Search is not available for this dataset
name
stringlengths 2
112
| description
stringlengths 29
13k
| source
int64 1
7
| difficulty
int64 0
25
| solution
stringlengths 7
983k
| language
stringclasses 4
values |
---|---|---|---|---|---|
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int mod = 998244353;
const int nag = 2e5 + 5;
template <typename T>
void add(T& a, T b) {
a += b;
while (a >= mod) a -= mod;
while (a < 0) a += mod;
}
template <typename T>
void mul(T& a, T b) {
a = a * b % mod;
}
template <typename T>
void up_self(T& a, T b) {
a = max(a, b);
}
template <typename T>
void min_self(T& a, T b) {
a = min(a, b);
}
string find_largest_pref_palindrome(const string& a) {
string second = a;
reverse(second.begin(), second.end());
second = a + "%" + second;
int c = 0;
vector<int> pref(2 * ((int)a.size()) + 2);
for (int i = 1; i < second.size(); i++) {
while (c != 0 && second[i] != second[c]) c = pref[c - 1];
if (second[i] == second[c]) c++;
pref[i] = c;
}
return second.substr(0, c);
}
long long int binexpomodulo(long long int x, long long int y) {
long long int res = 1;
x %= mod;
if (!x) return 0;
while (y) {
if (y & 1) {
mul(res, x);
}
mul(x, x);
y >>= 1;
}
return res;
}
long long int nCrInOr(long long int n, long long int r) {
long long int res = 1;
if (r > n - r) r = n - r;
long long int rin = 1;
for (long long int i = 1; i <= r; i++) rin = (rin * i) % mod;
rin = binexpomodulo(rin, mod - 2);
for (long long int i = 1; i <= r; i++) res = (res * (n - i + 1)) % mod;
res = (res * rin) % mod;
return res;
}
int msb(long long int n) {
int ans;
for (int i = 0; i < 64; i++)
if (n & (1LL << i)) ans = i + 1;
return ans;
}
long long int get_(vector<long long int>& a, int pos) {
long long int res = 0;
for (; pos >= 0; pos = (pos & (pos + 1)) - 1) {
res += a[pos];
}
return res;
}
void upd(vector<long long int>& a, int pos, int val) {
for (; pos < a.size(); pos = (pos | (pos + 1))) a[pos] += val;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
;
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
vector<int> b(n), a(2 * n);
for (int i = 0; i < n; i++) cin >> b[i];
;
set<int> in_b;
for (int i : b) {
in_b.insert(i);
}
vector<bool> available(2 * n + 1, true);
bool cant = false;
for (int i = 0; i < n; i++) {
int c = 0;
for (int j = b[i]; j <= 2 * n; j++) {
if ((c == 1 && available[j] && (in_b.find(j) == in_b.end())) || (!c)) {
available[j] = false;
a[2 * i + c] = j;
c++;
}
if (c == 2) break;
}
if (c < 2) {
cant = true;
break;
}
}
if (cant)
cout << -1 << "\n";
else {
for (int i = 0; i < a.size(); i++) cout << a[i] << " ";
cout << "\n";
;
}
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1000000007;
const long long inf = 1000000000;
const long long N = 2 * (1e2) + 5;
long long ar[N];
long long ar2[N];
long long ar3[N];
int32_t main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
;
long long t = 1;
cin >> t;
while (t--) {
long long n;
cin >> n;
vector<long long> done(2 * n + 1, 0);
for (long long i = 1; i <= n; ++i) {
cin >> ar[i];
done[ar[i]] = 1;
}
long long j = 1;
for (long long i = 1; i <= 2 * n; ++i) {
if (!done[i]) {
ar2[j++] = i;
}
}
long long d = 1;
for (long long i = 1; i <= n; ++i) {
long long b = 0;
long long j = lower_bound(ar2 + 1, ar2 + 1 + n, ar[i] + 1) - ar2;
while (j <= n) {
if (!done[ar2[j]]) {
done[ar2[j]] = 1;
ar3[i] = ar2[j];
b = 1;
break;
}
j++;
}
if (!b) {
d = 0;
break;
}
}
if (!d)
cout << -1 << "\n";
else {
for (long long i = 1; i <= n; ++i) {
cout << ar[i] << " " << ar3[i] << " ";
}
cout << "\n";
}
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
cin.tie(0), ios::sync_with_stdio(false);
int t, n;
cin >> t;
while (t--) {
cin >> n;
vector<int> a(n), b(2 * n);
vector<bool> used(2 * n + 1, false);
for (int i = 0; i < n; ++i) {
cin >> a[i];
used[a[i]] = true;
}
bool ok = true;
