Search is not available for this dataset
name
stringlengths
2
112
description
stringlengths
29
13k
source
int64
1
7
difficulty
int64
0
25
solution
stringlengths
7
983k
language
stringclasses
4 values
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int mpow(int base, int exp); void solve() { long long int n; cin >> n; vector<long long int> v(n); vector<long long int> cnt(2 * n + 1, 0); for (long long int i = 0; i < (n); i++) { cin >> v[i]; cnt[v[i]]++; } vector<long long int> out; for (long long int i = 0; i < (n); i++) { out.push_back(v[i]); bool flag = true; for (long long int j = v[i] + 1; j <= 2 * n; j++) { if (cnt[j] == 0) { out.push_back(j); cnt[j]++; flag = false; break; } } if (flag) { cout << -1 << '\n'; return; } } for (auto i : out) cout << i << " "; cout << '\n'; ; } int main() { int t; cin >> t; while (t--) solve(); return 0; } int mpow(int base, int exp) { base %= 1000000007; int result = 1; while (exp > 0) { if (exp & 1) result = ((long long int)result * base) % 1000000007; base = ((long long int)base * base) % 1000000007; exp >>= 1; } return result; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
t = int(input()) for _ in range(t): n = int(input()) l = list(map(int,input().split())) done = l[::] result = [] for i in range(n): val = l[i] flag = 0 for j in range(val+1,2*n+1): if(j not in done): done.append(j) result.extend([val,j]) flag = 1 break if(flag!=1): break if(flag==0): print(-1) else: print(*result,sep=' ')
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
t = int(input()) for _ in range(t): n = int(input()) a = [int(x) for x in input().split()] b = [None]*(2*n) c = set(a) d = set(range(1, 2*n+1)) for i in range(len(a)): x = a[i]+1 while x in c: x += 1 else: q = 2*i w = 2*i+1 b[q] = a[i] b[w] = x c.add(x) count = 1 if c != d: print('-1') else: if count == 1 or 1: for i in range(len(b)): print(b[i], end=' ') print()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
for _ in range(int(input())): n = int(input()) b = list(map(int, input().split())) a = [-1] * 2 * n for x in range(1, 2 * n + 1): if x in b: i = 2 * b.index(x) a[i] = x else: i = -1 for j in range(0, 2 * n, 2): if a[j] != -1 and a[j] < x and \ a[j + 1] == -1: i = j break if i != -1: a[i + 1] = x if any(map((-1).__eq__, a)): print(-1) else: print(*a)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> int main() { int i, j, k, t, n, l, largest_element; scanf("%d", &t); int result[t][200]; int largest_element_array[t]; for (i = 0; i < t; i++) { int count = 0; scanf("%d", &n); largest_element = 2 * n; largest_element_array[i] = largest_element; int array_given[n]; for (j = 0; j < n; j++) { scanf("%d", &array_given[j]); } int smallest_element = 100000000; for (j = 0; j < n; j++) { if (array_given[j] < smallest_element) { smallest_element = array_given[j]; } } for (j = 0; j < n; j++) { if (array_given[j] >= largest_element) { result[i][0] = -1; result[i][1] = 0; count += 1; break; } } int n_r_elements = 0; if (!count) { int array_remaining[largest_element]; for (k = smallest_element + 1; k <= largest_element; k++) { int exists = 0; for (l = 0; l < n; l++) { if (k == array_given[l]) { exists = 1; break; } } if (!exists) { array_remaining[n_r_elements] = k; n_r_elements += 1; } } if (n_r_elements < n) { result[i][0] = -1; result[i][1] = 0; count += 1; } else { int array[n]; for (k = 0; k < n; k++) { array[k] = 1; } for (k = 0; k < n; k++) { result[i][2 * k] = array_given[k]; } for (k = 0; k < n; k++) { count = 0; result[i][2 * k + 1] = 0; for (l = 0; l < n; l++) { if (array[l] && (array_remaining[l] > array_given[k])) { result[i][2 * k + 1] = array_remaining[l]; count += 1; } if (count) { array[l] = 0; break; } } } for (k = 0; k < n; k++) { if (result[i][2 * k + 1] == 0) { result[i][0] = -1; result[i][1] = 0; } } } } } for (i = 0; i < t; i++) { for (j = 0; (result[i][j] && (j < largest_element_array[i])); j++) { printf("%d ", result[i][j]); } printf("\n"); } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
t = int(input()) for i in range(t): n = int(input()) b = list(map(int, input().split())) a = [0 for i in range(n+n)] vis = [0 for i in range(n+n+1)] for i in range(n): a[2*i] = b[i] vis[b[i]] = 1 ans = 1 for i in range(n): ok = 0 for j in range(b[i]+1, n+n+1): if vis[j] == 1: continue a[2*i+1] = j vis[j] = 1 ok = 1; break if ok == 0: ans = 0 break if ans == 0: print(-1) else: for i in range(n+n): print(a[i], end = ' ') print()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int f(map<int, int> &mp, int b[], int n, int l) { bool x = 0; for (int j = l + 1; j <= 2 * n; j++) { if (!mp[j]) { mp[j] = 1; x = 1; return j; } } return 0; } int main() { int T; cin >> T; while (T--) { int n; cin >> n; int a[n + 3], b[2 * n + 5]; map<int, int> mp; for (int i = 1; i <= n; i++) cin >> a[i], mp[a[i]]++; bool y = 0; int x = 1; for (int i = 1; i <= 2 * n; i += 2, x++) { int k = f(mp, b, n, a[x]); if (!k) { y = 1; break; } b[i + 1] = k; b[i] = a[x]; } if (y) { cout << "-1\n"; continue; } x = 1; for (int i = 1; i <= 2 * n; i += 2, x++) { if (a[x] == min(b[i], b[i + 1])) continue; cout << "-1\n"; y = 1; break; } if (!y) { for (int i = 1; i <= 2 * n; i++) cout << b[i] << " \n"[i == 2 * n]; } } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while (t--) { int n, p = 0; cin >> n; int a[210], b[105], maxm = 0; for (int i = 1; i <= n; i++) cin >> b[i]; bool g[210]; memset(g, false, sizeof(g)); for (int i = 1; i <= 2 * n; i += 2) a[i] = b[(i + 1) / 2], g[a[i]] = true; for (int i = 2; i <= 2 * n; i += 2) { for (int j = 1; j <= 200; j++) if (!g[j] && j > a[i - 1]) { a[i] = j; g[j] = true; max(j, maxm) == j ? maxm = j : 0; break; } } for (int i = 1; i <= maxm; i++) { if (!g[i]) { p = 1; } } if (p == 1) { cout << -1 << endl; } else { for (int i = 1; i <= 2 * n; i++) cout << a[i] << " "; cout << endl; } } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; const long long int mod = 1e9 + 7; const long long int INF = 1e18; void solve() { long long int n; cin >> n; long long int a[n], b[2 * n]; for (long long int i = 0; i < n; i++) cin >> a[i]; set<long long int> s; for (long long int i = 1; i < 2 * n + 1; i++) s.insert(i); long long int ind = 0; for (long long int i = 0; i < n; i++) { s.erase(s.find(a[i])); } for (long long int i = 0; i < 2 * n; i++) { b[i] = a[ind]; auto it = s.lower_bound(a[ind]); if (it == s.end()) { cout << -1 << "\n"; return; } b[i + 1] = *it; s.erase(it); i++; ind++; } for (long long int i = 0; i < 2 * n; i++) cout << b[i] << " "; cout << "\n"; return; } signed main() { ios::sync_with_stdio(0); cin.tie(0); long long int t = 1; cin >> t; for (long long int i = 1; i < t + 1; i++) { solve(); } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
/* / οΎŒοΎŒβ €β €β €β €β €β €β €β €β €β €β €β €γƒ  / )\β €β €β €β €β €β €β €β €β €β €β €β € Y (β €β €| ( Ν‘Β° ΝœΚ– Ν‘Β°οΌ‰β €βŒ’(β € γƒŽ (β € οΎ‰βŒ’ Y βŒ’γƒ½-く __/ | _β €ο½‘γƒŽ| γƒŽο½‘ |/ (β €γƒΌ '_δΊΊ`γƒΌ οΎ‰ β €|\ οΏ£ _δΊΊ'彑ノ β € )\β €β € q⠀⠀ / β €β €(\β € #β € / β €/β €β €β €/α½£====================D- /β €β €β €/β € \ \β €β €\ ( (β €)β €β €β €β € ) ).β €) (β €β €)β €β €β €β €β €( | / |β € /β €β €β €β €β €β € | / [_] β €β €β €β €β €[___] */ // Main Code at the Bottom import java.util.*; import java.lang.*; import java.io.*; import java.math.BigInteger; public class Main { //Fast IO class static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { boolean env=System.getProperty("ONLINE_JUDGE") != null; if(!env) { try { br=new BufferedReader(new FileReader("src\\input.txt")); } catch (FileNotFoundException e) { e.printStackTrace(); } } else br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static long MOD=1000000000+7; //Euclidean Algorithm static long gcd(long A,long B){ return (B==0)?A:gcd(B,A%B); } //Modular Exponentiation static long fastExpo(long x,long n){ if(n==0) return 1; if((n&1)==0) return fastExpo((x*x)%MOD,n/2)%MOD; return ((x%MOD)*fastExpo((x*x)%MOD,(n-1)/2))%MOD; } //Modular Inverse static long inverse(long x) { return fastExpo(x,MOD-2); } //Prime Number Algorithm static boolean isPrime(long n){ if(n<=1) return false; if(n<=3) return true; if(n%2==0 || n%3==0) return false; for(int i=5;i*i<=n;i+=6) if(n%i==0 || n%(i+2)==0) return false; return true; } //Reverse an array static void reverse(int arr[],int l,int r){ while(l<r) { int tmp=arr[l]; arr[l++]=arr[r]; arr[r--]=tmp; } } //Print array static void print1d(int arr[]) { out.println(Arrays.toString(arr)); } static void print2d(int arr[][]) { for(int a[]: arr) out.println(Arrays.toString(a)); } // Pair static class pair{ int x,y; pair(int a,int b){ this.x=a; this.y=b; } public boolean equals(Object obj) { if(obj == null || obj.getClass()!= this.getClass()) return false; pair p = (pair) obj; return (this.x==p.x && this.y==p.y); } public int hashCode() { return Objects.hash(x,y); } } static FastReader sc=new FastReader(); static PrintWriter out=new PrintWriter(System.out); //Main function(The main code starts from here) public static void main (String[] args) throws java.lang.Exception { int test; //test=1; test=sc.nextInt(); while(test-->0){ int n=sc.nextInt(),b[]=new int[n],a[]=new int[2*n],visited[]=new int[2*n+1]; for(int i=0;i<n;i++) b[i]=sc.nextInt(); for(int i=0;i<n;i++) { a[2*i]=b[i]; visited[b[i]]=1; } for(int i=1;i<=2*n;i++) { if(visited[i]==1) continue; for(int j=0;j<2*n;j++) if(a[j]==0 && a[j-1]<i) { a[j]=i; break; } visited[i]=1; } //print1d(a); Arrays.fill(visited, 0); for(int i=0;i<2*n;i++) { if(a[i]!=0)visited[a[i]]=1; } int sum=0; for(int i: visited) sum+=i; //out.println(sum); if(sum!=2*n) out.println(-1); else { for(int x: a) out.print(x+" "); out.println(); } } out.flush(); out.close(); } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
from sys import stdin, stdout from collections import Counter, defaultdict from itertools import permutations, combinations raw_input = stdin.readline pr = stdout.write mod=10**9+7 def ni(): return int(raw_input()) def li(): return map(int,raw_input().split()) def pn(n): stdout.write(str(n)+'\n') def pa(arr): pr(' '.join(map(str,arr))+'\n') # fast read function for total integer input def inp(): # this function returns whole input of # space/line seperated integers # Use Ctrl+D to flush stdin. return map(int,stdin.read().split()) range = xrange # not for python 3.0+ for t in range(ni()): n=ni() l=li() d=Counter(l) arr=[] for i in range(1,2*n+1): if not d[i]: arr.append(i) f=0 ans=[] for i in range(n): f1=0 for j in arr: if j>l[i]: f1=1 break if not f1: f=1 break ans.append(l[i]) ans.append(j) arr.remove(j) if f: pn(-1) else: pa(ans)
PYTHON
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
for t in range(int(input())): n = int(input()) b = list(map(int,input().split())) a = [0]*(2*n+1) res = [] f = True for i in b: a[i] = 1 for i in b: # print("bv",i) res.append(i) val = 0 # print("A",a) for j in range(i,2*n+1): if a[j] != 1: val = j break # print("f",val) if val == 0: f = False break a[val] = 1 res.append(val) if f: print(*res) else: print(-1) # print(res)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
for _ in range(int(input())): n=int(input()) b=list(map(int,input().split())) d={} for i in range(1,2*n+1): d[i]=1 for i in b: d[i]=0 a=[] for i in b: a.append(i) z=i for j in range(z+1,2*n+1): if d[j]: z=j d[j]=0 break if z!=i: a.append(z) else: break if len(a)==2*n: print(' '.join(map(str,a))) else: print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
