Search is not available for this dataset
name
stringlengths 2
112
| description
stringlengths 29
13k
| source
int64 1
7
| difficulty
int64 0
25
| solution
stringlengths 7
983k
| language
stringclasses 4
values |
---|---|---|---|---|---|
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
int t;
cin >> t;
int done = 1;
for (int i = 0; i < t; i++) {
done = 1;
int n;
cin >> n;
int A[n];
int B[2 * n];
int check[2 * n];
for (int i = 0; i < 2 * n; i++) {
check[i] = 0;
}
for (int j = 0; j < n; j++) {
cin >> A[j];
B[2 * j] = A[j];
check[A[j] - 1] = 1;
}
for (int j = 0; j < n; j++) {
int val = B[2 * j] + 1;
while (val < 2 * n && check[val - 1] == 1) {
val++;
}
if ((val == 2 * n && check[val - 1] == 1 || val == 2 * n + 1)) {
done = 0;
break;
}
B[2 * j + 1] = val;
check[val - 1] = 1;
}
if (done == 0)
cout << -1;
else {
for (int j = 0; j < 2 * n; j++) {
cout << B[j] << ' ';
}
}
cout << endl;
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import heapq
def solve(n,t):
remainingCandidates = sorted(list(set([a for a in range(1,2*n + 1)]) - set(t) - set([x for x in range(1, sorted(t)[0], 1)])))
if len(remainingCandidates) != n:
return -1
else:
used = [False]*len(remainingCandidates)
ans = []
for i,x in enumerate(t):
ans.append(x)
for j,y in enumerate(remainingCandidates):
if y > x and not used[j]:
ans.append(y)
used[j] = True
break
if len(ans) % 2 != 0:
return -1
return " ".join(str(x) for x in ans)
for i in range(int(input())):
n = int(input())
t = list(map(int, input().split()))
print(solve(n,t)) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
template <class T>
ostream &operator<<(ostream &os, const vector<T> &V) {
os << "[ ";
for (auto v : V) os << v << " ";
return os << "]";
}
template <class T>
ostream &operator<<(ostream &os, const set<T> &S) {
os << "{ ";
for (auto s : S) os << s << " ";
return os << "}";
}
template <class T>
ostream &operator<<(ostream &os, const unordered_set<T> &S) {
os << "{ ";
for (auto s : S) os << s << " ";
return os << "}";
}
template <class L, class R>
ostream &operator<<(ostream &os, const pair<L, R> &P) {
return os << "(" << P.first << "," << P.second << ") ";
}
template <class L, class R>
ostream &operator<<(ostream &os, const map<L, R> &M) {
os << "{ ";
for (auto m : M) os << "(" << m.first << ":" << m.second << ") ";
return os << "}";
}
template <class T>
ostream &operator<<(ostream &os, stack<T> S) {
while (!S.empty()) {
os << S.top() << "\n";
S.pop();
}
return os;
}
template <class T>
ostream &operator<<(ostream &os, queue<T> Q) {
while (!Q.empty()) {
os << Q.front() << " ";
Q.pop();
}
return os;
}
const long long mod = 1e9 + 7;
inline long long modulo(long long x) {
x = x % mod;
return x < 0 ? x + mod : x;
}
inline long long add(long long x, long long y) {
long long z = modulo(x) + modulo(y);
return modulo(z);
}
inline long long sub(long long x, long long y) {
long long z = modulo(x) - modulo(y);
return modulo(z);
}
inline long long mul(long long x, long long y) {
long long z = modulo(x) * 1ll * modulo(y);
return modulo(z);
}
inline long long power(long long x, long long y) {
x = modulo(x);
y = modulo(y);
if (y == 0) return 1;
long long temp = power(x, y / 2);
temp = mul(temp, temp);
if (y % 2 == 1) temp = mul(temp, x);
return temp;
}
inline long long inv(long long x) { return power(x, mod - 2); }
void solve() {
long long n;
cin >> n;
vector<long long> cache(2 * n, 0), dp(2 * n + 1, 0);
for (long long i = 0; i < n; i++) {
cin >> cache[2 * i];
dp[cache[2 * i]] = 1;
}
long long count = 0;
for (long long i = 1; 1 < 2 * n ? i <= 2 * n : i >= 2 * n;
1 < 2 * n ? i++ : i--) {
if (dp[i] == 0 && count < (i + 1) / 2) {
cout << -1 << endl;
return;
}
if (dp[i] == 1) count++;
}
for (long long i = 0; i < n; i++) {
long long index = cache[2 * i];
while (dp[index]) index++;
cache[2 * i + 1] = index;
dp[index] = 1;
index++;
}
for (auto v : cache) cout << v << " ";
cout << endl;
}
int32_t main() {
long long T = 1;
cin >> T;
for (long long t = 1; 1 < T ? t <= T : t >= T; 1 < T ? t++ : t--) {
solve();
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | I=input
for _ in[0]*int(I()):
I();b=*map(int,I().split()),;s={*range(2*len(b)+1)}-{*b};a=[]
try:
for x in b:y=min(s-{*range(x)});s-={y};a+=x,y
except:a=-1,
print(*a) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
signed main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
vector<int> b(n);
vector<int> a(2 * n);
vector<char> used(2 * n);
for (int i = 0; i < n; ++i) {
cin >> b[i];
--b[i];
used[b[i]] = true;
a[2 * i] = b[i];
}
bool good = true;
for (int i = 0; i < n; ++i) {
int j = b[i] + 1;
for (; j < 2 * n; ++j) {
if (!used[j]) {
break;
}
}
if (j == 2 * n) {
good = false;
break;
}
used[j] = true;
a[2 * i + 1] = j;
}
if (good) {
for (auto e : a) cout << e + 1 << " ";
} else {
cout << -1;
}
cout << "\n";
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | n = int(input())
for a in range(n):
answer = ""
size = int(input())
nums = list(map(int,input().split()))
taken = set(nums)
possible = True
if 1 not in taken:
print(-1)
continue
for num in nums:
answer += str(num) + " "
found = False
for b in range(num+1,2*size+1):
if b not in taken:
found = True
taken.add(b)
answer += str(b) + " "
break
if not found:
possible = False
break
if possible:
print(answer)
else:
print(-1)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n=int(input())
b=list(map(int,input().split()))
a=[]
rem=set([i for i in range(1,2*n+1)])-set(b)
f=True
for i in range(n):
a.append(b[i])
ai=float('inf')
for j in rem:
if j>b[i] and ai>j:
ai=j
if ai==float('inf'):
f=False
break
rem.remove(ai)
a.append(ai)
if f:
print(*a)
else:
print(-1) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import sys
import bisect
input = sys.stdin.readline
ins = lambda: input().rstrip()
ini = lambda: int(input().rstrip())
inm = lambda: map(int, input().rstrip().split())
inl = lambda: list(map(int, input().split()))
out = lambda x: print('\n'.join(map(str, x)))
finalans = []
t = ini()
for _ in range(t):
n = ini()
b = inl()
a = [i for i in range(1, n*2+1) if i not in b]
out = True
j = 0
for index, number in enumerate(sorted(b)):
if number > a[index]:
out = False
finalans.append([-1])
break
if not out:
continue
ans = []
for i in b:
x = bisect.bisect_right(a, i)
ans.append(i)
ans.append(a[x])
a.pop(x)
finalans.append(ans)
for i in finalans:
print(*i) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
int a[n];
vector<bool> flag(2 * n + 1, false);
for (int i = 0; i < n; i++) {
cin >> a[i];
flag[a[i]] = true;
}
vector<int> st;
for (int i = 1; i <= 2 * n; i++) {
if (!flag[i]) {
st.push_back(i);
}
}
if (flag[2 * n] || !flag[1]) {
cout << -1 << endl;
} else {
vector<int> b;
int d = 0;
for (int i = 0; i < n; i++) {
b.push_back(a[i]);
vector<int>::iterator itr;
for (itr = st.begin(); itr != st.end(); itr++) {
if (*itr > a[i]) {
break;
}
}
if (itr == st.end()) {
cout << -1 << endl;
d++;
break;
}
b.push_back(*itr);
st.erase(itr);
}
if (d) {
continue;
}
for (int i = 0; i < b.size(); i++) {
cout << b[i] << " ";
}
cout << endl;
}
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 9;
const int MOD = 1000000007;
int mod = 999998639;
inline long long qpow(long long b, long long e, long long m = MOD) {
long long a = 1;
for (; e; e >>= 1, b = b * b % m)
if (e & 1) a = a * b % m;
return a;
}
set<int> s;
int b[109];
vector<int> ve;
int main() {
int _;
while (scanf("%d", &_) != EOF) {
while (_--) {
ve.clear();
s.clear();
int n;
scanf("%d", &n);
for (int i = 1; i <= 2 * n; i++) {
s.insert(i);
}
for (int i = 1; i <= n; i++) {
scanf("%d", &b[i]);
s.erase(b[i]);
}
bool flag = false;
for (int i = 1; i <= n; i++) {
set<int>::iterator it = s.upper_bound(b[i]);
if (it == s.end()) {
flag = true;
break;
} else {
ve.push_back(b[i]);
ve.push_back(*it);
s.erase(it);
}
}
if (flag) {
printf("-1\n");
} else {
for (int i = 0; i < ve.size(); i++) {
printf("%d ", ve[i]);
}
printf("\n");
}
}
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | # -*- coding: utf-8 -*-
import sys
from collections import Counter
def input(): return sys.stdin.readline().strip()
def list2d(a, b, c): return [[c] * b for i in range(a)]
def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)]
def list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)]
def ceil(x, y=1): return int(-(-x // y))
def INT(): return int(input())
def MAP(): return map(int, input().split())
def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)]
def Yes(): print('Yes')
def No(): print('No')
def YES(): print('YES')
def NO(): print('NO')
# sys.setrecursionlimit(10 ** 9)
INF = 10 ** 18
MOD = 10 ** 9 + 7
for _ in range(INT()):
N = INT()
B = LIST()
A = [0] * (N*2)
S = set()
for i in range(N):
A[i*2] = B[i]
S.add(B[i])
for i in range(N):
b = A[i*2]
for j in range(b+1, N*2+1):
if j not in S:
A[i*2+1] = j
S.add(j)
break
for i in range(N):
if A[i*2] > A[i*2+1]:
print(-1)
break
else:
print(*A)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import sys
import bisect
def metod(x):
if t[x] == "A":
w = a
else:
w = b
for i in range(x + 1, len(t)-1):
if t[i] != t[i - 1]:
if t[i] == "A":
w+=a
else:
w+=b
return w
def morzermorzer():
n = int(input())
w = list(map(int, input().split()))
isk = []
for i in range(1, 2 * n + 1):
if i not in w:
isk.append(i)
isk.sort()
ans = [0 for i in range(2*n)]
for i in range(n):
ans[i * 2] = w[i]
fl = 0
for i in range(n - 1):
ind = bisect.bisect(isk, w[i])
if ind != n - i:
r = isk[ind]
del isk[ind]
ans[i * 2 + 1] = r
else:
print(-1)
return 0
if isk[-1] < w[-1]:
print(-1)
return 0
else:
ans[-1] = isk[-1]
print(*ans)
for morzer in range(int(input())):
morzermorzer() | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | def min_number_after(number:int):
global other_sequence
for k in range(len(other_sequence)):
if other_sequence[k] > number:
return other_sequence[k]
return "No"
def list_subtract():
global sequence, n
other_sequence = list(range(1, 2*n+1))
for k in sequence:
other_sequence.remove(k)
return other_sequence
t = int(input())
for i in range(t):
n = int(input())
sequence = list(map(int, input().split(' ')))
other_sequence = list_subtract()
quantity_operations = len(sequence)*2
for j in range(0, quantity_operations, 2):
temp = min_number_after(sequence[j])
if temp != "No":
sequence.insert(j + 1, temp)
other_sequence.remove(sequence[j + 1])
else:
print(-1)
break
else:
sequence = [str(x) for x in sequence]
print(' '.join(sequence)) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import sys
t=int(sys.stdin.readline())
for i in range(t):
n=int(sys.stdin.readline())
b=[int(j) for j in sys.stdin.readline().split()]
arr=[]
# perm=[]
# for p in range(1,2*n+1):
# perm.append(p+1)
tot=2*n
mark=[0]*tot
for g in range(n):
mark[b[g]-1]=1
ans=True
for h in range(n):
done=0
for k in range(2*n):
if(mark[k]==0 and k+1>b[h]):
mark[k]=1
tmp=[b[h],k+1]
tmp.sort()
arr.append(tmp)
done=1
break
if(done==0):
ans=False
break
if(ans==True):
for w in range(n):
print(arr[w][0],end=" ")
print(arr[w][1],end=" ")
print()
else:
print(-1)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | from collections import defaultdict, Counter
def getlist():
return list(map(int, input().split()))
def main():
t = int(input())
for num in range(t):
n = int(input())
arr = getlist()
arr1=arr.copy()
box = []
if min(arr)!=1 or max(arr)>=2*n:
print(-1)
else:
for number in arr1:
box.append(number)
while number+1 in arr:
number+=1
box.append(number+1)
arr.append(number+1)
if max(box)>2*n:
print(-1)
else:
print(*box)
main()
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import sys
from collections import defaultdict, deque
inp = sys.stdin.readline
read = lambda: list(map(int, inp().split()))
def a():
ans = ""
for _ in range(read()[0]):
a, b, x, y = read()
x += 1
y += 1
ans += str(max(((a-x)*(b)), ((x-1)*(b)), ((a)*(b-y)), ((a)*(y-1)))) + "\n"
print(ans)
def c():
ans = ""
for _ in range(read()[0]):
flag = 0
n = int(inp())
dic = dict()
for ind, elem in enumerate(read()):
dic[elem] = (ind*2, ind*2+1)
arr = [None]*(2*n)
left = set(i for i in range(1, 2*n+1)).difference(dic.keys())
for i in dic.keys():
elem = dic[i]
mins = [y for y in left if y > i]
if mins:
sup = min(mins)
arr[elem[0]], arr[elem[1]] = i, sup
left.remove(sup)
else:
flag = 1
break
if flag:
ans += "-1\n"
else:
ans += (" ").join(map(str, arr)) + "\n"
print(ans)
if __name__ == "__main__":
# a()
# b()
c()
# 1 2 3 4 5 6 7 8
# 2 1 3 6 4 7 5 8
# 1 - 1, 2 - 3
# 2 - 7, 8 - 4
# 5 - 3, 4 - 6
# 7 - 5, 6 - 9
# 8 - 9, 10 - 10
# 1 3 5 6 7 9 2 4 8 10
# 3
# 4
# 6
# 9
# 10 | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
public class restoringPermutation {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
StringBuilder finalAns = new StringBuilder();
int t = sc.nextInt();
while (--t >= 0) {
StringBuilder ans = new StringBuilder();
int n = sc.nextInt(), b[] = new int[n];
HashSet<Integer> hs = new HashSet<Integer>(2 * n);
for (int i = 0; i < n; i++) {
b[i] = sc.nextInt();
hs.add(b[i]);
}
int flag = 0;
for (int i = 0; i < n; i++) {
ans.append(b[i] + " ");
int temp = b[i] + 1;
while (hs.contains(temp)) {
++temp;
}
if (temp > 2 * n) {
flag = 1;
break;
}
if (((2 * i) + 1) < 2 * n) {
ans.append(temp + " ");
hs.add(temp);
}
}
finalAns.append(((flag == 0) ? ans : -1) + "\n");
}
sc.close();
System.out.println(finalAns);
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
template <typename T>
using second = set<T>;
template <typename T>
using v = vector<T>;
const int Max = 2e5 + 100;
const int Mx = 5e1 + 10;
const int Len = 1e6;
const int MOD = 1e9 + 7;
const long long INF = 1e18;
int A[Max];
bool usedNum[Max];
int main() {
int q;
cin >> q;
while (q--) {
int n;
cin >> n;
bool able = true;
fill(usedNum, usedNum + 2 * n + 100, false);
fill(A, A + 2 * n + 100, -1);
for (int i = 0; i < n; i++) {
cin >> A[2 * i];
if (!usedNum[A[2 * i]]) {
usedNum[A[2 * i]] = true;
} else {
able = false;
}
}
for (int i = 1; i < 2 * n; i += 2) {
int trg = -1;
for (int j = A[i - 1] + 1; j <= 2 * n; j++) {
if (!usedNum[j]) {
trg = j;
usedNum[trg] = true;
break;
}
}
A[i] = trg;
}
for (int i = 0; i < 2 * n; i++) {
if (A[i] == -1) able = false;
}
if (able) {
cout << "";
for (int i = 0; i < 2 * n; i++) {
cout << A[i] << ' ';
}
cout << '\n';
} else {
cout << -1 << '\n';
}
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.*;
import java.util.stream.Collectors;
public class RestoringPermutation {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int test = scanner.nextInt();
scanner.nextLine();
for (int t = 0; t < test; t++) {
int n = scanner.nextInt();
scanner.nextLine();
int[]arr = new int[n];
Set<Integer> nums = new HashSet<>();
for (int i = 0; i < n; i++) {
arr[i] = scanner.nextInt();
nums.add(arr[i]);
}
scanner.nextLine();
TreeSet<Integer> remaining = new TreeSet<>();
for (int i = 1; i < 2 * n + 1; i++) {
if (!nums.contains(i)) {
remaining.add(i);
}
}
int[] result = new int[2 * n];
boolean invalid = false;
for (int i = 0; i < n; i++) {
int num1 = arr[i];
Integer ceiling = remaining.ceiling(num1);
if (ceiling != null) {
result[2 * i] = num1;
result[2 * i + 1] = ceiling;
remaining.remove(ceiling);
}else{
invalid = true;
break;
}
}
if (invalid) {
System.out.println(-1);
}else{
System.out.println(Arrays.stream(result).mapToObj(e -> String.valueOf(e)).collect(Collectors.joining(" ")));
}
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const long long inf = 1e16;
const long long N = 1e5 + 1;
const long long mod = 1e9 + 7;
void solve() {
long long n;
cin >> n;
long long b[n + 1];
for (long long i = 1; i <= n; i++) {
cin >> b[i];
}
deque<long long> ans(2 * n + 1), rem;
for (long long i = 1; i <= 2 * n; i++) {
rem.push_back(i);
}
for (long long i = 1; i <= n; i++) {
auto it = find(rem.begin(), rem.end(), b[i]);
if (it != rem.end()) {
rem.erase(it);
}
}
for (long long i = 1; i <= n; i++) {
ans[2 * i - 1] = b[i];