for (int i = 1; i <= 2 * n && ok; ++i) {
if (used[i]) continue;
bool tmp = false;
for (int j = 0; j < n; ++j) {
if (i > a[j]) {
b[2 * j] = a[j];
b[2 * j + 1] = i;
a[j] = 205;
tmp = true;
break;
}
}
ok = tmp;
}
if (ok) {
for (int i = 0; i < 2 * n; ++i) {
cout << b[i] << " \n"[i == 2 * n - 1];
}
} else {
cout << "-1\n";
}
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.HashSet;
import java.util.Scanner;
import java.util.Set;
public class ProblemC {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
for(int tt = 0; tt < t; tt++) {
int n = sc.nextInt();
int[] input = new int[n];
int[] output = new int[2*n];
Set<Integer> used = new HashSet<>();
for(int i = 0; i < n; i++) {
input[i] = sc.nextInt();
used.add(input[i]);
}
int max = 2*n;
boolean impossible = false;
for(int i = 1; i < 2*n; i += 2) {
output[i-1] = input[i/2];
int nextNotUsed = output[i-1]+1;
while (used.contains(nextNotUsed)) nextNotUsed++;
if(nextNotUsed > max) {
impossible = true;
break;
}
used.add(nextNotUsed);
output[i] = nextNotUsed;
}
if(impossible) {
System.out.println(-1);
} else {
for(int i = 0; i < 2* n; i++) {
System.out.print(output[i]);
if(i < (2 * n) -1) {
System.out.print(" ");
}
}
System.out.println();
}
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | # from collections import defaultdict
for _ in range(int(input())):
n = int(input())
b = list(map(int, input().split()))
a = []
taken = [False] * (2*n+1)
for bi in b: taken[bi] = True
for bi in b:
a.append(bi)
next = bi+1
while next <= 2*n and taken[next]:
next += 1
if next <= 2*n:
a.append(next)
taken[next] = 1
else:
break
if len(a) == 2*n:
print(' '.join(map(str, a)))
else:
print(-1)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t = int(input())
b_all = list()
for i in range(t):
n = int(input())
b_str = input().split(' ')
b_all.append([int(r) for r in b_str])
results = list()
for b in b_all:
n = len(b)
used = [False] * (2*n+1)
in_res = [False] * (2*n+1)
bad_seq = False
for num in b:
if num > 2*n:
bad_seq = True
break
used[num] = True
if bad_seq:
print('-1')
continue
res = []
for j in b:
res.append(str(j))
in_res[j] = True
try:
false_index = used.index(False, j)
res.append(str(false_index))
in_res[false_index] = True
used[false_index] = True
except ValueError:
res = ['-1']
break
print(' '.join(res))
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int mod = 998244353.;
const int N = 1e6 + 5;
bool sortbysec(const pair<pair<long long, long long>, long long> &a,
const pair<pair<long long, long long>, long long> &b) {
return (a.second > b.second);
}
long long powermod(long long x, long long y, long long p) {
long long res = 1;
x = x % p;
while (y > 0) {
if (y & 1) res = (res * x) % p;
y = y >> 1;
x = (x * x) % p;
}
return res;
}
bool isprime(int n) {
if (n <= 1) return false;
if (n <= 3) return true;
if (n % 2 == 0 || n % 3 == 0) return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0) return false;
return true;
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
;
long long t;
cin >> t;
loop:
while (t--) {
long long n;
cin >> n;
vector<long long> a(n);
set<long long> s;
for (long long i = 0; i < n; i++) {
cin >> a[i];
s.insert(a[i]);
}
vector<long long> b;
for (long long i = 0; i < n; i++) {
b.push_back(a[i]);
s.insert(a[i]);
long long f = 0;
for (long long j = a[i] + 1; j <= 2 * n; j++) {
if (s.find(j) == s.end()) {
f = 1;
s.insert(j);
b.push_back(j);
break;
}
}
if (f == 0) {
cout << -1 << "\n";
goto loop;
}
}
for (long long i = 0; i < b.size(); i++) cout << b[i] << " ";
;
cout << "\n";
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import sys
queries = int(sys.stdin.readline())
for query in range(queries):
length = int(sys.stdin.readline())
arr = [int(x) for x in sys.stdin.readline().strip().split()]
mx = arr[0]
ans_arr = [0] * (length*2)
