Search is not available for this dataset
name
stringlengths
2
112
description
stringlengths
29
13k
source
int64
1
7
difficulty
int64
0
25
solution
stringlengths
7
983k
language
stringclasses
4 values
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math from collections import defaultdict, Counter, deque INF = float('inf') def gcd(a, b): while b: a, b = b, a%b return a def primeFactor(n): if n % 2 == 0: return 2 i = 3 while (i ** 2) <= n: if n % i == 0: return i i += 1 return n def main(): n = int(input()) num1 = 2 l = math.ceil((n ** (1 / 3))) while num1 <= l: num2 = l while n % num1 == 0 and num2 <= l * l: if n % (num1 * num2) == 0: num3 = n // (num1 * num2) if num3 != 1 and num1 != num3 and num2 != num3 and num1 != num2: print('YES') print(num1, num2, num3) return num2 += 1 num1 += 1 num1 = 2 while num1 <= l: num2 = num1 + 1 while n % num1 == 0 and num2 <= l: if n % (num1 * num2) == 0: num3 = n // (num1 * num2) if num3 != 1 and num1 != num3 and num2 != num3 and num1 != num2: print('YES') print(num1, num2, num3) return num2 += 1 # print('#') num1 += 1 print('NO') return if __name__ == "__main__": t = int(input()) # t = 1 for _ in range(t): main()
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def pf(n): l =[] while n % 2 == 0: l.append(2) n = n / 2 for i in range(3,int(math.sqrt(n))+1,2): while n % i== 0: l.append(i) n = n / i if n > 2: l.append(n) return l for _ in range(input()): n = input() a = pf(n) if len(a)<3: print "NO" elif len(set(a))<3: b = list(set(a)) for i in range(len(b)): b[i] = [b[i],a.count(b[i])] b.sort(key = lambda x: x[1]) lil = n if len(b)==1 and b[0][1]<6: print "NO" elif len(b)==1 and b[0][1]>5: print "YES" l = 1 for i in range(len(a)-3): j = i+3 l *= a[i] print a[0], a[1]*a[2], l elif len(b)==2 and b[1][1]==2 and b[0][1]==1: print "NO" else: print "YES" print b[0][0], b[1][0], lil/(b[0][0]* b[1][0]) else: print "YES" b = list(set(a)) print b[0],b[1],n/(b[0]*b[1])
PYTHON
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for tin in range(int(input())): n=int(input()) f=n; k=0; for i in range(2,int(n**0.5)+1): if f%i==0 and f//i!=i: a=i; f=f//i; for j in range(i+1,int(f**0.5)+1): if f%j==0 and f//j!=j: b=j; c=f//j; k=1; print("YES"); print(a,b,c); break; if k==1: break if k==0: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
""" 1294C """ def inp(): """ For taking integer inputs. """ return(int(input())) def get_n_ints(n): """ For taking List inputs. """ result = [] i = 0 while i < n: val = input().rstrip("\n") result.append(int(val)) i += 1 return result def problem(number): seen = list() i = 2 while i*i <= number: if i not in seen: if number%i == 0: seen.append(i) number = number//i if len(seen) == 2 and number > seen[-1]: seen.append(number) print("YES") print(*(seen)) return i += 1 print("NO") n = inp() arr = get_n_ints(n) for i in range(n): problem(arr[i])
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def prime(n) : if (n <= 1) : return False if (n <= 3) : return True if (n % 2 == 0 or n % 3 == 0) : return False i = 5 while(i * i <= n) : if (n % i == 0 or n % (i + 2) == 0) : return False i = i + 6 return True t=int(input()) for i in range(t): n=int(input()) if(prime(n)): print("NO") else: flag=0 ans=[] for i in range(2,int(math.sqrt(n))+1): if(flag==1): break if(n%i)==0: if (prime(i)==False ): a=n/i for j in range(2,int(math.sqrt(i))+1): if(i%j==0 and a!=j and a!=i//j and j!=i//j): b=j c=i//j flag=1 break break elif (prime(n//i)==False ): x=n//i a=i for j in range(2,int(math.sqrt(x))+1): if(x%j==0 and a!=j and a!=x//j and j!=x//j): b=j c=x//j flag=1 break break else: flag=0 if(flag==0): print("NO") else: print("YES") print(a,b,c)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
t = int(input()) for _ in range(t): n = int(input()) ans = [-1,-1,-1] i = 2 now = 0 while i**2 <= n: if n%i == 0: ans[now] = i n//=i if now == 1:break now += 1 i += 1 if n >= 2: ans[2] = n if ans[1] != -1 and ans[2] == n and ans[1] != ans[2]: print("YES") print(*ans) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import sys import bisect as bi import math from collections import defaultdict as dd import heapq import itertools input=sys.stdin.readline from random import randint ##import numpy as np ##sys.setrecursionlimit(10**7) mo=10**9+7 def cin(): return map(int,sin().split()) def ain(): return list(map(int,sin().split())) def sin(): return input() def inin(): return int(input()) for _ in range(inin()): k=inin() d=dd(int) sq=int(math.sqrt(k))+1;c=0;ans=[];f=0 for i in range(2,sq+1): if(k%i==0): k=k//i c+=1 ans+=[i] if(c==2 and k!=1 and k not in ans): f=1 break if(f): print("YES") print(*ans,k) else:print("NO") ## if((n*(n+1)//2)%2):print("NO") ## else: ## print("YES") ## print(n//2) ## print(l[ ##def msb(n):n|=n>>1;n|=n>>2;n|=n>>4;n|=n>>8;n|=n>>16;n|=n>>32;n|=n>>64;return n-(n>>1) #2 ki power ##def pref(a,n,f): ## pre=[0]*n ## if(f==0): ##from beginning ## pre[0]=a[0] ## for i in range(1,n): ## pre[i]=a[i]+pre[i-1] ## else: ##from end ## pre[-1]=a[-1] ## for i in range(n-2,-1,-1): ## pre[i]=pre[i+1]+a[i] ## return pre ##maxint=10**24 ##def kadane(a,size): ## max_so_far = -maxint - 1 ## max_ending_here = 0 ## ## for i in range(0, size): ## max_ending_here = max_ending_here + a[i] ## if (max_so_far < max_ending_here): ## max_so_far = max_ending_here ## ## if max_ending_here < 0: ## max_ending_here = 0 ## return max_so_far ##def power(x, y): ## if(y == 0):return 1 ## temp = power(x, int(y / 2))%mo ## if (y % 2 == 0):return (temp * temp)%mo ## else: ## if(y > 0):return (x * temp * temp)%mo ## else:return ((temp * temp)//x )%mo ##for _ in range(1): ## n=inin() ## l=ain() ## d=dd(list) ## dp=dd(set) ## for k in range(n): ## i=l[k] ## dp[i].add(k) ## b=bin(i)[2:] ## c=0 ## for j in b[::-1]: ## if j=='1': ## d[c]+=[[i,k]] ## c+=1 ## key=sorted(list(d.keys()),reverse=True) ## ans=0 ## for i in key: ## va=d[i] ## va.sort(reverse=True) ## p=len(va) ## if(p!=0): ## c=0;tans=0 ## for j,po in va: ## if(po in dp[j]): ## c+=1 ## f1,f2=j,po ## tans+=j ## dp[j].remove(po) ## if(c%2==0 and c!=0): ## c-=1 ## ## ans+=tans ## print(ans,i,c,va) ## print(ans) ## ## ## ##def msb(n):n|=n>>1;n|=n>>2;n|=n>>4;n|=n>>8;n|=n>>16;n|=n>>32;n|=n>>64;return n-(n>>1) #2 ki power ##def pref(a,n,f): ## pre=[0]*n ## if(f==0): ##from beginning ## pre[0]=a[0] ## for i in range(1,n): ## pre[i]=a[i]+pre[i-1] ## else: ##from end ## pre[-1]=a[-1] ## for i in range(n-2,-1,-1): ## pre[i]=pre[i+1]+a[i] ## return pre ##maxint=10**24 ##def kadane(a,size): ## max_so_far = -maxint - 1 ## max_ending_here = 0 ## ## for i in range(0, size): ## max_ending_here = max_ending_here + a[i] ## if (max_so_far < max_ending_here): ## max_so_far = max_ending_here ## ## if max_ending_here < 0: ## max_ending_here = 0 ## return max_so_far ##def power(x, y): ## if(y == 0):return 1 ## temp = power(x, int(y / 2))%mo ## if (y % 2 == 0):return (temp * temp)%mo ## else: ## if(y > 0):return (x * temp * temp)%mo ## else:return ((temp * temp)//x )%mo ##def msb(n):n|=n>>1;n|=n>>2;n|=n>>4;n|=n>>8;n|=n>>16;n|=n>>32;n|=n>>64;return n-(n>>1) #2 ki power ##def pref(a,n,f): ## pre=[0]*n ## if(f==0): ##from beginning ## pre[0]=a[0] ## for i in range(1,n): ## pre[i]=a[i]+pre[i-1] ## else: ##from end ## pre[-1]=a[-1] ## for i in range(n-2,-1,-1): ## pre[i]=pre[i+1]+a[i] ## return pre ##maxint=10**24 ##def kadane(a,size): ## max_so_far = -maxint - 1 ## max_ending_here = 0 ## ## for i in range(0, size): ## max_ending_here = max_ending_here + a[i] ## if (max_so_far < max_ending_here): ## max_so_far = max_ending_here ## ## if max_ending_here < 0: ## max_ending_here = 0 ## return max_so_far ##def power(x, y): ## if(y == 0):return 1 ## temp = power(x, int(y / 2))%mo ## if (y % 2 == 0):return (temp * temp)%mo ## else: ## if(y > 0):return (x * temp * temp)%mo ## else:return ((temp * temp)//x )%mo
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
# cook your dish here def factor(n): a=[] for x in range(2,int(n**.5)+1): if n%x==0 and (x!=n//x): a.append([x,n//x]) return a t=int(input()) while(t): t=t-1 found=False n=int(input()) for f in range(2,int(n**.5)+1): if n%f==0: j=factor(n//f) for x in j: if x[0]!=f and x[1]!=f: print("YES") print(f,x[0],x[1]) found=True break if found: break if found==False: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math t=int(input()) while(t!=0): t-=1 a=[] c=0 n=int(input()) j=0 for i in range(2,int(math.sqrt(n))+1): if(n%i==0): a.append(i) n/=i j=i break for i in range(j+1,int(math.sqrt(n))+1): if(n%i==0): a.append(i) n/=i j=i break if(n>j and len(a)==2): c=1 a.append(int(n)) if(c==1): print("YES") print(a[0],a[1],a[2]) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from sys import stdin,stdout def main(): t = int(input()) for z in range(t): n = int( input() ) i = 2 sw = 1 while i*i<n and sw: if n%i==0: j = 2 tmp = n // i while j*j < tmp and sw: if tmp%j==0 and j!=i and (tmp//j)!=i: print("YES") print(i,j,tmp//j) sw = 0 j += 1 i += 1 if sw: print("NO") if __name__ == "__main__": main()
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
t = int(input()) for i in range(t): n = int(input()) a = 1 for i in range(2,1001): if n % i == 0: a = i break if a == 1: print("NO") continue n //= a b = 1 c = 1 for i in range(a+1,int(n**0.5)+1): if n % i == 0 and i ** 2 != n: b = i c = n // i break if b == 1: print("NO") continue print("YES") print(a,b,c)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math t = int(input()) for i in range(t): n = int(input()) ans = [] for j in range(2, int(math.sqrt(n)) + 1): if n % j == 0: ans.append(j) n //= j if len(ans) == 2: ans.append(n) break if len(ans) != 3: print("NO") elif ans[1] >= ans[2]: print("NO") else: print("YES") print(*ans)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from sys import stdin inp = stdin.readline t = int(inp()) for i in range(t): n = int(inp()) a = b = 0 for j in range(2, int(n**0.5) + 1): if n % j == 0: if a == 0: a = j n //= j elif b == 0: b = j n//=j break if a!= 0 and b != 0 and n != a and n!= b: print("YES") print(a,b,n) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