auto it = upper_bound(rem.begin(), rem.end(), b[i]);
if (it == rem.end()) {
cout << -1 << "\n";
return;
}
ans[2 * i] = *it;
rem.erase(it);
}
ans.pop_front();
for (auto x : ans) {
cout << x << " ";
}
cout << "\n";
}
signed main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
long long t = 1;
cin >> t;
while (t--) solve();
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import os,io
input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline
cases = int(input())
for t in range(cases):
n = int(input())
b = list(map(int,input().split()))
a = [0]*(2*n)
d = {i:True for i in range(1,2*n+1)}
for i in range(n):
p = i+1
pos = 2*p-1
a[pos-1] = b[i]
d[b[i]] = False
f = 0
for i in range(n):
p = i+1
pos = 2*p
v = b[i]+1
while v in d and not d[v]:
v+=1
if v>2*n:
print(-1)
f=1
break
else:
d[v] = False
a[pos-1] = v
if f==0:
print(*a) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | from bisect import bisect_right
t = int(input())
for _ in range(t):
n = int(input())
b = [ int(x) for x in input().split()]
arr = [False]*(2*n+1)
result = [0]*(n*2)
for i, val in enumerate(b):
result[i*2] = val
arr[val] = True
arr[0] = True
arr = [ i for (i, v) in enumerate(arr) if v==False]
arr = sorted(arr)
err = False
for i in range(n):
j = bisect_right(arr, result[i*2])
if j==len(arr):
err = True
break
result[2*i+1] = arr[j]
arr.pop(j)
if err:
print("-1")
else:
print(" ".join(map(str, result)))
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n=int(input())
l=list(map(int,input().split()))
h=[0]*((2*n)+1)
for i in l:
h[i]=1
sl=[]
i=0
mm=0
for i in range(n):
flag=0
for j in range(l[i]+1,(2*n)+1):
if h[j]==0:
flag=1
sl.append(l[i])
sl.append(j)
h[j]=1
break
if flag==0:
break
if flag==0:
print(-1,end="")
else:
for i in range(len(sl)):
print(sl[i],end=" ")
print("")
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 |
# Author : raj1307 - Raj Singh
# Date : 23.02.2020
from __future__ import division, print_function
import os,sys
from io import BytesIO, IOBase
if sys.version_info[0] < 3:
from __builtin__ import xrange as range
from future_builtins import ascii, filter, hex, map, oct, zip
def ii(): return int(input())
def si(): return input()
def mi(): return map(int,input().strip().split(" "))
def msi(): return map(str,input().strip().split(" "))
def li(): return list(mi())
def dmain():
sys.setrecursionlimit(100000000)
threading.stack_size(40960000)
thread = threading.Thread(target=main)
thread.start()
#from collections import deque, Counter, OrderedDict,defaultdict
#from heapq import nsmallest, nlargest, heapify,heappop ,heappush, heapreplace
from math import ceil,floor,log,sqrt,factorial
#from bisect import bisect,bisect_left,bisect_right,insort,insort_left,insort_right
#from decimal import *,threading
from itertools import permutations
#Copy 2D list m = [x[:] for x in mark] .. Avoid Using Deepcopy
abc='abcdefghijklmnopqrstuvwxyz'
abd={'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, 'f': 5, 'g': 6, 'h': 7, 'i': 8, 'j': 9, 'k': 10, 'l': 11, 'm': 12, 'n': 13, 'o': 14, 'p': 15, 'q': 16, 'r': 17, 's': 18, 't': 19, 'u': 20, 'v': 21, 'w': 22, 'x': 23, 'y': 24, 'z': 25}
mod=1000000007
#mod=998244353
inf = float("inf")
vow=['a','e','i','o','u']
dx,dy=[-1,1,0,0],[0,0,1,-1]
def getKey(item): return item[1]
def sort2(l):return sorted(l, key=getKey,reverse=True)
def d2(n,m,num):return [[num for x in range(m)] for y in range(n)]
def isPowerOfTwo (x): return (x and (not(x & (x - 1))) )
def decimalToBinary(n): return bin(n).replace("0b","")
def ntl(n):return [int(i) for i in str(n)]
def ncr(n,r): return factorial(n)//(factorial(r)*factorial(n-r))
def powerMod(x,y,p):
res = 1
x %= p
while y > 0:
if y&1:
res = (res*x)%p
y = y>>1
x = (x*x)%p
return res
def gcd(x, y):
while y:
x, y = y, x % y
return x
def isPrime(n) : # Check Prime Number or not
if (n <= 1) : return False
if (n <= 3) : return True
if (n % 2 == 0 or n % 3 == 0) : return False
i = 5
while(i * i <= n) :
if (n % i == 0 or n % (i + 2) == 0) :
return False
i = i + 6
return True
def read():
sys.stdin = open('input.txt', 'r')
sys.stdout = open('output.txt', 'w')
def main():
for _ in range(ii()):
n=ii()
b=li()
f=[0]*500
for i in range(n):
f[b[i]]=1
l=[]
for i in range(n):
l.append([b[i],i])
l.sort()
ans=[0]*(2*n)
flag=0
p=[]
for i in range(n):
x=b[i]
pos=i
flag=0
for j in range(x+1,2*n+1):
if f[j]==0:
f[j]=1
ans[2*pos]=x
ans[2*pos+1]=j
#print(2*pos-1,2*pos,'j')
p.append(j)
flag=1
break
if flag==0:
break
"""for i in range(n):
x=l[i][0]
pos=l[i][1]
flag=0
for j in range(x+1,2*n+1):
if f[j]==0:
f[j]=1
ans[2*pos]=x
ans[2*pos+1]=j
#print(2*pos-1,2*pos,'j')
p.append(j)
flag=1
break
if flag==0:
break
"""
if flag:
#p.sort()
#for i in range(n):
# for j in p:
# if a[2*i+1]
print(*ans)
else:
print(-1)
continue
# region fastio
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
def print(*args, **kwargs):
"""Prints the values to a stream, or to sys.stdout by default."""
sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout)
at_start = True
for x in args:
if not at_start:
file.write(sep)
file.write(str(x))
at_start = False
file.write(kwargs.pop("end", "\n"))
if kwargs.pop("flush", False):
file.flush()
if sys.version_info[0] < 3:
sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout)
else:
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# endregion
if __name__ == "__main__":
#read()
main()
#dmain()
# Comment Read()
| PYTHON |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t = int(input())
for i in range(t):
n = int(input())
l = list(map(int , input().split(' ')))
s = set(l)
l2 = []
for j in range(1 , 2*n + 1):
if(j not in s):
l2.append(j)
l2.sort()
done = 0
for j in range(len(l2)):
flag = 0
for k in range(n):
if(isinstance(l[k] , int) and l2[j] > l[k]):
l[k] = [l[k] , l2[j]]
flag = 1
break
if(flag == 0):
print(-1)
done = 1
break
flag = 0
if(done == 1):
done = 0
else:
for j in range(len(l)):
print(min(l[j]) , end = ' ')
print(max(l[j]) , end = ' ')
print()
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | def oki(n,lst):
tm = []
for i in range(1,2*n+1):
if i not in lst:
tm.append(i)
out = []
for i in lst:
temp = None
for j in range(i + 1, 2*n+1):
if j in tm:
temp = j
break
if temp == None:
out = []
break
out.append(i)
out.append(j)
tm.remove(temp)
# print(out)
if out:
print(*out)
else:
print('-1')
if __name__ == '__main__':
for _ in range(int(input())):
n = int(input())
lst = list(map(int,input().split(' ')))
oki(n,lst) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t = int(input())
def closest_greater(num,a):
for x in range(num,len(a)):
if(a[x] == 1):
a[x] = 0
return x
return -1
while(t>0):
n = int(input())
s = input()
b = ['0']
b= b+ s.split()
a = [1]*(2*len(b) - 1)
flag = 0
ans = []
for x in range(1,len(b)):
a[int(b[x])]-=1
for x in range(1,len(b)):
current = int(b[x])
ans.append(current)
nex = closest_greater(current,a)
if(nex == -1):
flag = 1
break
else:
a[nex] = 0
ans.append(nex)
if(flag == 1):
print('-1')
else:
for x in ans:
print(x,end=' ')
t-=1 | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
int b[n + 1];
set<int> s;
for (int i = 0; i < n; i++) {
cin >> b[i];
s.insert(b[i]);
}
int a[n * 2 + 5];
memset(a, 0, sizeof(a));
int pos = 0;
for (int i = 0; i < n * 2; i += 2) {
a[i] = b[pos++];
}
bool possible = true;
for (int i = 1; i < n * 2; i += 2) {
if (a[i] == 0) {
int temp = a[i - 1];
while (true) {
temp++;
if (s.find(temp) == s.end()) break;
}
if (temp <= n * 2) {
a[i] = temp;
s.insert(temp);
} else {
possible = false;
break;
}
}
}
if (possible) {
for (int i = 0; i < n * 2; i++) {
cout << a[i] << ' ';
}
} else {
cout << -1;
}
cout << endl;
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1e9 + 7;
const long long inf = 0x3f3f3f3f;
const long long nax = 0;
void solve() {
long long n;
vector<long long> b(210, 0), arr(105);
vector<bool> vis(210, 0);
cin >> n;
for (int i = 1; i <= n; ++i) {
cin >> arr[i];
vis[arr[i]] = 1;
}
for (int i = 1; i <= n; ++i) {
b[2 * i - 1] = arr[i];
int angka = arr[i] + 1;
while (vis[angka] && angka <= 2 * n) {
if (angka == 2 * n) {
angka = -1;
break;
}
angka++;
}
if (angka == -1 || angka > n * 2) {
cout << "-1" << '\n';
return;
}
vis[angka] = 1;
b[2 * i] = angka;
}
for (int i = 1; i <= 2 * n; ++i) {
cout << b[i] << ' ';
}
cout << '\n';
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie();
cout.tie();
int t;
cin >> t;
while (t--) {
solve();
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) throws IOException {
FastReader scan = new FastReader();
//PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("taming.out")));
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
Task solver = new Task();
int t = scan.nextInt();
//int t = 1;
for(int i = 1; i <= t; i++) solver.solve(i, scan, out);
out.close();
}
static class Task {
public void solve(int testNumber, FastReader sc, PrintWriter pw) {
int x = sc.nextInt();
HashSet<Integer> hs = new HashSet<>();
for(int i=1;i<=2*x;i++){
hs.add(i);
}
int[] arr = new int[2*x];
for(int i=0;i<2*x;i+=2){
arr[i]=sc.nextInt();
hs.remove(arr[i]);
}
//pw.println(hs);
for(int i=1;i<2*x;i+=2){
if(hs.contains(arr[i-1]+1)){
arr[i]=arr[i-1]+1;
hs.remove(arr[i]);
}
else{
for(int j=arr[i-1];j<=2*x;j++){
if(hs.contains(j)){
arr[i]=j;
hs.remove(j);
break;
}
if(j==2*x){
pw.println(-1);
return;
}
}
}
}
for(int t : arr){
pw.print(t+" ");
}
pw.println();
}
}
static class tup implements Comparable<tup> {
int a, b;
tup() {
}
;
tup(int a, int b) {
this.a = a;
this.b = b;
}
@Override
public int compareTo(tup o2) {
return Integer.compare(b, o2.b);
}
public String toString(){
return a+" "+b;
}
}
static void shuffle(long[] a) {
Random get = new Random();
for (int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
long temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
static void shuffle(int[] a) {
Random get = new Random();
for (int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
int temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws FileNotFoundException {
br = new BufferedReader(new FileReader(new File(s)));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import bisect
for _ in range(int(input())):
nb = int(input())
b = [int(j) for j in input().split()]
vis = [0 for i in range(nb*2)]
for i in range(nb):
vis[b[i]-1]=1
l = []
for i in range(2*nb):
if not vis[i]:
l.append(i+1)
ans = []
for i in b:
ind = bisect.bisect_left(l,i)
if ind==len(l):
print(-1)
break
else:
ans.append(i)
ans.append(l[ind])
l.pop(ind)
else:
print(*ans)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t=int(input())
while t>0:
t-=1
n=int(input())
a=list(map(int,input().split()))
x=[]
for i in range(n):
x.append(a[i])
k=a[i]+1
q=True
while q==True:
if k in a or k in x :
k=k+1
else:
q=False
break
x.append(k)
if max(x)==2*n:
for i in range(len(x)):
print(x[i],end=" ")
print(" ")
else:
print(-1)
#print(" ")
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import sys
# input = lambda: sys.stdin.readline().rstrip()
def last_proverka(v):
for i in range(len(v)):
i += 1
if i not in v:
return -1
return True
# v - ans
# h - b
def l_proverka(v, c):
for i in range(len(c)):
if v[i] == c[i]:
return False
return True
def x(m, sr):
for i in range(1000):
if i > sr and i not in m and i not in a:
return i
return False
for _ in range(int(input())):
n = int(input())
b = list(map(int, input().split()))
a = [0] * 2 * n
for i in range(n):
a[2 * i] = b[i]
k = True
for i in range(2 * n):
if a[i] == 0:
c = x(b, a[i - 1])
if c == False:
k = False
break
else:
a[i] = c
if last_proverka(a) == True:
print(*a)
else:
print(-1)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 |
import java.util.Scanner;
//https://codeforces.com/problemset/problem/1315/C
public class ResortingPermutations {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
for (int i = 0; i < t; i++) {
int n = sc.nextInt();
int[] arr = new int[n];
for (int j = 0; j < n; j++) {
arr[j] = sc.nextInt();
}
System.out.println(permutation(arr));
}
}
private static String permutation(int[] ar) {
int n = ar.length;
int[] per = new int[(2 * n) + 1];
String output = "";
for (int i = 0; i < n; i++) {
per[ar[i]] = 1;
}
for (int i = 0; i < n; i++) {
boolean perm = false;
final int b = ar[i];
int j = b + 1;
for (; j <= 2 * n; j++) {
if (per[j] != 1) {
output = output + " " + b + " " + j;
per[j] = 1;
perm = true;
break;
}
}
if (!perm) {
int[] t = {};
return output = "-1";
}
}
return output;
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | from bisect import bisect_left as bl, bisect_right as br, insort
import sys
import heapq
from math import *
from collections import defaultdict as dd, deque
def data(): return sys.stdin.readline().strip()
def mdata(): return map(int, data().split())
#sys.setrecursionlimit(100000)
for i in range(int(input())):
n=int(data())
b=list(mdata())
l=[]
for i in range(1,2*n+1):
if i not in b:
l.append(i)
l1=[]
for i in range(n):
flag = False
for j in range(len(l)):
if b[i]<l[j]:
l1.append(b[i])
l1.append(l[j])
l.pop(j)
flag=True
break
if flag==False:
break
if flag==True:
print(*l1)
else:
print(-1) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
int a[205], b[105];
set<int> st;
int n;
void solve() {
cin >> n;
for (int i = 1; i <= n; i++) cin >> b[i];
st.clear();
for (int i = 1; i <= 2 * n; i++) st.insert(i);
for (int i = 1; i <= n; i++) {
st.erase(b[i]);
}
if (st.size() != n) {
cout << -1 << endl;
return;
}
for (int i = 1; i <= n; i++) {
a[2 * i - 1] = b[i];
}
for (int i = 2; i <= 2 * n; i += 2) {
auto tmp = st.upper_bound(a[i - 1]);
if (tmp == st.end()) {
cout << -1 << endl;
return;
}
a[i] = *tmp;
st.erase(tmp);
}
for (int i = 1; i <= 2 * n; i++) {
cout << a[i] << " ";
}
cout << endl;
}
int main() {
ios::sync_with_stdio(false);
int t;
cin >> t;
while (t--) {
solve();
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | # -*- coding: utf-8 -*-
"""
Created on Tue Sep 22 20:42:16 2020
@author: Dark Soul
"""
t=int(input(''))
for _ in range(t):
n=int(input(''))
tst=list(map(int,input().split()))
b=[0]
for i in tst:
b.append(i)
a=[0]*(2*n+1)
used=[0]*(2*n+1)
khaise=0
for i in range(1,n+1):
a[2*(i-1)+1]=b[i]
if used[b[i]]:
khaise=1
used[b[i]]=1
for i in range(2,2*n+1,2):
for j in range(a[i-1],2*n+1,1):
if (1-used[j]):
break
if j>2*n:
khaise=1
a[i]=j
used[j]=1
for i in range(1,2*n+1):
if (1-used[i]):
khaise=1
if khaise:
print(-1)
else:
print(*a[1:])
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.nio.CharBuffer;
import java.util.NoSuchElementException;
public class P1315C {
public static void main(String[] args) {
SimpleScanner scanner = new SimpleScanner(System.in);
PrintWriter writer = new PrintWriter(System.out);
int caseNum = scanner.nextInt();
while (caseNum-- > 0) {
int n = scanner.nextInt();
boolean[] used = new boolean[2 * n + 1];
int[] b = new int[n];
for (int i = 0; i < n; ++i) {
b[i] = scanner.nextInt();
used[b[i]] = true;
}
boolean possible = true;
int[] ans = new int[2 * n];
for (int i = 0; i < n; ++i) {
ans[i * 2] = b[i];
boolean find = false;
for (int j = b[i] + 1; j <= 2 * n; ++j) {
if (!used[j]) {
used[j] = true;
ans[i * 2 + 1] = j;
find = true;
break;
}
}
if (!find) {
possible = false;
break;
}
}
if (possible) {
for (int i = 0; i < 2 * n; ++i)
writer.print(ans[i] + " ");
writer.println();
} else
writer.println(-1);
}
writer.close();
}
private static class SimpleScanner {
private static final int BUFFER_SIZE = 10240;
private Readable in;
private CharBuffer buffer;
private boolean eof;
private SimpleScanner(InputStream in) {
this.in = new BufferedReader(new InputStreamReader(in));
buffer = CharBuffer.allocate(BUFFER_SIZE);
buffer.limit(0);
eof = false;
}
private char read() {
if (!buffer.hasRemaining()) {
buffer.clear();
int n;
try {
n = in.read(buffer);
} catch (IOException e) {
n = -1;
}
if (n <= 0) {
eof = true;
return '\0';
}
buffer.flip();
}
return buffer.get();
}
private void checkEof() {
if (eof)