from sys import stdin input = stdin.readline def mp():return map(int,input().split()) def it():return int(input()) for _ in range(it()): n=it() l=list(mp()) v=[] flag=0 for i in range(n): v.append(l[i]) k=l[i] while k in v or k in l: k+=1 if k>2*n: # print(-1) flag=1 break v.append(k) if flag==0: print(*v) else: print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import sys #input=sys.stdin.readline t=int(input()) while t: t-=1 n=int(input()) b=list(map(int,input().split())) l=[i for i in range(1,2*n+1) if i not in b] ans=[] k=0 for i in range(n): c=0 ans.append(b[i]) for j in range(n): if l[j]>b[i] and l[j] not in ans: c=1 break if c==1: ans.append(l[j]) else: k=1 print(-1) break if k==1: continue else: print(*ans)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; vector<int> solve(int N, const vector<int>& B) { vector<int> pos(2 * N + 1, -1); for (int i = 0, _n = (N); i < _n; ++i) { int x = B[i]; pos[x] = i; } set<int> missing; for (int n = (1), _b = (2 * N); n <= _b; ++n) { if (pos[n] < 0) missing.insert(n); } vector<int> A(2 * N); for (int i = 0, _n = (N); i < _n; ++i) { int x = B[i]; auto it = missing.upper_bound(x); if (it == missing.end()) return {}; A[i * 2] = x; A[i * 2 + 1] = *it; missing.erase(it); } return A; } int main(int argc, char* argv[]) { ios_base::sync_with_stdio(false); cin.tie(nullptr); int TC; cin >> TC; for (int tc = (1), _b = (TC); tc <= _b; ++tc) { int N; cin >> N; vector<int> B(N); for (int i = 0, _n = (N); i < _n; ++i) cin >> B[i]; vector<int> A = solve(N, B); if (A.empty()) cout << "-1\n"; else { for (int x : A) cout << x << ' '; cout << '\n'; } } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.util.HashSet; import java.util.Scanner; public class B16 { static int max = 11; public static void main(String[] args) { Scanner nik = new Scanner(System.in); int t = nik.nextInt(); StringBuilder sb = new StringBuilder(); for (int i = 0; i < t; i++) { } A: while (t-- > 0) { int n = nik.nextInt(); int b[] = new int[n + 1]; HashSet<Integer> hs = new HashSet<>(); for (int i = 1; i <= n; i++) { b[i] = nik.nextInt(); hs.add(b[i]); } int a[] = new int[2 * n + 1]; int val = 1; for (int i = 1; i <= n; i++) { int v = b[i]; a[2 * i - 1] = v; val = v + 1; while (hs.contains(val)) val++; if (val > 2 * n) { sb.append(-1 + "\n"); continue A; } hs.add(val); a[2 * i] = val; } for (int i = 1; i < a.length; i++) sb.append(a[i] + " "); sb.append("\n"); } System.out.print(sb); } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(0); istream::sync_with_stdio(0); cin.tie(0); cout.tie(0); int q; cin >> q; for (; q > 0; q--) { int n; cin >> n; int b[n]; bool mk[n + n + 10]; for (int i = 0; i <= n + n; i++) mk[i] = 0; for (int i = 0; i < n; i++) { cin >> b[i]; mk[b[i]] = 1; } int a[n + n]; bool gd = 1; for (int i = 0; i < n; i++) { int nm = -1; for (int j = b[i]; j <= n + n; j++) if (!mk[j]) { nm = j; break; } if (nm == -1) { gd = 0; cout << -1 << endl; break; } mk[nm] = 1; a[(i + 1) * 2 - 1] = nm; a[(i + 1) * 2 - 2] = b[i]; } if (!gd) continue; for (int i = 0; i < n + n; i++) cout << a[i] << " "; cout << endl; } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
for _ in range(int(input())): n=int(input()) b=[int(x) for x in input().split()] a=[] for i in range(n): a.append(b[i]) k=b[i] while(k in a or k in b):k+=1 if(k>2*n):print(-1);break a.append(k) else: print(*a)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; long long INF = 1 << 28; const double pi = acos(-1.0); int fx[] = {1, -1, 0, 0}; int fy[] = {0, 0, 1, -1}; int dir[4][2] = {1, 0, -1, 0, 0, -1, 0, 1}; int knight[8][2] = {1, 2, 1, -2, 2, 1, 2, -1, -1, 2, -1, -2, -2, 1, -2, -1}; const long double EPS = 1e-7; long long gcd(long long a, long long b) { if (b == 0) return a; else return gcd(b, a % b); } long long lcm(long long a, long long b) { return a / gcd(a, b) * b; } bool cmp(int a, int b) { return a < b; } int on(int mask, int st) { return mask | (1 << st); } int off(int mask, int st) { return mask & (~(1 << st)); } const int mx = 600100; int mod = 998244353; int vis[400]; pair<int, int> arr[mx]; int ans[1000]; int main() { int t; scanf("%d", &t); while (t--) { memset(ans, 0, sizeof(ans)); memset(vis, 0, sizeof(vis)); int n; int x; scanf("%d", &n); int f = 1; for (int i = 1; i <= n; i++) { scanf("%d", &x); vis[x]++; ans[(i * 2) - 1] = x; } int l = 1; int r = 1; while (r <= 2 * n) { if (vis[r] == 0) { int flag = 0; for (int i = 1; i <= n; i++) { if (ans[(i * 2) - 1] < r && ans[i * 2] == 0) { flag = 1; ans[i * 2] = r; break; } } if (flag == 0) { f = 0; break; } } r++; } if (f == 0) cout << -1 << endl; else { for (int i = 1; i <= 2 * n; i++) printf("%d ", ans[i]); cout << endl; } } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; long long power(long long a, long long b, long long m = mod) { long long x = 1; while (b) { if (b & 1) { x = 1ll * x * a % m; } a = 1ll * a * a % m; b /= 2; } return x; } const int N = 1e5 + 9; signed main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); int tt; cin >> tt; while (tt--) { int n; cin >> n; vector<int> a(n + 1), taken(2 * n + 1), b(2 * n + 1); for (int i = 1; i <= n; i++) { cin >> a[i]; b[2 * i - 1] = a[i]; taken[a[i]] = 1; } set<int> ss; for (int i = 1; i <= 2 * n; i++) { if (taken[i] == 0) ss.insert(i); } bool can = 1; for (int i = 0; i < n; i++) { auto it = ss.upper_bound(b[2 * i + 1]); if (it == ss.end()) { can = 0; break; } b[2 * i + 2] = *it; ss.erase(it); } if (can) { for (int i = 1; i <= 2 * n; i++) { cout << b[i] << " "; } cout << "\n"; } else { cout << "-1\n"; } } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.util.*; import java.io.*; public class c { static boolean debug = false; public static void main(String[] args) { FS in = new FS(System.in); PrintWriter out = new PrintWriter(System.out); int numT = in.nextInt(); for(int t=0; t<numT; t++) { int n = in.nextInt(); int[] b = new int[n]; int[] bvalLocs = new int[2*n+1]; boolean[] used = new boolean[2*n+1]; Arrays.fill(bvalLocs, -1); for(int i=0; i<n; i++) { b[i] = in.nextInt(); bvalLocs[b[i]] = i; used[b[i]] = true; } if(debug) System.out.println(Arrays.toString(used)); // Impossible cases = // a[i] = max(b[2*i-1], b[2]) // If not enough numbers (used up already) // If 1 isn't there lol. // for(int bind=n-1; bind>=0; bind--) { // int aind = bind*2; // } int[] a = new int[n*2]; int aind = 0; boolean impossible = false; // for(int bval=1; bval<=2*n; bval++) { for(int bind=0; bind<n; bind++) { // Search for it // int bind = bvalLocs[bval]; // if(bind == -1) continue; int bval = b[bind]; if(debug) System.out.printf("bval=%d bind=%d\n", bval, bind); // So now we have the correct thing. // Greedily place the next highest number. aind = bind*2; a[aind] = bval; // This is the min of the two, will always be first aind++; int nextUse = -1; for(int i=bval; i<=2*n; i++) { if(!used[i]) { // This is the next value we place. nextUse = i; break; } } if(debug) System.out.printf("Placing [%d]=%d\n", aind, nextUse); // If we can't place a next one, impossible if(nextUse == -1) { impossible = true; break; } a[aind] = nextUse; aind++; used[nextUse] = true; } if(impossible) { out.println("-1"); } else { for(int i=0; i<2*n; i++) { out.print(a[i] + " "); } out.println(); } out.flush(); } } static class FS { BufferedReader in; StringTokenizer token; public FS(InputStream stream) { in = new BufferedReader(new InputStreamReader(stream)); } public String next() { if(token == null || !token.hasMoreElements()) { try{ token = new StringTokenizer(in.readLine()); } catch (Exception e) {} return next(); } return token.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } /* 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 */
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> const long long MX = 1e18, N = 1e4 + 10; const double PI = 3.141592653589793238; using namespace std; long long n, m, ans[N], a[N], t; map<int, int> mp; int main() { cin >> t; while (t--) { cin >> n; bool yes = true; for (int i = 1; i <= n; ++i) { cin >> a[i]; ++mp[a[i]]; } for (int i = 1; i <= n; ++i) { bool ok = false; ans[i * 2 - 1] = a[i]; for (int j = a[i] + 1; j <= n * 2; ++j) { if (!mp[j]) { ans[i * 2] = j; mp[j]++; ok = true; break; } } if (!ok) yes = false; } if (yes) { for (int i = 1; i <= n * 2; i++) cout << ans[i] << ' '; } else cout << -1; cout << '\n'; mp.clear(); } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
t = int(input()) while t: t += -1 n = int(input()) l = list(map(int, input().split())) check = [0] * ((2 * n) + 1) ans = [0] * (2 * n) for i in range(0, 2 * n, 2): ans[i] = l[i // 2] check[ans[i]] = 1 # print(ans) c = 1 for i in range(0, 2 * n, 2): chintu = 0 for j in range(ans[i] + 1, 2 * n + 1): if check[j] == 0: chintu = 1 check[j] = 1 ans[i + 1] = j break if chintu == 0: c = 0 break if c == 0: print(-1) else: print(*ans)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
from bisect import bisect_right import sys input = sys.stdin.readline for ti in range(int(input().strip())): n = int(input().strip()) b = [int(x) for x in input().strip().split()] n = list(range(1, 2*n+1)) ans = [] for bi in b: n.remove(bi) for bi in b: ai = bisect_right(n, bi) if ai==len(n): print('-1') break ans.append(bi) ans.append(n[ai]) n.pop(ai) else: print(*ans)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class Round623C { public static void solve() { int t = s.nextInt(); outer:while(t-- >0) { int n = s.nextInt(); int[] arr = new int[n]; boolean[] used = new boolean[2 * n + 1]; for(int i = 0; i < n; i++) { arr[i] = s.nextInt(); used[arr[i]] = true; } int[] ans = new int[2 * n + 1]; for(int i = 1; i <= n; i++) { int current = arr[i-1] ; int min = -1; for(int j = current+1; j <= 2 * n; j++) { if(!used[j]) { min = j; break; } } used[current] = true; if(min == -1) { out.println(-1); continue outer; }else { used[min] = true; ans[2 * i - 1] = current; ans[2 * i ] = min; } } for(int i = 1; i <= 2 * n; i++) { out.print(ans[i]+" "); } out.println(); } } public static void main(String[] args) { out = new PrintWriter(new BufferedOutputStream(System.out)); s = new FastReader(); solve(); out.close(); } public static FastReader s; public static PrintWriter out; public static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } double nextDouble() { return Double.parseDouble(next()); } long nextLong() { return Long.parseLong(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (Exception e) { e.printStackTrace(); } return str; } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
# cook your dish here n=int(input()) while(n): n=n-1 a=int(input()) b=list(map(int,input().split())) c=[True for x in range(2*a+1)] for x in b: c[x]=False ans=[] get=True for i in range(a): flag=False k=b[i] while(k<2*a+1): if c[k]==True: flag=True c[k]=False ans.append(b[i]) ans.append(k) break else: k+=1 if flag==False: get=False break if get: for x in ans: print(x,end=" ") print("\n",end="") else: print("-1")
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; const int maxn = 2e2 + 10; bool mark[maxn]; int ans[maxn]; int main() { ios::sync_with_stdio(false); int t; cin >> t; while (t--) { bool flag = true; memset(mark, false, sizeof(mark)); int n; cin >> n; for (int i = 0; i < n; i++) { cin >> ans[2 * i]; if (mark[ans[2 * i]] == true) { flag = false; } else mark[ans[2 * i]] = true; } if (flag == false) { cout << -1 << endl; continue; } for (int i = 1; i < 2 * n; i += 2) { bool ok = false; for (int k = ans[i - 1] + 1; k <= 2 * n; k++) if (mark[k] == false) { ans[i] = k; mark[k] = true; ok = true; break; } if (ok == false) { flag = false; break; } } if (flag == false) cout << -1 << endl; else { for (int i = 0; i < 2 * n; i++) cout << ans[i] << ' '; cout << endl; } } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import sys from collections import Counter def solve(N, B): counts = Counter(B) if any(v > 1 for v in counts.values()): return -1 # Want smallest permutation that is element-wise greater than B C = [] for x in range(1, 2 * N + 1): if x not in counts: C.append(x) # Sorted B and C must be pairable if any(b > c for b, c in zip(sorted(B), C)): return -1 def gen(index=0): if index == N: yield C return for c, i in sorted(zip(C[index:N], range(index, N))): if B[index] < c: C[index], C[i] = C[i], C[index] yield from gen(index + 1) C[index], C[i] = C[i], C[index] for sol in gen(): A = [] for b, c in zip(B, C): A.append(str(b)) A.append(str(c)) return " ".join(A) return -1 if __name__ == "__main__": input = sys.stdin.readline T = int(input()) for t in range(T): N, = map(int, input().split()) B = [int(x) for x in input().split()] ans = solve(N, B) print(ans)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int Search(vector<long long int> v1, long long int x1) { long long int j; for (j = 0; j < v1.size(); j++) { if (x1 == v1[j]) { return j; } else { continue; } } return -1; } int Search2(long