def else1(N): for a in range(2, int(N ** (1. / 3)) + 1): for b in range(a + 1, int((N // a) ** 0.5) + 1): c = N // a // b if a * b * c == N and c != a and c != b: print('YES') print(a, b, c) return else: print('NO') def main(): t = int(input()) for i in range(t): N = int(input()) L = [] if N ** (1./3) < 0.9: print('NO') else: else1(N) main()
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
def dividened(number,dict1): for i in range(2,int((number)**(1/2))+1): if number%i==0 and dict1.get(i)==None: dict1[i] = 1 return number//i,i,dict1 return 1,number,dict1 for _ in range(int(input())): number = int(input()) d = [] case= True dict1 = {} for i in range(2): number,op,dict1= dividened(number,dict1) if number==1 : print("NO") case = False break else: d.append(op) if dict1.get(number)==None: d.append(number) else: case = False print("NO") if case: print("YES") print(*d)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def primeFactors(n): mm=n+1 d=dict() count=0 while n % 2 == 0: count+=1 n = n // 2 if count!=0: d[2]=count # print("Intermediate n",n) for i in range(3,int(math.sqrt(n))+1,2): icount=0 while n % i== 0: # print i, n = n // i icount+=1 # print("Andar") # print("Intermediate icount",icount) if icount!=0: d[i]=icount # print("Assigned") if n > 2: # print n d[n]=1 n=mm-1 li=[] for i in d: # print(i,d[i]) li.append(i) # print(len(d)) if len(d)>=3: print("YES") num1=li[0] num2=li[1] num3=n//num1 num3=num3//num2 print(num1,num2,num3) elif len(d)==2: anss=0 for i in d: anss+=d[i] if anss>=4: print("YES") fi=li[0] se=li[1] print(fi,se,(n//fi)//se) else: print("NO") else: anss=0 for i in d: anss+=d[i] if anss>=6: print("YES") num1=li[0] num2=num1**2 num3=num1**3 print(num1,num2,(n//num1)//num2) else: print("NO") t=int(input()) for i in range(0,t): n=int(input()) primeFactors(n)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
''' =============================== -- @uthor : Kaleab Asfaw -- Handle : kaleabasfaw2010 -- Bio : High-School Student ===============================''' # Fast IO import sys import os from io import BytesIO, IOBase BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno(); self.buffer = BytesIO(); self.writable = "x" in file.mode or "r" not in file.mode; self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell(); self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0; return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)); self.newlines = b.count(b"\n") + (not b); ptr = self.buffer.tell(); self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1; return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()); self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file); self.flush = self.buffer.flush; self.writable = self.buffer.writable; self.write = lambda s: self.buffer.write(s.encode("ascii")); self.read = lambda: self.buffer.read().decode("ascii"); self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout); input = lambda: sys.stdin.readline().rstrip("\r\n") # Others # from math import floor, ceil, gcd # from decimal import Decimal as d mod = 10**9+7 def lcm(x, y): return (x * y) / (gcd(x, y)) def fact(x, mod=mod): ans = 1 for i in range(1, x+1): ans = (ans * i) % mod return ans def arr2D(n, m, default=0): lst = [] for i in range(n): temp = [default] * m; lst.append(temp) return lst def sortDictV(x): return {k: v for k, v in sorted(x.items(), key = lambda item : item[1])} def findFactor(n): lst = set() for i in range(2, int(n ** 0.5) + 1): if n % i == 0: lst.add(i) lst.add(n//i) return list(lst) def solve(n): for i in findFactor(n): for j in findFactor(i): a = j b = i // j c = n // i if a != b and b != c and a != c: print("YES") return str(a) + " " + str(b) + " " + str(c) return "NO" for _ in range(int(input())): # Multicase n = int(input()) print(solve(n))
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from math import sqrt def factorize3(n): f, s = 1, 1 for i in range(2, int(sqrt(n)) + 1): if n % i == 0: f = i n = n // i break for i in range(f + 1, int(sqrt(n)) + 1): if n % i == 0: s = i n = n // i break if s != n and f != 1 and s != 1: print("YES") print(f, s, n) else: print("NO") test_size = int(input()) for i in range(test_size): n = int(input()) factorize3(n)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from math import sqrt t = int(input()) for ti in range(t): n = int(input()) try: a = 0 b = 0 c = 0 for i in range(2,int(sqrt(n))+1): if n % i == 0: a = i break # a is 1st factor for i in range(2,int(sqrt(n/a))+1): if int(n/a) % i == 0 and i != a: b = i c = int(n/(a*b)) if c == b: raise Exception break if a == 0 or b == 0 or c == 0: raise Exception else: print("YES") print(a,b,c) except: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
""" NTC here """ import sys inp= sys.stdin.readline input = lambda : inp().strip() flush= sys.stdout.flush # import threading # sys.setrecursionlimit(10**6) # threading.stack_size(2**25) def iin(): return int(input()) def lin(): return list(map(int, input().split())) # range = xrange # input = raw_input def factors(a): fact = [] if a % 2 == 0: ch = 0 while a % 2 == 0: ch += 1 a //= 2 fact.extend([2]*ch) i = 3 while i*i <= a: if a % i == 0: ch = 0 while a % i == 0: ch += 1 a //= i fact.extend([i]*ch) i += 2 if a > 1: fact.append(a) return fact def main(): t = iin() ans = ['YES', "NO"] while t: t-=1 n = iin() fct = factors(n) if len(fct)>=3: l = len(fct) a, b= fct[0], fct[1] c = 1 if b==a: if l>3: b*=fct[2] for i in range(3, l): c *= fct[i] else: print(ans[1]) continue else: for i in range(2, l): c *= fct[i] if a!=b and b!=c and c!=a: print(ans[0]) print(a, b, c) continue print(ans[1]) main() # threading.Thread(target=main).start()
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
# A Better (than Naive) Solution to find all divisiors import math # method to print the divisors def printDivisors(n) : fact = [] # Note that this loop runs till square root i = 1 while i <= math.sqrt(n): if (n % i == 0) : # If divisors are equal, print only one if (n / i == i) : fact.append(i) else : # Otherwise print both fact.append(i) fact.append(n//i) i = i + 1 fact.sort() return fact[1:] for _ in range(int(input())): n=int(input()) f1=printDivisors(n) a=f1[0] if len(f1)==1 or len(f1)==2: print("NO") continue f2 = printDivisors(n//a) try: f2.remove(a) except: pass b = f2[0] c= n//(a*b) if (a>1 and b>1 and c>1 and a!=b and b!=c and a!=c): print("YES") print(a,b,c) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def func(N,x): val = N**0.5 val = int(val)+1 tem = 0 for i in range(x+1,val): if(N%i==0): if(N//i>1 and N//i!=i): print("YES") print(x,i,N//i) tem = 1 break if(tem==0): print("NO") for _ in range(int(input())): N = int(input()) val = N**0.5 val = int(val)+1 temp=0 for i in range(2,val): if(N%i==0): if(N//i!=i): temp=1 func(N//i,i) break if(temp==0): print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def divisorGenerator(n): large_divisors = [] for i in range(1, int(math.sqrt(n) + 1)): if n % i == 0: yield i if i*i != n: large_divisors.append(n / i) for divisor in reversed(large_divisors): yield divisor def solver(k): divs = list(divisorGenerator(k))[1:-1] if len(divs) > 0: a = int(divs[0]) second_divs = [el for el in list(divisorGenerator(k//a))[1:-1] if el > a] if len(second_divs) > 0: b = int(second_divs[0]) c = int(k // b // a) if k % (b * a) == 0 and c > b: print('yes') print(f'{a} {b} {c}') else: print('no') else: print('no') else: print('no') n = int(input()) for i in range(n): k = int(input()) solver(k)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; template <class T> using minheap = priority_queue<T, vector<T>, greater<T>>; template <typename T> void setmax(T& a, T b) { a = max(a, b); }; template <typename T> void setmin(T& a, T b) { a = min(a, b); }; int getPow(int a, int b) { int p = 1; for (int i = 0; i < b; i++) p *= a; return p; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); int t; cin >> t; while (t--) { map<int, int> fac; int n; cin >> n; int cpy = n; for (long long i = 2; i * i <= n; i++) { while (n % i == 0) { fac[i]++; n /= i; } } if (n > 1) { fac[n]++; } n = cpy; if (fac.size() == 1) { auto [p, e] = *fac.begin(); if (e < 6) { cout << "NO\n"; } else { cout << "YES\n"; cout << p << " " << p * p << " " << (n / (p * p * p)) << '\n'; } } else if (fac.size() == 2) { auto x = *fac.begin(); auto y = *fac.rbegin(); int p = x.first, e = x.second; int q = y.first, u = y.second; if (e > u) { swap(p, q); swap(e, u); } if ((e == 1 && u == 1) || (e == 1 && u == 2)) { cout << "NO\n"; } else { cout << "YES\n"; if (u == 2) { cout << q << " " << (q * p) << " " << p << '\n'; } else { cout << q << " "; cout << getPow(q, u - 1) << " "; cout << getPow(p, e) << " "; } } } else { vector<int> vals(3, 1); int i = 0; for (auto [p, e] : fac) { vals[(i++) % 3] *= getPow(p, e); } cout << "YES\n"; for (int x : vals) cout << x << " "; cout << '\n'; } } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#code by rb import math for tt in range(int(input())): nvar=int(input()) flag=False for i in range(2,int(math.sqrt(nvar))+1): if nvar%i==0: x=i yy=nvar//i for j in range(i+1,int(math.sqrt(yy))+1): if yy%j==0: y=j z=yy//j if z>=2 and z!=y and z!