throw new NoSuchElementException();
}
private char nextChar() {
checkEof();
char b = read();
checkEof();
return b;
}
private String next() {
char b;
do {
b = read();
checkEof();
} while (Character.isWhitespace(b));
StringBuilder sb = new StringBuilder();
do {
sb.append(b);
b = read();
} while (!eof && !Character.isWhitespace(b));
return sb.toString();
}
private int nextInt() {
return Integer.parseInt(next());
}
private long nextLong() {
return Long.parseLong(next());
}
private double nextDouble() {
return Double.parseDouble(next());
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
template <typename T1, typename T2>
istream &operator>>(istream &is, vector<pair<T1, T2>> &v) {
for (pair<T1, T2> &t : v) is >> t.first >> t.second;
return is;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (T &t : v) is >> t;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
for (const T &t : v) {
os << t << " ";
}
os << '\n';
return os;
}
double pi = acos(-1.0);
long long md = 1000000007;
long long abst(long long a) { return a < 0 ? -a : a; }
struct HASH {
size_t operator()(const pair<long long, long long> &x) const {
return (size_t)x.first * 37U + (size_t)x.second;
}
};
struct custom_hash {
static uint64_t splitmix64(uint64_t x) {
x += 0x9e3779b97f4a7c15;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return x ^ (x >> 31);
}
size_t operator()(uint64_t x) const {
static const uint64_t FIXED_RANDOM =
chrono::steady_clock::now().time_since_epoch().count();
return splitmix64(x + FIXED_RANDOM);
}
};
long long Pow(long long n, long long x) {
long long ans = 1;
while (x > 0) {
if (x & 1) ans = (ans * n) % md;
n = (n * n) % md;
x = x >> 1;
}
return ans;
}
vector<long long> fact, inv;
void inverse(long long n) {
inv.resize(n + 1);
inv[0] = 1;
for (long long i = 1; i <= n; i++) inv[i] = Pow(fact[i], md - 2);
}
void factorial(long long n) {
fact.resize(n + 1);
fact[0] = 1;
for (long long i = 1; i <= n; i++) fact[i] = (fact[i - 1] * i) % md;
}
long long max(long long a, long long b) { return a > b ? a : b; }
long long min(long long a, long long b) { return a < b ? a : b; }
void solve() {
long long n;
cin >> n;
vector<long long> v(n);
cin >> v;
vector<long long> ans(2 * n);
vector<long long> vis(2 * n + 1, -1);
for (long long i = 0; i < n; i++) {
ans[2 * i] = v[i];
vis[v[i]] = 1;
}
long long ptr;
for (long long i = 1; i < 2 * n; i += 2) {
ptr = -1;
for (long long j = 1; j <= 2 * n; j++)
if (vis[j] == -1 && j > ans[i - 1]) {
ptr = j;
break;
}
if (ptr == -1) {
cout << -1 << "\n";
return;
}
ans[i] = ptr;
vis[ptr] = 1;
}
cout << ans;
}
int32_t main() {
ios_base::sync_with_stdio(0);
cin.tie(NULL);
cout.tie(NULL);
long long t = 1;
cin >> t;
while (t--) {
solve();
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 |
import java.io.BufferedReader;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
import java.util.Stack;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t=sc.nextInt();
while(t-->0) {
int a[]=new int[210];
for(int i=1;i<=200;i++) a[i]=0;
int b[]=new int[101];
int ans[]=new int[210];
int n=sc.nextInt();
for(int i=1;i<=n;i++) {b[i]=sc.nextInt();a[b[i]]=1;}
for(int i=1;i<=n;i++) {
for(int j=b[i]+1;j<=2*n;j++) {
if(a[j]==0) {ans[2*i-1]=b[i];ans[2*i]=j;a[j]=1;break;}
}
}
int g=1;
for(int i=1;i<=2*n;i++) if(a[i]==0) g=0;
if(g==0) System.out.println(-1);
else
{for(int i=1;i<=2*n;i++) System.out.print(ans[i]+" ");
System.out.println();
}
}
sc.close();
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | def revolt(n,l):
l1=[0 for i in range(2*n)]
j=0
i=0
while j<n:
l1[i]=l[j]
j+=1
i+=2
d={}
for e in l:
d[e]=True
k=1
while k<2*n :
val=l1[k-1]+1
while d.get(val) and val<=2*n:
val+=1
if val>2*n:
return -1
d[val]=True
l1[k]=val
k+=2
return ' '.join(map(str,l1))
for _ in range(int(input())):
n=int(input())
l=list(map(int,input().split()))
print(revolt(n,l)) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import bisect
import sys
import math
input=sys.stdin.readline
t=int(input())
#t=1
for _ in range(t):
n=int(input())
#a,b=map(int,input().split())
l=list(map(int,input().split()))
a=[0]*(2*n)
j=0
ind=[0]*(2*n+1)
for i in range(n):
ind[l[i]]=1
for i in range(n):
a[j]=l[i]
j+=2
j=1
while j<2*n:
for i in range(a[j-1]+1,2*n+1):
if ind[i]==0:
ind[i]=1
a[j]=i
break
j+=2
ch=1
for i in range(2*n):
if a[i]==0:
ch=0
if ch==0:
print(-1)
else:
print(*a) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
int main() {
int T;
cin >> T;
while (T--) {
int n;
cin >> n;
vector<int> a(n), ans(2 * n), used(2 * n + 5);
for (int i = 0; i < n; i++) {
cin >> a[i];
used[a[i]] = 1;
ans[i * 2] = a[i];
}
for (int i = 1; i < 2 * n; i += 2) {
for (int j = ans[i - 1] + 1; j <= 2 * n; j++)
if (!used[j]) {
ans[i] = j;
used[j] = 1;
break;
}
}
bool bad = false;
for (int i = 0; i < 2 * n; i++)
if (ans[i] == 0) {
cout << "-1\n";
bad = true;
break;
}
if (bad) continue;
for (int i = 0; i < 2 * n; i++) cout << ans[i] << ' ';
cout << '\n';
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
bool cmp(pair<long long int, long long int> a,
pair<long long int, long long int> b) {
return a.first < b.first;
}
bool check(int a) {
int sum = 0;
while (a > 0) {
sum += (a % 10);
a /= 10;
}
if (sum == 10) return true;
return false;
}
bool prime[10005];
void seivertexe() {
memset(prime, 1, sizeof(prime));
prime[0] = 0;
prime[1] = 0;
for (long long int i = 2; i <= 10000; i++) {
if (prime[i] == 1) {
for (long long int j = i * i; j <= 10000; j += i) prime[j] = 0;
}
}
}
template <typename T>
std::string NumberToString(T Number) {
std::ostringstream ss;
ss << Number;
return ss.str();
}
bool isPrime(long long int n) {
if (n <= 1) return false;
if (n <= 3) return true;
if (n % 2 == 0 || n % 3 == 0) return false;
for (long long int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0) return false;
return true;
}
long long int power(long long int x, long long int y) {
if (y == 0)
return 1;
else if (y % 2 == 0)
return (power(x, y / 2) % 1000000007 * power(x, y / 2) % 1000000007) %
1000000007;
else
return (x % 1000000007 *
(power(x, y / 2) % 1000000007 * power(x, y / 2) % 1000000007) %
1000000007) %
1000000007;
}
long long int factorial1(long long int n) {
return (n == 1 || n == 0)
? 1
: (n % 1000000007 * factorial1(n - 1) % 1000000007) % 1000000007;
}
long long int fact(long long int n);
long long int nCr(long long int n, long long int r) {
return fact(n) % 1000000007 /
((fact(r) % 1000000007 * fact(n - r) % 1000000007)) % 1000000007;
}
long long int fact(long long int n) {
long long int res = 1;
for (int i = 2; i <= n; i++) res = (res * i) % 1000000007;
return res % 1000000007;
}
void solve() {}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
;
long long int t;
cin >> t;
while (t--) {
long long int n;
cin >> n;
long long int arr[n + 1];
map<long long int, long long int> mp1, mp2, mp3;
for (long long int i = 1; i <= n; i++) {
cin >> arr[i];
mp1[arr[i]]++;
}
long long int k = 0;
long long int flag = 0;
long long int arr1[2 * n + 2];
for (long long int i = 1; i <= n; i++) {
long long int x = arr[i];
if (x > 2 * n) {
flag = 1;
cout << -1 << "\n";
break;
}
if (mp2[x] > 0) {
flag = 1;
cout << -1 << "\n";
break;
}
arr1[k++] = arr[i];
long long int y = arr[i] + 1;
while (mp1[y] != 0 || mp2[y] != 0) {
y++;
}
if (y > 2 * n) {
flag = 1;
cout << -1 << "\n";
break;
} else {
mp2[y]++;
mp2[x]++;
arr1[k++] = y;
}
}
if (!flag) {
for (long long int i = 0; i < 2 * n; i++) {
cout << arr1[i] << " ";
}
cout << "\n";
}
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t, n, last;
cin >> t;
bool can;
for (int u = 0; u < t; ++u) {
cin >> n;
vector<int> a(2 * n + 1, 0);
vector<int> c(2 * n + 1, 0);
last = 1;
vector<pair<int, int>> b(n);
for (int i = 0; i < n; ++i) {
cin >> b[i].first;
++c[b[i].first];
b[i].second = i + 1;
}
can = true;
for (int i = 0; i < n && can; ++i) {
last = 1;
while (can && (c[last] > 0 || b[i].first > last)) {
++last;
if (last > 2 * n) can = false;
}
a[b[i].second * 2 - 1] = b[i].first;
a[b[i].second * 2] = last;
c[last] = 1;
}
if (can) {
for (int i = 1; i <= 2 * n; ++i) {
cout << a[i] << " ";
}
} else {
cout << -1;
}
cout << '\n';
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | // Working program with FastReader
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class ll
{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
static final int MAXN = 10000001;
// stores smallest prime factor for every number
static int spf[] = new int[MAXN];
// Calculating SPF (Smallest Prime Factor) for every
// number till MAXN.
// Time Complexity : O(nloglogn)
static void sieve()
{
spf[1] = 1;
for (int i=2; i<MAXN; i++)
// marking smallest prime factor for every
// number to be itself.
spf[i] = i;
// separately marking spf for every even
// number as 2
for (int i=4; i<MAXN; i+=2)
spf[i] = 2;
for (int i=3; i*i<MAXN; i++)
{
// checking if i is prime
if (spf[i] == i)
{
// marking SPF for all numbers divisible by i
for (int j=i*i; j<MAXN; j+=i)
// marking spf[j] if it is not
// previously marked
if (spf[j]==j)
spf[j] = i;
}
}
}
// A O(log n) function returning primefactorization
// by dividing by smallest prime factor at every step
static int getFactorization(int x)
{
int c=0;
while (x != 1)
{
c++;
x = x / spf[x];
}
return c;
}
static int LowerBound(int a[], int x) { // x is the target value or key
int l=-1,r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]>=x) r=m;
else l=m;
}
return r;
}
static int UpperBound(int a[], int x) {// x is the key or target value
int l=-1,r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]<=x) l=m;
else r=m;
}
return l+1;
}
static void ruffleSort(long[] a) {
int n=a.length;
Random r=new Random();
for (int i=0; i<a.length; i++) {
long oi=r.nextInt(n), temp=a[i];
a[i]=a[(int)oi];
a[(int)oi]=temp;
}
Arrays.sort(a);
}
static void ruffleSort(int[] a) {
int n=a.length;
Random r=new Random();
for (int i=0; i<a.length; i++) {
int oi=r.nextInt(n), temp=a[i];
a[i]=a[oi];
a[oi]=temp;
}
Arrays.sort(a);
}
public static int findIndex(long arr[], long t)
{
// if array is Null
if (arr == null) {
return -1;
}
// find length of array
int len = arr.length;
int i = 0;
// traverse in the array
while (i < len) {
// if the i-th element is t
// then return the index
if (arr[i] == t) {
return i;
}
else {
i = i + 1;
}
}
return -1;
}
static int gcd(int a, int b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
// method to return LCM of two numbers
static int lcm(int a, int b)
{
return (a / gcd(a, b)) * b;
}
public static int[] swap(int a[], int left, int right)
{
// Swap the data
int temp = a[left];
a[left] = a[right];
a[right] = temp;
// Return the updated array
return a;
}
public static int[] reverse(int a[], int left, int right)
{
// Reverse the sub-array
while (left < right) {
int temp = a[left];
a[left++] = a[right];
a[right--] = temp;
}
// Return the updated array
return a;
}
public static int[] findNextPermutation(int a[])
{
int last = a.length - 2;
// find the longest non-increasing suffix
// and find the pivot
while (last >= 0) {
if (a[last] < a[last + 1]) {
break;
}
last--;
}
// If there is no increasing pair
// there is no higher order permutation
if (last < 0)
return a;
int nextGreater = a.length - 1;
// Find the rightmost successor to the pivot
for (int i = a.length - 1; i > last; i--) {
if (a[i] > a[last]) {
nextGreater = i;
break;
}
}
// Swap the successor and the pivot
a = swap(a, nextGreater, last);
// Reverse the suffix
a = reverse(a, last + 1, a.length - 1);
// Return true as the next_permutation is done
return a;
}
static void sort(int[] a) {
ArrayList<Integer> l = new ArrayList<>();
for (int i : a)
l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++)
a[i] = l.get(i);
}
static double pow(double p,double tt)
{
double ii,q,r;
q=1;
r=p;
while(tt>1)
{
for(ii=1;2*ii<=tt;ii*=2)
p*=p;
tt-=ii;
q*=p;
p=r;
}
if(tt==1)
q*=r;
return q;
}
static int factorial(int n)
{
return (n == 1 || n == 0) ? 1 : n * factorial(n - 1);
}
public static int primeFactors(int n)
{
int c=0;
// Print the number of 2s that divide n
while (n%2==0)
{
c++;
n /= 2;
}
// n must be odd at this point. So we can
// skip one element (Note i = i +2)
for (int i = 3; i <= Math.sqrt(n); i+= 2)
{
// While i divides n, print i and divide n
while (n%i == 0)
{
c++;
n /= i;
}
}
// This condition is to handle the case whien
// n is a prime number greater than 2
if (n > 2)
c++;
return c;
}
static void PrimeList(){
int i,j;
int sieve[]=new int[100001];
for(i=2;i*i<=100000;i++)
{
if(sieve[i]==0)
{
for(j=i*i;j<=100000;j+=i)
sieve[j]=1;
}
}
ArrayList<Integer> primes=new ArrayList<>();
for(i=2;i<=100000;i++)
{
if(sieve[i]==0)
primes.add(i);
}
}
public static void main(String[] args)
{
//try
//{
FastReader d=new FastReader();
int t,i,j,c,z,k,l,r,n,q;
int mod = (int) 1e9 + 7;
int Inf=Integer.MAX_VALUE;
int negInf=Integer.MIN_VALUE;
t=d.nextInt();
//t=1;
String s;
//char ch,ch1,ch2,ch3;
long ans;
while(t-->0)
{
z=c=0;
ans=0l;
n=d.nextInt();
int a[]=new int[n];
for(i=0;i<n;i++)
a[i]=d.nextInt();
int b[]=new int[2*n];
j=0;
int num[]=new int[2*n+1];
for(i=0;i<2*n+1;i++)
num[i]=i;
for(i=0;i<n;i++)
num[a[i]]=0;
for(i=0;i<n;i++)
{
b[j]=a[i];
for(k=a[i];k<=2*n;k++)
{
if(num[k]!=0)
{
b[j+1]=num[k];
num[k]=0;
z=1;
break;
}
}
if(z==0)
{
c=1;
break;
}
else
{
j+=2;
z=0;
}
}
if(c==1)
System.out.println(-1);
else
{
for(i=0;i<2*n;i++)
System.out.print(b[i]+" ");
System.out.println();
}
//dont need extra d.nextLine()
}
/*
}catch(Exception e) {
System.out.println(0);
}*/
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | def mi():return map(int,input().split())
def li():return list(mi())
def ii():return int(input())
def si():return input()
t=ii()
while(t):
t-=1
n=ii()
a=li()
b=a[:]
b.sort()
a1=[]
l=0
for i in range(1,2*n+1):
if(l<len(b) and i==b[l]):
l+=1
else:
a1.append(i)
f=0
m={}
for i in range(n):
if(b[i]>a1[i]):
f=1
m[b[i]]=a1[i]
if(f):
print('-1')
else:
for i in a:
print(i,end=" ")
for j in range(n):
if(a1[j]>i):
print(a1[j],end=" ")
a1[j]=0
break
print() | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n=int(input())
l=list(map(int,input().split()))
if 2*n in l:
print(-1)
else:
t=[]
x=[0]*(2*n+1)
f=0
for i in l:
x[i]=1
for i in l:
if 0 not in x[i:]:
f=1
break
else:
p=x[i:].index(0)
t.extend([i,p+i])
x[p+i]=1
if f==1:
print(-1)
else:
for i in t:
print(i,end=" ")
print()
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n = int(input())
b = list(map(int, input().split()))
a = [0 for i in range(2*n)]
for i in range(n):
a[2*i] = b[i]
rec = {}
# for i in range(n):
# rec[b[i]] = i
avail = [1 for i in range(1, 2*n + 1)]
for i in b:
avail[i - 1] = 0
glob = 1
for i in range(n):
pos = 2*i + 1
flag = 0
for j in range(a[2*i], 2*n):
if avail[j] == 1:
flag = 1
a[pos] = j + 1
avail[j] = 0
break
if flag == 0:
glob = 0
break
if glob == 0:
print(-1)
else:
for i in a:
print(i, end=' ')
print('')
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | te = int(input())
while te > 0:
te -= 1
n = int(input())
B = list(map(int, input().split()))
D = {}
for i in B:
D[i] = 1
ans = []
i = 0
while i < n:
ans.append(B[i])
k = B[i]
while k < 2*n:
k += 1
if D.get(k) is None:
D[k] = 1
ans.append(k)
break
i += 1
if len(ans) == 2*n:
for i in ans:
print(i, end=" ")
else:
print(-1)
# print(D) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const long int full = 205;
int n;
int b[full], a[full];
bool f[full];
int find(int s) {
int x = 0;
for (int i = s + 1; i <= 2 * n; i++)
if (f[i] == false) {
f[i] = true;
x = i;
break;
}
return x;
}
void process() {
for (int i = 1; i <= 2 * n; i++) f[i] = false;
for (int i = 1; i <= n; i++) {
a[2 * i - 1] = b[i];
f[b[i]] = true;
}
int x;
for (int i = 1; i <= n; i++) {
x = find(b[i]);
if (x == 0) {
cout << "-1" << endl;
return;
}
a[i * 2] = x;
}
for (int i = 1; i <= 2 * n; i++) cout << a[i] << " ";
cout << endl;
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(NULL);