long int v[], long long int x, long long int n) { long long int i; for (i = 0; i < n; i++) { if (x == v[i]) { return i; } else { continue; } } return -1; } int main() { long long int e, r, g, pts, y, t, d, q, x, n, h, m, w, l, k, cnt = 500, countA = 0, sum, sumt, countB = 0, countC = 0, a1, a2, countD = 0; long long int min = 1000; vector<long long int> v3; vector<long long int> v2; set<long long int> s; cin >> a2; while (a2--) { cin >> n; for (h = 0; h < n; h++) { cin >> sum; v2.push_back(sum); } e = *max_element(v2.begin(), v2.end()); r = *min_element(v2.begin(), v2.end()); if (e >= 2 * n || r > 1) { cout << -1; } else { v3.push_back(0); for (k = 0; k < n; k++) { t = v2[k]; v3.push_back(t); for (r = 1; r <= (2 * n) - t; r++) { if (Search(v3, t + r) == -1 && Search(v2, t + r) == -1) { break; } else continue; } v3.push_back(t + r); } g = *max_element(v3.begin(), v3.end()); if (g == 2 * n) { for (q = 1; q <= 2 * n; q++) { cout << v3[q] << " "; } } else { cout << -1; } } cout << "\n"; v3.clear(); v2.clear(); } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int main() { long long int b, c = 0, sum = 0, i = 0, s, j, n, d = 0, q = 0, e, f, t = 0, x, h, l = 0, k = 0, x1, x2, y1, y2, m; cin >> t; vector<long long int> v; vector<long long int> a; vector<long long int> z; map<long long int, long long int> mp; for (j = 0; j < t; j++) { cin >> n; v.clear(); a.clear(); z.clear(); mp.clear(); for (i = 0; i < n; i++) { cin >> x; v.push_back(x); z.push_back(x); } sort(v.begin(), v.end()); c = 0; s = 1; for (k = c + 1; k < 2 * n + 1; k++) { for (i = 0; i < n; i++) { l = 1; if (v[i] == k) { l = 0; break; } } if (l != 0) { c = k; a.push_back(c); } } if (v[0] != 1) { cout << "-1" << endl; continue; } for (f = 0; f < n; f++) { if (v[f] > a[f]) { cout << "-1" << endl; s = 0; break; } } if (s != 0) { for (f = 0; f < n; f++) { for (i = 0; i < a.size(); i++) { if (a[i] > z[f]) { cout << z[f] << " " << a[i] << " "; a.erase(a.begin() + i); break; } } } } cout << endl; } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; const long long inf = 1e18; const long long dx[8] = {-1, 0, 1, 0, -1, 1, 1, -1}, dy[8] = {0, 1, 0, -1, 1, 1, -1, -1}; const long long kdx[8] = {-2, -1, 1, 2, 2, 1, -1, -2}, kdy[8] = {1, 2, 2, 1, -1, -2, -2, -1}; void solve() { long long n; cin >> n; long long f = 0, f2 = 0; vector<long long> v(n); set<long long> s; vector<long long> nots; for (long long i = 0; i <= n - 1; ++i) { cin >> v[i]; if (v[i] == 2 * n) { f = 1; } if (v[i] == 1) { f2 = 1; } s.insert(v[i]); } if (f == 1) { cout << "-1\n"; return; } if (f2 == 0) { cout << "-1\n"; return; } for (long long i = 1; i <= 2 * n; ++i) if (s.count(i) == 0) nots.push_back(i); map<long long, long long> make_pair; for (auto x : v) { auto idx = upper_bound(nots.begin(), nots.end(), x) - nots.begin(); if (idx >= (long long)(nots.size())) { cout << "-1\n"; return; } make_pair[x] = nots[idx]; nots.erase(nots.begin() + idx); } for (auto x : v) { cout << x << ' ' << make_pair[x] << ' '; } cout << '\n'; } int32_t main() { clock_t start = clock(); ios::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long t = 1; cin >> t; for (long long i = 1; i <= t; ++i) { solve(); } double duration = (clock() - start) / (double)CLOCKS_PER_SEC; cerr << duration << 's' << "\n"; return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; bool compare(string &s1, string &s2) { return s1.size() < s2.size(); } string lower(string second) { transform(second.begin(), second.end(), second.begin(), ::tolower); return second; } string upper(string second) { transform(second.begin(), second.end(), second.begin(), ::toupper); return second; } map<int, int> mp; set<int> myset; vector<int> v, v1, v2; long long n, m, i, j, k, h, t, x = 1, y = 1, z = 1, d = 0; int ans = 0, sum = 0, cnt = 0, p = 0, mx = 0, mn = 0; int a, b, l, r; string second, st, str; int main() { cin >> t; while (t--) { cin >> n; for (i = 1; i <= 2 * n; i++) mp[i]; int a[n + 5]; for (i = 1; i <= n; i++) { cin >> a[i]; mp[a[i]]++; } for (i = 1; i <= n; i++) { x = a[i]; v.push_back(x); for (auto it : mp) { if (it.second == 0 and it.first > x) { mp[it.first]++; v.push_back(it.first); break; } } } if (v.size() == 2 * n) { for (auto it : v) cout << it << ' '; } else { cout << -1; } cout << endl; v.clear(); mp.clear(); } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.util.*; public class RestoringPermutation { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t-->0){ int n = sc.nextInt(); int b[] = new int[n]; int a[] = new int[n*2]; int r[] = new int[n*2]; boolean bool = false; for(int i=0;i<n;i++){ a[2*i] = 2*i + 1; a[2*i+1] = 2*i + 2; b[i] = sc.nextInt(); } for(int i=0;i<n;i++){ a[b[i] - 1] = 0; } for(int i=0;i<n;i++){ r[2*i] = b[i]; bool = false; for(int j=0;j<2*n;j++){ if(a[j] > 0 && a[j] > b[i]){ r[2*i+1] = a[j]; a[j] = 0; bool = true; break; } } if(!bool){ System.out.println(-1); break; } } if(bool){ for(int i=0;i<2*n;i++){ System.out.print(r[i] + " "); } System.out.println(); } } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
t = int(input()) for i in range(t): n = int(input()) b = list(map(int,input().split())) l = [i+1 for i in range(2*n)] q = sorted(b) ans = True ansList = [] count = 0 if q[0]!=1: print(-1) continue for i in range(1,2*n-1): if i not in q and i+1 not in q: if count == 0: ans = False break else: count -= 1 if i in q and i+1 in q: count+=1 if ans == False: print(-1) else: for i in b: ansList.append(i) i+=1 while i<2*n+1: if i not in ansList and i not in q: ansList.append(i) break i+=1 print(*ansList)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
for _ in range(int(input())): l = int(input()) arr = [int(h) for h in input().strip().split(' ')] newarr = [] flag=True for i in range(2*l): if i%2==0: newarr.append(arr[i//2]) else: num = newarr[-1] while num<=2*l: if (num in newarr) or (num in arr): num=num+1 else: newarr.append(num) break if newarr[-1]==arr[(i-1)//2]: print(-1) flag=False break if flag: s='' for i in range(len(newarr)): s=s+str(newarr[i])+' ' print(s)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.*; import java.util.*; public class C implements Runnable { boolean judge = false; FastReader scn; PrintWriter out; String INPUT = ""; void solve() { int t = scn.nextInt(); here: while(t-- > 0) { int n = scn.nextInt(); int[] b = scn.nextIntArray(n); int[] a = new int[2 * n]; TreeSet<Integer> set = new TreeSet<Integer>(); for(int i = 0; i < 2 * n; i++) { set.add(i + 1); } for(int i = 0; i < n; i++) { a[2 * i] = b[i]; set.remove(b[i]); } for(int i = 1; i < 2 * n; i += 2) { if(set.higher(a[i - 1]) == null) { out.println(-1); continue here; } a[i] = set.higher(a[i - 1]); set.remove(a[i]); } if(!set.isEmpty()) { out.println(-1); continue here; } for(int v : a) { out.print(v + " "); } out.println(); } } public void run() { long time = System.currentTimeMillis(); boolean oj = System.getProperty("ONLINE_JUDGE") != null || judge; out = new PrintWriter(System.out); scn = new FastReader(oj); solve(); out.flush(); if (!oj) { System.out.println(Arrays.deepToString(new Object[] { System.currentTimeMillis() - time + " ms" })); } } public static void main(String[] args) { new Thread(null, new C(), "Main", 1 << 28).start(); } class FastReader { InputStream is; public FastReader(boolean onlineJudge) { is = onlineJudge ? System.in : new ByteArrayInputStream(INPUT.getBytes()); } byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; int readByte() { if (lenbuf == -1) throw new InputMismatchException(); if (ptrbuf >= lenbuf) { ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return -1; } return inbuf[ptrbuf++]; } boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } int skip() { int b; while ((b = readByte()) != -1 && isSpaceChar(b)) ; return b; } double nextDouble() { return Double.parseDouble(next()); } char nextChar() { return (char) skip(); } String next() { int b = skip(); StringBuilder sb = new StringBuilder(); while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } String nextLine() { int b = skip(); StringBuilder sb = new StringBuilder(); while ((!isSpaceChar(b) || b == ' ')) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } char[] next(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while (p < n && !(isSpaceChar(b))) { buf[p++] = (char) b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } int nextInt() { int num = 0, b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } long nextLong() { long num = 0; int b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } char[][] nextMatrix(int n, int m) { char[][] map = new char[n][]; for (int i = 0; i < n; i++) map[i] = next(m); return map; } int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } int[][] next2DInt(int n, int m) { int[][] arr = new int[n][]; for (int i = 0; i < n; i++) { arr[i] = nextIntArray(m); } return arr; } long[][] next2DLong(int n, int m) { long[][] arr = new long[n][]; for (int i = 0; i < n; i++) { arr[i] = nextLongArray(m); } return arr; } int[] shuffle(int[] arr) { Random r = new Random(); for (int i = 1, j; i < arr.length; i++) { j = r.nextInt(i); int c = arr[i]; arr[i] = arr[j]; arr[j] = c; } return arr; } long[] shuffle(long[] arr) { Random r = new Random(); for (int i = 1, j; i < arr.length; i++) { j = r.nextInt(i); long c = arr[i]; arr[i] = arr[j]; arr[j] = c; } return arr; } int[] uniq(int[] arr) { arr = scn.shuffle(arr); Arrays.sort(arr); int[] rv = new int[arr.length]; int pos = 0; rv[pos++] = arr[0]; for (int i = 1; i < arr.length; i++) { if (arr[i] != arr[i - 1]) { rv[pos++] = arr[i]; } } return Arrays.copyOf(rv, pos); } long[] uniq(long[] arr) { arr = scn.shuffle(arr); Arrays.sort(arr); long[] rv = new long[arr.length]; int pos = 0; rv[pos++] = arr[0]; for (int i = 1; i < arr.length; i++) { if (arr[i] != arr[i - 1]) { rv[pos++] = arr[i]; } } return Arrays.copyOf(rv, pos); } int[] reverse(int[] arr) { int l = 0, r = arr.length - 1; while (l < r) { arr[l] = arr[l] ^ arr[r]; arr[r] = arr[l] ^ arr[r]; arr[l] = arr[l] ^ arr[r]; l++; r--; } return arr; } long[] reverse(long[] arr) { int l = 0, r = arr.length - 1; while (l < r) { arr[l] = arr[l] ^ arr[r]; arr[r] = arr[l] ^ arr[r]; arr[l] = arr[l] ^ arr[r]; l++; r--; } return arr; } int[] compress(int[] arr) { int n = arr.length; int[] rv = Arrays.copyOf(arr, n); rv = uniq(rv); for (int i = 0; i < n; i++) { arr[i] = Arrays.binarySearch(rv, arr[i]); } return arr; } long[] compress(long[] arr) { int n = arr.length; long[] rv = Arrays.copyOf(arr, n); rv = uniq(rv); for (int i = 0; i < n; i++) { arr[i] = Arrays.binarySearch(rv, arr[i]); } return arr; } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
def solve(m, b): d=dict() y=dict() for i in range(m): d[b[i]]=0 for k in d.keys(): x=k+1 while x in d.keys() or x in y.keys(): x+=1 if (x>2*m): return -1 d[k]=x y[x]=k for i in range(m): print(b[i], d[b[i]], end=" ") print() return 1 for _ in range(int(input())): m=int(input()) b=list(map(int, input().split())) if (solve(m, b)==-1): print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
T=int(input()) for i in range(T): N=int(input()) l=[0]*(N*2+1) f=0 c=0 b=[int(x) for x in input().split()] for j in range(0,len(b)): c=c+1 l[c]=b[j] c=c+1 if b.count(b[j]+1)==1 or l.count(b[j]+1)==1: m=b[j]+1 while(True): m=m+1 if b.count(m)==0 and l.count(m)==0: break if m==(2*N): f=1 break if f==1: break else: l[c]=m else: l[c]=b[j]+1 for j in range(1,2*N+1): if l.count(j)==0: f=1 break if f==1: print(-1) else: l.pop(0) print(*l)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