=x: flag=True l=[x,y,z] print("YES") print(*l) break if flag: break if flag==False: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
def findprimefactors(n): l=[] while(n%2==0): l.append(2) n//=2 for i in range(3,int(n**.5)+1,2): while(n%i==0): n//=i l.append(i) if n>2: l.append(n) return l for _ in range(int(input())): n=int(input()) k=findprimefactors(n) l=set(k) z=len(l) if z>=3: print("YES") l=list(l) prod=l[0]*l[1] prod1=1 print(*l[:2],end=" ") for i in k: prod1*=i print(prod1//prod) elif z==2: if len(k)<4: print("NO") else: prod=1 print("YES") l=list(l) prod1=1 for i in l: print(i,end=" ") prod*=i for i in k: prod1*=i print(prod1//prod) elif z==1: prod=1 if len(k)>5: print("YES") print(k[0],k[1]*k[2],end=" ") for i in k[3:]: prod*=i print(prod) else: print("NO") else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for _ in range(int(input())): n = int(input()) ok = False c = 2 while not ok and c*c*c <= n: if n % c != 0: c += 1 continue # a * b = n / c # a > b > c b = c+1 while not ok and b*b <= (n // c): if (n // c) % b != 0: b += 1 continue a = n // (c * b) if a > b: print('YES') print(a, b, c) ok = True b += 1 c += 1 if not ok: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; const int MOD = 1000000007; const int N = 1000002; const double PI = 4 * atan(1); const double eps = 1e-7; const long long oo = 1e18; vector<pair<long long, long long> > v; long long t; long long n; int main() { ios::sync_with_stdio(0); cin >> t; while (t--) { cin >> n; vector<long long> v; long long x = sqrt(n); for (int i = 2; i <= x; i++) { if (n % i == 0) { v.push_back(i); n /= i; if (v.size() == 2) break; } } if (n >= 2 && v.size() == 2 && n != v[0] && n != v[1]) { cout << "YES\n"; cout << v[0] << " " << v[1] << " " << n << endl; } else { cout << "NO\n"; } } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math for _ in range(int(input())): n = int(input()) d = set() for i in range(2, int(math.sqrt(n)) + 1): if len(d) >= 2: break if n % i == 0: d.add(i) n = n // i if len(d) < 2 or n == 1 or n in d: print("NO") else: print("YES") for t in d: print(t, end = ' ') print(n)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#C. Product of Three Numbers from math import sqrt,ceil for _ in range(int(input())): n = int(input()) uniq = set() for i in range(2,ceil(sqrt(n))): if n%i == 0 : uniq.add(i) n /= i break #print(uniq,sqrt(n)) for i in range(2,ceil(sqrt(n))): if n%i == 0 and (i not in uniq): uniq.add(i) n /= i break #print(uniq) if len(uniq)<2 or (n in uniq) or n == 1: print("NO") else: print("YES") uniq.add(int(n)) print(*uniq)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def factors(n): ret = [] while n % 2 == 0: ret.append(2) n = n // 2 for i in range(3, int(math.sqrt(n)) + 1, 2): while n % i == 0: ret.append(i) n = n // i if n > 2: ret.append(n) return ret for _ in range(int(input())): n = int(input()) pf = factors(n) s = set() if len(pf)<3: print("NO") elif len(pf)==3 and len(set(pf))==3: print("YES") l = map(str,pf) print(" ".join(l)) else: s.add(pf[0]) cnt = pf[1] i = 2 while cnt in s: cnt*=pf[i] i+=1 s.add(cnt) last = 1 while i < len(pf): last*=pf[i] i+=1 if last in s or last<=1: print("NO") else: print("YES") print("{} {} {}".format(pf[0],cnt,last))
PYTHON
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
def div(n): s = set() for i in range(2, int(n**.5)+2): if n % i == 0: s.add(i) s.add(n // i) return s t = int(input()) for _ in range(t): n = int(input()) s = list(div(n)) s.sort() if len(s) > 2: found = 0 a = b = c = 0 d = len(s) for i in range(d): for j in range(i + 1, d): if n % (s[i] * s[j]) == 0: g = n // (s[i] * s[j]) if g != s[i] and g != s[j] and g >= 2: found = 1 a = s[i] b = s[j] c = g break if found: break if found: print('YES') print(a, b, c) else: print('NO') else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from collections import defaultdict as dd def facts(x): f=set() for i in range(2,int(x**0.5)+1): if x%i==0: f.add(i) f.add(x//i) return list(f) for _ in range(int(input())): n=int(input()) fac=facts(n) if len(fac)<3: print('NO') else: have=dd(lambda:False) root=n**0.5 for x in fac: have[x]=True done=False for i in range(len(fac)): for j in range(i+1,len(fac)): x,y=fac[i],fac[j] z=n//(x*y) if z==x or z==y: continue if have[z]==True and x*y*z==n: done=True print('YES') print(x,y,z) break if done: break if not done: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def getnumbers(n): divisor=[] while n % 2 == 0: divisor.append(2), n = n / 2 # n must be odd at this point # so a skip of 2 ( i = i + 2) can be used for i in range(3,int(math.sqrt(n))+1,2): # while i divides n , print i ad divide n while n % i== 0: divisor.append(int(i)), n = n / i # Condition if n is a prime # number greater than 2 if n > 2: divisor.append(int(n)) # Initialize the variables with 1 a, b, c, size = 0, 0, 0, 0 a = b = c = 1 size = len(divisor) for i in range(size): # check for first number a if (a == 1): a = a * divisor[i] # check for second number b elif (b == 1 or b == a): b = b * divisor[i] # check for third number c else: c = c * divisor[i] # check for all unwanted condition if (a == 1 or b == 1 or c == 1 or a == b or b == c or a == c): print('NO') else: print("YES") print(a, b, c) # Driver function for i in range(int(input())): n =int(input()) getnumbers(n)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { long long t, n; cin >> t; for (int p = 0; p < t; p++) { cin >> n; vector<int> ans; for (int i = 2; i <= sqrt(n); i++) { if (ans.size() == 2) break; if (n % i == 0) { ans.push_back(i); n /= i; } } auto it = find(ans.begin(), ans.end(), n); if (it == ans.end() && (n > 1)) ans.push_back(n); if (ans.size() < 3) cout << "NO\n"; else { printf("YES\n%d %d %d\n", ans[0], ans[1], ans[2]); } } }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math as m def divisor(n): arr=[] for i in range(2,int(m.sqrt(n))+1): if n%i==0: arr.append(i) return arr t=int(input()) for _ in range(t): n=int(input()) temp=divisor(n) if temp==[]: print("NO") else: a=temp[0] n=n//temp[0] temp=divisor(n) boo=True for i in temp: if i!=a and n%i==0 and n//i!=a and n//i!=i and n//i!=1: print("YES") print(a,i,n//i) boo=False break if boo: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from math import * t = int(input()) def check(x): count = 0 flag = 0 for i in range(2,floor(sqrt(x))+1): if x%i == 0: flag = 1 break if flag!=0: for j in range(2,floor(sqrt(x/i))+1): if j!=i and (x/i)%j == 0: count = 1 break if count != 0: if x/(i*j)!=i and x/(i*j)!=1 and x/(i*j)!= j: return "YES\n"+str(i)+" "+str(j)+" "+str(int(x/(i*j))) return "NO" for _ in range(t): x = int(input()) print(check(x))
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
n=int(input()) for i in range(n): m=int(input()) c=2 p=[] while len(p)<2 and c*c<m: if m%c==0: m=m//c p.append(c) c+=1 if len(p)==2 and m not in p: print("YES") print(*p,m) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from sys import stdin,stdout for _ in range(int(stdin.readline())): n=int(stdin.readline()) # a,b,c,n=list(map(int,stdin.readline().split())) f=2;A=B=C=-1;f1=[] while f*f<=n: if n%f==0: f1+=[f] f+=1 nn=len(f1) for i in range(nn): for j in range(i+1,nn): c=n//(f1[i]*f1[j]) if c*f1[i]*f1[j]==n and c!=f1[i] and c!=f1[j]: A,B,C=f1[i],f1[j],c break if A==-1: print('NO') else: print('YES') print(A,B,C)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { long long t; cin >> t; while (t--) { long long p = 0; long long n; cin >> n; long long a, b, c; for (long long i = 2; i < sqrt(n); i++) { if (n % i == 0) { a = i; p = 1; break; } } if (p == 0) cout << "NO" << endl; else { long long x = n / a; p = 0; for (long long i = a + 1; i < sqrt(x); i++) { if (x % i == 0 && b / i != a) { cout << "YES" << endl; cout << a << " " << i << " " << x / i << endl; p = 1; break; } } if (p == 0) cout << "NO" << endl; } } }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def prf(x): a = [] b = 1 n = 2 m = int(math.sqrt(x)) # print(m) while n <= m: if x%n == 0: if not(n in a): a.append(n) elif not(n*b in a): a.append(n*b) b = 1 else: b *= n x //= n else: if n == 2: n += 1 else: n += 2 # print(a, b, x, n) if len(a) == 2 and not(x*b in a) and x*b>1: a.append(x*b) return a elif len(a) == 3: return a elif len(a) == 2: return 'NO' return 'NO' n = int(input()) for i in range(n): x = int(input()) re = prf(x) if type(re) == type('NO'): print(re) else: print('YES') print(*sorted(re))
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
def cal1(n,tmp): i = 2 while i*i<=n: if n % i == 0: if (i != n//i and i != tmp and n//i != tmp): return (tmp,i,n//i) i+=1 return (-1,0,0) def cal(n): i = 2 while i*i<=n: if n % i == 0 and n//i != i: #i, n//i res ,a,b = cal1(n//i,i) if res != -1: return (1,res,a,b) i+=1 return (0,0,0,0) for i in range(int(input())): n = int(input()) res,a,b,c = cal(n) if res == 1: print('YES') print(a,b,c) else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