cout.tie(NULL);
long int t;
cin >> t;
while (t--) {
cin >> n;
for (int i = 1; i <= n; i++) cin >> b[i];
process();
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import javax.swing.*;
import java.awt.desktop.SystemSleepEvent;
import java.util.*;
import java.io.*;
public class Main {
public static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
}
public class pair {
int a;
int b;
pair(int p, int q) {
a = p;
b = q;
}
public int hashCode() {
return new Integer(a).hashCode() * 31 + new Integer(b).hashCode();
}
}
public static int gcd(int a, int b) {
if (a == 1 || b == 1)
return 1;
if (a == 0)
return b;
if (b == 0)
return a;
return gcd(b % a, a);
}
public static void main(String[] args) {
FastReader s = new FastReader();
int t=s.nextInt();
while(t>0)
{
int n=s.nextInt();
int[] arr=new int[n];
int[] arr1=new int[2*n];
for(int i=0;i<n;i++)
{
arr[i] = s.nextInt();
}
for(int i=0;i<2*n;i++)
arr1[i]=i+1;
int[] dif=new int[1000];
int c=0;
for(int i=0;i<2*n;i++)
{
int temp = arr1[i];
if(!find(arr,temp))
{
dif[c] = temp;
c++;
}
}
// System.out.println(c);
int min=arr[0];
for(int i=0;i<n;i++)
{
if(arr[i]<=min)
min=arr[i];
}
int av=greater(dif,min);
//System.out.println();
//System.out.println(av);
if(av<n)
{
System.out.println(-1);
}
else
{
int[] visited=new int[n];
int[] ans=new int[2*n];
int temp1=0;
int ct=0;
int flag=0;
for(int i=0;i<2*n-1;i++)
{
ans[i] = arr[ct];
int x = ans[i];
for(int j=0;j<c;j++)
{
if(dif[j]>x && visited[j]!=1)
{
flag=1;
temp1=j;
break;
}
}
if(flag==0)
break;
else
{
ans[i+1] = dif[temp1];
visited[temp1]=1;
i++;
ct++;
}
}
if(flag==0)
System.out.println(-1);
else
{
int flag1=0;
int[] b = new int[1000];
for(int i=0;i<2*n;i++)
{
b[ans[i]]++;
if(b[ans[i]]>1)
{
flag1=1;
break;
}
}
if(flag1==1)
System.out.println(-1);
else {
for (int i = 0; i < 2 * n; i++) {
System.out.print(ans[i] + " ");
}
System.out.println();
}
}
}
t--;
}
}
public static boolean find(int[] arr, int x)
{
int n=arr.length;
for(int i=0;i<n;i++)
{
if(arr[i]==x)
return true;
}
return false;
}
public static int greater(int[] arr, int x)
{
int n=arr.length;
int temp=0;
for(int i=0;i<n;i++)
{
if(arr[i]>x)
{
temp=i;
break;
}
}
return n-temp;
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
double tick() {
static clock_t oldtick;
clock_t newtick = clock();
double diff = 1.0 * (newtick - oldtick) / CLOCKS_PER_SEC;
oldtick = newtick;
return diff;
}
long long gcd(long long a, long long b) {
if ((a == 0) || (b == 0)) {
return a + b;
}
return gcd(b, a % b);
}
long long powMod(long long a, long long b) {
long long res = 1;
while (b) {
if (b & 1) res = (res * a) % 1000000007;
a = (a * a) % 1000000007;
b >>= 1;
}
return (res % 1000000007);
}
long long pow2(long long a, long long b) {
long long res = 1;
while (b) {
if (b & 1) res = (res * a);
a = (a * a);
b >>= 1;
}
return res;
}
bool isPrime(long long a) {
for (long long i = 3; (i * i) <= a; i += 2) {
if ((a % i) == 0) return false;
}
if ((a != 2) && ((a % 2) == 0)) {
return false;
}
if (a == 1) {
return false;
}
return true;
}
string conLlToStr(long long a) {
stringstream mystr;
mystr << a;
return mystr.str();
}
long long conStrToLl(string st) {
long long numb = 0;
long long len = st.size(), i, j = 0;
for (long long i = len - 1; i >= 0; i--) {
numb += (pow2(10, j) * (st[i] - '0'));
j++;
}
return numb;
}
long long basenoToDecimal(string st, long long basee) {
long long i = 0, j, anss = 0;
for (long long j = (int)st.length() - 1; j >= 0; j--) {
anss += (st[j] - '0') * pow2(basee, i);
i++;
}
return anss;
}
string decimalToString(long long num, long long basee) {
long long i = 0, j, opop;
string anss = "";
vector<string> stri;
stri.push_back("0");
stri.push_back("1");
stri.push_back("2");
stri.push_back("3");
stri.push_back("4");
stri.push_back("5");
stri.push_back("6");
stri.push_back("7");
stri.push_back("8");
stri.push_back("9");
stri.push_back("A");
stri.push_back("B");
stri.push_back("C");
stri.push_back("D");
stri.push_back("E");
stri.push_back("F");
if (num == 0) {
return "0";
}
while (num) {
opop = (num % basee);
anss += stri[opop];
num /= basee;
}
reverse(anss.begin(), anss.end());
return anss;
}
long long my_sqrt(long long x) {
long long y = (long long)(sqrtl((long double)x) + 0.5);
while (y * y < x) {
y++;
}
while (y * y > x) {
y--;
}
if (y * y == x) {
return y;
}
return -1;
}
long long my_crt(long long x) {
long long y = (long long)(powl((long double)x, 1.0 / 3.0) + 0.5);
while (y * y * y < x) {
y++;
}
while (y * y * y > x) {
y--;
}
if (y * y * y == x) {
return y;
}
return -1;
}
const int dx[] = {0, 1, 1, 1, 0, -1, -1, -1};
const int dy[] = {1, 1, 0, -1, -1, -1, 0, 1};
long long arr[110];
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
long long T;
cin >> T;
while (T--) {
long long N;
cin >> N;
for (long long i = 1; i <= N; i++) {
cin >> arr[i];
}
set<long long> se;
for (long long i = 1; i <= 2 * N; i++) {
se.insert(i);
}
for (long long i = 1; i <= N; i++) {
se.erase(arr[i]);
}
vector<long long> ans;
for (long long i = 1; i <= N; i++) {
auto it = se.lower_bound(arr[i]);
if (it != se.end()) {
ans.push_back(arr[i]);
ans.push_back(*it);
se.erase(it);
} else {
break;
}
}
if (ans.size() == (2 * N)) {
for (long long i = 0; i <= (int)ans.size() - 1; i++) {
cout << ans[i] << " ";
}
} else {
cout << "-1";
}
cout << "\n";
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import sys
input = sys.stdin.readline
Q = int(input())
Query = []
for _ in range(Q):
N = int(input())
A = list(map(int, input().split()))
Query.append((N, A))
for N, A in Query:
S = set(A)
C = set()
for n in range(1, 2*N+1):
if not n in S:
C.add(n)
ans = []
for a in A:
to = -1
for n in range(a+1, 2*N+1):
if n in C:
to = n
break
if to == -1:
ans = []
break
ans.append(a)
ans.append(to)
C.remove(to)
if not ans:
print(-1)
else:
print(*ans) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
vector<int> a(n), b(2 * n);
for (int &i : a) cin >> i;
set<int> s;
for (int i = 1; i <= 2 * n; i++) s.insert(i);
for (int i = 0; i < n; i++) {
b[2 * i] = a[i];
auto it = s.find(a[i]);
s.erase(it);
}
for (int i = 0; i < n; i++) {
auto it = s.upper_bound(a[i]);
if (it != s.end()) {
b[2 * i + 1] = *it;
s.erase(it);
}
}
if (s.size())
cout << -1 << endl;
else {
for (int i = 0; i < n; i++)
cout << b[2 * i] << " " << b[2 * i + 1] << " ";
cout << endl;
}
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n=int(input())
b=[int(x) for x in input().split()]
a=[]
for i in range(n):
a.append(b[i])
k=b[i]
while(k in a or k in b):k+=1
if k>2*n:print(-1);break
a.append(k)
else:print(*a) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int siz = 1e5 + 7;
const int siz2 = 2e5 + 7;
int t, n;
int a[222];
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> t;
A:
while (t--) {
cin >> n;
map<int, int> mp;
vector<int> Ans;
for (int i = 0; i < n; ++i) {
cin >> a[i];
mp[a[i]]++;
}
if (n > 1) {
for (int i = 0; i < n; ++i) {
for (int j = a[i]; j <= 2 * n; ++j) {
if (!mp[j]) {
mp[j]++;
Ans.push_back(a[i]);
Ans.push_back(j);
break;
}
}
}
if (Ans.size() != 2 * n) {
cout << -1 << endl;
goto A;
}
} else {
if (a[0] == 1) {
cout << 1 << " " << 2 << endl;
goto A;
} else {
cout << -1 << endl;
goto A;
}
}
for (auto it : Ans) cout << it << " ";
cout << endl;
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.StringTokenizer;
import java.io.*;
import java.util.*;
import java.text.DecimalFormat;
import java.math.*;
public class Main {
static int mod = 1000000007;
/*****************code By Priyanshu *******************************************/
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
// this > other return +ve
// this < other return -ve
// this == other return 0
public static class Pair implements Comparable<Pair> {
int st;
int et;
public Pair(int st, int et) {
this.st = st;
this.et = et;
}
public int compareTo(Pair other) {
if (this.st != other.st) {
return this.st - other.st;
} else {
return this.et - other.et;
}
}
}
static long fastPower(long a, long b, int n) {
long res = 1;
while ( b > 0) {
if ( (b&1) != 0) {
res = (res * a % n) % n;
}
a = (a % n * a % n) % n;
b = b >> 1;
}
return res;
}
// function to find
// the rightmost set bit
static int PositionRightmostSetbit(int n)
{
// Position variable initialize
// with 1 m variable is used to
// check the set bit
int position = 1;
int m = 1;
while ((n & m) == 0) {
// left shift
m = m << 1;
position++;
}
return position;
}
// used for swapping ith and jth elements of array
// public static void swap(int[] arr, int i, int j) {
// int temp = arr[i];
// arr[i] = arr[j];
// arr[j] = temp;
// }
public static void swap(long i, long j) {
long temp = i;
i = j;
j = temp;
}
static boolean palindrome(String s) {
return new StringBuilder(s).reverse().toString().equals(s);
}
static int countDigit(long n)
{
return (int)Math.floor(Math.log10(n) + 1);
}
static boolean isPerfectSquare(double x)
{
double sr = Math.sqrt(x);
return ((sr * sr) == x);
}
public static int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
static int nod(long l) {
if(l>=1000000000000000000l) return 19;
if(l>=100000000000000000l) return 18;
if(l>=10000000000000000l) return 17;
if(l>=1000000000000000l) return 16;
if(l>=100000000000000l) return 15;
if(l>=10000000000000l) return 14;
if(l>=1000000000000l) return 13;
if(l>=100000000000l) return 12;
if(l>=10000000000l) return 11;
if(l>=1000000000) return 10;
if(l>=100000000) return 9;
if(l>=10000000) return 8;
if(l>=1000000) return 7;
if(l>=100000) return 6;
if(l>=10000) return 5;
if(l>=1000) return 4;
if(l>=100) return 3;
if(l>=10) return 2;
return 1;
}
//Arrays.sort(a,(c,d) -> Integer.compare(c[0],d[0]));
public static boolean areAllBitsSet(int n )
{
// all bits are not set
if (n == 0)
return false;
// if true, then all bits are set
if (((n + 1) & n) == 0)
return true;
// else all bits are not set
return false;
}
public static int[] radixSort2(int[] a)
{
int n = a.length;
int[] c0 = new int[0x101];
int[] c1 = new int[0x101];
int[] c2 = new int[0x101];
int[] c3 = new int[0x101];
for(int v : a) {
c0[(v&0xff)+1]++;
c1[(v>>>8&0xff)+1]++;
c2[(v>>>16&0xff)+1]++;
c3[(v>>>24^0x80)+1]++;
}
for(int i = 0;i < 0xff;i++) {
c0[i+1] += c0[i];
c1[i+1] += c1[i];
c2[i+1] += c2[i];
c3[i+1] += c3[i];
}
int[] t = new int[n];
for(int v : a)t[c0[v&0xff]++] = v;
for(int v : t)a[c1[v>>>8&0xff]++] = v;
for(int v : a)t[c2[v>>>16&0xff]++] = v;
for(int v : t)a[c3[v>>>24^0x80]++] = v;
return a;
}
public static void main(
String[] args)
{
try {
System.setIn(new FileInputStream("input.txt"));
System.setOut(new PrintStream(new FileOutputStream("output.txt")));
} catch (Exception e) {
System.err.println("Error");
}
FastReader sc = new FastReader();
int t = Integer.parseInt(sc.next());
// int t = 1;
while(t-->0){
int n = sc.nextInt();
HashSet<Integer> s = new HashSet<Integer>();
int a[] = new int[n];
for (int i = 0; i<n; i++) {
a[i] = sc.nextInt();
s.add(a[i]);
}
int ans[] = new int [2*n];
boolean c = false;
for (int i = 0; i<n; i++) {
int start = 2*i;
int end = start +1;
int val = a[i];
int next = val +1;
while(s.contains(next)){
next++;
}
if(next > 2*n){
System.out.println("-1");
System.out.flush();
c = true;
break;
}
ans[start] = val;
ans[end] = next;
s.add(next);
}
if(!c){
for (int i : ans ) {
System.out.print(i + " ");
}
System.out.println();
System.out.flush();
}
}
}
}
//code By Priyanshu | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t = int(input())
test_cases = [(input(),input()) for i in range(t)]
def solve(test_case):
n = int(test_case[0])
b = list(map(int,test_case[1].split()))
c = [i for i in range(1,2*n+1) if i not in b]
a = []
for i in range(n):
a.append(b[i])
if c[-1] > b[i]:
tmp = min([c[j] for j in range(len(c)) if c[j] > b[i]])
a.append(tmp)
c.remove(tmp)
else:
print(-1)
return
print(' '.join(map(str,a)))
for test_case in test_cases:
solve(test_case)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for tc in range(int(input())):
n = int(input())
arr = []
d = {}
line = input().split()
for i in range(1, (2*n)+1):
d[i] = 1
for i in range(n):
arr.append(int(line[i]))
d[arr[i]] = 0
# print(d)
b = []
flag = 0
for i in range(n):
ele = arr[i]+1
plus = 0
while(ele <= (2*n)):
plus += 1
if d[ele] == 1:
d[ele] = 0
break
ele += 1
if ele > (2*n):
flag = 1
break
b.append(arr[i]+plus)
if flag == 1:
print("-1")
continue
i = 0
while(i < n):
print(arr[i], end=" ")
print(b[i], end=" ")
i += 1
print("")
# print(arr, b)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const long long int mod = 1e9 + 7;
const double pie = 3.14159265358979323846;
const char nl = '\n';
const char spc = ' ';
template <typename Type>
istream &operator>>(istream &in, vector<Type> &v) {
long long int n = v.size();
for (int i = 0; i < n; i++) in >> v[i];
return in;
}
template <typename Type>
ostream &operator<<(ostream &out, vector<Type> &v) {
for (auto value : v) out << value << ' ';
out << nl;
return out;
}
bool isPrime(long long int n) {
if (n < 4) return true;
if (n % 2 == 0) return false;
long long int i = 3;
while (i * i <= n) {
if (n % i == 0) return false;
i += 2;
}
return true;
}
void solve() {
long long int n;
cin >> n;
vector<long long int> b(n);
vector<long long int> cnt(300, 0);
for (long long int i = 0; i < n; ++i) {
cin >> b[i];
cnt[b[i]] = 1;
}
vector<long long int> a;
for (long long int i = 0; i < n; ++i) {
a.emplace_back(b[i]);
long long int k = b[i] + 1;
while (cnt[k]) ++k;
a.emplace_back(k);
cnt[b[i]] = cnt[k] = 1;
}
for (long long int i = 1; i <= 2 * n; ++i) {
if (cnt[i] != 1) {
cout << "-1" << nl;
return;
}
}
cout << a;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
long long int t;
cin >> t;
while (t--) {
solve();
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.StringTokenizer;
public class C{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
static class Pair
{
int x;
int y;
Pair(int x,int y)
{
this.x = x;
this.y = y;
}
}
/*
static class SegmentTree {
public int[] seg;
public int N;
public int size;
public SegmentTree(int n) {
int h = (int)Math.ceil((double)Math.log(n)/Math.log(2));
this.size = (int)Math.pow(2,h)*2-1;
seg = new int[size];
}
public int update(int l, int r, int i, int val) {
if(l == r && l == val)
{
seg[i]++;
return seg[i];
}
if(l > r || l == r || val > r || val < l) return seg[i];
int m = (l+r) >>> 1;
int left = update(l,m,2*i+1,val);
int right = update(m+1,r,2*i+2,val);
seg[i] = left+right;
return seg[i];
}
public int getValue(int l, int r, int i, int ql, int qr) {
if (l > r || ql > qr || l > qr || r < ql) return 0;
if (l == r) {
return seg[i];
}
if (l >= ql && r <= qr) {
return seg[i];
}
int m = (l + r) >>> 1;
return getValue(l, m, 2 * i + 1, ql, qr) + getValue(m + 1, r, 2 * i + 2, ql, qr);
}
}
public static int gcd(int a,int b)
{
if(a == 0) return b;
if(b == 0) return a;
return gcd(b, a%b);
}
*/
public static long rec(int l,int r,int n)
{
if(l > r) return 0;
if(l == r) return m[l];
int mini = queryST(l,r);
if(mini < l || mini > r)
{
throw new ArithmeticException("Out of range");
}
int minv = m[mini];
long sum = (long)(mini-l+1)*(long)minv;
sum += rec(mini+1,r,n);
long ans = sum;
sum = (long)(r-mini+1)*(long)minv;
sum += rec(l,mini-1,n);
//System.out.println("Added "+l+" "+r);
if(ans > sum)
{
hm.put((long)l*n + (long)r,0);
return ans;
}
else
{
hm.put((long)l*n + (long)r,1);
return sum;
}
}
static int m[],logN[];
static int st[][];
static HashMap<Long,Integer> hm = new HashMap<>();
static void makeST(int n)
{
logN[1] = 0;
for (int i = 2; i <= n; i++)
logN[i] = logN[i/2] + 1;
for (int i = 1; i <= n; i++)
st[i][0] = i;
for (int j = 1; j < 30; j++) {
for (int i = 1; i <= n; i++) {
st[i][j] = st[i][j-1];
if (i+(1<<(j-1)) <= n && m[st[i+(1<<(j-1))][j-1]] < m[st[i][j]])
st[i][j] = st[i+(1<<(j-1))][j-1];
}
}
}
static int queryST(int s, int e) {
int len = e - s + 1;
int l = logN[len];
int res = st[s][l];
if (m[st[e-(1<<l)+1][l]] < m[res]) res = st[e-(1<<l)+1][l];
return res;
