("Downloading YOLOv5n model and caching...")
|
21 |
-
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device)
|
22 |
-
torch.save(model.state_dict(), model_path)
|
23 |
-
|
24 |
-
# Model configurations
|
25 |
-
model.conf = 0.6
|
26 |
-
model.iou = 0.6
|
27 |
-
model.classes = None
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
else:
|
32 |
-
torch.set_num_threads(os.cpu_count())
|
33 |
-
|
34 |
-
model.eval()
|
35 |
|
|
|
36 |
np.random.seed(42)
|
37 |
-
colors = np.random.uniform(0, 255, size=(len(
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
|
42 |
def detect_objects(image):
|
43 |
-
global total_inference_time, inference_count
|
44 |
-
|
45 |
-
if image is None:
|
46 |
-
return None
|
47 |
-
|
48 |
start_time = time.time()
|
|
|
|
|
|
|
49 |
output_image = image.copy()
|
50 |
-
input_size = 640
|
51 |
-
|
52 |
-
with torch.no_grad():
|
53 |
-
results = model(image, size=input_size)
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
for *xyxy, conf, cls in detections:
|
63 |
-
x1, y1, x2, y2 = map(int, xyxy)
|
64 |
-
class_id = int(cls)
|
65 |
-
color = colors[class_id].tolist()
|
66 |
-
|
67 |
-
# Thicker bounding boxes
|
68 |
-
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA)
|
69 |
-
|
70 |
-
label = f"{model.names[class_id]} {conf:.2f}"
|
71 |
-
font_scale, font_thickness = 0.9, 2
|
72 |
-
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
|
73 |
-
|
74 |
-
cv2.rectangle(output_image, (x1, y1 - h - 10), (x1 + w + 10, y1), color, -1)
|
75 |
-
cv2.putText(output_image, label, (x1 + 5, y1 - 5),
|
76 |
-
cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness, lineType=cv2.LINE_AA)
|
77 |
-
|
78 |
-
fps = 1 / inference_time
|
79 |
-
|
80 |
-
# Stylish FPS display
|
81 |
-
overlay = output_image.copy()
|
82 |
-
cv2.rectangle(overlay, (10, 10), (300, 80), (0, 0, 0), -1)
|
83 |
-
output_image = cv2.addWeighted(overlay, 0.6, output_image, 0.4, 0)
|
84 |
-
cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40),
|
85 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
|
86 |
-
cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (20, 70),
|
87 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
|
88 |
|
|
|
|
|
89 |
return output_image
|
90 |
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
with gr.Blocks(title="
|
95 |
gr.Markdown("""
|
96 |
-
#
|
97 |
-
|
98 |
""")
|
99 |
|
100 |
with gr.Row():
|
101 |
-
with gr.Column(
|
102 |
-
input_image = gr.Image(label="
|
103 |
-
|
104 |
-
|
105 |
|
106 |
-
with gr.Column(
|
107 |
-
output_image = gr.Image(label="
|
108 |
-
|
109 |
-
gr.Examples(
|
110 |
-
examples=example_images,
|
111 |
-
inputs=input_image,
|
112 |
-
outputs=output_image,
|
113 |
-
fn=detect_objects,
|
114 |
-
cache_examples=True
|
115 |
-
)
|
116 |
|
117 |
-
|
118 |
-
|
119 |
|
120 |
demo.launch()
|
|
|
1 |
+
import cv2
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
|
|
5 |
import time
|
6 |
import os
|
7 |
from pathlib import Path
|
8 |
+
import onnxruntime as ort
|
9 |
|
10 |
+
# Set device for ONNX Runtime
|
11 |
+
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if torch.cuda.is_available() else ['CPUExecutionProvider']
|
12 |
+
session = ort.InferenceSession("models/yolov5n.onnx", providers=providers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# Load model class names
|
15 |
+
class_names = ["person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light"] # Modify based on model
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Generate random colors for classes
|
18 |
np.random.seed(42)
|
19 |
+
colors = np.random.uniform(0, 255, size=(len(class_names), 3))
|
20 |
|
21 |
+
def preprocess(image):
|
22 |
+
image = cv2.resize(image, (640, 640))
|
23 |
+
image = image.transpose((2, 0, 1)) / 255.0 # Normalize
|
24 |
+
image = np.expand_dims(image, axis=0).astype(np.float32)
|
25 |
+
return image
|
26 |
|
27 |
def detect_objects(image):
|
|
|
|
|
|
|
|
|
|
|
28 |
start_time = time.time()
|
29 |
+
image_input = preprocess(image)
|
30 |
+
outputs = session.run(None, {session.get_inputs()[0].name: image_input})
|
31 |
+
detections = outputs[0][0]
|
32 |
output_image = image.copy()
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
for det in detections:
|
35 |
+
x1, y1, x2, y2, conf, cls = map(int, det[:6])
|
36 |
+
if conf > 0.6: # Confidence threshold
|
37 |
+
color = colors[cls].tolist()
|
38 |
+
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 2)
|
39 |
+
label = f"{class_names[cls]} {conf:.2f}"
|
40 |
+
cv2.putText(output_image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
fps = 1 / (time.time() - start_time)
|
43 |
+
cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
44 |
return output_image
|
45 |
|
46 |
+
def real_time_detection():
|
47 |
+
cap = cv2.VideoCapture(0)
|
48 |
+
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
|
49 |
+
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
|
50 |
+
cap.set(cv2.CAP_PROP_FPS, 60)
|
51 |
+
|
52 |
+
while cap.isOpened():
|
53 |
+
start_time = time.time()
|
54 |
+
ret, frame = cap.read()
|
55 |
+
if not ret:
|
56 |
+
break
|
57 |
+
output_frame = detect_objects(frame)
|
58 |
+
cv2.imshow("Real-Time Object Detection", output_frame)
|
59 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
60 |
+
break
|
61 |
+
print(f"FPS: {1 / (time.time() - start_time):.2f}")
|
62 |
+
cap.release()
|
63 |
+
cv2.destroyAllWindows()
|
64 |
|
65 |
+
with gr.Blocks(title="YOLOv5 Real-Time Object Detection") as demo:
|
66 |
gr.Markdown("""
|
67 |
+
# Real-Time Object Detection with YOLOv5
|
68 |
+
**Upload an image or run real-time detection**
|
69 |
""")
|
70 |
|
71 |
with gr.Row():
|
72 |
+
with gr.Column():
|
73 |
+
input_image = gr.Image(label="Upload Image", type="numpy")
|
74 |
+
detect_button = gr.Button("Detect Objects")
|
75 |
+
start_rt_button = gr.Button("Start Real-Time Detection")
|
76 |
|
77 |
+
with gr.Column():
|
78 |
+
output_image = gr.Image(label="Detection Results", type="numpy")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
detect_button.click(detect_objects, inputs=input_image, outputs=output_image)
|
81 |
+
start_rt_button.click(lambda: real_time_detection(), None, None)
|
82 |
|
83 |
demo.launch()
|