I=input for _ in[0]*int(I()): I();b=*map(int,I().split()),;s={*range(2*len(b)+1)}-{*b};a=[];i=1 try: for x in b:y=min(s-{*range(x)});s-={y};a+=x,y;i+=2 except:a=-1, print(*a)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.util.*; import java.io.*; public class Solution{ static long mod=998244353 ; static boolean f=true; static class pair implements Comparable<pair>{ int a,b,c; pair(int x,int y,int z){ a=x;b=y;c=z; } public int compareTo(pair t){ if(c<t.c) return 1; else if(c==t.c) { if(a<t.a) return -1; else if(a>t.a) return 1; else return 0; } else return -1; } } // public static ArrayList<pair> bfs(String[] a,int r,int c){ // ArrayList<pair> ans=new ArrayList<>(); // Queue<pair> q=new LinkedList<>(); // int[][] dxy={{-1,0,1,0},{0,-1,0,1}}; // q.add(new pair(r,c)); // HashSet<String> h=new HashSet<>(); // while(!q.isEmpty()){ // pair f=q.poll(); // ans.add(f);h.add(f.a+" "+f.b); // for(int i=0;i<4;i++){ // int dx=f.a+dxy[0][i]; // int dy=f.b+dxy[1][i]; // if(dx<0||dy<0||dx>=a.length||dy>=a.length||h.contains(dx+" "+dy)|| // a[dx].charAt(dy)=='1') // continue; // q.add(new pair(dx,dy)); // h.add(dx+" "+dy); // } // } // return ans; // } /* 1 1 1 1 1 3 3 3 2 3 3 2 1 3 1 2 2 2 2 4 4 4 1 4 */ public static int pow(int a, int n) { long ans = 1; long base = a; while (n != 0) { if ((n & 1) == 1) { ans *= base; ans %= 1000000007; } base = (base * base) % 1000000007; n >>= 1; } return (int) ans % 1000000007; } public static int find(int x){ int i=1;int f=0; while(x>0){ if((x&1)==0)f=i; x>>=1;i++; } return f; } public static boolean good(int x){ if((((x+1)&x))==0) return true; return false; } public static long f(long n){ long val=2; long preval=0;int i=1; while(n>=val){ i++; preval=val; val=3*i+val-1; } return preval; } public static boolean bfs(ArrayList<Integer>[] a,int n,int[] b){ Queue<Integer> p=new LinkedList<>(); boolean v[]=new boolean[n]; v[0]=true;int k=0; if(b[0]!=0)return false; p.add(0);int c=1; HashSet<Integer> h=new HashSet<Integer>(); h.add(0); while(!p.isEmpty()){ int f=p.poll();k++; if(h.contains(f))h.remove(f); else return false; v[f]=true; c--; for(int i:a[f]){ if(!v[i]){ p.add(i);v[i]=true;} } if(c==0){ c=p.size(); if(h.size()!=0)return false; for(int j=k;j<k+p.size();j++) h.add(b[j]); } } return true; } public static int mi(int[] a,int k,int[] dp,int n){ int max=0; for(int i=1;i*i<=k;i++){ // System.out.println("fact "+i); if(k%i==0&&(a[i-1]<a[k-1])){ // System.out.println(i+" "+dp[i-1]+" "+a[i-1]+" "); max=Math.max(dp[i-1],max);} if(k%i==0&&(a[k/i-1]<a[k-1])){ // System.out.println(i+" "+dp[i-1]+" "+a[i-1]+" "); max=Math.max(dp[k/i-1],max);} } return max; } public static long dfs(ArrayList<Integer> a[],int n,boolean[] v,boolean s[] ,long c[],int x){ v[n]=true; if(n==x) s[n]=true; c[n]=1; for(int i=0;i<a[n].size();i++){ if(!v[a[n].get(i)]){ c[n]+= dfs(a,a[n].get(i),v,s,c,x); s[n]|=s[a[n].get(i)]; } } return c[n]; } public static void main(String[] args) { Scanner s = new Scanner(System.in); int t = s.nextInt(); StringBuilder st=new StringBuilder(); while(t-- > 0) { int n=s.nextInt(); HashSet<Integer> h=new HashSet<>(); int[]a=new int[n]; for(int i=0;i<n;i++){ a[i]=s.nextInt(); h.add(a[i]); } StringBuilder ans=new StringBuilder(); boolean f=true; for(int i=0;i<n;i++){ int k=1; while(a[i]+k<=2*n&&h.contains(a[i]+k))k++; if(a[i]+k>2*n){ f=false;break; } h.add(a[i]+k); ans.append(a[i]+" "+(a[i]+k)+" "); } if(!f) st.append("-1\n"); else st.append(ans+"\n"); } System.out.println(st); /* 2 1 3 1 6 6 23 21 1 1000 0 2 1 2 0 40 41664916690999888 1 1 2 2 1 3 3 1 2 4 2 4 1 3 5 3 4 1 5 2 6 6 45 46 2 2 1 3 4 2 4 4 3 */ } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
// package com.company; import java.util.*; import java.lang.*; import java.io.*; //****Use Integer Wrapper Class for Arrays.sort()**** public class BV3 { public static void main(String[] Args){ FastReader scan=new FastReader(); int t=scan.nextInt(); while(t-->0){ int n=scan.nextInt(); int[] arr=new int[n]; Set<Integer> nu=new HashSet<>(); for(int i=1;i<=2*n;i++){ nu.add(i); } for (int i = 0; i <n ; i++) { arr[i]=scan.nextInt(); nu.remove(arr[i]); } int[] tkn=new int[n]; int[] ans=new int[2*n]; boolean flag=true; for(int i=0;i<n;i++){ ans[2*i]=arr[i]; int nxt=500; for(Integer j:nu){ if(j>ans[2*i]&&j<nxt){ nxt=j; } } if(nxt==500){ flag=false; break; } else{ nu.remove(nxt); ans[2*i+1]=nxt; } } if(!flag){ System.out.println(-1); } else{ for(int i=0;i<2*n;i++){ System.out.print(ans[i]+" "); } System.out.println(); } } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
cases=int(input()) final=[] for _ in range(cases): n=int(input()) mm=[] flag=0 c=list(map(int,input().split())) v=list(set(list(range(1,2*len(c)+1)))-set(c)) mm=[] for i in range(len(v)): r=c[i] try: q=min([v[i] for i in range(len(v)) if v[i]>r]) mm.append(q) v.remove(q) except: continue gg=[] for i in range(len(mm)): gg.append(c[i]) gg.append(mm[i]) if len(gg)==2*len(c): print(*gg) else: print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); long long t; cin >> t; while (t--) { long long vis[205] = {0}; long long n, c = 0; cin >> n; long long a[n]; vector<long long> b; for (long long i = 0; i < n; i++) { cin >> a[i]; vis[a[i]] = 1; } for (long long i = 0; i < n; i++) { b.push_back(a[i]); for (long long j = a[i] + 1; j <= 2 * n; j++) { if (!vis[j]) { b.push_back(j); vis[j] = 1; break; } } } if (b.size() == 2 * n) { for (long long i = 0; i < 2 * n; i++) cout << b[i] << " "; } else cout << "-1"; cout << "\n"; } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.util.Scanner; public class C { public static void main(String[] args) { new C(); } public C() { Scanner sc = new Scanner(System.in); int amountT = sc.nextInt(); for (int task = 0; task < amountT; task++) { int n = sc.nextInt(); int[] b = new int[n]; boolean[] done = new boolean[2 * n + 1]; boolean poss = true; for (int i = 0; i < n; i++) { int val = sc.nextInt(); b[i] = val; if (done[val]) { poss = false; } done[val] = true; } int[] a = new int[n]; for (int index = 0; index < n; index++) { boolean found = false; for (int i = b[index] + 1; i <= 2*n; i++) { if (!done[i]) { if (i > b[index]) { found = true; a[index] = i; done[i] = true; break; } } } if (!found) { poss = false; break; } } if (poss) { String s = ""; for (int i = 0; i < n; i++) { if (i != 0) { s += " "; } s += b[i] + " " + a[i]; } System.out.println(s); } else { System.out.println(-1); } } sc.close(); } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
from bisect import bisect_left def main(): for _ in range(int(input())): n, res = int(input()), [] l = list(map(int, input().split())) r = sorted(set(range(1, n * 2 + 1)) - set(l)) try: for a in l: res += a, r.pop(bisect_left(r, a + 1)) print(*res) except IndexError: print(-1) if __name__ == '__main__': main()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.util.*; public class MyClass { public static void main(String args[]) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-->0){ int n=sc.nextInt(); int b[]=new int[n]; Set<Integer> set=new HashSet<>(); for(int i=0;i<n;i++)set.add(b[i]=sc.nextInt()); int a[]=new int[2*n]; int last=1; for(int i=0;i<n;i++){ a[2*i]=b[i]; int next=0; for(int j=b[i]+1;j<=2*n;j++){ if(!set.contains(j)){ set.add(j); next=j; break; } } a[2*i+1]=next; } if(set.size()<2*n) System.out.println(-1); else{ for(int i:a)System.out.print(i+" "); System.out.println(); } } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.io.StreamTokenizer; import javax.swing.JInternalFrame; public class Main { public static void main(String[] args) throws IOException { StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); in.nextToken(); int num = (int)in.nval; for(int i = 0; i < num; i++) { in.nextToken(); int num1 = (int)in.nval; int[] getLine = new int[num1]; int[] numLine = new int[210]; for(int j = 0; j < num1; j++) { in.nextToken(); int num2 = (int)in.nval; numLine[num2]++; getLine[j] = num2; } int haveYES = 1; int numHave = 0; for(int j = 1; j < num1 * 2; j++) { if(numLine[j] > 1) { haveYES = 0; break; } if(numLine[j] == 1) numHave++; if(j % 2 == 1) if(numHave < j / 2 + 1) { haveYES = 0; break; } } if(haveYES == 0) { out.println("-1"); continue; } for(int j = 0; j < num1; j++) { out.print(getLine[j] + " "); for(int k = getLine[j] + 1; ; k++) { if(numLine[k] == 0) { out.print(k + " "); numLine[k] = 1; break; } } } out.println(); } out.flush(); } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.*; import java.util.*; public class Q1 { // Q3 public static void main(String[] args) { InputReader in = new InputReader(); PrintWriter out = new PrintWriter(System.out); int t = in.nextInt(); while (t-- > 0) { int N = in.nextInt(); HashSet<Integer> set = new HashSet<>(); int ans[] = new int[2 * N + 1]; for (int j = 0; j < 2*N; j += 2) { ans[j + 1] = in.nextInt(); set.add(ans[j+1]); } ArrayList<Integer> count = new ArrayList<>(); for (int i = 0; i < 2 * N; i++) { if (!set.contains(i + 1)) count.add(i + 1); } int flag = 1; for (int i = 0, j = 0; i < N; i++, j += 2) { int val = ans[j + 1]; int temp = 1000,ind=0; for (int k = 0; k < count.size(); k++) { if (count.get(k) > val && count.get(k) < temp) { temp = count.get(k); ind=k; } } if (temp == 1000) { flag = -1; break; } ans[j + 2] = temp; count.remove(ind); } if (flag == -1) out.println(-1); else { for (int i = 1; i <= 2 * N; i++) out.print(ans[i] + " "); out.println(); } } out.close(); } //Q2 // public static void main(String[] args) { // InputReader in = new InputReader(); // PrintWriter out = new PrintWriter(System.out); // int t = in.nextInt(); // while (t-- > 0) { // int a =in.nextInt(),b=in.nextInt(),c=in.nextInt()+1,d=in.nextInt()+1; // int max=Math.max(Math.max((a)*(b-d),(a)*(d-1)),Math.max((b)*(a-c),(b)*(c-1))); // out.println(max); // // } // out.close(); // } // ternary Search Question // public static void main(String[] args) { // // InputReader in = new InputReader(); // PrintWriter out = new PrintWriter(System.out); // int t=in.nextInt(); // while(t-->0) { // // int N = in.nextInt(),max=-1,diff=0; // int arr[] = new int[N]; // for(int i=0;i<N;i++){ // arr[i]=in.nextInt(); // max=Math.max(max,arr[i]); // } // if(max==-1){ // out.println(0+" "+1); // continue; // } // // // // for(int i =1;i<N;i++){ // int a =arr[i]==-1?max:arr[i],b =arr[i-1]==-1?max:arr[i-1],d=Math.abs(a-b); // diff=Math.max(diff,d); // } // System.out.println(max+" diff:-"+diff); // // int l=0,r=max; // while(l<=r){ // int mid=(l+r)/2; // int di=0; // for(int i =1;i<N;i++){ // int a =arr[i]==-1?mid:arr[i],b =arr[i-1]==-1?mid:arr[i-1],d=Math.abs(a-b); // di=Math.max(di,d); // } // System.out.println(mid+" diff:-"+di); // if(di<diff){ // r=mid-1; // max=mid; diff=di; // }else{ // l=mid+1; // } // } // // out.println(diff+" "+max); // // } // out.close(); // // // } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public int[] shuffle(int[] arr) { Random r = new Random(); for (int i = 1, j; i < arr.length; i++) { j = r.nextInt(i); arr[i] = arr[i] ^ arr[j]; arr[j] = arr[i] ^ arr[j]; arr[i] = arr[i] ^ arr[j]; } return arr; } public InputReader() { reader = new BufferedReader(new InputStreamReader(System.in), 32768); tokenizer = null; } public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(System.in), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public char nextChar() { return next().charAt(0); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } } // public static void main(String[] args) { // // InputReader in = new InputReader(); // PrintWriter out = new PrintWriter(System.out); // int t =in.nextInt(); // // while(t-->0){ // int N=in.nextInt(); // int arr[]=new int[N]; // for(int i=0 ;i<N;i++) // arr[i]=in.nextInt(); // // ArrayList<Integer> set1=new ArrayList<>(),set2=new ArrayList<>(),set3=new ArrayList<>(); // double xval=in.nextInt(),x=in.nextInt(),yval=in.nextInt(),y=in.nextInt(); // long k=in.nextLong(); // long ans =0; // // if(xval<yval){ // double temp=xval; // xval=yval; // yval=temp; // // temp=x; // x=y; // y=temp; // } // xval=xval/100; yval=yval/100; // // for(int i =0;i<N;i++){ // if((i+1)%x==0 && (i+1)%y==0) // set1.add(i); // else if ((i+1)%x==0 ) // set2.add(i); // else if((i+1)%y==0) // set3.add(i); // } // arr=in.shuffle(arr); // // int a =0,b=0,c=0,add=0; // // for(int i=N-1;i>=0;i--){ // // int temp=0; // // if(a==set1.size() && b==set2.size() && c==set3.size()) // continue; // else if (a==set1.size() && b==set2.size() ){ // ans += (yval) * arr[i]; // c++; // temp=11; // }else if(a==set1.size()){ // if (set2.get(b) <set3.get(c)) { // ans += (xval) * arr[i]; // b++; // } else { // ans += (yval) * arr[i]; // c++; // } // }else{ // if (set1.get(a) < set2.get(b) && set1.get(a) < set3.get(c)) { // ans += (xval + yval) * arr[i]; // a++; // } else if (set2.get(b)<set3.get(c)) { // ans += (xval) * arr[i]; // b++; // } else { // ans += (yval) * arr[i]; // c--; // } // } // // // // if(ans>=k){ // break; // } // // } // // if(ans<k) // out.println(-1); // else // out.println(add); // // // // } // // out.close(); // } // //import java.io.