def STR(): return list(input()) def INT(): return int(input()) def MAP(): return map(int, input().split()) def MAP2():return map(float,input().split()) def LIST(): return list(map(int, input().split())) def STRING(): return input() import string import sys from heapq import heappop , heappush from bisect import * from collections import deque , Counter , defaultdict from math import * from itertools import permutations , accumulate dx = [-1 , 1 , 0 , 0 ] dy = [0 , 0 , 1 , - 1] for tt in range(INT()): n = INT() x = [] c = 0 for i in range(2 , int(sqrt(n)) + 1): if n % i == 0 : x.append(i) n//= i c += 1 if c == 2 : break #print(n) if len(x) < 2 : print('NO') else: if x[0] != n and x[1] != n : x.append(n) if len(x) == 3 : print('YES') print(*x) else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math t=int(input()) for i in range(t): f=False a=-1 b=-1 c=-1 n=int(input()) primes=set() st=math.ceil(n**0.5)+1 p=[True]*(st) for i in range(2,st): if p[i]: primes.add(i) for j in range(i,st,i): p[j]=False #print(primes) for i in range(2,st): if f: break if n%i==0: a=i bc=n//i st1=math.ceil(bc**0.5)+1 if bc not in primes: for j in range(2,st1): if j==a: continue if bc%j==0 : if bc//j==a or j==bc//j: continue b=j c=bc//j f=True #print(a,b,c) break if f: print("YES") print(a,b,c) else: print("NO") #print(15*3*4115)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import sys input = sys.stdin.readline t=int(input()) import math def f(x): xr=math.ceil(math.sqrt(x)) LIST=[] for i in range(1,xr+1): if x%i==0: LIST.append(i) LIST.append(x//i) return sorted(set(LIST))[1:] for test in range(t): n=int(input()) L=f(n) A=L[0] for i in f(n): if i!=A and i*A<n and n%(i*A)==0 and n//(i*A)!=i and n//(i*A)!=A and n//(i*A)!=1: print("YES") print(A,i,n//(i*A)) break else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from collections import defaultdict as dc from heapq import * import math import bisect from collections import deque as dq def inp(): p=int(input()) return p def line(): p=list(map(int,input().split())) return p def check(n,d,x): if x<0: return 0 return n>=(x+math.ceil(d/(x+1))) def unique(a,b,c): p=set() p.add(a) p.add(b) p.add(c) if len(p)==3: return 1 return 0 def bs(a,n,z,val): l=0 r=n while(l<r): mid=(l+r)//2 if val%(a*z[mid])==0 and val//(a*z[mid])!=1: #print(a,z[mid]) if(unique(a,z[mid],val//(a*z[mid]))): return mid if val>(a*z[mid]): l=mid+1 else: r=mid-1 if val%(a*z[mid])==0 and val//(a*z[mid])!=1: if(unique(a,z[mid],val//(a*z[mid]))): return mid return -1 for _ in range(inp()): a=inp() z=[] for i in range(2,int(pow(a,0.5))+1): if a%i==0: z.append(i) if(i!=a//i): z.append(a//i) z.sort() k=0 for i in range(len(z)): l=z[i] ans=bs(l,len(z),z,a) if ans!=-1: print('YES') print(l,z[ans],a//(l*z[ans])) k=1 break if k==0: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#1294C t = int(input()) for i in range(t): n = int(input()) ans = [] for i in range(2,int(n**(2/3))+1): if len(ans) == 2: break if n%i == 0: ans.append(i) n = n//i if len(ans) == 2 and ans[1] < n: print('YES') print(*ans, n) else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for _ in range(int(input())): n=int(input()) m=n l=[] t=1 f=0 g=0 if n<8: print("NO") else: for i in range(2,int(n**0.5)+1): if n%i==0: if not l: l.append(i) f=1 break # print(l) if f==1: n=n//l[-1] for i in range(l[-1],int(n**0.5)+1): while n%i==0: if l[-1]==t*i: t=t*i else: l.append(t*i) # print(l) n=n//i g=1 break n=n//i if g==1: break if len(l)<2: # print(l) if t==1 or t==l[-1]: print("NO") else: l.append(t) m=m//(l[0]*l[1]) # print(l) if m>=2: l.append(m) s=set(l) if len(s)<len(l) or len(l)<=2: print("NO") else: print("YES") print(" ".join(map(str,l))) else: m=m//(l[0]*l[1]) if m>=2: l.append(m) # print(l) s=set(l) if len(s)<len(l) or len(l)<=2: print("NO") else: print("YES") print(" ".join(map(str,l))) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.*; public class C { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int T = sc.nextInt(); //make(T);; while (T-->0) { int N = sc.nextInt(); HashSet<Long> values = new HashSet<>(); values.add(1l); long current_i = 1 ; int sqrt = (int)Math.sqrt(N); for(int i = 2 ; i <= sqrt && values.size()<3; i++) { while (N>0 && N%i==0 && values.size()<3) { if(!values.contains(current_i)) { values.add(current_i); current_i = 1; }else { current_i*=i; N/=i; } if(N==0) break; } } if(!values.contains(current_i)) values.add(current_i); if(N > 1) values.add((long)N); values.remove(1l); if(values.size()<3) { System.out.println("NO"); }else { TreeSet<Long> set = new TreeSet<>(values); while(set.size()>3) { set.add(set.pollLast()*set.pollLast()); } StringBuilder bw = new StringBuilder(); System.out.println("YES"); for (long a : set) { bw.append(a+" "); } bw.deleteCharAt(bw.length()-1); System.out.println(bw); } } } private static boolean bf(int a) { for(int i = 2 ; i < a ;i++) { for(int j = i+1 ; j < a ;j++) { int ab = i*j; int dev = a/ab; if(a%ab==0 && dev!=i && dev>j) { return true; } } } return false; } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import sys import math from functools import reduce def getN(): return int(input()) def getNM(): return map(int, input().split()) def getList(): return list(map(int, input().split())) def getArray(intn): return [int(input()) for i in range(intn)] def input(): return sys.stdin.readline().rstrip() def factorize(n): factors = [] for i in range(2, int(math.sqrt(n) + 1)): while n % i == 0: factors.append(i) n //= i if n != 1: factors.append(n) return factors for _ in range(int(input())): n = getN() factors = factorize(n) if len(factors) < 3: print("NO") continue if factors[0] == factors[1]: factors[1] = factors[1] * factors[2] factors.pop(2) if len(factors) < 3: print("NO") continue factors[2] = reduce((lambda x, y: x * y), factors[2:]) if len(set(factors)) < 3: print("NO") continue print("YES") print(*factors[:3])
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { public static void main (String[] args) throws java.lang.Exception { // your code goes here BufferedReader buf=new BufferedReader(new InputStreamReader(System.in)); int t=Integer.parseInt(buf.readLine()); StringBuilder sb=new StringBuilder(); for(int j=0;j<t;j++) { long n=Long.parseLong(buf.readLine()); long max=(long)(Math.ceil(Math.sqrt(n))); int flag1=0,flag2=0; long a=0,b=0,c=0; for(long i=2;i<=max;i++) { if(n%i==0) { flag1=1; a=i; break; } } if(flag1==0) sb.append("NO"+"\n"); else { long r=n/a; long max2=(long)(Math.ceil(Math.sqrt(r))); for(long i=2;i<=max2;i++) { if(r%i==0 && i!=a) { flag2=1; b=i; break; } } if(flag2==0) sb.append("NO"+"\n"); else { long div=a*b; if(n%div==0) { long g=n/div; if(g!=a && g!=b && g!=1) { c=g; sb.append("YES"+"\n"+a+" "+b+" "+c+"\n"); } else sb.append("NO"+"\n"); } else sb.append("NO"+"\n"); } } } System.out.println(sb); } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { long long int t; cin >> t; while (t--) { long long int n, cp = 0; cin >> n; vector<long long int> v1; long long int i; for (i = 2; i <= sqrt(n); i++) { if (n % i == 0 && n / i != i) { v1.push_back(i); cp++; n /= i; break; } } if (!cp) cout << "NO" << endl; else { for (long long int j = sqrt(n); j > i; j--) { if (n % j == 0 && n / j != j) { v1.push_back(j); v1.push_back(n / j); break; } } if (v1.size() == 3) { cout << "YES" << endl; cout << v1[0] << " " << v1[1] << " " << v1[2] << endl; } else cout << "NO" << endl; } } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import sys from math import * input=sys.stdin.readline from math import * t=int(input()) while t>0: t-=1 n=int(input()) d={} for i in range(2,int(ceil(sqrt(n)))+1): if n%i==0: d[i]=0 while n%i==0: n//=i d[i]+=1 if n>2: d[n]=1 if len(d)>=3: a=[] for i in d: a.append(i**d[i]) a.sort(reverse=True) p=a[0] q=a[1] s=1 for k in range(2,len(a)): s*=a[k] print("YES") print(p,q,s) continue elif len(d)==2: a=[] s=0 for i in d: s+=d[i] if s<=3: print("NO") continue s=1 for i in d: a.append(i) s*=i**(d[i]-1) a.sort() p=a[0] q=a[1] print("YES") print(p,q,s) else: c=0 a=[] for i in d: if 6>d[i]>=3: a.append(i) d[i]-=1 a.append(i**(d[i])) elif d[i]>=6: a.append(i) a.append(i**2) a.append(i**(d[i]-3)) else: a.append(i**d[i]) if len(a)<3: print("NO") continue a.sort(reverse=True) p=a[0] q=a[1] s=1 for k in range(2,len(a)): s*=a[k] print("YES") print(p,q,s) continue
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
t = int(input()) import math while t: n = int(input()) s = int(math.sqrt(n) + 10) ans = [] for i in range(s)[2:]: if n % i == 0 and len(ans) < 2: ans.append(i) n //= i if len(ans) == 2 and ans[1] < n: ans.append(n) if len(ans) == 3: print("YES") print(ans[0], ans[1], ans[2], sep=' ') else: print("NO") t -= 1
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def primeFactors(n): output=[] while n % 2 == 0: output.append(2) n = n / 2 for i in range(3,int(math.sqrt(n))+1,2): while n%i==0: output.append(i) n = n / i if n > 2: output.append(int(n)) return output t=int(input()) for g in range(0,t): n=int(input()) a=primeFactors(n) a.sort() output=1 i=1 x=y=z=0 x=a[0] if(len(a)==1): output=0 if(output==1): if(a[1]!=a[0]): y=a[1] z=int(n/(x*y)) else: if(len(a)>2): y=a[1]*a[2] z=int(n/(x*y)) else: output=0 if(output==1 and z!=1 and x!=y and y!=z and x!=z): print("YES") print(x,y,z) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from __future__ import division, print_function import os import sys, math from io import BytesIO, IOBase if sys.version_info[0] < 3: from __builtin__ import xrange as range from future_builtins import ascii, filter, hex, map, oct, zip prime = [] def pp(n): while n%2 == 0: n /= 2 prime.append(2) import math k = int(math.sqrt(n)) for i in range(3, k+1): if n%i == 0: while n%i == 0: n /= i prime.append(i) if n > 2: prime.append(n) def main(): t = int(input()) while t: t -= 1 n = int(input()) prime.clear() pp(n) if len(prime) < 3: print("NO") continue ok = True a = prime[0] b = prime[1] c = 1 for i in range(2, len(prime)): c *= prime[i] if b == a: b *= prime[2] c /= prime[2] if len(prime) < 4 or c == a or c == b: print("NO") continue print("YES") c = int(c) print(a, b, c) elif b == c: print("NO") else: print("YES") c = int(c) print(a, b, c) # region fastio BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") def print(*args, **kwargs): """Prints the values to a stream, or to sys.stdout by default.""" sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout) at_start = True for x in args: if not at_start: file.write(sep) file.write(str(x)) at_start = False file.write(kwargs.pop("end", "\n")) if kwargs.pop("flush", False): file.flush() if sys.version_info[0] < 3: sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout) else: sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # endregion if __name__ == "__main__": main()