}
public static void main(String[] args)
{
OutputStream outputStream = System.out;
FastReader sc = new FastReader();
PrintWriter out = new PrintWriter(outputStream);
int t = sc.nextInt();
while(t-- > 0)
{
int n = sc.nextInt();
int b[] = new int[n];
int map[] = new int[2*n+1];
HashSet<Integer> hs = new HashSet<>();
for(int i = 0; i < n; i++)
{
b[i] = sc.nextInt();
map[b[i]] = i;
hs.add(b[i]);
}
int a[] = new int[2*n];
Arrays.fill(a,0);
boolean pos = true;
for(int i = 0; i < n; i++)
{
int v = b[i];
a[2*i] = v;
for(int j = v+1; j <= 2*n; j++)
{
if(!hs.contains(j))
{
a[2*i+1] = j;
hs.add(j);
break;
}
}
if(a[2*i+1] == 0)
{
pos = false;
break;
}
}
if(!pos) out.println(-1);
else
{
for(int i = 0; i < 2*n; i++)
{
out.print(a[i]+" ");
}
out.println();
}
}
out.close();
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.*;
import java.io.*;
public class Main{
static class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = snext();
while (isSpaceChar(c)) {
c = snext();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = snext();
while (isSpaceChar(c)) {
c = snext();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
public String readString() {
int c = snext();
while (isSpaceChar(c)) {
c = snext();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
public void flush() {
writer.flush();
}
}
static class IOUtils {
public static int[] readIntArray(InputReader in, int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++)
array[i] = in.nextInt();
return array;
}
}
static int gcd(int a, int b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
static int mod = (int)(1e9+7);
public static long pow(long a,long b)
{
long ans = 1;
while(b> 0)
{
if((b & 1)==1){
ans = (ans*a) % mod;
}
a = (a*a) % mod;
b = b>>1;
}
return ans;
}
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
OutputWriter out = new OutputWriter(System.out);
//IOUtils io = new IOUtils();
int t = in.nextInt();
while(t-- >0)
{
int n = in.nextInt();
int[] arr = new int[2*n];
TreeSet<Integer> set = new TreeSet<>();
boolean res = true;
for(int i=1;i<=2*n;i++)
{
set.add(i);
}
for(int i=0;i<2*n;i+=2)
{
arr[i] = in.nextInt();
set.remove(arr[i]);
}
for(int i=1;i<2*n;i+=2)
{
Integer val = set.higher(arr[i-1]);
if(val==null)
{
res = false;
break;
}
arr[i] = val;
set.remove(val);
}
if(!res)
{
out.printLine("-1");
}
else{
for(int i=0;i<2*n;i++)
{
out.print(arr[i] + " ");
}
out.printLine();
}
}
out.flush();
out.close();
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | Q = int(input())
for _ in range(Q):
n = int(input())
b = list(map(int, input().split()))
s = {*(range(2*n + 1))} - {*b}
a = []
try:
for i in b:
minn = min(s - {*range(i)})
s -= {minn}
a += i, minn
except:
a = -1,
print(*a)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t=int(input())
def f():
n=int(input())
b=list(map(int,input().split()))
a=[b[i//2] if i % 2==0 else 0 for i in range(n*2)]
used = 2*n*[0]+[0]
for i in a:
used[i] = 1
for i in range(1,2*n,2):
l = a[i-1]
j=l+1
while j<=2*n and used[j]:
j+=1
if j>2*n:
print(-1)
return
a[i] = j
used[j]=1
print(*a)
for tt in range(t):
f() | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
inline long long read() {
char c = getchar();
long long f = 1, x = 0;
while (c < '0' || c > '9') {
if (c == '-') f = -1;
c = getchar();
}
while (c >= '0' && c <= '9') {
x = (x << 1) + (x << 3) + (c ^ '0');
c = getchar();
}
return x * f;
}
long long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); }
int b[1008], cnt[1008], t;
vector<int> ans;
int main() {
scanf("%d", &t);
while (t--) {
int n, flag = 0;
scanf("%d", &n);
for (int i = 1; i <= 2 * n; i++) cnt[i] = 0;
ans.clear();
for (int i = 1; i <= n; i++) {
scanf("%d", &b[i]);
cnt[b[i]]++;
}
for (int i = 1; i <= n; i++) {
flag = 0;
ans.push_back(b[i]);
for (int j = b[i] + 1; j <= 2 * n; j++) {
if (!cnt[j]) {
cnt[j]++;
ans.push_back(j);
flag = 1;
break;
}
}
if (!flag) {
printf("-1\n");
break;
}
}
if (!flag) continue;
for (int j = 0; j < ans.size(); j++) printf("%d ", ans[j]);
printf("\n");
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | # Enter your code here. Read input from STDIN. Print output to STDOUT# ===============================================================================================
# importing some useful libraries.
from __future__ import division, print_function
from fractions import Fraction
import sys
import os
from io import BytesIO, IOBase
from itertools import *
import bisect
from heapq import *
from math import ceil, floor
from copy import *
from collections import deque, defaultdict
from collections import Counter as counter # Counter(list) return a dict with {key: count}
from itertools import combinations # if a = [1,2,3] then print(list(comb(a,2))) -----> [(1, 2), (1, 3), (2, 3)]
from itertools import permutations as permutate
from bisect import bisect_left as bl
from operator import *
# If the element is already present in the list,
# the left most position where element has to be inserted is returned.
from bisect import bisect_right as br
from bisect import bisect
# If the element is already present in the list,
# the right most position where element has to be inserted is returned
# ==============================================================================================
# fast I/O region
BUFSIZE = 8192
from sys import stderr
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
def print(*args, **kwargs):
"""Prints the values to a stream, or to sys.stdout by default."""
sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout)
at_start = True
for x in args:
if not at_start:
file.write(sep)
file.write(str(x))
at_start = False
file.write(kwargs.pop("end", "\n"))
if kwargs.pop("flush", False):
file.flush()
if sys.version_info[0] < 3:
sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout)
else:
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
# inp = lambda: sys.stdin.readline().rstrip("\r\n")
# ===============================================================================================
### START ITERATE RECURSION ###
from types import GeneratorType
def iterative(f, stack=[]):
def wrapped_func(*args, **kwargs):
if stack: return f(*args, **kwargs)
to = f(*args, **kwargs)
while True:
if type(to) is GeneratorType:
stack.append(to)
to = next(to)
continue
stack.pop()
if not stack: break
to = stack[-1].send(to)
return to
return wrapped_func
#### END ITERATE RECURSION ####
###########################
# Sorted list
class SortedList:
def __init__(self, iterable=[], _load=200):
"""Initialize sorted list instance."""
values = sorted(iterable)
self._len = _len = len(values)
self._load = _load
self._lists = _lists = [values[i:i + _load] for i in range(0, _len, _load)]
self._list_lens = [len(_list) for _list in _lists]
self._mins = [_list[0] for _list in _lists]
self._fen_tree = []
self._rebuild = True
def _fen_build(self):
"""Build a fenwick tree instance."""
self._fen_tree[:] = self._list_lens
_fen_tree = self._fen_tree
for i in range(len(_fen_tree)):
if i | i + 1 < len(_fen_tree):
_fen_tree[i | i + 1] += _fen_tree[i]
self._rebuild = False
def _fen_update(self, index, value):
"""Update `fen_tree[index] += value`."""
if not self._rebuild:
_fen_tree = self._fen_tree
while index < len(_fen_tree):
_fen_tree[index] += value
index |= index + 1
def _fen_query(self, end):
"""Return `sum(_fen_tree[:end])`."""
if self._rebuild:
self._fen_build()
_fen_tree = self._fen_tree
x = 0
while end:
x += _fen_tree[end - 1]
end &= end - 1
return x
def _fen_findkth(self, k):
"""Return a pair of (the largest `idx` such that `sum(_fen_tree[:idx]) <= k`, `k - sum(_fen_tree[:idx])`)."""
_list_lens = self._list_lens
if k < _list_lens[0]:
return 0, k
if k >= self._len - _list_lens[-1]:
return len(_list_lens) - 1, k + _list_lens[-1] - self._len
if self._rebuild:
self._fen_build()
_fen_tree = self._fen_tree
idx = -1
for d in reversed(range(len(_fen_tree).bit_length())):
right_idx = idx + (1 << d)
if right_idx < len(_fen_tree) and k >= _fen_tree[right_idx]:
idx = right_idx
k -= _fen_tree[idx]
return idx + 1, k
def _delete(self, pos, idx):
"""Delete value at the given `(pos, idx)`."""
_lists = self._lists
_mins = self._mins
_list_lens = self._list_lens
self._len -= 1
self._fen_update(pos, -1)
del _lists[pos][idx]
_list_lens[pos] -= 1
if _list_lens[pos]:
_mins[pos] = _lists[pos][0]
else:
del _lists[pos]
del _list_lens[pos]
del _mins[pos]
self._rebuild = True
def _loc_left(self, value):
"""Return an index pair that corresponds to the first position of `value` in the sorted list."""
if not self._len:
return 0, 0
_lists = self._lists
_mins = self._mins
lo, pos = -1, len(_lists) - 1
while lo + 1 < pos:
mi = (lo + pos) >> 1
if value <= _mins[mi]:
pos = mi
else:
lo = mi
if pos and value <= _lists[pos - 1][-1]:
pos -= 1
_list = _lists[pos]
lo, idx = -1, len(_list)
while lo + 1 < idx:
mi = (lo + idx) >> 1
if value <= _list[mi]:
idx = mi
else:
lo = mi
return pos, idx
def _loc_right(self, value):
"""Return an index pair that corresponds to the last position of `value` in the sorted list."""
if not self._len:
return 0, 0
_lists = self._lists
_mins = self._mins
pos, hi = 0, len(_lists)
while pos + 1 < hi:
mi = (pos + hi) >> 1
if value < _mins[mi]:
hi = mi
else:
pos = mi
_list = _lists[pos]
lo, idx = -1, len(_list)
while lo + 1 < idx:
mi = (lo + idx) >> 1
if value < _list[mi]:
idx = mi
else:
lo = mi
return pos, idx
def add(self, value):
"""Add `value` to sorted list."""
_load = self._load
_lists = self._lists
_mins = self._mins
_list_lens = self._list_lens
self._len += 1
if _lists:
pos, idx = self._loc_right(value)
self._fen_update(pos, 1)
_list = _lists[pos]
_list.insert(idx, value)
_list_lens[pos] += 1
_mins[pos] = _list[0]
if _load + _load < len(_list):
_lists.insert(pos + 1, _list[_load:])
_list_lens.insert(pos + 1, len(_list) - _load)
_mins.insert(pos + 1, _list[_load])
_list_lens[pos] = _load
del _list[_load:]
self._rebuild = True
else:
_lists.append([value])
_mins.append(value)
_list_lens.append(1)
self._rebuild = True
def discard(self, value):
"""Remove `value` from sorted list if it is a member."""
_lists = self._lists
if _lists:
pos, idx = self._loc_right(value)
if idx and _lists[pos][idx - 1] == value:
self._delete(pos, idx - 1)
def remove(self, value):
"""Remove `value` from sorted list; `value` must be a member."""
_len = self._len
self.discard(value)
if _len == self._len:
raise ValueError('{0!r} not in list'.format(value))
def pop(self, index=-1):
"""Remove and return value at `index` in sorted list."""
pos, idx = self._fen_findkth(self._len + index if index < 0 else index)
value = self._lists[pos][idx]
self._delete(pos, idx)
return value
def bisect_left(self, value):
"""Return the first index to insert `value` in the sorted list."""
pos, idx = self._loc_left(value)
return self._fen_query(pos) + idx
def bisect_right(self, value):
"""Return the last index to insert `value` in the sorted list."""
pos, idx = self._loc_right(value)
return self._fen_query(pos) + idx
def count(self, value):
"""Return number of occurrences of `value` in the sorted list."""
return self.bisect_right(value) - self.bisect_left(value)
def __len__(self):
"""Return the size of the sorted list."""
return self._len
def __getitem__(self, index):
"""Lookup value at `index` in sorted list."""
pos, idx = self._fen_findkth(self._len + index if index < 0 else index)
return self._lists[pos][idx]
def __delitem__(self, index):
"""Remove value at `index` from sorted list."""
pos, idx = self._fen_findkth(self._len + index if index < 0 else index)
self._delete(pos, idx)
def __contains__(self, value):
"""Return true if `value` is an element of the sorted list."""
_lists = self._lists
if _lists:
pos, idx = self._loc_left(value)
return idx < len(_lists[pos]) and _lists[pos][idx] == value
return False
def __iter__(self):
"""Return an iterator over the sorted list."""
return (value for _list in self._lists for value in _list)
def __reversed__(self):
"""Return a reverse iterator over the sorted list."""
return (value for _list in reversed(self._lists) for value in reversed(_list))
def __repr__(self):
"""Return string representation of sorted list."""
return 'SortedList({0})'.format(list(self))
# ===============================================================================================
# some shortcuts
mod = 1000000007
def testcase(t):
for p in range(t):
solve()
def pow(x, y, p):
res = 1 # Initialize result
x = x % p # Update x if it is more , than or equal to p
if (x == 0):
return 0
while (y > 0):
if ((y & 1) == 1): # If y is odd, multiply, x with result
res = (res * x) % p
y = y >> 1 # y = y/2
x = (x * x) % p
return res
from functools import reduce
def factors(n):
return set(reduce(list.__add__,
([i, n // i] for i in range(1, int(n ** 0.5) + 1) if n % i == 0)))
def gcd(a, b):
if a == b: return a
while b > 0: a, b = b, a % b
return a
# discrete binary search
# minimise:
# def search():
# l = 0
# r = 10 ** 15
#
# for i in range(200):
# if isvalid(l):
# return l
# if l == r:
# return l
# m = (l + r) // 2
# if isvalid(m) and not isvalid(m - 1):
# return m
# if isvalid(m):
# r = m + 1
# else:
# l = m
# return m
# maximise:
# def search():
# l = 0
# r = 10 ** 15
#
# for i in range(200):
# # print(l,r)
# if isvalid(r):
# return r
# if l == r:
# return l
# m = (l + r) // 2
# if isvalid(m) and not isvalid(m + 1):
# return m
# if isvalid(m):
# l = m
# else:
# r = m - 1
# return m
##############Find sum of product of subsets of size k in a array
# ar=[0,1,2,3]
# k=3
# n=len(ar)-1
# dp=[0]*(n+1)
# dp[0]=1
# for pos in range(1,n+1):
# dp[pos]=0
# l=max(1,k+pos-n-1)
# for j in range(min(pos,k),l-1,-1):
# dp[j]=dp[j]+ar[pos]*dp[j-1]
# print(dp[k])
def prefix_sum(ar): # [1,2,3,4]->[1,3,6,10]
return list(accumulate(ar))
def suffix_sum(ar): # [1,2,3,4]->[10,9,7,4]
return list(accumulate(ar[::-1]))[::-1]
def N():
return int(inp())
dx = [0, 0, 1, -1]
dy = [1, -1, 0, 0]
def YES():
print("YES")
def NO():
print("NO")
def Yes():
print("Yes")
def No():
print("No")
# =========================================================================================
from collections import defaultdict
def numberOfSetBits(i):
i = i - ((i >> 1) & 0x55555555)
i = (i & 0x33333333) + ((i >> 2) & 0x33333333)
return (((i + (i >> 4) & 0xF0F0F0F) * 0x1010101) & 0xffffffff) >> 24
class MergeFind:
def __init__(self, n):
self.parent = list(range(n))
self.size = [1] * n
self.num_sets = n
# self.lista = [[_] for _ in range(n)]
def find(self, a):
to_update = []
while a != self.parent[a]:
to_update.append(a)
a = self.parent[a]
for b in to_update:
self.parent[b] = a
return self.parent[a]
def merge(self, a, b):
a = self.find(a)
b = self.find(b)
if a == b:
return
if self.size[a] < self.size[b]:
a, b = b, a
self.num_sets -= 1
self.parent[b] = a
self.size[a] += self.size[b]
# self.lista[a] += self.lista[b]
# self.lista[b] = []
def set_size(self, a):
return self.size[self.find(a)]
def __len__(self):
return self.num_sets
def lcm(a, b):
return abs((a // gcd(a, b)) * b)
# #
# to find factorial and ncr
# tot = 100005
# mod = 10**9 + 7
# fac = [1, 1]
# finv = [1, 1]
# inv = [0, 1]
#
# for i in range(2, tot + 1):
# fac.append((fac[-1] * i) % mod)
# inv.append(mod - (inv[mod % i] * (mod // i) % mod))
# finv.append(finv[-1] * inv[-1] % mod)
def comb(n, r):
if n < r:
return 0
else:
return fac[n] * (finv[r] * finv[n - r] % mod) % mod
def inp(): return sys.stdin.readline().rstrip("\r\n") # for fast input
def out(var): sys.stdout.write(str(var)) # for fast output, always take string
def lis(): return list(map(int, inp().split()))
def stringlis(): return list(map(str, inp().split()))
def sep(): return map(int, inp().split())
def strsep(): return map(str, inp().split())
def fsep(): return map(float, inp().split())
def nextline(): out("\n") # as stdout.write always print sring.