*; //import java.util.*; // // //public class Q3 { // // // // tunnel wala Question tourist // //// public static void main(String[] args) { //// //// InputReader in = new InputReader(); //// PrintWriter out = new PrintWriter(System.out); //// //// int N=in.nextInt(); //// int arr1[]=new int [N],arr2[]=new int[N]; //// int ans =0; //// //// for(int i =0;i<N;i++){ //// arr1[i]=in.nextInt(); //// } //// //// HashMap<Integer,Integer>map=new HashMap<>(); //// //// for(int j=0;j<N;j++){ //// int num=in.nextInt(); //// arr2[j]=num; //// map.put(num,N-j); //// } //// int a[]=new int [N+1]; //// //// boolean flag=false; //// for(int i =0;i<N;i++) { //// int num = arr1[i]; //// int val=map.get(num); //// if(val>(N-i)) //// ans++; //// else if(val==N-i && !flag){ //// ans++; //// //// } //// a[arr1[i]]++; //// a[arr2[N-i-1]]++; //// //// if(a[arr1[i]]!=2 || a[arr2[N-i-1]]!=2) //// flag=false; //// else //// flag=true; //// //// } //// out.println(ans); //// //// out.close(); //// //// //// } // // static class InputReader { // public BufferedReader reader; // public StringTokenizer tokenizer; // // // public int[] shuffle(int[] arr) { // Random r = new Random(); // for (int i = 1, j; i < arr.length; i++) { // j = r.nextInt(i); // arr[i] = arr[i] ^ arr[j]; // arr[j] = arr[i] ^ arr[j]; // arr[i] = arr[i] ^ arr[j]; // } // return arr; // } // // public InputReader() { // reader = new BufferedReader(new InputStreamReader(System.in), 32768); // tokenizer = null; // } // // public InputReader(InputStream stream) { // reader = new BufferedReader(new InputStreamReader(System.in), 32768); // tokenizer = null; // } // // public String next() { // while (tokenizer == null || !tokenizer.hasMoreTokens()) { // try { // tokenizer = new StringTokenizer(reader.readLine()); // } catch (IOException e) { // throw new RuntimeException(e); // } // } // return tokenizer.nextToken(); // } // // public char nextChar() { // return next().charAt(0); // } // // public int nextInt() { // return Integer.parseInt(next()); // } // // public long nextLong() { // return Long.parseLong(next()); // } // // public double nextDouble() { // return Double.parseDouble(next()); // } // // // } // //}
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
T = int(input()) while T!=0: T-=1 n = int(input()) arr = [int(x) for x in input().split()] st = set() for i in range(1,2*n+1): st.add(i) for i in arr: st.discard(i) ans = [] for i in arr: ans.append(i) for j in sorted(st): if j>i: ans.append(j) st.discard(j) break if len(ans) == 2*n: for i in ans: print(i, end=" ") print() else: print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import atexit import io import sys import math from collections import defaultdict,Counter # _INPUT_LINES = sys.stdin.read().splitlines() # input = iter(_INPUT_LINES).__next__ # _OUTPUT_BUFFER = io.StringIO() # sys.stdout = _OUTPUT_BUFFER # @atexit.register # def write(): # sys.__stdout__.write(_OUTPUT_BUFFER.getvalue()) # sys.stdout=open("CP2/output.txt",'w') # sys.stdin=open("CP2/input.txt",'r') # m=pow(10,9)+7 t=int(input()) for i in range(t): n=int(input()) b=list(map(int,input().split())) visit=[0]*(2*n+1) for j in b: visit[j]=1 l=[2]*n flag=0 for j in range(n): if b[j]+1>2*n: flag=1 break if visit[b[j]+1]==0: l[j]=b[j]+1 visit[b[j]+1]=1 else: p=b[j]+2 while p<=2*n and visit[p]==1: p+=1 if p>2*n: flag=1 break l[j]=p visit[p]=1 if visit.count(0)!=1 or flag==1: print(-1) continue for j in range(n): print(b[j],l[j],end=' ') print()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.util.Scanner; public class C_623 { @SuppressWarnings("resource") public static void main(String[] args) { Scanner input = new Scanner(System.in); int t = input.nextInt(); for (int test = 0; test < t; test++){ int n = input.nextInt(); int[] b = new int[n + 1]; boolean[] taken = new boolean[n * 2 + 1]; for (int i = 1; i <= n; i++){ b[i] = input.nextInt(); taken[b[i]] = true; } String out = ""; boolean no = false; for (int i = 1; i <= n; i++){ out += b[i] + " "; int j = b[i] + 1; while (j <= n * 2 && taken[j]){ j++; } if (j > n * 2){ no = true; break; } taken[j] = true; out += j + " "; } //System.out.println(out); if(no){ System.out.println(-1); }else{ System.out.println(out.substring(0, out.length() - 1)); } } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
# Legends Always Come Up with Solution # Author: Manvir Singh import os from io import BytesIO, IOBase import sys from collections import defaultdict,deque,Counter from bisect import * from math import sqrt,pi,ceil import math from itertools import permutations from copy import deepcopy def main(): for t in range(int(input())): n=int(input()) b=list(map(int,input().split())) f=0 c=set(b) d=[] for i in range(1,2*n+1): if i not in c: d.append(i) a=[] for i in range(n): a.append(b[i]) x=bisect_left(d,b[i]) if x==len(d): f=1 break a.append(d[x]) d.remove(d[x]) if f: print(-1) else: print(*a) # region fastio BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") if __name__ == "__main__": main()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") using namespace std; const long double PI = acos(-1); const int N = 1e5 + 10; const int mod = 1e9 + 7; const int mod1 = 998244353; const long long INF = 2e18; template <class T> inline void amin(T& x, const T& y) { if (y < x) x = y; } template <class T> inline void amax(T& x, const T& y) { if (x < y) x = y; } int read() { long long s = 0, f = 1; char c = getchar(); while (c < '0' || c > '9') { if (c == '-') f = -1; c = getchar(); } while (c >= '0' && c <= '9') { s = s * 10 + c - '0'; c = getchar(); } return s * f; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); int tt; tt = read(); while (tt--) { int n; n = read(); bool visited[210]; memset(visited, 0, sizeof(visited)); int a[105]; vector<int> v; vector<int> t; bool flag = false; for (int i = 1; i <= n; i++) { a[i] = read(); t.push_back(a[i]); visited[a[i]] = true; } sort(t.begin(), t.end()); for (int i = 1; i <= 2 * n; i++) { if (!visited[i]) { v.push_back(i); visited[i] = true; } } sort(v.begin(), v.end()); for (int i = 0; i < n; i++) { if (t[i] > v[i]) { flag = true; } } if (flag) { cout << "-1\n"; continue; } else { for (int i = 1; i <= n; i++) { cout << a[i] << " "; for (int j = 0; j < n; j++) { if (v[j] > a[i] && visited[v[j]]) { cout << v[j] << " "; visited[v[j]] = false; break; } } } } cout << "\n"; } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int t, n, b[105], a[205], vis[205], ret; int main() { int i; scanf("%d", &t); while (t--) { memset(vis, 0, sizeof(vis)); ret = 0; scanf("%d", &n); for (i = 1; i <= n; i++) { scanf("%d", &b[i]); vis[b[i]] = 1; a[i * 2 - 1] = b[i]; } int j; for (i = 1; i <= n; i++) { ret = 0; for (j = a[2 * i - 1] + 1; j <= 2 * n; j++) { if (!vis[j]) { vis[j] = 1; a[i * 2] = j; ret = 1; break; } } if (!ret) break; } if (ret) { for (i = 1; i < 2 * n; i++) printf("%d ", a[i]); printf("%d\n", a[i]); } else printf("-1\n"); } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
for _ in range(int(input())): n = int(input()) a = list(map(int, input().split())) used = set(a) ans = [] for i in range(n): ans.append(a[i]) for j in range(a[i] + 1, n << 1 | 1): if j not in used: ans.append(j) used.add(j) break else: print(-1) break else: print(*ans)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int n, k; bool vis[510]; struct node { int x, y; } a[110]; int main() { cin >> k; while (k--) { memset(vis, 0, sizeof(vis)); cin >> n; int ma = 2 * n; for (int i = 1; i <= n; i++) { cin >> a[i].x; vis[a[i].x] = true; } int now, t = 1; for (int i = 1; i <= n; i++) { now = a[i].x; while (vis[now] == true || now <= a[i].x) { ++now; } a[i].y = now; if (now > ma) t = 0; vis[now] = true; } if (t == 0) { cout << -1 << endl; continue; } for (int i = 1; i <= n; i++) cout << a[i].x << " " << a[i].y << " "; cout << endl; } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while (t--) { int n; cin >> n; vector<int> b(n); vector<int> ans; map<int, bool> m; for (int i = 0; i < n; i++) { cin >> b[i]; m[b[i]] = 1; } int i; for (i = 0; i < n; i++) { ans.push_back(b[i]); int temp = b[i] + 1; while (m[temp]) { temp++; if (temp > 2 * n) break; } if (temp > 2 * n) break; m[temp] = 1; ans.push_back(temp); } if (i != n) cout << -1 << endl; else { for (auto j : ans) cout << j << " "; cout << endl; } } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int cinn() { int x; scanf("%d", &x); return x; } long long cinl() { long long x; scanf("%lld", &x); return x; } void coutt(int x) { printf("%d ", x); } vector<string> split(const string &s, char c) { vector<string> v; stringstream ss(s); string x; while (getline(ss, x, c)) v.emplace_back(x); return move(v); } void err(vector<string>::iterator it) {} template <typename T, typename... Args> void err(vector<string>::iterator it, T a, Args... args) { cout << it->substr((*it)[0] == ' ', it->length()) << " = " << a << " "; err(++it, args...); } const int mod = 1e9 + 7; const int inf = (int)2e9 + 5; const long long int Inf = (long long int)1e18 + 5; const int N = 1e7 + 5; const int nn = 3e5 + 5; int siv[2000]; int solve() { int n; cin >> n; int a[106]; for (int i = 0; i < n; i++) { cin >> a[i]; siv[a[i]] = 1; } bool f = true; std::vector<int> v; for (int i = 0; i < n; i++) { for (int j = 1; j <= 2 * n; j++) { if (a[i] < j && siv[j] == 0) { siv[j] = 1; v.push_back(a[i]); v.push_back(j); break; } } } for (int i = 1; i <= 2 * n; i++) { if (siv[i] == 0) { f = false; } } if (f == false) { cout << -1 << endl; } else { for (auto i : v) { cout << i << " "; } printf("\n"); ; } for (int i = 0; i <= 2 * n; i++) { siv[i] = 0; } v.clear(); f = true; return 0; } int main() { int test = 1, tc = 0; scanf("%d", &test); while (test--) solve(); return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
""" NTC here """ import sys inp= sys.stdin.readline input = lambda : inp().strip() # flush= sys.stdout.flush # import threading # sys.setrecursionlimit(10**6) # threading.stack_size(2**26) def iin(): return int(input()) def lin(): return list(map(int, input().split())) def main(): T = iin() while T: T-=1 n = iin() a = lin() l = 2*n+1 done = [0]*(l) ans = [] for i in a: done[i]=1 for i in a: ans.append(i) for j in range(i+1, l): if done[j]==0: done[j]=1 ans.append(j) break else: print(-1) break else: print(*ans) main() #threading.Thread(target=main).start()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
N = int(input()) for _ in range(N): n = int(input()) b = list(map(int, input().split())) a = [-1] * 2*n pos = list(filter(lambda x: x not in b, range(1, 2*n + 1))) f = True for i, el in enumerate(b): a[2*i] = el st, end = 0, len(pos) new_idx = (st + end) // 2 idx = None min_pos = 2*n + 1 while new_idx != idx: idx = new_idx cur = pos[idx] if cur < el: st = idx else: min_pos = min(min_pos, cur) end = idx new_idx = (st + end) // 2 try: pos.remove(min_pos) a[2*i + 1] = min_pos except Exception: f = False break if f: print(*a) else: print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
def main(): for _ in range(int(input())): n = int(input()) a = list(map(int,input().split())) t = 0 ans = [] used = [0] * (2 * n + 1) for i in range(n): used[a[i]] += 1 if used[a[i]] == 2: t = 1 ans = -1 break if t: print(-1) continue var = [] for i in range(1, 2 * n + 1): if not used[i]: var.append(i) ans = [] used = [0] * (2 * n + 1) for i in range(n): cur = a[i] add = -1 for j in range(n): if var[j] > cur and not used[var[j]]: add = var[j] used[var[j]] = 1 break if add == -1: t = 1 break ans.append(cur) ans.append(var[j]) if t: print(-1) continue print(*ans) main()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