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#!/usr/bin/python3 import math di = dict() def couns(x,n): z = int(math.sqrt(n)) for i in range(x, z+2): if n%i == 0: return i return 1 def countofmul(n): #if n in di: # return di[n] li = list() i = 2 val = 0 while n >= 2: i = couns(i, n) if i != 1: li.append(i) n = n // i #print(li) if len(li) == 3: li[-2] *= li[-1] li.remove(li[-1]) if len(li) == 2: if li[0] != li[1] and li[1] != n and li[0] != n and n != 1: li.append(n) return li else: return [] return [] """ while n >= 2: i = couns(n) if i not in li and i != 1: n = int(n/i) li.append(i) if len(li) == 2: if n not in li and n != 1: li.append(n) return li else: i += 1 if i == n: return li return li """ n = int(input()) for i in range(n): x = int(input()) r = countofmul(x) #print(r) if len(r) >= 3: a = r[0] b = r[1] c = r[2] print("YES") print(a,b,c) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { long long t; cin >> t; while (t--) { long long n, i; cin >> n; vector<long long> v; map<long long, long long> mp; while (n % 2 == 0) { v.push_back(2); mp[2]++; n = n / 2; } for (i = 3; i <= sqrt(n); i = i + 2) { while (n % i == 0) { v.push_back(i); mp[i]++; n = n / i; } } if (n > 2) { v.push_back(n); mp[n]++; } if (v.size() < 6 && mp.size() == 1) cout << "NO\n"; else { if (mp.size() == 3 && v.size() == 3) { cout << "YES\n" << v[0] << " " << v[1] << " " << v[2] << endl; } else { long long ans1 = v[1], ans2 = 1; i = 2; while (ans1 == v[0]) { ans1 = ans1 * v[i]; i++; } while (i < v.size()) { ans2 = ans2 * v[i]; i++; } if (ans1 == v[0] || ans2 == v[0] || ans1 == ans2 || v[0] == 1 || ans1 == 1 || ans2 == 1) cout << "NO\n"; else cout << "YES\n" << v[0] << " " << ans1 << " " << ans2 << endl; } } } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import sys import math input = sys.stdin.readline ins = lambda: input().rstrip() ini = lambda: int(input().rstrip()) inm = lambda: map(int, input().split()) inl = lambda: list(map(int, input().split())) t = ini() for _ in range(t): n = ini() i = 2 tmp = [] while n >= i * i: if i == 5 and n % 5 == 0 and 4 in tmp: tmp.remove(4) if n % i == 0: tmp.append(i) if len(tmp) == 3: break i += 1 if len(tmp) <= 1: print("NO") elif len(tmp) >= 2: if len(tmp) == 3: y = (n / (tmp[0] * tmp[2])).is_integer() if tmp[0] * tmp[1] * tmp[2] == n: print("YES") print(tmp[0], tmp[1], tmp[2]) continue elif y and n / (tmp[0] * tmp[2]) not in tmp: print("YES") print(tmp[0], tmp[2], n // (tmp[0] * tmp[2])) continue x = (n / (tmp[0] * tmp[1])).is_integer() if x and n / (tmp[0] * tmp[1]) not in tmp: print("YES") print(tmp[0], tmp[1], n // (tmp[0] * tmp[1])) else: print("NO") else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; template <class T> void printArray(vector<T> arr) { for (T a : arr) cout << a << " "; cout << '\n'; } void printVerdict(bool verdict) { cout << (verdict ? "YES" : "NO") << '\n'; } vector<long long> findPrime(long long n) { vector<long long> ret; for (int i = 2; i * i <= n && ret.empty(); i++) { if (n % i == 0) ret.push_back(i); } if (ret.empty()) return {}; for (int i = 2; i * i <= n / ret.front(); i++) { if ((n / ret.front()) % i == 0 && i != ret.front()) { ret.push_back(i); break; } } ret.push_back((n / ret.front()) / ret.back()); if (ret.back() == ret[0] || ret.back() == ret[1]) return {}; return ret; } int main() { std::ios_base::sync_with_stdio(false); cin.tie(0); int t; cin >> t; while (t--) { long long n; cin >> n; bool verdict = true; vector<long long> ret = findPrime(n); if (ret.empty()) verdict = false; printVerdict(verdict); if (verdict) printArray(ret); } }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while (t--) { int n; cin >> n; set<int> used; for (int i = 2; i * i < n; i++) { if (n % i == 0 && !used.count(i)) { used.insert(i); n /= i; break; } } for (int i = 2; i * i < n; i++) { if (n % i == 0 && !used.count(i)) { n /= i; used.insert(i); break; } } if (used.size() < 2 || used.count(n) || n == 1) { cout << "NO" << endl; } else { cout << "YES" << endl; used.insert(n); for (auto i : used) cout << i << " "; cout << endl; } } }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int t; cin >> t; for (int tt = 0; tt < t; tt++) { int n; cin >> n; set<int> used; for (int i = 2; i * i <= n; i++) { if (n % i == 0 && !used.count(i)) { used.insert(i); n /= i; break; } } for (int i = 2; i * i <= n; i++) { if (n % i == 0 && !used.count(i)) { used.insert(i); n /= i; break; } } if (used.size() < 2 || used.count(n) || n == 1) { cout << "NO\n"; } else { cout << "YES\n"; used.insert(n); for (auto v : used) cout << v << " "; cout << '\n'; } } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.ArrayList; import java.util.List; import java.util.Scanner; import static java.lang.Math.sqrt; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); //int n = 100; List<Long> set = new ArrayList<>(); for (int i = 0; i < n; i++) { set.add(scanner.nextLong()); //set.add((long)999999901 + i); } set.forEach(number -> { int a = 0; int b = 0; int c = 0; long t = 0; int g =(int) sqrt(number); for (int i = 2; i < number / i; i++) { if (number % i == 0) { a = i; t = number / a; break; } } if (t != 0) { int h = (int)(number / a); for (int i = a + 1; i < h / i; i++) { if (t % i == 0) { b = i; break; } } } if (a != 0 && b != 0) { c = (int) (number / a) / b; if (c == a || c == b || c < 2) { System.out.println("NO"); return; } } if (a != 0 && b != 0 && c != 0) { System.out.println("YES"); System.out.println(a + " " + b + " " + c); } else { System.out.println("NO"); } }); } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
# Product of three numbers from math import * for i in range(int(input())): num = int(input()) if 2*3*4 > num: print("NO") else: a,b = 0,0 for i in range(2, int(sqrt(num))+1): if num % i == 0: a = i num //= i break for i in range(2, int(sqrt(num))+1): if num % i == 0 and i != a: b = i num//= i break if a==0 or b==0 or num==b or num ==a: print("NO") else: print("YES") print(a,b,num)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.io.*; import java.util.*; import java.lang.*; import java.awt.*; import java.awt.geom.*; import java.math.*; import java.text.*; import java.math.BigInteger.*; import java.util.Arrays; public class getbackintoit { BufferedReader in; StringTokenizer as; int nums[],nums2[]; Map<Integer,Integer > map = new HashMap<Integer, Integer>(); ArrayList < Integer > ar = new ArrayList < Integer >(); ArrayList < Long > ar2 = new ArrayList < Long >(); public static void main (String[] args) { new getbackintoit (); } public getbackintoit () { try { in = new BufferedReader (new InputStreamReader (System.in)); int a = nextInt(); for(int xx1 = 0;xx1<a;xx1++) { int times = 0; String out = ""; int b = nextInt(); for(int x = 2;x*x <b;x++) { if(b % x == 0) { out += x + " "; times++; b = b/x; } if(times == 2) { out += b; break; } } if(times ==2 ) System.out.println("YES" + '\n' + out); else System.out.println("NO"); } } catch(IOException e) { } } String next () throws IOException { while (as == null || !as.hasMoreTokens ()) { as = new StringTokenizer (in.readLine ().trim ()); } return as.nextToken (); } long nextLong () throws IOException { return Long.parseLong (next ()); } int nextInt () throws IOException { return Integer.parseInt (next ()); } double nextDouble () throws IOException { return Double.parseDouble (next ()); } String nextLine () throws IOException { return in.readLine ().trim (); } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
t = int(input()) for _ in range(t): n = int(input()) a = 2 tr = False cnt=0 ans=[] while (a*a<=n) and (cnt<2): if n%a==0: n=n//a ans.append(a) cnt+=1 a+=1 ans.append(n) if (len(ans)==3) and (ans[1] < ans[2]): print ('YES') print (*ans) else: print ('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for i in range(int(input())): from math import sqrt # Function to find the required triplets def findTriplets(x): # To store the factors fact = []; factors = set(); # Find factors in sqrt(x) time for i in range(2, int(sqrt(x))): if (x % i == 0): fact.append(i); if (x / i != i): fact.append(x // i); factors.add(i); factors.add(x // i); found = False; k = len(fact); for i in range(k): # Choose a factor a = fact[i]; for j in range(k): # Choose another factor b = fact[j]; # These conditions need to be # met for a valid triplet if ((a != b) and (x % (a * b) == 0) and (x / (a * b) != a) and (x / (a * b) != b) and (x / (a * b) != 1)): # Print the valid triplet print("YES") print(a, b, x // (a * b)); found = True; break; # Triplet found if (found): break; # Triplet not found if (not found): print("NO"); # Driver code if __name__ == "__main__": x = int(input()); findTriplets(x);
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