def arr1d(n, v):
return [v] * n
def arr2d(n, m, v):
return [[v] * m for _ in range(n)]
def arr3d(n, m, p, v):
return [[[v] * p for _ in range(m)] for i in range(n)]
def ceil(a, b):
return (a + b - 1) // b
# co-ordinate compression
# ma={s:idx for idx,s in enumerate(sorted(set(l+r)))}
# mxn=100005
# lrg=[0]*mxn
# for i in range(2,mxn-3):
# if (lrg[i]==0):
# for j in range(i,mxn-3,i):
# lrg[j]=i
def solve():
n=N()
ar=lis()
s=set(ar)
temp=[]
for i in range(1,2*n+1):
if i not in s:
temp.append(i)
ans=[]
taken=set()
for i in ar:
ans.append(i)
for j in temp:
if j>i and j not in taken:
ans.append(j)
taken.add(j)
break
if (sorted(ans)==list(range(1,2*n+1))):
print(*ans)
else:
print(-1)
# solve()
testcase(int(inp()))
| PYTHON |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.util.Arrays;
public class C {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
StringBuilder sb = new StringBuilder();
int t = Integer.parseInt(br.readLine());
for (int i = 0; i < t; i++) {
int n = Integer.parseInt(br.readLine());
boolean[] check = new boolean[n * 2 + 1];
String[] strArr = br.readLine().split(" ");
int[] bArr = new int[n];
for (int j = 0; j < n; j++) {
bArr[j] = Integer.parseInt(strArr[j]);
check[bArr[j]] = true;
}
boolean isPossible = true;
int[] aArr = new int[2 * n];
for (int j = 0; j < n; j++) {
aArr[j * 2] = bArr[j];
int tmp = aArr[j * 2];
do{
tmp++;
if(tmp > n * 2){
isPossible = false;
break;
}
} while(check[tmp]);
if(tmp > n * 2){
isPossible = false;
break;
}
aArr[j * 2 + 1] = tmp;
check[tmp] = true;
}
if(isPossible){
for (int j = 0; j < n * 2; j++) {
sb.append(aArr[j]).append(" ");
}
}else{
sb.append(-1);
}
sb.append("\n");
}
bw.write(sb.toString());
bw.flush();
bw.close();
br.close();
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
vector<bool> a(2 * n + 1);
vector<int> res(2 * n);
bool good = true;
for (int i = 0; i < n; i++) {
int k;
cin >> k;
if (a[k] == false) {
a[k] = true;
res[2 * i] = k;
} else {
good = false;
break;
}
}
if (!good) {
cout << -1 << endl;
continue;
}
for (int i = 1; i < 2 * n; i += 2) {
int ptr = -1;
for (int j = res[i - 1] + 1; j <= 2 * n; j++) {
if (!a[j]) {
ptr = j;
break;
}
}
if (ptr == -1) {
good = false;
break;
}
a[ptr] = true;
res[i] = ptr;
}
if (!good) {
cout << -1 << endl;
continue;
}
for (int i = 0; i < 2 * n; i++) cout << res[i] << ' ';
cout << endl;
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.util.*;
public class code {
static PrintWriter pw;
static boolean[] visit;
static ArrayList<Pair>[] adj;
static ArrayList<Integer> list;
static long max=01;
static void dfs(int i, long c) {
visit[i]=true;
max=Math.max(c, max);
for(Pair p: adj[i]) {
if(!visit[p.x-1]) {
dfs(p.x-1, c+1l*p.y);
}
}
}
public static double dist(Pair a, Pair b) {
return Math.sqrt((a.x-b.x)*(a.x-b.x)+ (a.y-b.y)*(a.y-b.y));
}
static int large(int x, int[] arr) {
int ans=-1;
int start=0,end=arr.length-1;
while(start<=end) {
int mid=(start+end)/2;
if(arr[mid]<=x) {
start=mid+1;
}else {
ans=mid;
end=mid-1;
}
}
return ans;
}
static boolean pf(int n) {
return Math.abs(Math.sqrt(n)*Math.sqrt(n)-n)<=1e-8;
}
static boolean sign(int n) {
return n>0;
}
public static void main(String[] args) throws Exception {
Scanner sc= new Scanner(System.in);
pw = new PrintWriter(System.out);
int t=sc.nextInt();
while(t-->0) {
int n=sc.nextInt();
int[] arr=new int[n];
HashSet<Integer> taken=new HashSet<Integer>();
for(int i=0; i<n; i++) {
arr[i]=sc.nextInt();
taken.add(arr[i]);
}
int[] arr2=new int[n];
int j=0;
for(int i=1; i<=2*n; i++) {
if(!taken.contains(i)) {
arr2[j]=i;
j++;
}
}
boolean valid=true;
ArrayList<Integer> list=new ArrayList<Integer>();
for(int i=0; i<n-1; i++) {
int idx=large(arr[i],arr2);
if(idx==-1) {
valid=false;
break;
}else {
list.add(arr[i]);
list.add(arr2[idx]);
arr2[idx]=0;
Arrays.sort(arr2);
}
}
int idx=large(arr[n-1],arr2);
if(idx==-1) {
valid=false;
}else {
list.add(arr[n-1]);
list.add(arr2[idx]);
}
if(!valid) {
pw.println(-1);
}else {
for(int i=0; i<2*n-1; i++) {
pw.print(list.get(i)+" ");
}
pw.println(list.get(2*n-1));
}
}
pw.close();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public int[] nextArr(int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < arr.length; i++)
arr[i] = nextInt();
return arr;
}
public Integer[] nextsort(int n) throws IOException{
Integer[] arr=new Integer[n];
for(int i=0; i<n; i++)
arr[i]=nextInt();
return arr;
}
public boolean ready() throws IOException {
return br.ready();
}
}
static class Pair implements Comparable<Pair>{
int x;
int y;
public Pair(int a, int b) {
this.x=a;
this.y=b;
}
public int compareTo(Pair other) {
return this.y-other.y;
}
}
static class Triple implements Comparable<Triple>{
int x;
int y;
boolean d;
public Triple(int a, int b, boolean t) {
this.x=a;
this.y=b;
this.d=t;
}
public int compareTo(Triple other) {
if(this.d && !other.d) {
return 1;
}else if(!this.d && other.d) {
return -1;
}else {
return this.y-other.y;
}
}
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | // practice with kaiboy
import java.io.*;
import java.util.*;
public class CF1315C extends PrintWriter {
CF1315C() { super(System.out); }
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1315C o = new CF1315C(); o.main(); o.flush();
}
void main() {
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int[] bb = new int[n];
boolean[] used = new boolean[n * 2 + 1];
for (int i = 0; i < n; i++) {
int b = sc.nextInt();
bb[i] = b;
used[b] = true;
}
int[] aa = new int[n * 2];
boolean yes = true;
for (int i = 0; i < n; i++) {
int b = bb[i];
int c = b + 1;
while (c <= n * 2 && used[c])
c++;
if (c > n * 2) {
yes = false;
break;
}
used[c] = true;
aa[i << 1] = b;
aa[i << 1 | 1] = c;
}
if (yes) {
for (int i = 0; i < n * 2; i++)
print(aa[i] + " ");
println();
} else
println(-1);
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.util.*;
import java.math.*;
import java.lang.*;
import static java.lang.Math.*;
public class Main implements Runnable
{
static class InputReader
{
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int read()
{
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars)
{
curChar = 0;
try
{
numChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
public int nextInt()
{
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.')
{
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next()
{
return readString();
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
// if modulo is required set value accordingly
public static long[][] matrixMultiply2dL(long t[][],long m[][])
{
long res[][]= new long[t.length][m[0].length];
for(int i=0;i<t.length;i++)
{
for(int j=0;j<m[0].length;j++)
{
res[i][j]=0;
for(int k=0;k<t[0].length;k++)
{
res[i][j]+=t[i][k]+m[k][j];
}
}
}
return res;
}
static long combination(long n,long r)
{
long ans=1;
for(long i=0;i<r;i++)
{
ans=(ans*(n-i))/(i+1);
}
return ans;
}
public static void main(String args[]) throws Exception
{
new Thread(null, new Main(),"Main",1<<27).start();
}
public void run()
{
InputReader sc = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
int t = sc.nextInt();
while(t-->0){
int n = sc.nextInt();
int b[] = new int[n];
int a[] = new int[2*n];
int k = 0;
boolean f = false;
HashSet<Integer> hs = new HashSet<Integer>();
for(int i=0;i<n;i++){
b[i] = sc.nextInt();
if(b[i]==2*n)
f = true;
hs.add(b[i]);
a[k] = b[i];
k += 2;
}
if(f){
System.out.println(-1);
continue;
}
for(int i=1;i<2*n;i+=2){
f = false;
for(int j=a[i-1]+1;j<=2*n;j++){
if(!hs.contains(j)){
a[i] = j;
hs.add(j);
f = true;
break;
}
}
if(!f){
break;
}
}
if(!f){
System.out.println(-1);
}
else{
for(int i=0;i<2*n;i++){
if(i==2*n-1)
System.out.print(a[i]);
else
System.out.print(a[i] + " ");
}
System.out.println();
}
}
System.out.flush();
w.close();
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
inline long long gcd(long long a, long long b) {
if (a % b == 0)
return b;
else {
return gcd(b, a % b);
}
}
inline long long lcm(long long a, long long b) { return a * b / gcd(a, b); }
inline long long gaus(long long a, long long b) {
return (a + b) * (b - a + 1) / 2;
}
template <class T>
ostream& operator<<(ostream& os, vector<T> v) {
os << "[";
int cnt = 0;
for (auto vv : v) {
os << vv;
if (++cnt < v.size()) os << ",";
}
return os << "]";
}
template <class L, class R>
ostream& operator<<(ostream& os, map<L, R> v) {
os << "[";
int cnt = 0;
for (auto vv : v) {
os << vv;
if (++cnt < v.size()) os << ",";
}
return os << "]";
}
template <class L, class R>
ostream& operator<<(ostream& os, pair<L, R> p) {
return os << "(" << p.first << "," << p.second << ")";
}
int v[201];
void solve() {
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
memset(v, 0, sizeof(v));
vector<int> a(n + 1);
for (int i = 1; i <= n; i++) {
cin >> a[i];
v[a[i]] = 1;
}
bool tof = true;
vector<int> ans;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= 2 * n; j++) {
if (v[j] == 0) {
if (a[i] < j && min(a[i], j) == a[i]) {
ans.push_back(a[i]);
ans.push_back(j);
v[j] = 1;
break;
}
}
}
}
for (int i = 1; i <= 2 * n; i++) {
if (v[i] == 0) tof = false;
}
if (tof) {
for (int i = 0; i < ans.size(); i++) cout << ans[i] << " ";
cout << '\n';
} else
cout << -1 << '\n';
}
}
int main() {
cin.tie(0), ios_base::sync_with_stdio(false);
solve();
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
signed main() {
long long int t = 1;
cin >> t;
while (t--) {
long long int n;
cin >> n;
vector<long long int> b(n);
for (auto &x : b) cin >> x;
vector<bool> use(2 * n + 1, 0);
vector<long long int> a(2 * n + 1, 0);
for (auto x : b) use[x] = 1;
bool ok = 1;
for (long long int i = 1; i <= n; i++) {
a[2 * i - 1] = b[i - 1];
use[b[i - 1]] = 1;
bool f = 0;
for (long long int j = b[i - 1] + 1; j <= 2 * n; j++) {
if (use[j] == 0) {
a[2 * i] = j;
use[j] = 1;
f = 1;
break;
}
}
if (!f) {
ok = 0;
break;
}
}
if (!ok)
cout << -1 << endl;
else {
for (long long int i = 1; i <= 2 * n; i++) cout << a[i] << " ";
cout << endl;
}
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
long long t, n, m, k, ccnt, pos = 0, sum = 0, minn2 = INT_MAX, sum2, cnt2 = 0,
cnt3 = 0, cnt4 = 0, cnt5 = 0, cnt6 = 0, cnt7 = 0,
vis[100005], x1, y7, x2, y2, x3, y3, aaa, bbb;
long long a[1000005], b[1000005], c[1000005], c3[1000005], c4[1000005],
kk[1000005], cnt = 0, x, y, z, d = 0, minn = LONG_LONG_MAX,
maxx = -LONG_LONG_MAX;
long long pos1 = 3, pos2 = 3, tem, tem2, l, r, ans = 0, ans2, mod = 1000000007,
tw[100005], th[105], dd, ee, out[1000005], dp[5005][5005];
string s1, s2, s;
char cc[1005][1005], ch;
int main() {
cin.tie(0);
cout.tie(0);
ios_base::sync_with_stdio(0);
tw[0] = 1;
for (int i = 1; i <= 55; i++) {
tw[i] = tw[i - 1] * 2;
}
cin >> t;
while (t--) {
d = 1;
cin >> n;
for (int i = 0; i <= 2 * n; i++) {
b[i] = 0;
}
for (int i = 0; i < n; i++) {
cin >> a[i];
b[a[i]] = 1;
}
for (int i = 0; i < n; i++) {
c[2 * i] = a[i];
ans = -1;
for (int j = a[i] + 1; j <= 2 * n; j++) {
if (b[j] == 0) {
ans = j;
break;
}
}
if (ans == -1) {
d = 0;
break;
} else {
c[2 * i + 1] = ans;
b[ans] = 1;
}
}
if (d) {
for (int i = 0; i < 2 * n; i++) {
cout << c[i] << " ";
}
cout << '\n';
} else {
cout << -1 << '\n';
}
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t=int(input())
for _ in range(t):
n=int(input())
b=[int(x) for x in input().split()]
v=set(list(range(1,2*n+1)))
for x in b:
v.remove(x)
l=list(v)
l.sort()
ans=[-1 for _a in range(2*n)]
ok=True
for i in range(n):
ans[2*i]=b[i]
ok=False
for j in range(len(l)):
if l[j]>b[i]:
ans[2*i+1]=l[j]
l.pop(j)
ok=True
break
if ok==False:
break #impossible. could not find larger number
if ok==False:
print(-1)
else:
print(' '.join([str(x) for x in ans])) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n = int(input())
arr = list(map(int,input().split()))
s = set()
for i in range(1,2*n +1):
s.add(i)
for i in arr:
s.discard(i)
a = []
b = True
for i in arr:
if i+1>2*n:
b = False
else:
if i+1 in s:
a+=[i+1]
s.discard(i+1)
else:
c = False
for t in s:
if t>i:
a+=[t]
s.discard(t)
c = True
break
if not c:
b = False
break
if not b:
print(-1)
else:
for i in range(n):
print(arr[i],a[i],end=" ")
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import sys
from collections import defaultdict, deque
inp = sys.stdin.readline
read = lambda: list(map(int, inp().split()))
def a():
ans = ""
for _ in range(read()[0]):
a, b, x, y = read()
x += 1
y += 1
ans += str(max(((a-x)*(b)), ((x-1)*(b)), ((a)*(b-y)), ((a)*(y-1)))) + "\n"
print(ans)
def c():
# ans = ""
for _ in range(read()[0]):
flag = 0
n = int(inp())
dic = dict()
for ind, elem in enumerate(read()):
dic[elem] = (ind*2, ind*2+1)
arr = [None]*(2*n)
left = set(i for i in range(1, 2*n+1)).difference(dic.keys())
for i in dic.keys():
elem = dic[i]
mins = [y for y in left if y > i]
# print(mins)
if mins:#len(mins) > 0:
sup = min(mins)
arr[elem[0]], arr[elem[1]] = i, sup
left.remove(sup)
else:
flag = 1
break
if flag:
print("-1")
else:
print(*arr)
# flag = 0
# n = int(inp())
# dic = dict()#{elem : (2*next(ind), 2*ind+1) for elem in read()}
# for ind, elem in enumerate(read()):
# dic[elem] = (ind*2, ind*2+1)
# ind += 1
# left = deque(set(i for i in range(1, 2*n+1)).difference(dic.keys()))
# # left.sort()
# # left = (left)
# arr = [None]*(2*n)
# keys = list(dic.keys())
# keys.sort()
# for i in keys:
# t = i
# while not (t+1 in left):
# t += 1
# if t == len(left):
# flag = 1
# break
# if flag:
# arr[dic[i][0]], arr[dic[i][1]] = i, left.popleft()
# if i < left[0]:
# arr[dic[i][0]], arr[dic[i][1]] = i, left.popleft()
# else:
# flag = 1
# break
# if flag:
# ans += "-1\n"
# else:
# ans += (" ").join(map(str, arr)) + "\n"
# print(ans)
if __name__ == "__main__":
# a()
# b()
c()
# 1 2 3 4 5 6 7 8
# 2 1 3 6 4 7 5 8
# 1 - 1, 2 - 3
# 2 - 7, 8 - 4
# 5 - 3, 4 - 6
# 7 - 5, 6 - 9
# 8 - 9, 10 - 10
# 1 3 5 6 7 9 2 4 8 10
# 3
# 4
# 6
# 9
# 10 | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.*;
public class Restoring_Permutation
{
public static void main(String args[])
{
Scanner sc = new Scanner(System.in);
int a = sc.nextInt();
for(int i=0;i<a;i++)
{
int n=sc.nextInt();
int data[] = new int[n];
int man[] = new int[2*n];
for(int j=0;j<n;j++)
{
data[j] = sc.nextInt();
man[data[j]-1]=1;
}
//System.out.println(man[2*n-1]);
if(man[2*n-1]==1)
System.out.println(-1);
else
{
int c[] = new int[n];
for(int d=0;d<n;d++)
c[d]=data[d];
Arrays.sort(c);
int cnt=0;
for(int j=c[0]-1;j<2*n;j++)
{
if(man[j]==0)
cnt++;
}
if(cnt<n)
System.out.println(-1);
else
{
int abc[] = new int[2*n];
for(int d=0;d<2*n;d++)
abc[d]=man[d];
int app=0;
for(int j=0;j<n;j++)
{
app=0;
for(int k=data[j];k<2*n;k++)
{
if(abc[k]==0)
{ app++;
abc[k]=1;
break;
}
}
if(app==0)
break;
}
if(app==0)
System.out.println(-1);
else
{
for(int j=0;j<n;j++)
{
for(int k=data[j];k<2*n;k++)
{
if(man[k]==0)
{
System.out.print(data[j]+" ");
System.out.print(k+1+" ");
man[k]=1;
break;
}
}
}System.out.println();
}
}
}
}
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 |
def get_rank(input):
indices = list(range(len(input)))
indices.sort(key=lambda x: input[x])
output = [0] * len(indices)
for i, x in enumerate(indices):
output[x] = i
return output
cases = int(raw_input().strip())
for case in range(cases):
n = int(raw_input().strip())
b = map(int, raw_input().strip().split(" "))
a = [0 for i in xrange(2 * n)]
for i in range(n):
a[i * 2] = b[i]