def main(n, b): #print("DEBUT") tab = [0]*(2*n) dispo = [True]*(2*n + 1) for i in range(n): tab[2*i] = b[i] dispo[b[i]] = False for i in range(n): j = b[i] test = True while j <= (2*n) and test: if not dispo[j]: j += 1 else: test = False dispo[j] = False tab[2*i + 1] = j test = True for i in range(1, 2*n+1): if dispo[i]: test = False #print("SOLUCE") if not test: print(-1) else: mot = "" for x in tab: mot += str(x) + " " print(mot) #print("END") t = int(input()) for _ in range(t): n = int(input()) b = list(map(int, input().split())) main(n, b)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
t=int(input()) for _ in range(t): n=int(input()) b=list(map(int,input().split())) a=[] dic={} for i in b: dic[i]=1 for i in b: a.append(i) x=i+1 while(True): if x in dic: x+=1 else: break a.append(x) dic[x]=1 f=True for i in range(1,2*n+1): if i in dic: continue else: f=False break if(f): print(*a) else: print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
for _ in range(int(input())): n = int(input()) B = list(map(int, input().split())) A = [0]*(2*n) A[::2] = B X = set(range(1, 2*n+1)) - set(B) for i in range(n): x = B[i] + 1 while x <= 2*n: if x in X: A[2*i+1] = x X.remove(x) break x += 1 else: print(-1) break else: print(*A)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
def func(): n_case = int(input()) for i in range(n_case): n = int(input()) b = list(map(int,input().split())) res = {*(range(2*n+1))}-{*b} a =[] try: for i in b : minn = min(res - {*range(i)}) res-={minn} a +=i,minn except: a = [-1] print(*a) if __name__ == "__main__": func()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
n = int(input()) for i in range(n): length = int(input()) b = [int(i) for i in input().split()] c = list() final = list() pool = list() var = False for j in range(1, 2*length + 1): if j not in b: pool.append(j) for j in range(len(b)): var = False for k in range(len(pool)): if pool[k] > b[j]: var = pool[k] c.append(var) pool.remove(var) var = True break if not var: break if not var: print(-1) continue else: for j in range(len(b)): final.append(b[j]) final.append(c[j]) print(' '.join(map(str, final)))
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
testCases = int(input()) for i1 in range(testCases): length = int(input()) taken = [False]*length*2 b = list(map(int, input().split())) a = [0]*2*length for i2 in range(length): taken[b[i2] - 1] = True a[i2*2] = b[i2] if taken.index(True) > 0: print(-1) else: for i2 in range(length): for i3 in range(b[i2] , 2*length, 1): if not taken[i3]: taken[i3] = True a[(i2*2) + 1] = (i3 + 1) break if 0 in a: print(-1) else: for i2 in a: print(i2,end=' ') print("")
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
def solution(n: int, b: list): ret = [0] * (2 * n) for i in range(n): ret[2*i] = b[i] for j in range(b[i] + 1, 2 * n + 1): if not (j in b): ret[2 * i + 1] = j b.append(j) break if (0 in ret): print(-1) return else: print(' '.join(map(str, ret))) t = int(input()) for i in range(t): n = int(input()) b = list(map(int, input().split())) solution(n, b)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> #pragma optimization_level 3 #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math,O3") using namespace std; const long long MOD = 1e+9 + 7; const long long INF = LLONG_MAX; const int INFi = INT_MAX; const long long N = 3e+5 + 8; long long a[N], b[N]; long long check[N]; long long tc = 1; void solve(long long tc) { long long n; cin >> n; for (long long i = (1); i <= n; i++) cin >> a[i]; ; for (long long i = (1); i <= 2 * n; i++) { check[i] = 0; } for (long long i = (1); i <= n; i++) { b[2 * i - 1] = a[i]; check[a[i]] = 1; } for (long long i = (1); i <= n; i++) { long long k = b[2 * i - 1] + 1; while (k <= 200 && check[k] == 1) { k++; } b[2 * i] = k; check[k] = 1; } int flag = 1; for (long long i = (1); i <= 2 * n; i++) { if (check[i] == 0) { flag = 0; break; } } if (flag) { for (long long i = (1); i <= 2 * n; i++) cout << b[i] << " "; cout << endl; ; } else { cout << -1 << " "; cout << endl; }; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cout << fixed; cout << setprecision(10); ; cin >> tc; for (long long i = (1); i <= tc; i++) { solve(i); } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import bisect import os from collections import Counter import bisect from collections import defaultdict import math import random import heapq as hq from math import sqrt import sys from functools import reduce, cmp_to_key from collections import deque import threading from itertools import combinations from io import BytesIO, IOBase from itertools import accumulate # sys.setrecursionlimit(200000) # mod = 10**9+7 # mod = 987 def lcm(a,b): return (a*b)//math.gcd(a,b) def sort_dict(key_value): return sorted(key_value.items(), key = lambda kv:(kv[1], kv[0])) def list_input(): return list(map(int,input().split())) def num_input(): return map(int,input().split()) def string_list(): return list(input()) def solve(): n = int(input()) arr = list_input() num = {} for i in range(1,2*n+1): num[i] = 1 ans = [] maxx = 0 for i in arr: maxx = max(maxx,i) del num[i] if maxx == 2*n: print(-1) return num = list(num.keys()) for i in arr: ans.append(i) temp = bisect.bisect_left(num,i) if temp == len(num): print(-1) return ans.append(num[temp]) num.pop(temp) for i in ans: print(i,end=' ') print() t = int(input()) # t = 1 for _ in range(t): solve()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.*; import java.util.*; public class C { public static void main(String[] args) { FastReader scan = new FastReader(); PrintWriter out = new PrintWriter(System.out); Task solver = new Task(); int t = scan.nextInt(); for(int tt = 1; tt <= t; tt++) solver.solve(tt, scan, out); out.close(); } static class Task { public void solve(int testNumber, FastReader scan, PrintWriter out) { int n = scan.nextInt(); Item[] a = new Item[n]; int[] res = new int[2 * n]; for(int i = 0; i < n; i++) a[i] = new Item(i, scan.nextInt()); TreeSet<Integer> have = new TreeSet<>(); for(int i = 1; i <= 2 * n; i++) have.add(i); for(int i = 0; i < n; i++) { if(!have.contains(a[i].val)) { out.println(-1); return; } have.remove(a[i].val); } Arrays.sort(a); for(int i = 0; i < n; i++) { Integer next = have.last(); if(next == null || next < a[i].val) { out.println(-1); return; } have.remove(next); a[i].other = next; } Arrays.sort(a, new Comparator<Item>() { @Override public int compare(Item o1, Item o2) { return Integer.compare(o1.index, o2.index); } }); for(int k = 0; k < 500; k++) { for (int i = n - 1; i >= 0; i--) { for (int j = i + 1; j < n; j++) { if (a[j].other < a[i].other && a[i].other > a[j].val && a[j].other > a[i].val) { int temp = a[i].other; a[i].other = a[j].other; a[j].other = temp; } } } } for(int i = 0; i < n; i++) { res[a[i].index * 2] = a[i].val; res[a[i].index * 2 + 1] = a[i].other; } for(int i : res) out.printf("%d ", i); out.println(); } static class Item implements Comparable<Item> { int index, val; int other; public Item(int a, int b) { index = a; val = b; other = -1; } @Override public int compareTo(Item o) { return Integer.compare(o.val, val); } } } static void shuffle(int[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); int temp = a[i]; a[i] = a[r]; a[r] = temp; } } static void shuffle(long[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); long temp = a[i]; a[i] = a[r]; a[r] = temp; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import sys t = int(sys.stdin.readline()) for _ in range(t): n = int(sys.stdin.readline()) sq = [] bq = [int(b) for b in sys.stdin.readline().split()] aq = [True] * (2*n+1) for b in bq: aq[b] = False for b in bq: sq.append(b) j = b+1 while j <= 2*n: if aq[j]: aq[j] = False sq.append(j) break j+=1 else: print(-1) break else: sys.stdout.write(str(sq[0])) for s in sq[1:]: sys.stdout.write(" ") sys.stdout.write(str(s)) sys.stdout.write("\n")
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; map<int, int> m1; int a[101]; int b[101]; int main() { int t, n, i, k, key; scanf("%d", &t); while (t--) { m1.clear(); scanf("%d", &n); for (i = 1; i <= n; i++) { scanf("%d", &b[i]); m1[b[i]] = 1; } key = 1; for (i = 1; i <= n; i++) { k = b[i]; while (m1.count(k)) { k++; } if (k <= 2 * n) { a[i] = k; m1[a[i]] = 1; } else { key = 0; break; } } if (key) { for (i = 1; i <= n; i++) { if (i == n) { printf("%d %d\n", b[i], a[i]); } else { printf("%d %d ", b[i], a[i]); } } } else { printf("-1\n"); } } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.util.*; import java.io.*; import java.math.*; /** * * @Har_Har_Mahadev */ public class C { private static long INF = 2000000000000000000L, M = 1000000007, MM = 998244353; private static int N = 0; public static int lower(ArrayList<Integer> q, int target) { int ages[] = new int[q.size()]; int ii = 0; while(ii<q.size()) { ages[ii] = q.get(ii); ii++; } if (ages == null || ages.length == 0) { return 0; } int l = 0; int r = ages.length - 1; if (target <= ages[0]) { return 0; } if (target > ages[r]) { return -1; } while (l < r) { int m = l + (r - l ) / 2 ; if (ages[m] >= target) { r = m; }else { l = m + 1; } } return r==q.size()?-1:r; } public static void process() throws IOException { int n = sc.nextInt(); int arr[] = sc.readArray(n); PriorityQueue<Pair> lis = new PriorityQueue<C.Pair>(); HashSet<Integer> q = new HashSet<Integer>(); for(int i=1; i<=2*n; i++)q.add(i); for(int i=0; i<n; i++) { lis.add(new Pair(arr[i], i+1)); q.remove(arr[i]); } if(q.size() != n) { println(-1); return; } ArrayList<Integer> qq = new ArrayList<Integer>(); for(int e : q)qq.add(e); Collections.sort(qq); int ans[] = new int[2*n+2]; while(!lis.isEmpty()) { Pair e = lis.poll(); int val = lower(qq, e.x); if(val == -1) { println(-1); return; } int vale = qq.get(val); qq.remove(val); int index = e.y; ans[index*2] = vale; ans[index*2-1] = e.x; } for(int i=1; i<=2*n; i++)print(ans[i]+" "); println(); } //============================================================================= //--------------------------The End--------------------------------- //============================================================================= static FastScanner sc; static PrintWriter out; public static void main(String[] args) throws IOException { boolean oj = true; if (oj) { sc = new FastScanner(); out = new PrintWriter(System.out); } else { sc = new FastScanner(100); out = new PrintWriter("output.txt"); } int t = 1; t = sc.nextInt(); while (t-- > 0) { process(); } out.flush(); out.close(); } static class Pair implements Comparable<Pair> { int x, y; Pair(int x, int y) { this.x = x; this.y = y; } @Override public int compareTo(Pair o) { return Integer.compare(this.y, o.y); } // @Override // public boolean equals(Object o) { // if (this == o) return true; // if (!(o instanceof Pair)) return false; // Pair key = (Pair) o; // return x == key.x && y == key.y; // } // // @Override // public int hashCode() { // int result = x; // result = 31 * result + y; // return result; // } } ///////////////////////////////////////////////////////////////////////////////////////////////////////// static void println(Object o) { out.println(o); } static void println() { out.println(); } static void print(Object o) { out.print(o); } static void pflush(Object o) { out.println(o); out.flush(); } static int ceil(int x, int y) { return (x % y == 0 ? x / y : (x / y + 1)); } static long ceil(long x, long y) { return (x % y == 0 ? x / y : (x / y + 1)); } static int max(int x, int y) { return Math.max(x, y); } static int min(int x, int y) { return Math.min(x, y); } static int abs(int x) { return Math.abs(x); } static long abs(long x) { return Math.abs(x); } static int log2(int N) { int result = (int) (Math.log(N) / Math.log(2)); return result; } static long max(long x, long y) { return Math.max(x, y); } static long min(long x, long y) { return Math.min(x, y); } public static int gcd(int a, int b) { BigInteger b1 = BigInteger.valueOf(a); BigInteger b2 = BigInteger.valueOf(b); BigInteger gcd = b1.gcd(b2); return gcd.intValue(); } public static long gcd(long a, long b) { BigInteger b1 = BigInteger.valueOf(a); BigInteger b2 = BigInteger.valueOf(b); BigInteger gcd = b1.gcd(b2); return gcd.longValue(); } public static long lca(long a, long b) { return (a * b) / gcd(a, b); } public static int lca(int a, int b) { return (a * b) / gcd(a, b); } ///////////////////////////////////////////////////////////////////////////////////////////////////////// static class FastScanner { BufferedReader br; StringTokenizer st; FastScanner() throws FileNotFoundException { br = new BufferedReader(new InputStreamReader(System.in)); } FastScanner(int a) throws FileNotFoundException { br = new BufferedReader(new FileReader("input.txt")); } String next() throws IOException { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } String nextLine() throws IOException { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] readArray(int n) throws IOException { int[] A = new int[n]; for (int i = 0; i != n; i++) { A[i] = sc.nextInt(); } return A; } long[] readArrayLong(int n) throws IOException { long[] A = new long[n]; for (int i = 0; i != n; i++) { A[i] = sc.nextLong(); } return A; } } static void ruffleSort(int[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); int temp = a[i]; a[i] = a[r]; a[r] = temp; } Arrays.sort(a); } static void ruffleSort(long[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); long temp = a[i]; a[i] = a[r]; a[r] = temp; } Arrays.sort(a); } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