def petit(a,k): for i in range(a+1,int(k**0.5)+1): if k%i==0: return i, k//i return -1, -1 n = int(input()) for i in range(n): k = int(input()) a1, k2 = petit(1, k) if a1==-1: print('NO') else: a2, a3 = petit(a1,k2) if a2==-1: print('NO') elif (a2 == a3) or (a3 == a1): print('NO') else: print('YES') print(a1, a2, a3)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math as mt def func(n): a=[] while(n%2==0): a.append(2) n=n//2 for i in range(3,mt.ceil(mt.sqrt(n))+1,2): #print(i) while(n%i==0): n=n//i a.append(i) if(n>2): a.append(n) return a t=int(input()) for i in range(t): n=int(input()) C=list(func(n)) X=[] j=C[0] X.append(C[0]) h=1 k=1 #print(C) while(k<len(C) and h<=j): h=h*C[k] k+=1 X.append(h) p=1 if(k>len(C)): print("NO") else: for i in range(k,len(C)): p=p*C[i] if(p!=1 and p!=X[0] and p!=X[1]): X.append(p) if(len(set(X))==3): print("YES") print(*X) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.ArrayList; import java.util.List; import java.util.Scanner; public class App{ public static void main(String[] args) { Scanner in = new Scanner(System.in); int t = in.nextInt(); while(t-- > 0){ int n = in.nextInt(); boolean flag = true; for(int i = 2;i*i < n;i++){ if(n%i == 0){ for(int j = i+1;j*j < n/i;j++){ if((n/i)%j == 0){ flag = false; System.out.println("YES"); System.out.println(i + " " + j + " " + n/i/j); i = n; break; } } } } if(flag){ System.out.println("NO"); } } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.io.*; import java.util.*; public class Task { public static void main(String[] args) throws Exception { new Task().go(); } PrintWriter out; Reader in; BufferedReader br; Task() throws IOException { try { //br = new BufferedReader( new FileReader("input.txt") ); //in = new Reader("input.txt"); in = new Reader("input.txt"); out = new PrintWriter( new BufferedWriter(new FileWriter("output.txt")) ); } catch (Exception e) { //br = new BufferedReader( new InputStreamReader( System.in ) ); in = new Reader(); out = new PrintWriter( new BufferedWriter(new OutputStreamWriter(System.out)) ); } } void go() throws Exception { int t = in.nextInt(); //int t = 1; while (t > 0) { solve(); t--; } out.flush(); out.close(); } int inf = 2000000000; int mod = 1000000007; double eps = 0.000000001; int n; int m; ArrayList<Integer>[] g; void solve() throws IOException { int n = in.nextInt(); ArrayList<Integer> list = new ArrayList<>(); for (int i = 2; i <= Math.sqrt(n); i++) if (n % i == 0) { list.add(i); if (n / i != i) list.add(n / i); } for (int x : list) for (int y : list) if (x != y && n / x % y == 0) { int z = n / x / y; if (z > 1 && z != x && z != y) { out.println("YES"); out.println(x + " " + y + " " + z); return; } } out.println("NO"); } class Pair implements Comparable<Pair> { int a; int b; Pair(int a, int b) { this.a = a; this.b = b; } public int compareTo(Pair p) { if (a != p.a) return Integer.compare(a, p.a); else return Integer.compare(b, p.b); } } class Item { int a; int b; int c; Item(int a, int b, int c) { this.a = a; this.b = b; this.c = c; } } class Reader { BufferedReader br; StringTokenizer tok; Reader(String file) throws IOException { br = new BufferedReader( new FileReader(file) ); } Reader() throws IOException { br = new BufferedReader( new InputStreamReader(System.in) ); } String next() throws IOException { while (tok == null || !tok.hasMoreElements()) tok = new StringTokenizer(br.readLine()); return tok.nextToken(); } int nextInt() throws NumberFormatException, IOException { return Integer.valueOf(next()); } long nextLong() throws NumberFormatException, IOException { return Long.valueOf(next()); } double nextDouble() throws NumberFormatException, IOException { return Double.valueOf(next()); } String nextLine() throws IOException { return br.readLine(); } } static class InputReader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public InputReader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public InputReader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; inline long long read() { long long X = 0, w = 0; char ch = 0; while (!isdigit(ch)) { w |= ch == '-'; ch = getchar(); } while (isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar(); return w ? -X : X; } inline char power_getchar() { static char buf[200000], *p1 = buf, *p2 = buf; return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 200000, stdin), p1 == p2) ? EOF : *p1++; } inline long long _read() { long long X = 0, w = 0; char ch = 0; while (!isdigit(ch)) { w |= ch == '-'; ch = power_getchar(); } while (isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = power_getchar(); return w ? -X : X; } inline void write(long long x) { if (x < 0) putchar('-'), x = -x; if (x > 9) write(x / 10); putchar(x % 10 + '0'); } int main() { int T = read(); while (T--) { long long n = read(); bool f = false; int sq = 0; for (int i = 1; i * i * i <= n; i++) sq = i; for (int i = 2; i <= sq; i++) { int sqq = sqrt(n / i); for (int j = i + 1; j <= sqq; j++) { int tmp = n / i / j; if (n % i == 0 && (n / i) % j == 0 && (tmp != i && tmp != j) && tmp >= 2) { puts("YES"); printf("%d %d %d\n", i, j, n / i / j); f = true; break; } } if (f) break; } if (!f) puts("NO"); } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from itertools import combinations from math import sqrt for _ in range(int(input())): l=[] n=int(input()) for i in range(2,int(sqrt(n))+1): if n%i==0: if n//i!=i: l.append(i) l.append(n//i) else: l.append(i) if len(l)<3: print("NO") else: k=combinations(l,3) for i in k: if i[0]*i[1]*i[2]==n: print("YES") print(i[0],i[1],i[2]) break else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math test_cases = int(input()) def process(): n = int(input()) for a in range(2, int(math.sqrt(n)) + 1): for b in range(a + 1, int(math.sqrt(n // a)) + 1): c = n // (a * b) if a * b * c == n and c != b and c != a: print('YES') print(a, b, c) return print('NO') for i in range(test_cases): process()
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
// Working program using Reader Class // Probably fastest import java.io.DataInputStream; import java.io.FileInputStream; import java.io.IOException; import java.io.InputStreamReader; import java.util.Scanner; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Random; import java.util.StringTokenizer; import java.util.List; import java.util.Collections; import java.util.Map; import java.util.HashMap; import java.util.Comparator; import java.util.stream.IntStream; import java.util.ArrayDeque; import java.util.Set; import java.util.HashSet; import java.util.PriorityQueue; public class Main1 { private static PrintWriter out = new PrintWriter(System.out); // private static Scanner sc = new Scanner(System.in); public static void main(String[] args) { int t = fs.nextInt(); outer :while(t-->0) { List<Integer> list = new ArrayList<>(); // Set<Integer> set = new HashSet<>(); int n = fs.nextInt(); int n1 =n; int count =0; // int arr[] = new int [1001]; int res[] = new int[2]; int kl = 0; // int res[] = new int[2]; for(int i=2;i*i<=n;i++) { if(n%i==0 &&kl<2) { count++; res[kl] = i; // System.out.println(i); kl++; } while(n%i==0) { list.add(i); n/=i; } } if(n>1) { if(kl==1 && n != res[kl-1]) { res[kl] = n; count++; } list.add(n); } if(list.size()>=6) { System.out.println("YES"); int m = list.size(); int a1 = list.get(m-1); int b1 = list.get(m-2)*list.get(m-3); int c1 =1; for(int i=0;i<(m-3);i++) c1 *= list.get(i); System.out.println(a1+" "+b1+" "+c1); } else if(count>=2) { int a = res[0]; int b = res[1]; // System.out.println(a+" "+b); if(n1%(a*b)==0 && (n1/(a*b)) !=a && (n1/(a*b)) !=b && (n1/(a*b)) !=1) { System.out.println("YES"); System.out.println(a+" "+b+" "+(n1/(a*b))); } else System.out.println("NO"); } else System.out.println("NO"); } } interface Input { public String next(); public String nextLine(); public int nextInt(); public long nextLong(); public double nextDouble(); } static class StdIn implements Input { final private int BUFFER_SIZE = 1 << 16; final private int STRING_SIZE = 1 << 11; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public StdIn() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public StdIn(String filename) { try{ din = new DataInputStream(new FileInputStream(filename)); } catch(Exception e) { throw new RuntimeException(); } buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String next() { byte[] buf = new byte[STRING_SIZE]; // string length int cnt = 0, c; while((c=read())!=-1&&(c==' '||c=='\n'||c=='\r')); while (c != -1) { if (c == ' ' || c == '\n'||c=='\r') break; buf[cnt++] = (byte) c; c=read(); } return new String(buf, 0, cnt); } public String nextLine() { byte[] buf = new byte[STRING_SIZE]; // line length int cnt = 0, c; while((c=read())!=-1&&(c==' '||c=='\n'||c=='\r')); while (c != -1) { if (c == '\n'||c=='\r') break; buf[cnt++] = (byte) c; c = read(); } return new String(buf, 0, cnt); } public int nextInt() { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public int[] readIntArray(int n) { int[] ar = new int[n]; for(int i=0; i<n; ++i) ar[i]=nextInt(); return ar; } public long nextLong() { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() { try{ if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } catch(IOException e) { throw new RuntimeException(); } } public void close() throws IOException { if (din == null) return; din.close(); } } private static StdIn fs = new StdIn(); }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.*; public class C { public static void main(String[] args) { Scanner in=new Scanner(System.in); int t=in.nextInt(); for(int i=0;i<t;i++){ int n=in.nextInt(); int lasttemp=1; List<Integer> res=new ArrayList<>(); for(int temp=2;temp<=Math.sqrt(n)&&n!=1;temp++) { while (n%temp==0) { res.add(temp); n /= temp; } } if(n!=1) res.add(n); List<Integer> integers = get(res); if(integers.size()>2) { System.out.println("YES"); System.out.println(integers.get(0) + " " + integers.get(1) + " " + (integers.get(2) * (integers.size()>3?integers.get(3):1))); }else System.out.println("NO"); } } public static List<Integer> get(List<Integer> list){ List<Integer> res=new ArrayList<>(); int cur=1; int i; for(i=0;i<list.size()&&res.size()<3;i++){ cur*=list.get(i); int j=0; for(;j<res.size();j++)if(res.get(j)==cur)break; if(j==res.size()){ res.add(cur);cur=1; } } int temp=1; for(int j=i;j<list.size();j++)temp*=list.get(j); if(temp!=1) res.add(temp); return res; } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math t=int(input()) ans=[] for _ in range(t): n=int(input()) fac=[] count=0 i=2 p=0 z=math.sqrt(n) while count!