perm = sorted(list(set(xrange(1, 2 * n + 1)) - set(b)))
rank = get_rank(b)
for i in range(n):
a[i * 2 + 1] = perm[rank[i]]
possible = True
for i in range(n):
if b[i] != min(a[i * 2], a[i * 2 + 1]):
possible = False
break
if not possible:
print "-1"
else:
for i in range(n):
min_possible = a[i * 2 + 1]
min_j = i
for j in range(i + 1, n):
if a[j * 2 + 1] > a[i * 2] and min_possible > a[j * 2 + 1]:
min_possible = a[j * 2 + 1]
min_j = j
if min_j != i:
a[i * 2 + 1], a[min_j * 2 + 1] = a[min_j * 2 + 1], a[i * 2 + 1]
print ' '.join(map(str, a)) | PYTHON |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const long long MOD = 1e9 + 7;
const long long INF = LLONG_MAX;
int main() {
int t;
cin >> t;
while (t--) {
int n, x, flag, m;
cin >> n;
x = 2 * n;
int a[x];
for (long long i = 0; i < (long long)x; i++) a[i] = i + 1;
vector<int> s;
int b[n];
for (long long i = 0; i < (long long)n; i++) {
cin >> b[i];
a[b[i] - 1] = 0;
}
for (long long i = 0; i < (long long)n; i++) {
flag = 0;
s.push_back(b[i]);
for (long long j = b[i]; j < (long long)x; j++) {
if (a[j] > b[i]) {
flag = 1;
m = a[j];
a[j] = 0;
break;
}
}
if (flag == 1)
s.push_back(m);
else
break;
}
if (flag == 0)
cout << "-1\n";
else {
for (long long i = 0; i < (long long)s.size(); i++) cout << s[i] << " ";
cout << "\n";
}
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for i in range(int(input())):
n=int(input())
b=list(map(int,input().split()))
a=[]
flag=0
for j in range(n):
a.append(b[j])
k=b[j]
while k in a or k in b:
k+=1
if k>2*n:
print(-1)
flag=1
break
else:
a.append(k)
if flag==0:
print(*a)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int eps = 1e-8;
const long long mod = 1e9 + 7;
const long long maxn = 200 + 10;
const unsigned long long modd = 212370440130137957ll;
const long long Mod = 998244353;
int lowbit(int x) { return x & -x; }
long long gcd(long long a, long long b) {
if (b == 0) return a;
return gcd(b, a % b);
}
long long lcm(long long a, long long b) { return a / gcd(a, b) * b; }
long long quick_power(long long a, long long b, long long c) {
long long ans = 1;
a = a % c;
while (b) {
if (b & 1) ans = (ans * a) % c;
b = b >> 1;
a = (a * a) % c;
}
return ans;
}
bool isprime(int x) {
int flag = 1;
for (int i = 2; i * i <= x; i++) {
if (x % i == 0) {
flag = 0;
break;
}
}
if (flag)
return 1;
else
return 0;
}
int t;
int b[maxn];
int flag[maxn];
int flag1[maxn];
int a[maxn];
int ans[maxn];
int maxx;
int minn;
int main(int argc, char const *argv[]) {
cin >> t;
while (t--) {
int n;
cin >> n;
minn = INF;
maxx = 0;
memset(flag, 0, sizeof(flag));
memset(flag1, 0, sizeof(flag1));
for (int i = 1; i <= n; i++) {
cin >> b[i];
flag[b[i]] = 1;
maxx = max(maxx, b[i]);
minn = min(minn, b[i]);
}
if (maxx == 2 * n || minn != 1) {
cout << -1 << endl;
continue;
}
int k = 1;
for (int i = 1; i <= 2 * n; i++) {
if (!flag[i]) {
a[k] = i;
k++;
}
}
sort(a + 1, a + 1 + n);
int tmp = 1;
int flag4 = 0;
for (int i = 1; i <= n; i++) {
int flag2 = 0;
ans[tmp++] = b[i];
for (int j = 1; j <= n; j++) {
if (a[j] > b[i] && !flag1[a[j]]) {
ans[tmp++] = a[j];
flag2 = 1;
flag1[a[j]] = 1;
break;
}
}
if (flag2 == 0) {
flag4 = 1;
cout << -1;
break;
}
}
if (flag4 == 0)
for (int i = 1; i <= 2 * n; i++) {
cout << ans[i] << " ";
}
else
cout << endl;
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t = int(input())
for _ in range(t):
n = int(input())
b = list(map(int, input().split()))
a = [0]*(2*n)
ok = True
for i in range(n):
a[i*2] = b[i]
while 0 in a:
moved = False
for i in range(1, 1+2*n):
ind = a.index(0)
if i not in a and i > a[ind-1]:
a[ind] = i
moved = True
break
if not moved:
ok = False
break
if not ok:
print(-1)
else:
print(*a) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.math.BigInteger;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
public class TP {
public static PrintWriter out;
public static FastReader in;
public static void main(String[] args) throws IOException {
long s = System.currentTimeMillis();
in = new FastReader();
out = new PrintWriter(System.out);
// out = new PrintWriter(new BufferedWriter(new FileWriter("whereami.out")));
int t = 1;
t = ni();
while (t-- > 0) solve();
out.flush();
tr(System.currentTimeMillis() - s + "ms");
}
private static void solve() {
int n = ni();
int[] a = na(n);
TreeSet<Integer> set = new TreeSet<>();
for (int i = 1; i <= 2 * n; i++) set.add(i);
for (int x : a) set.remove(x);
int[] ans = new int[2 * n];
int j = 0;
for (int i = 0; i < n; i++) {
if (set.size() == 0) break;
int x = a[i];
Integer y = set.ceiling(x);
if (y == null) {
out.println(-1);
return;
}
set.remove(y);
ans[j] = x;
ans[j + 1] = y;
j += 2;
}
print(ans);
}
private static int[][] uniqCount(int[] a) {
int n = a.length;
int p = 0;
int[][] b = new int[n][];
for (int i = 0; i < n; i++) {
if (i == 0 || a[i] != a[i - 1]) b[p++] = new int[]{a[i], 0};
b[p - 1][1]++;
}
return Arrays.copyOf(b, p);
}
static int[] reverse(int a[]) {
int n = a.length;
int[] b = new int[n];
int j = n;
for (int k : a) {
b[j - 1] = k;
j = j - 1;
}
return b;
}
private static void print(int[] a) {
for (int x : a) out.print(x + " ");
out.println();
}
private static void print(long[] a) {
for (long x : a) out.print(x + " ");
out.println();
}
public static int lowerBound(int[] a, int v) {
int low = -1, high = a.length;
while (high - low > 1) {
int h = high + low >>> 1;
if (a[h] >= v) {
high = h;
} else {
low = h;
}
}
return high;
}
private static boolean sorted(char[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) return false;
}
return true;
}
private static long lcm(long a, long b) {
return a * b / gcd(a, b);
}
public static int[][] enumPrimesAndLPF(int n) {
int[] lpf = new int[n + 1];
double lu = Math.log(n + 32);
int tot = 0;
int[] primes = new int[(int) ((n + 32) / lu + (n + 32) / lu / lu * 1.5)];
for (int i = 2; i <= n; i++) {
lpf[i] = i;
}
for (int p = 2, tmp; p <= n; p++) {
if (lpf[p] == p) {
primes[tot++] = p;
}
for (int i = 0; i < tot && primes[i] <= lpf[p] && (tmp = primes[i] * p) <= n; i++) {
lpf[tmp] = primes[i];
}
}
return new int[][]{Arrays.copyOf(primes, tot), lpf};
}
static boolean isPrime(int n) {
for (int i = 2; i * i <= n; i++) if (n % i == 0) return false;
return true;
}
static boolean isPrime(long n) {
for (long i = 2; i * i <= n; i++) if (n % i == 0) return false;
return true;
}
static boolean sorted(int[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) return false;
}
return true;
}
public static long gcd(long a, long b) {
while (b != 0) {
a %= b;
long t = a;
a = b;
b = t;
}
return a;
}
private static int ni() {
return in.nextInt();
}
private static String ns() {
return in.next();
}
private static int[] na(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = ni();
return a;
}
private static long[] nal(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) a[i] = nl();
return a;
}
private static long nl() {
return in.nextLong();
}
private float nf() {
return (float) in.nextDouble();
}
private static double nd() {
return in.nextDouble();
}
public static int[] facs(int n, int[] primes) {
int[] ret = new int[9];
int rp = 0;
for (int p : primes) {
if (p * p > n) break;
int i;
i = 0;
while (n % p == 0) {
n /= p;
i++;
}
if (i > 0) ret[rp++] = p;
}
if (n != 1) ret[rp++] = n;
return Arrays.copyOf(ret, rp);
}
public static int[] sieveEratosthenes(int n) {
if (n <= 32) {
int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31};
for (int i = 0; i < primes.length; i++) {
if (n < primes[i]) {
return Arrays.copyOf(primes, i);
}
}
return primes;
}
int u = n + 32;
double lu = Math.log(u);
int[] ret = new int[(int) (u / lu + u / lu / lu * 1.5)];
ret[0] = 2;
int pos = 1;
int[] isnp = new int[(n + 1) / 32 / 2 + 1];
int sup = (n + 1) / 32 / 2 + 1;
int[] tprimes = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31};
for (int tp : tprimes) {
ret[pos++] = tp;
int[] ptn = new int[tp];
for (int i = (tp - 3) / 2; i < tp << 5; i += tp) ptn[i >> 5] |= 1 << (i & 31);
for (int j = 0; j < sup; j += tp) {
for (int i = 0; i < tp && i + j < sup; i++) {
isnp[j + i] |= ptn[i];
}
}
}
// 3,5,7
// 2x+3=n
int[] magic = {
0, 1, 23, 2, 29, 24, 19, 3, 30, 27, 25, 11, 20, 8, 4, 13, 31, 22, 28, 18, 26, 10, 7, 12, 21,
17, 9, 6, 16, 5, 15, 14
};
int h = n / 2;
for (int i = 0; i < sup; i++) {
for (int j = ~isnp[i]; j != 0; j &= j - 1) {
int pp = i << 5 | magic[(j & -j) * 0x076be629 >>> 27];
int p = 2 * pp + 3;
if (p > n) break;
ret[pos++] = p;
if ((long) p * p > n) continue;
for (int q = (p * p - 3) / 2; q <= h; q += p) isnp[q >> 5] |= 1 << q;
}
}
return Arrays.copyOf(ret, pos);
}
private static final boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private static void tr(Object... o) {
if (!oj) System.out.println(Arrays.deepToString(o));
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() throws FileNotFoundException {
br = new BufferedReader(new InputStreamReader(System.in));
// br = new BufferedReader(new FileReader("whereami.in"));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
static class Pair<K, V> {
private K key;
private V value;
public Pair(K key, V value) {
this.key = key;
this.value = value;
}
public K getKey() {
return key;
}
public V getValue() {
return value;
}
public void setKey(K key) {
this.key = key;
}
public void setValue(V value) {
this.value = value;
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | from sys import stdin
input=stdin.readline
for _ in range(int(input())):
n=int(input());m=2*n;v=[0]*m
a=list(map(int,input().split()))
if max(a)==m:print(-1)
else:
k=1;d=[]
for i in a:v[i-1]=1
for i in range(n):
d.append(a[i]);p=a[i]-1
while v[p]!=0:
p+=1
if p==m:print(-1);k=0;break
if not k:break
v[p]=1
d.append(p+1)
if k:
print(*d) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 |
import java.util.Scanner;
import java.util.TreeSet;
public class Solution {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int tc = sc.nextInt();
while(tc-- > 0) {
int n = sc.nextInt();
TreeSet<Integer> set = new TreeSet<>();
for(int i = 1; i<=2*n; i++) {
set.add(i);
}
int[] a = new int[n];
for(int i = 0; i<n; i++) {
int ai = sc.nextInt();
set.remove(ai);
a[i] = ai;
}
int[] b = new int[2*n];
boolean foundAns = true;
for(int i = 0; i<n; i++) {
Integer ceiling = set.ceiling(a[i]);
if(ceiling != null) {
b[2*i] = a[i];
b[2*i + 1] = ceiling;
set.remove(ceiling);
} else {
foundAns = false;
break;
}
}
if(foundAns) {
for(int i = 0; i<2*n; i++)
System.out.print(b[i] + " ");
System.out.println();
} else {
System.out.println(-1);
}
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import sys
import bisect
input = sys.stdin.readline
ins = lambda: input().rstrip()
ini = lambda: int(input().rstrip())
inm = lambda: map(int, input().rstrip().split())
inl = lambda: list(map(int, input().split()))
out = lambda x: print('\n'.join(map(str, x)))
t = ini()
for _ in range(t):
n = ini()
b = inl()
a = [i for i in range(1, n*2+1) if i not in b]
out = True
for index, number in enumerate(sorted(b)):
if number > a[index]:
out = False
print(-1)
break
if not out:
continue
ans = []
for i in b:
x = bisect.bisect_right(a, i)
ans.append(i)
ans.append(a[x])
a.pop(x)
print(*ans) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
bool sortbysec(const pair<int, int> &a, const pair<int, int> &b) {
return (a.second < b.second);
}
void solve() {
int n;
cin >> n;
vector<pair<int, int>> m;
map<int, int> mp;
for (int j = 0; j < n; j++) {
int x;
cin >> x;
m.push_back({x, j * 2});
mp.insert({x, j * 2});
}
set<int> v;
for (int i = 1; i < 2 * n + 1; i++) {
if (mp.find(i) == mp.end()) {
v.insert(i);
}
}
for (int i = 0; i < n; i++) {
auto it = v.upper_bound(m[i].first);
m.push_back({*it, m[i].second + 1});
v.erase(*it);
}
sort(m.begin(), m.end(), sortbysec);
for (int i = 0; i < n; i++) {
if (m[2 * i + 1].first <= m[2 * i].first) {
cout << "-1\n";
return;
}
}
for (auto u : m) {
cout << u.first << " ";
}
cout << "\n";
}
int main() {
int t;
cin >> t;
for (int i = 0; i < t; i++) {
solve();
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #!/usr/bin/env python
from __future__ import division, print_function
import os
import sys
from io import BytesIO, IOBase
if sys.version_info[0] < 3:
from __builtin__ import xrange as range
from future_builtins import ascii, filter, hex, map, oct, zip
class SortedList:
def __init__(self, iterable=[], _load=200):
"""Initialize sorted list instance."""
values = sorted(iterable)
self._len = _len = len(values)
self._load = _load
self._lists = _lists = [values[i:i + _load] for i in range(0, _len, _load)]
self._list_lens = [len(_list) for _list in _lists]
self._mins = [_list[0] for _list in _lists]
self._fen_tree = []
self._rebuild = True
def _fen_build(self):
"""Build a fenwick tree instance."""
self._fen_tree[:] = self._list_lens
_fen_tree = self._fen_tree
for i in range(len(_fen_tree)):
if i | i + 1 < len(_fen_tree):
_fen_tree[i | i + 1] += _fen_tree[i]
self._rebuild = False
def _fen_update(self, index, value):
"""Update `fen_tree[index] += value`."""
if not self._rebuild:
_fen_tree = self._fen_tree
while index < len(_fen_tree):
_fen_tree[index] += value
index |= index + 1
def _fen_query(self, end):
"""Return `sum(_fen_tree[:end])`."""
if self._rebuild:
self._fen_build()
_fen_tree = self._fen_tree
x = 0
while end:
x += _fen_tree[end - 1]
end &= end - 1
return x
def _fen_findkth(self, k):
"""Return a pair of (the largest `idx` such that `sum(_fen_tree[:idx]) <= k`, `k - sum(_fen_tree[:idx])`)."""
_list_lens = self._list_lens
if k < _list_lens[0]:
return 0, k
if k >= self._len - _list_lens[-1]:
return len(_list_lens) - 1, k + _list_lens[-1] - self._len
if self._rebuild:
self._fen_build()
_fen_tree = self._fen_tree
idx = -1
for d in reversed(range(len(_fen_tree).bit_length())):
right_idx = idx + (1 << d)
if right_idx < len(_fen_tree) and k >= _fen_tree[right_idx]:
idx = right_idx
k -= _fen_tree[idx]
return idx + 1, k
def _delete(self, pos, idx):
"""Delete value at the given `(pos, idx)`."""
_lists = self._lists
_mins = self._mins
_list_lens = self._list_lens
self._len -= 1
self._fen_update(pos, -1)
del _lists[pos][idx]
_list_lens[pos] -= 1
if _list_lens[pos]:
_mins[pos] = _lists[pos][0]
else:
del _lists[pos]
del _list_lens[pos]
del _mins[pos]
self._rebuild = True
def _loc_left(self, value):
"""Return an index pair that corresponds to the first position of `value` in the sorted list."""
if not self._len:
return 0, 0
_lists = self._lists
_mins = self._mins
lo, pos = -1, len(_lists) - 1
while lo + 1 < pos:
mi = (lo + pos) >> 1
if value <= _mins[mi]:
pos = mi
else:
lo = mi
if pos and value <= _lists[pos - 1][-1]:
pos -= 1
_list = _lists[pos]
lo, idx = -1, len(_list)
while lo + 1 < idx:
mi = (lo + idx) >> 1
if value <= _list[mi]:
idx = mi
else:
lo = mi
return pos, idx
def _loc_right(self, value):
"""Return an index pair that corresponds to the last position of `value` in the sorted list."""
if not self._len:
return 0, 0
_lists = self._lists
_mins = self._mins
pos, hi = 0, len(_lists)
while pos + 1 < hi:
mi = (pos + hi) >> 1
if value < _mins[mi]:
hi = mi
else:
pos = mi
_list = _lists[pos]
lo, idx = -1, len(_list)
while lo + 1 < idx:
mi = (lo + idx) >> 1
if value < _list[mi]:
idx = mi
else:
lo = mi
return pos, idx
def add(self, value):
"""Add `value` to sorted list."""