t = int(input()) for j in range(t): n = int(input()) values = [0]*(2*n+2) b = list(map(int, input().split())) a = [0]*(2*n+2) #print(a,b) for i in range(n): a[2*i] = b[i] values[b[i]] = 1 for i in range(n): check = False if b[i] >= 2*n: break if values[b[i]+1] == 0: #print("Entered direct") values[b[i]+1] = 1 a[2*i+1] = b[i]+1 check = True else: for p in range(b[i]+1,2*n+1): if values[p]==0: a[2*i+1] = p values[p] = 1 check = True break if check == False: break if check == False: break #print(a) success = True for i in range(2*n): if a[i] > 2*n or a[i] == 0: success = False break if success == False: print(-1) else: for i in range(2*n): print(a[i],end = ' ') print()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; long long t, n, x[1005000]; void solve() { cin >> n; set<long long> s; vector<pair<long long, long long> > b; vector<pair<long long, pair<long long, long long> > > v; for (int i = 1; i <= 2 * n; i++) s.insert(i); for (int i = 1; i <= n; i++) cin >> x[i], s.erase(x[i]), b.push_back({x[i], i}); vector<long long> a((s).begin(), (s).end()); sort((b).begin(), (b).end()); for (int i = 0; i < n; i++) { if (a[i] <= b[i].first) { cout << -1 << endl; return; } } for (int i = 0; i < n; i++) swap(b[i].first, b[i].second); sort((b).begin(), (b).end()); for (int i = 0; i < n; i++) { cout << b[i].second << ' ' << *(s.upper_bound(b[i].second)) << ' '; s.erase(s.upper_bound(b[i].second)); } cout << endl; } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> t; while (t--) solve(); return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
from typing import List import collections import bisect import itertools import functools from fractions import gcd import heapq from math import ceil, sqrt, floor # import sys # sys.setrecursionlimit(50000) def bisect_ceil(A, target): low = 0 high = len(A) - 1 if not A or A[-1] < target: return -1 if A[0] > target: return 0 while low <= high: mid = (low + high) // 2 midv = A[mid] if midv == target: return mid elif target > midv: low = mid + 1 elif mid - 1 >= 0 and A[mid-1] < target < A[mid]: return mid else: high = mid - 1 t = int(input()) for _ in range(t): n = int(input()) B = list(map(int, input().split())) B_set = set(B) candidate = [i for i in range(1, 2*n+1) if i not in B_set] result = [0] * (2 * n) p = "" for i in range(n): result[2*i] = B[i] index = bisect_ceil(candidate, B[i]) if index == -1: p = '-1' break result[2*i+1] = candidate[index] del candidate[index] if p: print(p) else: print(' '.join([str(i) for i in result]))
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; long long t, n, b[100009], f[100009], j, fl; struct st { long long x, i; } a[100009]; bool cmp(st a, st b) { return a.x < b.x; } bool cm(st a, st b) { return a.i < b.i; } int main() { cin >> t; while (t--) { j = 1; fl = 0; cin >> n; for (int i = 0; i <= n * 2 + 50; i++) b[i] = 0, f[i] = 0; for (int i = 1; i <= n; i++) { cin >> a[i].x; a[i].i = i; f[a[i].x] = 1; } for (int i = 1; i <= n; i++) { j = a[i].x; while (f[j]) j++; b[a[i].i * 2 - 1] = a[i].x; b[a[i].i * 2] = j; f[j] = 1; } for (int i = 1; i <= n; i++) { if (a[i].x != min(b[i * 2], b[i * 2 - 1]) || b[i * 2] > 2 * n || b[i * 2 - 1] > 2 * n) { fl = 1; break; } } if (fl) cout << -1 << endl; else { for (int i = 1; i <= n * 2; i++) cout << b[i] << " "; cout << endl; } } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
for _ in range(int(input())): n = int(input()) a = list(map(int, input().split())) check = [True] * (2 * n) for i in range(n): check[a[i]-1] = False res = [] right = [] for idx, value in enumerate(a): res.append(value) i = value - 1 while i < 2*n and not check[i]: i += 1 if i < 2*n: check[i] = False res.append(i+1) else: res = [-1] break print(*res)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.util.*; import java.awt.print.Book; import java.io.*; import java.math.BigInteger; public class A { static long mod = (long) (1e9 + 7); public static long facn(long n, long x) { long ans = 1; for (int i = 1; i <= x; i++) { ans *= n; ans %= mod; n--; } long k = 1; long t = x; for (int i = 1; i <= t; i++) { k *= x; k %= mod; x--; } // BigInteger b = BigInteger.valueOf((k)).modInverse(BigInteger.valueOf((mod))); long b = modPow(k, mod - 2, mod); return ((b % mod) * ans) % mod; } public static long modInverse(long a, long m) { a = a % m; for (int x = 1; x < m; x++) if ((a * x) % m == 1) return x; return 1; } static long modPow(long a, long e, long mod) // O(log e) { a %= mod; long res = 1; while (e > 0) { if ((e & 1) == 1) res = (res * a) % mod; a = (a * a) % mod; e >>= 1; } return res % mod; } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); // pw=new PrintWriter("C:\\Users\\Hp\\Desktop\\outt.txt"); int t=sc.nextInt(); out: while(t-->0) { int n=sc.nextInt(); HashSet<Integer>hs=new HashSet<Integer>(); boolean[]vis=new boolean[2*n+1]; int[]Arr=new int[n]; for(int i=0;i<n;i++) { int a=sc.nextInt(); Arr[i]=a; vis[a]=true; hs.add(a); } ArrayList<Integer>arr=new ArrayList<Integer>(); for(int i=0;i<n;i++) { int a=Arr[i]; arr.add(Arr[i]); for(int j=a+1;j<=2*n;j++) { if(!vis[j]) { arr.add(j); vis[j]=true; break; } } } if(arr.size()!=2*n) { pw.print(-1); }else { for(int x:arr) pw.print(x+" "); } pw.println(); } pw.close(); } public static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException, IOException { return br.ready(); } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import sys import math get_string = lambda: sys.stdin.readline().strip() get_list = lambda: list( map(int,sys.stdin.readline().strip().split()) ) get_int = lambda: int(sys.stdin.readline()) #----------------------------------------------------------------------# for _ in range(get_int()): n=get_int() b=get_list() l=2*n+1 done=[0]*l for i in b: done[i]=1 ans=[] for i in b: ans.append(i) for j in range(i+1,l): if(done[j])==0: done[j]=1 ans.append(j) break else: print(-1) break else: print(*ans)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int arr[106]; int memo[206]; int solve(int n, int reff) { for (int i = 1; i <= n; i++) { if ((memo[i] == -1) && i > reff) { memo[i] = 1; return i; } } return 0; } int main() { int t; cin >> t; while (t--) { int n, x; memset(memo, -1, sizeof memo); cin >> n; int cnt = 1; for (int i = 0; i < n; i++) { cin >> x; arr[cnt] = x; memo[x] = 1; cnt += 2; } n *= 2; bool chk = false; for (int i = 1; i <= n; i++) { if (!(i & 1)) { arr[i] = solve(n, arr[i - 1]); } if (!arr[i]) { chk = true; break; } } if (chk) { cout << -1 << endl; continue; } for (int i = 1; i <= n; i++) cout << arr[i] << ' '; cout << endl; } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
t = int(input()) for _ in range(t): n = int(input()) seq = list(map(int, input().split())) sol = [0]*(2*n) nums = {i for i in range(1,2*n+1)} for i in range(n): sol[2*i] = seq[i] nums.remove(seq[i]) geht = True for i in range(n): cand = [el for el in nums if el > sol[2*i]] if len(cand) == 0: geht = False break sol[2*i + 1] = min(cand) nums.remove(min(cand)) if geht: print(*sol) else: print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int main() { int test; cin >> test; while (test--) { int n; cin >> n; int a[n + 5]; int v[2 * n + 10], u[2 * n + 10]; for (int i = 1; i <= 2 * n; i++) { v[i] = i; u[i] = i; } int j = 1; for (int i = 1; i <= n; i++) { cin >> a[i]; v[a[i]] = 0; u[a[i]] = 0; } int s = 0; for (int i = 1; i <= n; i++) { for (int j = a[i]; j <= 2 * n; j++) { if (v[j] > a[i]) { s++; v[j] = 0; break; } } } if (s != n) cout << "-1"; else { for (int i = 1; i <= n; i++) { for (int j = a[i]; j <= 2 * n; j++) { if (u[j] > a[i]) { cout << a[i] << " " << u[j] << " "; u[j] = 0; break; } } } } cout << endl; } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
kl = int(input()) for l in range(kl): n = int(input()) t = n * 2 at = list(range(t + 1)) nl = [1] * t b = [] rz = [] pr = 0 # print(nl) # print(at) for i in input().split(): i = int(i) nl[i - 1] = 0 b = b + [i] # print(nl) # print(b) for i in range(n): if pr: break pr = 1 # print(b[i], t) # print(at) # print(nl) for j in range(b[i], t + 1): if at[j] * nl[j - 1] != 0: nl[j - 1] = 0 rz = rz + [b[i]] + [at[j]] pr = 0 break # print(nl) # print(b) # print(rz) if pr: print(-1) else: for i in range(t): print(rz[i], '', end='')
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int n, a[209], vis[209], b[109]; set<int> s; int main() { cin.tie(0); cout.tie(0); ios::sync_with_stdio(0); ios_base::sync_with_stdio(0); int t; cin >> t; while (t--) { cin >> n; s.clear(); for (int i = 0; i < n * 2; i++) s.insert(i + 1); for (int i = 0; i < n; i++) { cin >> b[i]; s.erase(b[i]); } for (int i = 0; i < n * 2; i += 2) a[i] = b[i / 2]; bool no = 0; memset(vis, 0, sizeof(vis)); for (auto it = s.begin(); it != s.end(); it++) { int b = -1, x = *it; for (int i = 0; i < n * 2; i += 2) { if (a[i] < x && b == -1 && vis[i] == 0) b = i; } a[b + 1] = x; if (b == -1) no = 1; if (no) break; vis[b] = 1; } if (no) cout << -1; else for (int i = 0; i < 2 * n; i++) cout << a[i] << " "; cout << "\n"; } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
for _ in range(int(input())): n=int(input()) b=[int(x) for x in input().split()] a=[] for i in range(n): a.append(b[i]) k=b[i] while(k in a or k in b): k+=1 if(k>2*n): print(-1) break a.append(k) else: print(*a)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