=2 and i<z: if n%i==0: p=1 fac.append(str(i)) n=n//i count+=1 i+=1 if str(n) not in fac and len(fac)==2: ans.append("YES") fac.append(str(n)) ans.append(' '.join(fac)) else: ans.append("NO") for i in ans: print(i)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def isPrime(n) : # Corner cases if (n <= 1) : return False if (n <= 3) : return True # This is checked so that we can skip # middle five numbers in below loop if (n % 2 == 0 or n % 3 == 0) : return False i = 5 while(i * i <= n) : if (n % i == 0 or n % (i + 2) == 0) : return False i = i + 6 return True def print_factors(x): num=0 fac=1 li=[] tri=x for i in range(2, int(math.sqrt(x))+1): if tri % i == 0: num+=1 fac = fac*i li.append(i) tri = tri/i if(num==2): break if(x%fac==0): if(int(x/fac)>i): li.append(int(x/fac)) return li isp= False num = int(input()) for i in range(num): lis=[] a = int(input()) if(a>=2): isp = isPrime(a) if(isp==True): print("NO") else: #print("YES") lis = print_factors(a) if(len(lis)==3): print("YES") for i in range(2): print(lis[i],end=" ") print(lis[i+1]) else: print("NO") else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def isPrime(n): for i in range(2,n): if n % i: return False return True t = int(input()) for _ in range(t): n = int(input()) if isPrime(n): print("NO") else: ip = False i = 0 for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: if not isPrime(n // i): ip = True break if ip: ip = False for j in range(i+1,int(math.sqrt(n//i)) + 1): if (n // i) % j == 0: ip = True a = i b = j c = (n//i)//j break if ip and (a !=b and b !=c and a != c): print("YES") print(a,b,c) else: print("NO") else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.*; import java.lang.*; import java.io.*; public class d { public static void main (String[] args) { PrintWriter pw=new PrintWriter(System.out); Scanner sc=new Scanner(System.in); int t=sc.nextInt(); for(int i=0;i<t;i++){ int n=sc.nextInt(); int s1=0,s2=0,s3=0,f=0,r=0; int[] a=new int[3]; for(int k=2;k<Math.sqrt(n);k++){ if(n%k==0){ s1=k; r=n/k; for(int k1=k+1;k1<Math.sqrt(r);k1++){ if((r)%k1==0){ s2=k1; s3=(r)/k1; f=1; k=n; break; } } } } if(f==1){ pw.println("YES"); pw.println(s1+" "+s2+" "+s3);} else pw.println("NO"); } pw.close(); } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from sys import stdin inp = (s.rstrip() for s in stdin).__next__ def mpint(): return map(int, inp().split()) # sieve N = int(1e5) is_prime = [True] * (N + 1) # have 0 is_prime[0] = is_prime[1] = False prime = [] for n in range(2, N + 1): if is_prime[n]: prime.append(n) for p in prime: if n * p > N: # Index out of range break is_prime[p * n] = False # print("%d*%d = %d" % (p, n, p*n)) if n % p == 0: break # print(prime) def f(): global n if len(ans) == 2: return for p in prime: if p*p > n: return if n % p == 0: n //= p ans.append(p) return f() for case in range(int(inp())): n = int(inp()) ans = [] f() if len(ans) <= 1: print("NO") continue if ans[0] == ans[1]: for p in range(2, int(n**0.5)+1): if n % p == 0: n //= p ans[1] *= p break if len(set(ans + [n])) == 3: print("YES") print(*ans, n) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.math.*; import java.io.*; import java.util.*; import java.awt.*; public class CP { public static void main(String[] args) throws Exception { new Solver().solve(); } } class Solver { final Helper hp; final int MAXN = 1000_006; final long MOD = (long) 1e9 + 7; Solver() { hp = new Helper(MOD, MAXN); hp.initIO(System.in, System.out); } void solve() throws Exception { int i, j, k; for (int tc = hp.nextInt(); tc > 0; --tc) { long N = hp.nextLong(); hp.println(factorise(N)); } hp.flush(); } String factorise(final long N) { Random rnd = new Random(); for (int t = 30; t > 0; --t) { long[] prod = new long[] {1, 1, 1}; long i, n = N; for (i = 2; i * i <= n; ++i) if (n % i == 0) { while (n % i == 0) { prod[rnd.nextInt(3)] *= i; n /= i; } } if (n > 1) prod[rnd.nextInt(3)] *= n; Arrays.sort(prod); if (hp.min(prod) > 1 && prod[0] < prod[1] && prod[1] < prod[2]) { return "YES\n" + hp.joinElements(prod); } } return "NO"; } } class Helper { final long MOD; final int MAXN; final Random rnd; public Helper(long mod, int maxn) { MOD = mod; MAXN = maxn; rnd = new Random(); } public static int[] sieve; public static ArrayList<Integer> primes; public void setSieve() { primes = new ArrayList<>(); sieve = new int[MAXN]; int i, j; for (i = 2; i < MAXN; ++i) if (sieve[i] == 0) { primes.add(i); for (j = i; j < MAXN; j += i) { sieve[j] = i; } } } public static long[] factorial; public void setFactorial() { factorial = new long[MAXN]; factorial[0] = 1; for (int i = 1; i < MAXN; ++i) factorial[i] = factorial[i - 1] * i % MOD; } public long getFactorial(int n) { if (factorial == null) setFactorial(); return factorial[n]; } public long ncr(int n, int r) { if (r > n) return 0; if (factorial == null) setFactorial(); long numerator = factorial[n]; long denominator = factorial[r] * factorial[n - r] % MOD; return numerator * pow(denominator, MOD - 2, MOD) % MOD; } public long[] getLongArray(int size) throws Exception { long[] ar = new long[size]; for (int i = 0; i < size; ++i) ar[i] = nextLong(); return ar; } public int[] getIntArray(int size) throws Exception { int[] ar = new int[size]; for (int i = 0; i < size; ++i) ar[i] = nextInt(); return ar; } public String[] getStringArray(int size) throws Exception { String[] ar = new String[size]; for (int i = 0; i < size; ++i) ar[i] = next(); return ar; } public String joinElements(long[] ar) { StringBuilder sb = new StringBuilder(); for (long itr : ar) sb.append(itr).append(" "); return sb.toString().trim(); } public String joinElements(int[] ar) { StringBuilder sb = new StringBuilder(); for (int itr : ar) sb.append(itr).append(" "); return sb.toString().trim(); } public String joinElements(String[] ar) { StringBuilder sb = new StringBuilder(); for (String itr : ar) sb.append(itr).append(" "); return sb.toString().trim(); } public String joinElements(Object[] ar) { StringBuilder sb = new StringBuilder(); for (Object itr : ar) sb.append(itr).append(" "); return sb.toString().trim(); } public long gcd(long a, long b) { return b == 0 ? a : gcd(b, a % b); } public int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } public long max(long[] ar) { long ret = ar[0]; for (long itr : ar) ret = Math.max(ret, itr); return ret; } public int max(int[] ar) { int ret = ar[0]; for (int itr : ar) ret = Math.max(ret, itr); return ret; } public long min(long[] ar) { long ret = ar[0]; for (long itr : ar) ret = Math.min(ret, itr); return ret; } public int min(int[] ar) { int ret = ar[0]; for (int itr : ar) ret = Math.min(ret, itr); return ret; } public long sum(long[] ar) { long sum = 0; for (long itr : ar) sum += itr; return sum; } public long sum(int[] ar) { long sum = 0; for (int itr : ar) sum += itr; return sum; } public void shuffle(int[] ar) { int r; for (int i = 0; i < ar.length; ++i) { r = rnd.nextInt(ar.length); if (r != i) { ar[i] ^= ar[r]; ar[r] ^= ar[i]; ar[i] ^= ar[r]; } } } public void shuffle(long[] ar) { int r; for (int i = 0; i < ar.length; ++i) { r = rnd.nextInt(ar.length); if (r != i) { ar[i] ^= ar[r]; ar[r] ^= ar[i]; ar[i] ^= ar[r]; } } } public long pow(long base, long exp, long MOD) { base %= MOD; long ret = 1; while (exp > 0) { if ((exp & 1) == 1) ret = ret * base % MOD; base = base * base % MOD; exp >>= 1; } return ret; } static byte[] buf = new byte[2048]; static int index, total; static InputStream in; static BufferedWriter bw; public void initIO(InputStream is, OutputStream os) { try { in = is; bw = new BufferedWriter(new OutputStreamWriter(os)); } catch (Exception e) { } } public void initIO(String inputFile, String outputFile) { try { in = new FileInputStream(inputFile); bw = new BufferedWriter(new OutputStreamWriter( new FileOutputStream(outputFile))); } catch (Exception e) { } } private int scan() throws Exception { if (index >= total) { index = 0; total = in.read(buf); if (total <= 0) return -1; } return buf[index++]; } public String next() throws Exception { int c; for (c = scan(); c <= 32; c = scan()) ; StringBuilder sb = new StringBuilder(); for (; c > 32; c = scan()) sb.append((char) c); return sb.toString(); } public int nextInt() throws Exception { int c, val = 0; for (c = scan(); c <= 32; c = scan()) ; boolean neg = c == '-'; if (c == '-' || c == '+') c = scan(); for (; c >= '0' && c <= '9'; c = scan()) val = (val << 3) + (val << 1) + (c & 15); return neg ? -val : val; } public long nextLong() throws Exception { int c; long val = 0; for (c = scan(); c <= 32; c = scan()) ; boolean neg = c == '-'; if (c == '-' || c == '+') c = scan(); for (; c >= '0' && c <= '9'; c = scan()) val = (val << 3) + (val << 1) + (c & 15); return neg ? -val : val; } public void print(Object a) throws Exception { bw.write(a.toString()); } public void printsp(Object a) throws Exception { print(a); print(" "); } public void println() throws Exception { bw.write("\n"); } public void println(Object a) throws Exception { print(a); println(); } public void flush() throws Exception { bw.flush(); } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from functools import reduce def is_prime(n): if n == 1: return False i = 2 while i*i <= n: if n % i == 0: return False i += 1 return True def factors(n): return set(reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))) t = int(input()) while(t): t-=1 n = int(input()) b=True l=[] if is_prime(n): print("NO") continue elif int(n**0.5)==n**0.5: if is_prime(n**0.5): print("NO") continue elif int(n**0.25)==n**0.25: if is_prime(n**0.25): print("NO") continue for i in range(2,int(n**0.5)+1): if n%i==0: n = int(n/i) s = sorted(list(factors(n))) if 1 in s: s.pop(s.index(1)) if n in s: s.pop(s.index(n)) if len(s)>1: for ii in range(len(s)): if s[ii]>i: j=s[ii] k=s[len(s)-ii-1] if j!=k and i!=k: l.append(i) l.append(j) l.append(k) print("YES") print(*l) b=False break if not b: break if b: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