_load = self._load
_lists = self._lists
_mins = self._mins
_list_lens = self._list_lens
self._len += 1
if _lists:
pos, idx = self._loc_right(value)
self._fen_update(pos, 1)
_list = _lists[pos]
_list.insert(idx, value)
_list_lens[pos] += 1
_mins[pos] = _list[0]
if _load + _load < len(_list):
_lists.insert(pos + 1, _list[_load:])
_list_lens.insert(pos + 1, len(_list) - _load)
_mins.insert(pos + 1, _list[_load])
_list_lens[pos] = _load
del _list[_load:]
self._rebuild = True
else:
_lists.append([value])
_mins.append(value)
_list_lens.append(1)
self._rebuild = True
def discard(self, value):
"""Remove `value` from sorted list if it is a member."""
_lists = self._lists
if _lists:
pos, idx = self._loc_right(value)
if idx and _lists[pos][idx - 1] == value:
self._delete(pos, idx - 1)
def remove(self, value):
"""Remove `value` from sorted list; `value` must be a member."""
_len = self._len
self.discard(value)
if _len == self._len:
raise ValueError('{0!r} not in list'.format(value))
def pop(self, index=-1):
"""Remove and return value at `index` in sorted list."""
pos, idx = self._fen_findkth(self._len + index if index < 0 else index)
value = self._lists[pos][idx]
self._delete(pos, idx)
return value
def bisect_left(self, value):
"""Return the first index to insert `value` in the sorted list."""
pos, idx = self._loc_left(value)
return self._fen_query(pos) + idx
def bisect_right(self, value):
"""Return the last index to insert `value` in the sorted list."""
pos, idx = self._loc_right(value)
return self._fen_query(pos) + idx
def count(self, value):
"""Return number of occurrences of `value` in the sorted list."""
return self.bisect_right(value) - self.bisect_left(value)
def __len__(self):
"""Return the size of the sorted list."""
return self._len
def __getitem__(self, index):
"""Lookup value at `index` in sorted list."""
pos, idx = self._fen_findkth(self._len + index if index < 0 else index)
return self._lists[pos][idx]
def __delitem__(self, index):
"""Remove value at `index` from sorted list."""
pos, idx = self._fen_findkth(self._len + index if index < 0 else index)
self._delete(pos, idx)
def __contains__(self, value):
"""Return true if `value` is an element of the sorted list."""
_lists = self._lists
if _lists:
pos, idx = self._loc_left(value)
return idx < len(_lists[pos]) and _lists[pos][idx] == value
return False
def __iter__(self):
"""Return an iterator over the sorted list."""
return (value for _list in self._lists for value in _list)
def __reversed__(self):
"""Return a reverse iterator over the sorted list."""
return (value for _list in reversed(self._lists) for value in reversed(_list))
def __repr__(self):
"""Return string representation of sorted list."""
return 'SortedList({0})'.format(list(self))
def main():
t = int(input())
for _ in range(t):
n = int(input())
b = [int(i) for i in input().split()]
a = [b[i // 2] for i in range(2 * n)]
s = SortedList(set(range(1, 2 * n + 1)) - set(b))
for i in range(1, 2 * n, 2):
idx = (s.bisect_left(a[i]))
if idx < len(s):
a[i] = s[idx]
else:
a = [-1]
break
s.remove(a[i])
print(*a)
# region fastio
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
def print(*args, **kwargs):
"""Prints the values to a stream, or to sys.stdout by default."""
sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout)
at_start = True
for x in args:
if not at_start:
file.write(sep)
file.write(str(x))
at_start = False
file.write(kwargs.pop("end", "\n"))
if kwargs.pop("flush", False):
file.flush()
if sys.version_info[0] < 3:
sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout)
else:
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# endregion
if __name__ == "__main__":
main()
| PYTHON |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
int t;
cin >> t;
while (t--) {
int n, flag = 1;
cin >> n;
int a[201] = {0}, b[n], ans[2 * n];
for (int i = 0; i < n; i++) {
cin >> b[i];
a[b[i]] = 1;
}
if (a[1] == 0 || a[2 * n] == 1) {
cout << "-1\n";
continue;
}
for (int i = 0, j = 0; i < n; i++, j++) {
ans[j] = b[i];
j++;
b[i]++;
while (a[b[i]] != 0) {
b[i]++;
}
if (b[i] > 2 * n) {
cout << "-1";
flag = 0;
break;
}
ans[j] = b[i];
a[b[i]] = 1;
}
if (flag)
for (int i = 0; i < 2 * n; i++) cout << ans[i] << " ";
cout << endl;
;
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int N = (int)100;
const int dx[] = {-1, 0, 1, 0, -1, -1, 1, 1};
const int dy[] = {0, 1, 0, -1, -1, 1, -1, 1};
char dir[] = {'L', 'D', 'R', 'U'};
const long long int mod = (long long int)1e9 + 7;
const long long int inf = 1e18 + 100;
int BIT[100005], n;
long long int prime[17], spf[N];
template <typename T>
T lcm(T a, T b) {
return a / gcd(a, b) * b;
}
template <typename T>
T min3(T a, T b, T c) {
return min(a, min(b, c));
}
template <typename T>
T max3(T a, T b, T c) {
return max(a, max(b, c));
}
bool isVowel(char ch) {
ch = toupper(ch);
if (ch == 'A' || ch == 'U' || ch == 'I' || ch == 'O' || ch == 'E')
return true;
return false;
}
long long int mInv(long long int a, long long int m) {
long long int m0 = m;
long long int y = 0, x = 1;
if (m == 1) return 0;
while (a > 1) {
long long int q = a / m;
long long int t = m;
m = a % m, a = t;
t = y;
y = x - q * y;
x = t;
}
if (x < 0) x += m0;
return x;
}
long long int power(long long int x, long long int y) {
long long int res = 1;
x = x % mod;
while (y > 0) {
if (y & 1) res = (res * x) % mod;
y = y >> 1;
x = (x * x) % mod;
}
return res;
}
long long int gcd(long long int a, long long int b) {
if (b == 0) return a;
return gcd(b, a % b);
}
long long Extendedgcd(long long a, long long b, long long *x, long long *y) {
if (!a) {
*x = 0;
*y = 1;
return b;
}
long long nx, ny;
long long d = Extendedgcd(b % a, a, &nx, &ny);
long long k = b / a;
*y = nx;
*x = -k * nx + ny;
return d;
}
void update(int x, int delta) {
if (!x) {
BIT[x] += delta;
return;
}
for (; x <= N; x += x & -x) BIT[x] += delta;
}
long long int query(int x) {
long long int sum = BIT[0];
for (; x > 0; x -= x & -x) sum += BIT[x];
return sum;
}
void Sieve() {
for (int i = 1; i <= N; i++) prime[i] = 1;
prime[0] = 0;
prime[1] = 0;
for (long long int p = 2; p * p <= N; p++) {
if (prime[p] == 1) {
for (long long int i = p * p; i <= N; i += p) prime[i] = 0;
}
}
for (int p = 3; p <= N; p++) prime[p] += prime[p - 1];
}
void sieve() {
spf[1] = -1;
for (int i = 2; i < N; i++) spf[i] = i;
for (int i = 4; i < N; i += 2) spf[i] = 2;
for (long long int i = 3; i * i < N; i++) {
if (spf[i] == i) {
for (long long int j = i * i; j < N; j += i)
if (spf[j] == j) spf[j] = i;
}
}
}
struct cmp {
bool operator()(const pair<int, int> &x, const pair<int, int> &y) const {
if (x.first != y.first) return x.first < y.first;
return x.second > y.second;
}
};
void gInput(int m, vector<int> adj[]) {
int u, v;
for (int i = 0; i < m; i++) {
cin >> u >> v;
adj[u].push_back(v);
adj[v].push_back(u);
}
}
vector<long long int> fac;
void factorial() {
int N = (int)1e6;
fac.resize(N);
fac[0] = 1;
for (long long int i = 1; i <= N; i++) {
fac[i] = ((fac[i - 1] % mod) * i) % mod;
}
}
long long int nCr(long long int n, long long int r) {
long long int x = fac[n];
long long int y = fac[r];
long long int z = fac[n - r];
long long int pr = ((y % mod) * (z % mod)) % mod;
pr = mInv(pr, mod);
long long int ncr = ((x % mod) * (pr % mod)) % mod;
return ncr;
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
int n;
cin >> n;
int a[n + 1];
int b[2 * n + 1];
int vis[2 * n + 1];
memset(vis, 0, sizeof(vis));
memset(b, 0, sizeof(b));
for (int i = 1; i <= n; i++) {
cin >> a[i];
vis[a[i]] = 1;
b[2 * i - 1] = a[i];
}
int f = 0;
for (int i = 1; i <= 2 * n; i++) {
if (b[i] == 0) {
int g = 0;
for (int j = 1; j <= 2 * n; j++) {
if (!vis[j] and j > b[i - 1]) {
b[i] = j;
vis[j] = 1;
g = 1;
break;
}
}
if (!g) f = 1;
}
}
if (f)
cout << -1;
else
for (int i = 1; i <= 2 * n; i++) cout << b[i] << " ";
cout << "\n";
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
void solve() {
long long n;
cin >> n;
vector<long long> line(n);
for (long long& i : line) cin >> i;
set<long long> av;
for (long long i = 1; i <= 2 * n; i++) av.insert(i);
for (long long i : line) av.erase(i);
vector<long long> ans(2 * n);
for (long long i = 0; i < n; i++) {
ans[2 * i] = line[i];
auto it = av.lower_bound(line[i]);
if (it == av.end()) {
cout << -1 << endl;
return;
}
ans[2 * i + 1] = *it;
av.erase(it);
}
for (long long i : ans) cout << i << " ";
cout << endl;
}
signed main() {
long long q = 1;
cin >> q;
while (q--) {
solve();
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | # Work hard. Complain harder. Unknown
# by : Blue Edge - Create some chaos
for _ in range(int(input())):
n=int(input())
b=list(map(int,input().split()))
a=[1]*(2*n+1)
for x in b:
a[x]=0
p=[]
res=True
for x in b:
p.append(x)
f=0
i=x+1
while i<2*n+1:
if a[i]:
a[i]=0
p.append(i)
f=1
break
i+=1
if not f:
res=False
if res:
print(*p)
else:
print(-1)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | def solution():
for _ in range(int(input())):
n = int(input())
arr = [int(i) for i in input().split()]
maximal = max(arr)
minimal = min(arr)
mandatory = set(range(1, minimal+maximal+1))
if len(mandatory) > 2*n or minimal > 1:
print(-1)
continue
if len(mandatory) != 2*n:
mandatory.update(set(range(len(mandatory)+1, (2*n)+1)))
mandatory.difference_update(set(arr))
ans = [0]*n
for i in range(0,n,1):
if arr[i]+1 in mandatory:
ans[i] = arr[i]+1
mandatory.remove(ans[i])
else:
for j in mandatory:
if j > arr[i]:
ans[i] = j
mandatory.remove(j)
break
if 0 in ans:
print(-1)
continue
from functools import reduce
from operator import add
print(*reduce(add, zip(arr, ans)))
solution()
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
void debug_out() { cerr << '\n'; }
template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
cerr << " " << to_string(H);
debug_out(T...);
}
const int dx[] = {1, -1, 0, 0}, dy[] = {0, 0, 1, -1};
const int maxn = 105;
long long n, m, k;
long long a[maxn * 2], b[maxn], c[maxn * 2];
int main(void) {
ios_base::sync_with_stdio(0), cin.tie(0);
int tc;
cin >> tc;
while (tc--) {
memset(c, 0, sizeof(c));
cin >> n;
for (int i = 1; i <= n; ++i) {
cin >> b[i];
++c[b[i]];
}
bool valid = true;
set<int> s;
for (int i = 1; i <= n * 2; ++i) {
if (!c[i]) s.insert(i);
if (c[i] > 1) valid = false;
}
for (int i = 1; i <= n; ++i) {
auto it = s.lower_bound(b[i]);
if (it == s.end()) {
valid = false;
break;
}
a[i * 2 - 1] = b[i];
a[i * 2] = *it;
s.erase(it);
}
if (!valid)
cout << -1 << '\n';
else {
for (int i = 1; i <= n * 2; ++i) cout << a[i] << ' ';
cout << '\n';
}
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 |
import java.io.BufferedReader;
import java.io.Closeable;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class RestoringPermutation implements Closeable {
private InputReader in = new InputReader(System.in);
private PrintWriter out = new PrintWriter(System.out);
public void solve() {
int t = in.ni();
while (t-- > 0) {
int n = in.ni();
int[] result = new int[2 * n];
boolean[] taken = new boolean[2 * n + 1];
for (int i = 0; i < 2 * n; i += 2) {
int next = in.ni();
result[i] = next;
taken[next] = true;
}
boolean possible = true;
for (int i = 1; i < 2 * n; i += 2) {
int min = firstFreeBiggerThan(taken, result[i - 1]);
if (min == -1) {
possible = false;
break;
}
taken[min] = true;
result[i] = min;
}
if (possible) {
for (int i = 0; i < 2 * n; i++) {
out.print(result[i]);
out.print(' ');
}
out.println();
} else {
out.println(-1);
}
}
}
private int firstFreeBiggerThan(boolean[] taken, int limit) {
for (int i = limit + 1; i < taken.length; i++) {
if (!taken[i]) {
return i;
}
}
return -1;
}
@Override
public void close() throws IOException {
in.close();
out.close();
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int ni() {
return Integer.parseInt(next());
}
public long nl() {
return Long.parseLong(next());
}
public void close() throws IOException {
reader.close();
}
}
public static void main(String[] args) throws IOException {
try (RestoringPermutation instance = new RestoringPermutation()) {
instance.solve();
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Collections;
import java.util.TreeSet;
public class Permutation {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(br.readLine());
PrintWriter out = new PrintWriter(System.out);
StringBuilder k = new StringBuilder("");
while(t-->0){
int n = Integer.parseInt(br.readLine());
String[] arr = br.readLine().split(" ");
int b[] = new int[n];
int[] c = new int[n];
TreeSet<Integer> s1 = new TreeSet<>();
for(int i=1;i<=2*n;i++){
s1.add(i);
}
for(int i=0;i<n;i++){
b[i] = Integer.parseInt(arr[i]);
c[i]=b[i];
s1.remove(b[i]);
}
boolean isPossible = true;
Arrays.sort(b);
for(int j=0;j<n;j++){
if(b[j]>=(j+1)*2){
isPossible = false;
break;
}
}
if(!isPossible) {
k.append(-1 + "\n");
}else{
for(int i=0;i<n;i++){
if(i!=0){
k.append(" ");
}
k.append(c[i]+" "+getNextGreater(c[i], s1));
}
k.append("\n");
}
}
out.print(k);
out.flush();
}
private static int getNextGreater(int i, TreeSet<Integer> s1) {
for(int p:s1){
if(p>i){
s1.remove(p);
return p;
}
}
return 0;
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.*;
import java.io.*;
import static java.lang.Math.*;
public class Main implements Runnable
{
boolean multiple = true;
long MOD;
@SuppressWarnings("Duplicates")
void solve() throws Exception
{
int n = sc.nextInt();
TreeSet<Integer> remaining = new TreeSet<>();
for (int i = 1; i <= 2 * n; i++)
remaining.add(i);
int[] arr = new int[n];
int[] ans = new int[n];
for (int i = 0; i < n; i++)
{
int next = sc.nextInt();
remaining.remove(next);
arr[i] = next;
}
for (int i = 0; i < n; i++)
{
Integer next = remaining.higher(arr[i]);
if (next == null)
{
System.out.println(-1);
return;
}
ans[i] = next;
remaining.remove(next);
}
for (int i = 0; i < n; i++)
System.out.print(arr[i] + " " + ans[i] + " ");
System.out.println();
}
class Node implements Comparable<Node>
{
long t, u, v;
Node(long T, long U, long V)
{
t = T;
u = U;
v = V;
}
@Override
public int compareTo(Node o)
{
return (int)(t - o.t);
}
}
long inv(long a, long b)
{
return 1 < a ? b - inv(b % a, a) * b / a : 1;
}
long gcd(long a, long b)
{
return a == 0 ? b : gcd(b % a, a);
}
long lcm(long a, long b) { return (a * b) / gcd(a , b); }
class SegNode
{
int max;
int L, R;
SegNode left = null, right = null;
int query(int queryL, int queryR)
{
if (queryL == L && queryR == R)
return max;
int leftAns = Integer.MIN_VALUE, rightAns = Integer.MIN_VALUE;
if (left != null && queryL <= left.R)
leftAns = left.query(queryL, min(queryR, left.R));
if (right != null && queryR >= right.L)
rightAns = right.query(max(queryL, right.L), queryR);
return max(leftAns, rightAns);
}
SegNode(int[] arr, int l, int r)
{
L = l;
R = r;
max = arr[l];
if (l == r) return;
int mid = (l + r) / 2;
left = new SegNode(arr, l, mid);
right = new SegNode(arr, mid + 1, r);
max = max(left.max, right.max);
}
}
void print(long[] arr)
{
for (int i = 0; i < arr.length; i++)
System.out.print(arr[i] + " ");
System.out.println();
}
@Override
public void run()
{
try
{
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
sc = new FastScanner(in);
if (multiple)
{
int q = sc.nextInt();
for (int i = 0; i < q; i++)
solve();
}
else
solve();
}
catch (Throwable uncaught)
{
Main.uncaught = uncaught;
}
finally
{
out.close();
}
}
public static void main(String[] args) throws Throwable
{
Thread thread = new Thread(null, new Main(), "", (1 << 26));
thread.start();
thread.join();
if (Main.uncaught != null) {
throw Main.uncaught;
}
}
static Throwable uncaught; BufferedReader in; FastScanner sc; PrintWriter out;
}
class FastScanner
{
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in)
{
this.in = in;
}
public String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
public long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
public double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1e9 + 7;
int main() {
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
vector<int> a(n);
set<int> s;
for (int i = 0; i < 2 * n; i++) s.insert(i + 1);
for (int i = 0; i < n; i++) {
cin >> a[i];
s.erase(a[i]);
}
vector<int> res(n, -1);
set<int>::iterator it;
for (int i = 0; i < n; i++) {
it = s.lower_bound(a[i]);
if (it != s.end())
res[i] = *it, s.erase(it);
else
break;
}
if (res.back() == -1)
cout << -1 << endl;
else {
for (int i = 0; i < n; i++) cout << a[i] << " " << res[i] << " ";
cout << endl;
}
}
}
| CPP |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.