/* /$$$$$ /$$$$$$ /$$ /$$ /$$$$$$ |__ $$ /$$__ $$| $$ | $$ /$$__ $$ | $$| $$ \ $$| $$ | $$| $$ \ $$ | $$| $$$$$$$$| $$ / $$/| $$$$$$$$ /$$ | $$| $$__ $$ \ $$ $$/ | $$__ $$ | $$ | $$| $$ | $$ \ $$$/ | $$ | $$ | $$$$$$/| $$ | $$ \ $/ | $$ | $$ \______/ |__/ |__/ \_/ |__/ |__/ /$$$$$$$ /$$$$$$$ /$$$$$$ /$$$$$$ /$$$$$$$ /$$$$$$ /$$ /$$ /$$ /$$ /$$$$$$$$ /$$$$$$$ | $$__ $$| $$__ $$ /$$__ $$ /$$__ $$| $$__ $$ /$$__ $$| $$$ /$$$| $$$ /$$$| $$_____/| $$__ $$ | $$ \ $$| $$ \ $$| $$ \ $$| $$ \__/| $$ \ $$| $$ \ $$| $$$$ /$$$$| $$$$ /$$$$| $$ | $$ \ $$ | $$$$$$$/| $$$$$$$/| $$ | $$| $$ /$$$$| $$$$$$$/| $$$$$$$$| $$ $$/$$ $$| $$ $$/$$ $$| $$$$$ | $$$$$$$/ | $$____/ | $$__ $$| $$ | $$| $$|_ $$| $$__ $$| $$__ $$| $$ $$$| $$| $$ $$$| $$| $$__/ | $$__ $$ | $$ | $$ \ $$| $$ | $$| $$ \ $$| $$ \ $$| $$ | $$| $$\ $ | $$| $$\ $ | $$| $$ | $$ \ $$ | $$ | $$ | $$| $$$$$$/| $$$$$$/| $$ | $$| $$ | $$| $$ \/ | $$| $$ \/ | $$| $$$$$$$$| $$ | $$ |__/ |__/ |__/ \______/ \______/ |__/ |__/|__/ |__/|__/ |__/|__/ |__/|________/|__/ |__/ */ import java.util.*; import java.io.*; import java.math.*; import java.io.FileWriter; import java.io.IOException; public class cf{ static class Pair{ int x; int y; public Pair(int x,int y){ this.x=x; this.y=y; } } static InputReader sc; static PrintWriter pw; ////////////////////////////////////Code Start///////////////////////////////////////////////// public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; sc = new InputReader(inputStream); pw = new PrintWriter(outputStream); solve(); pw.close(); } public static void solve() { int t=s(0); while(t-->0){ int n=s(0); int a[]=new int[n]; feedArr(a); HashSet<Integer> set=new HashSet<>(); for(int i=0;i<n;i++){ set.add(a[i]); } ArrayList<Integer> arr=new ArrayList<>(); for(int i=0;i<n;i++){ arr.add(a[i]); if(set.contains(a[i]+1)==false){ arr.add(a[i]+1); set.add(a[i]+1); } else{ int x=a[i]; while(set.contains(x)==true){ x++; } arr.add(x); set.add(x); } } boolean f=true; for(int i=0;i<arr.size();i++){ if(arr.get(i)>2*n){ f=false; } } if(f){ for(int i=0;i<arr.size();i++){ System.out.print(arr.get(i)+" "); } System.out.println(); } else{ System.out.println("-1"); } } } ////////////////////////////////////Code End////////////////////////////////////////////////// static int LowerBound(ArrayList<Integer> a, int x) { int l=-1,r=a.size(); while(l+1<r) { int m=(l+r)>>>1; if(a.get(m)>=x) r=m; else l=m; } return r; } static int UpperBound(int a[], int x) { int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]<=x) l=m; else r=m; } return l+1; } public static String sortString(String inputString) { char tempArray[] = inputString.toCharArray(); Arrays.sort(tempArray); return new String(tempArray); } public static long atMostK(char []chrr, int k){ if(k<0) return 0; int l=0,cnt=0; long ans=0l; for(int i=0;i<chrr.length;i++){ if(chrr[i]=='1') cnt++; while(cnt>k){ if(chrr[l++]=='1') cnt--; } ans+=(long)(i-l)+1l; } return ans; } public static int ask(int l, int r){ System.out.println("? "+l+" "+r); System.out.flush(); return sc.nextInt(); } public static void sort(long []arr){ ArrayList<Long> list=new ArrayList<>(); for(int i=0;i<arr.length;i++) list.add(arr[i]); Collections.sort(list); for(int i=0;i<arr.length;i++) arr[i]=list.get(i); } public static void swap(char []chrr, int i, int j){ char temp=chrr[i]; chrr[i]=chrr[j]; chrr[j]=temp; } public static int countSetBits(int n){ int a=0; while(n>0){ a+=(n&1); n>>=1; } return a; } static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static long gcd(long a, long b) { if (b == 0) return a; return a>b?gcd(b, a % b):gcd(a, b % a); } static long fast_pow(long base,long n,long M){ if(n==0) return 1; if(n==1) return base; long halfn=fast_pow(base,n/2,M); if(n%2==0) return ( halfn * halfn ) % M; else return ( ( ( halfn * halfn ) % M ) * base ) % M; } static long modInverse(long n,long M){ return fast_pow(n,M-2,M); } public static int s(int n){ return sc.nextInt(); } public static long s(long n){ return sc.nextLong(); } public static String s(String n){ return sc.next(); } public static double s(double n){ return sc.nextDouble(); } public static void p(int n){ pw.print(n); } public static void p(long n){ pw.print(n); } public static void p(String n){ pw.print(n); } public static void p(double n){ pw.print(n); } public static void pln(int n){ pw.println(n); } public static void pln(long n){ pw.println(n); } public static void pln(String n){ pw.println(n); } public static void pln(double n){ pw.println(n); } public static void feedArr(long []arr){ for(int i=0;i<arr.length;i++) arr[i]=sc.nextLong(); } public static void feedArr(double []arr){ for(int i=0;i<arr.length;i++) arr[i]=sc.nextDouble(); } public static void feedArr(int []arr){ for(int i=0;i<arr.length;i++) arr[i]=sc.nextInt(); } public static void feedArr(String []arr){ for(int i=0;i<arr.length;i++) arr[i]=sc.next(); } public static String printArr(int []arr){ StringBuilder sbr=new StringBuilder(); for(int i:arr) sbr.append(i+" "); return sbr.toString(); } public static String printArr(long []arr){ StringBuilder sbr=new StringBuilder(); for(long i:arr) sbr.append(i+" "); return sbr.toString(); } public static String printArr(String []arr){ StringBuilder sbr=new StringBuilder(); for(String i:arr) sbr.append(i+" "); return sbr.toString(); } public static String printArr(double []arr){ StringBuilder sbr=new StringBuilder(); for(double i:arr) sbr.append(i+" "); return sbr.toString(); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
I=input for _ in[0]*int(I()): n=2*int(I());a=[];b=*map(int,I().split()),;c={*range(n+1)}-{*b};i=1 try: for x in b:y=min(c-{*range(x)});c-={y};a+=x,y;i+=2 except:a=-1, print(*a)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while (t-- > 0) { int n; cin >> n; int ar[n]; unordered_map<int, int> umap; for (int i = 0; i < n; i++) { cin >> ar[i]; umap[ar[i]] = 1; } int ans[2 * n]; int k = 0; int flag1 = 0; for (int i = 0; i < n; i++) { int flag = 0; for (int j = ar[i] + 1; j <= (2 * n); j++) { if (umap.find(j) == umap.end()) { ans[k] = ar[i]; ans[k + 1] = j; umap[j] = 1; flag = 1; k += 2; break; } } if (flag == 0) { flag1 = 1; break; } } if (flag1 == 1) { cout << "-1\n"; } else { for (int i = 0; i < 2 * n; i++) { if (i == (2 * n) - 1) { cout << ans[i] << "\n"; } else { cout << ans[i] << " "; } } } umap.clear(); } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
t=int(input()) for i in range(t): n=int(input()) ans=[] l=[int(i) for i in input().split()] unl=[] for i in range(1,2*n+1): if i not in l: unl.append(i) #print(l,unl) ok=True for i in range(2*n): if i%2==0: ans.append(l[i//2]) else: for i in range(len(unl)): if unl[i]>ans[-1]: ans.append(unl[i]) unl[i]=0 break else: ok=False print(-1) break if ok==True: print(*ans)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> #pragma GCC optimize("O2") using namespace std; signed main() { long long nn; cin >> nn; while (nn--) { long long n; cin >> n; vector<long long> vec(n + 1); vector<long long> res(2 * n + 1); vector<long long> vissited(2 * n + 1, 0); for (long long i = 1; i <= n; ++i) { cin >> vec[i]; res[2 * i - 1] = vec[i]; vissited[vec[i]] = 1; } bool ctr = 0; for (long long j = 1; j <= n; ++j) { long long cur = vec[j] + 1; while (cur <= 2 * n and vissited[cur] == 1) cur++; if (cur == 2 * n + 1) { cout << -1 << "\n"; ctr = 1; break; } vissited[cur] = 1; res[2 * j] = cur; } if (ctr) continue; for (long long k = 1; k <= 2 * n; ++k) { cout << res[k] << " "; } cout << "\n"; } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
from math import * from collections import * t = int(input()) for y in range(t): n = int(input()) a = list(map(int,input().split())) ch = [0 for i in range(2*n+1)] b = [-1 for i in range(2*n)] for i in range(n): ch[a[i]] = 1 b[2*i] = a[i] flag = 0 for i in range(0,2*n,2): m = -1 for j in range(b[i],2*n+1): if(ch[j] == 0): ch[j] = 1 m = j break if(m == -1): flag = -1 break b[i+1] = m #print(ch) if(flag == -1): print(-1) else: for i in b: print(i,end = " ") print()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; long long int mod = 1000000007; long long int power(long long int a, long long int c) { if (c == 0) return 1; if (c % 2 == 0) { long long int m = power(a, c / 2); return (m * m) % mod; } return (a * power(a, c - 1)) % mod; } int main() { ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0); long long int t; cin >> t; for (long long int w1 = 0; w1 < t; w1++) { long long int n; cin >> n; long long int a[n]; map<long long int, long long int> m; for (long long int i = 0; i < n; i++) { cin >> a[i]; m[a[i]]++; } vector<long long int> v; for (long long int i = 0; i < n; i++) { for (long long int j = a[i]; j <= 2 * n; j++) { if (m[j] == 0) { v.push_back(a[i]); v.push_back(j); m[j]++; break; } } } if (v.size() != 2 * n) cout << -1 << endl; else { for (long long int i = 0; i < v.size(); i++) cout << v[i] << " "; cout << endl; } } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.*; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; public class Two { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); int t; t = in.nextInt(); //t = 1; while (t > 0) { solver.call(in,out); t--; } out.close(); } static class TaskA { public void call(InputReader in, PrintWriter out) { int n , a=0 ,b =0; n = in.nextInt(); int[] arr = new int[n]; int[] array = new int[2*n+1]; ArrayList<Integer> arrayList = new ArrayList<>(); for (int i = 0; i < n; i++) { arr[i] = in.nextInt(); array[arr[i]]++; if(arr[i]==2*n) a++; if(arr[i]==1) b++; } if(a!=0 || b==0){ out.println(-1); } else{ for (int i = 0; i < n; i++) { arrayList.add(arr[i]); for (int j = arr[i]+1; j <array.length ; j++) { if(array[j]==0){ arrayList.add(j); array[j]++; break; } } } if(arrayList.size()==2*n){ for (int i=0;i<arrayList.size();i++) out.print(arrayList.get(i)+" "); out.println(); } else out.println(-1); } } } static class answer implements Comparable<answer>{ int a, b; public answer(int a, int b) { this.a = a; this.b = b; } @Override public int compareTo(answer o) { return this.a - o.a; } } static long lcm(long a , long b){ return (a/gcd(a,b)) *b; } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static final Random random=new Random(); static void shuffleSort(int[] arr) { int n = arr.length; for (int i=0; i<n; i++) { int a=random.nextInt(n), temp=arr[a]; arr[a]=arr[i]; arr[i]=temp; } Arrays.sort(arr); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong(){ return Long.parseLong(next()); } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
''' @sksshivam007 - Template 1.0 ''' import sys, re, math from collections import deque, defaultdict, Counter, OrderedDict from math import ceil, sqrt, hypot, factorial, pi, sin, cos, radians from heapq import heappush, heappop, heapify, nlargest, nsmallest def STR(): return list(input()) def INT(): return int(input()) def MAP(): return map(int, input().split()) def LIST(): return list(map(int, input().split())) def list2d(a, b, c): return [[c] * b for i in range(a)] def sortListWithIndex(listOfTuples, idx): return (sorted(listOfTuples, key=lambda x: x[idx])) def sortDictWithVal(passedDic): temp = sorted(passedDic.items(), key=lambda kv: (kv[1], kv[0]))[::-1] toret = {} for tup in temp: toret[tup[0]] = tup[1] return toret def sortDictWithKey(passedDic): return dict(OrderedDict(sorted(passedDic.items()))) INF = float('inf') mod = 10 ** 9 + 7 t = INT() while(t!=0): n = INT() b = LIST() if((1 not in b) or (2*n in b)): print(-1) else: left = [] for i in range(1, 2*n+1): if(i not in b): left.append(i) left.sort() final = [] # print(left) for i in range(n): flag = 0 for j, el in enumerate(left): if(el>b[i]): final.append(b[i]) final.append(el) flag = 1 break if(flag==1): left.pop(j) else: break if(flag==0): print(-1) else: print(*final) t-=1 ''' 1 2 3 4 5 6 7 8 1 5 2 6 3 7 4 8 '''
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> template <typename T> std::istream& operator>>(std::istream& input, std::vector<T>& v) { for (T& a : v) input >> a; return input; } void no_answer() { std::cout << -1 << '\n'; } void answer(const std::vector<unsigned>& v) { const char* separator = ""; for (const unsigned x : v) { std::cout << separator << x; separator = " "; } std::cout << '\n'; } void solve(const std::vector<unsigned>& b) { const size_t n = b.size(); std::set<unsigned> s; for (unsigned x = 1; x <= 2 * n; ++x) s.insert(x); for (const unsigned x : b) s.erase(x); std::vector<unsigned> a(2 * n); for (size_t i = 0; i < n; ++i) { const auto it = s.upper_bound(b[i]); if (it == s.cend()) return no_answer(); a[2 * i + 0] = b[i]; a[2 * i + 1] = *it; s.erase(it); } answer(a); } void test_case() { size_t n; std::cin >> n; std::vector<unsigned> b(n); std::cin >> b; solve(b); } int main() { size_t t; std::cin >> t; while (t-- > 0) test_case(); return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.util.Arrays; import java.util.Scanner; public class C_623 { public static void main(String[] args){ Scanner in = new Scanner(System.in); int q = in.nextInt(); for(int tc=0;tc<q;tc++){ int n=in.nextInt(); int[] b = new int[n]; int[] a = new int[2*n]; int[] p = new int[2*n+1]; Arrays.fill(p, 1); for(int i=0;i<n;i++){ b[i] = in.nextInt(); a[2*i] = b[i]; p[b[i]] = 0; } for(int i=0;i<n;i++){ int j=0; for(j=a[2*i]+1;j<=2*n;j++){ if(p[j]==1){ break; } } if(j==2*n+1){ a[0] = -1; break; } a[2*i+1] = j; p[j] = 0; } if(a[0]==-1){ System.out.println(-1); } else { for (int i=0;i<2*n;i++){ System.out.print(a[i] + " "); } System.out.println(); } } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
I=input for _ in[0]*int(I()): n=2*int(I());a=[0]*n;b=a[::2]=*map(int,I().split()),;c={*range(n+1)}-{*b};i=1 try: for x in b:y=a[i]=min(c-{*range(x)});c-={y};i+=2 except:a=-1, print(*a)
PYTHON3