n = int(input()) def f(a): q = a x = 0 y = 0 z = 0 for i in range(2, a): if i * i > a: break if a % i == 0: x = i break if x == 0: return 'NO' else: a = a // x for i in range(2, a): if i * i > a: break if i != x and a % i == 0: y = i break if y == 0: return 'NO' else: z = a//y if z != y and z != x and y != x and x * y * z == q: return 'YES' + '\n' + str(x) + ' ' + str(y) + ' ' + str(z) return 'NO' for i in range(n): a = int(input()) print(f(a))
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for _ in range(int(input())): n=int(input()) y=0 for i in range(2,int(n**0.5)+1): if n%i==0: x=n//i for j in range(i+1,int(n**0.5)+1): if x%j==0: if x//j!=i and (x//j)>1 and (x//j)!=j: print("YES") print(i,j,n//(i*j)) y=1 break if y==1: break if y==0: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math for _ in range(int(input())): t = n = int(input()) dels = [] sq = int(math.sqrt(n)) d = 2 while d <= sq: if n % d != 0: d += 1 else: dels.append(d) n //= d sq = int(math.sqrt(n)) dels.append(n) a = dels[0] b = 1 i = 1 while i < len(dels) and b <= a: b *= dels[i] i += 1 a, b, c = sorted([a, b, t // (a * b)]) # print(dels, '\n', a, b, c) if (a > 1) and (a < b < c): print('YES') print(a, b, t // (a * b)) else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math test=int(input()) for i in range(test): n=int(input()) count=0 j=2 temp=n ans=[] r=math.ceil(math.sqrt(n)) while count<2 and j<r: if n%j==0: count+=1 n//=j ans.append(j) j+=1 if count==0 or count<2: print('NO') else: s=1 for i in ans: s*=i if temp//s not in ans: print('YES') print(*ans,temp//s) else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#https://codeforces.com/problemset/problem/1294/C from math import sqrt for _ in range(int(input())): n=int(input()) f=0 for i in range(2,int(sqrt(n))+1): if n%i==0: if n//i != i: t=n//i for j in range(2,int(sqrt(t))+1): if t%j==0: if t//j !=j: if i!=j and i!=t//j: print('YES') print(i,j,t//j) f=1 break if f: break if not f: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import sys # inf = open('input.txt', 'r') # reader = (line.rstrip() for line in inf) reader = (line.rstrip() for line in sys.stdin) input = reader.__next__ t = int(input()) for _ in range(t): n = int(input()) primes = {} if not n & 1: primes[2] = 0 while not n & 1: n >>= 1 primes[2] += 1 f = 3 lim = int(n ** 0.5) + 1 while f < lim and f <= n: if n % f == 0: primes[f] = 0 while n % f == 0: n //= f primes[f] += 1 f += 2 if n > 1: primes[n] = 1 if len(primes) > 2: ans = [] f = 1 i = 0 for i, (k, p) in enumerate(primes.items()): f *= pow(k, p) if i < 2: ans.append(f) f = 1 ans.append(f) print('YES') print(*ans) elif len(primes) == 1: for k, p in primes.items(): if p > 5: ans = [k, k * k, pow(k, p-3)] print('YES') print(*ans) else: print('NO') else: powers = sum(primes.values()) if powers > 3: fs = [] for k, p in primes.items(): fs.extend([k] * p) ans = [] if fs[0] != fs[1]: ans.append(fs[0]) ans.append(fs[1]) rest = 2 else: ans.append(fs[0]) ans.append(fs[1] * fs[2]) rest = 3 c = 1 for f in fs[rest:]: c *= f ans.append(c) print('YES') print(*ans) else: print('NO') # inf.close()
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
rr= lambda: input().strip() rri= lambda: int(rr()) rrm= lambda: [int(x) for x in rr().split()] def fact(n): res=[] for i in range(2, int(n**.5)+1): if n%i==0: res.append(i) res.append(n//i) if (int(n**.5)**2==n): res.pop() return res def sol(): n=rri() f=fact(n) #print(f) if (len(f)<3): print("NO") return f.sort() a=f[0] d=n//a for i in range(1, len(f)): for j in range(i+1, len(f)): if f[i]*f[j]==d: print("YES") print (a, f[i], f[j]) return print("NO") return t=rri() for _ in range(t): #a,b,c=rrm() sol() #print(ans)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import sys input=sys.stdin.readline t=int(input()) import math from functools import reduce def factors(n): return set(reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))) for i in range(t): n=int(input()) ffactor=(factors(n)) #print(ffactor) ffactor2=list(set(ffactor)) ffactor2.sort() ok=False #print(ffactor2) for i in range(len(ffactor2)): for j in range(i+1,len(ffactor2)): for k in range(j+1,len(ffactor2)): if ffactor2[i]>=2 and ffactor2[j]>=2 and ffactor2[k]>=2: if ffactor2[i]*ffactor2[j]*ffactor2[k]==n: ok=True f=ffactor2[i] s=ffactor2[j] t=ffactor2[k] break if ok==True: break if ok==True: break if ok==True: print("YES") print(int(f),int(s),int(t)) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def primeFactors(n): ar = [] while n % 2 == 0: ar.append(2) n = n / 2 for i in range(3, int(math.sqrt(n))+1, 2): while n % i == 0: ar.append(i) n = n / i if n > 2: ar.append(n) return ar for _ in xrange(input()): n = input() ar = primeFactors(n) ar.sort() ans = [] if len(ar) < 3: print "NO" continue ans.append(ar.pop(0)) if ar[0] in ans: ans.append(ar[0]*ar[1]) ar = ar[2:] if len(ar) == 0: print "NO" else: pr = 1 for x in ar: pr = pr*x if pr in ans: print "NO" else: print "YES" ans.append(pr) print " ".join(str(x) for x in ans) else: ans.append(ar.pop(0)) if len(ar) == 0: print "NO" else: pr = 1 for x in ar: pr = pr*x if pr in ans: print "NO" else: print "YES" ans.append(pr) print " ".join(str(x) for x in ans)
PYTHON
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Scanner; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, Scanner in, PrintWriter out) { int t = in.nextInt(); while (t-- > 0) { solve(in, out); } } private void solve(Scanner in, PrintWriter out) { int n = in.nextInt(); int N = n; int a = 1; int b = 1; int c = 1; int sqrt = (int) Math.sqrt(1_000_000_000) + 1; for (int i = 2; i <= sqrt; i++) { if (n % i == 0) { a = i; n /= i; break; } } if (a == 1) { out.println("NO"); return; } for (int i = 2; i <= sqrt; i++) { if (i != a) { if (n % i == 0) { b = i; n /= i; break; } } } if (b == 1) { out.println("NO"); return; } c = n; if (c == 1) { out.println("NO"); return; } if (a == b || b == c || a == c) { out.println("NO"); return; } if (a * b * c == N) { out.println("YES"); out.println(a + " " + b + " " + c); return; } out.println("NO"); } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
t=int(input()) li=[] def p2(m,a): for i in range(2,int(m**(0.5))+1): if (int(m/i)==m/i)and(i!=m/i!=a)and(i!=a): return [int(i),int(m/i)] return "no" for i in range(t): li=li+[int(input())] for k in li: if p2(k,1)!="no": l=p2(k,1) if p2(l[0],l[1])!="no": print("YES") print(l[1],p2(l[0],l[1])[0],(p2(l[0],l[1])[1])) elif p2(l[1],l[0])!="no": print("YES") print(l[0],p2(l[1],l[0])[0],(p2(l[1],l[0])[1])) else: print("NO") else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math t=int(input()) for _ in range(0,t): n=int(input()) z=int(math.sqrt(n))+10 a=[] for i in range(2,z+1): if n%i==0: n=n//i a.append(i) if len(a)==2: break if len(a)==2 and n!=1: if n not in a: print("YES") print(a[0],a[1],n) else: print("NO") else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def solve(n): root=int(math.sqrt(n)) a=-1 b=-1 c=0 i=2 while(i<=root): if(n%i==0): a=i n=n/i break i=i+1 root=int(math.sqrt(n)) i=2 while(i<=root): if(n%i==0 and i!=a and n/i!=a and i!=n/i): b=i c=int(n/i) break i=i+1 if(a==-1 or b==-1): print("NO") else: output="{0} {1} {2}" print("YES") print(output.format(a,b,c)) t=int(input()) while(t>=1): n=int(input()) solve(n) t=t-1
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for i in range(int(input())): n = int(input()) abc = [] x = 2 while len(abc) < 2 and x*x < n: if n % x == 0: abc.append(x) n //= x x += 1 if len(abc) == 2 and n not in abc: print('YES') print(*abc, n) else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.util.*; import java.io.*; public class Main { public static void main(String args[]) { InputReader obj = new InputReader(System.in); int t = obj.nextInt(); while(t-->0) { int n=obj.nextInt(); boolean chk1=false; for(int i=2;i<Math.sqrt(n);i++) { boolean chk=false; if(n%i==0) { HashSet<Integer> hs = new HashSet<Integer>(); hs.add(i); int x=n/i; for(int j=2;j<Math.sqrt(x);j++) { if(x%j==0 && !hs.contains(j) && !hs.contains(x/j)) { System.out.println("YES"); System.out.println(i+" "+j+" "+x/j); chk=true; chk1=true; break; } } } if(chk) { break; } } if(!chk1) { System.out.println("NO"); } } } public static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.io.*; import java.util.*; public class Main { public static void main(String[] args) throws IOException { BufferedReader sc = new BufferedReader(new InputStreamReader(System.in)); String[] line = sc.readLine().split(" "); int cases = Integer.parseInt(line[0]); top: for (int l = 0; l < cases; l++) { line = sc.readLine().split(" "); int num = Integer.parseInt(line[0]); int nums[] = new int[3]; int loc = 0; for (int i = 2; i * i < num; i++) { if (num % i == 0) { nums[loc] = i; num = num / i; loc++; } if (loc == 2) { nums[2] = num; System.out.println("YES"); System.out.println(nums[0] + " " + nums[1] + " " + nums[2] + " "); continue top; } } System.out.println("NO"); } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; const int ma1 = 3e5 + 5; string no = "NO", yes = "YES"; const unsigned int MAX1 = 1000000007; void f(int n) { for (int i = 2; i <= sqrt(n); i++) { if (n % i == 0) { int d = n / i; for (int j = i + 1; j < sqrt(d); j++) { if (d % j == 0) { cout << yes << endl; cout << i << " " << j << " " << d / j << endl; return; } } } } cout << no << endl; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long t; cin >> t; while (t--) { long long n; cin >> n; f(n); } }
CPP