arr_ins = [x for x in range(length*2,0,-1)]
for el in arr:
del arr_ins[arr_ins.index(el)]
for pos in range(length):
ans_arr[pos*2] = arr[pos]
ins_pos = len(arr_ins)-1
while ins_pos >= 0 and arr_ins[ins_pos] < arr[pos]:
ins_pos -= 1
if ins_pos == -1:
ans_arr = ['-1']
break
else:
ans_arr[pos*2+1] = arr_ins[ins_pos]
del arr_ins[ins_pos]
#print(arr_ins)
print(" ".join(map(str,ans_arr)))
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t=int(input())
for i in range(t):
op=[]
n=int(input())
x=list(input().split())
xi=[int(i) for i in x]
for j in range(2*n):
if j%2==0:
t=xi[j//2]
op.append(t)
else:
op.append(0)
xx=1
for j in range(n):
z=op[xx-1]+1
if z in op:
for q in range(z+1,(2*n+1)):
if q not in op:
op[xx]=q
break
else:
op[xx]=z
xx+=2
if max(op)>(2*n):
print("-1")
elif 0 in op:
print("-1")
else:
for j in range(len(op)):
print(op[j],end=" ")
print()
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
long long t;
cin >> t;
while (t--) {
long long n, i, p = 0, q, h, r = 0, j;
cin >> n;
long long a[n], b[2 * n], c[2 * n];
memset(c, 0, sizeof(c));
for (i = 0; i < n; i++) {
cin >> a[i];
}
for (i = 0; i < n; i++) {
c[a[i] - 1] = 1;
}
for (i = 0; i < n; i++) {
h = 1;
b[2 * i] = a[i];
for (j = a[i]; j < 2 * n; j++) {
if (c[j] != 1) {
break;
}
}
b[2 * i + 1] = j + 1;
if (j < 2 * n) c[j] = 1;
}
for (i = 0; i < 2 * n; i++) {
if (b[i] <= 2 * n) c[b[i] - 1] = 1;
}
for (i = 0; i < 2 * n; i++) {
if (c[i] == 0) {
r = 1;
break;
}
}
if (r == 1) {
cout << "-1" << endl;
} else {
for (i = 0; i < 2 * n; i++) {
cout << b[i] << " ";
}
cout << endl;
}
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int N = 410;
int b[N];
int a[N];
int t, n;
bool used[N];
int find(int x) {
for (int i = x + 1; i <= 2 * n; i++) {
if (!used[i]) {
return i;
}
}
return -1;
}
int main() {
ios::sync_with_stdio(false);
cin >> t;
while (t--) {
memset(used, 0, sizeof(used));
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> b[i];
used[b[i]] = 1;
}
bool noans = 0;
for (int i = 1; i <= n; i++) {
int f = find(b[i]);
if (f == -1) {
noans = 1;
cout << -1 << endl;
break;
} else {
a[2 * i - 1] = b[i];
a[2 * i] = f;
used[f] = 1;
}
}
if (!noans) {
for (int i = 1; i <= 2 * n; i++) {
cout << a[i] << " ";
}
cout << endl;
}
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import sys
input = sys.stdin.readline
for j in range(int(input())):
n = int(input())
b = list(map(int, input().split(" ")))
save = b.copy()
temp = set(b)
c =[]
for k in range(1, 2*n+1):
if k not in temp:
c.append(k)
b.sort()
c.sort()
ansDict = {}
ans = 0
for lol in range(n):
if(b[lol]>c[lol]):
ans = -1
for sad in range(n):
mini = max(c)
for f in c:
if(f<mini and f>save[sad]):
mini = f
ansDict[save[sad]] = mini
c.remove(mini)
if(ans==-1):
print(-1)
else:
ans = []
for go in range(n):
ans.append(str(save[go]))
ans.append(str(ansDict[save[go]]))
print(" ".join(ans))
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class test {
public static void main(String[] args) throws NumberFormatException, IOException {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int t=Integer.parseInt(br.readLine());
StringTokenizer st;
for(int i=0;i<t;i++) {
int n=Integer.parseInt(br.readLine());
st=new StringTokenizer(br.readLine());
int[] arr=new int[2*n+1];
boolean[] b=new boolean[2*n+1];
boolean notpossible=false;
for(int j=1;j<=n;j++) {
arr[2*j-1]=Integer.parseInt(st.nextToken());
b[arr[2*j-1]]=true;
}
if(!b[1]) {
notpossible=true;
}
if(!notpossible) {
for(int j=1;j<=n;j++) {
int r=arr[2*j-1];
r++;
while(r<=2*n && b[r]) {
r++;
}
if(r>2*n) {
notpossible=true;
break;
}
arr[2*j]=r;
b[r]=true;
}
}
if(!notpossible) {
for(int j=1;j<=n;j++) {
System.out.print(arr[2*j-1]+" "+arr[2*j]+" ");
}
System.out.println();
}else {
System.out.println(-1);
}
}
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.OutputStream;
import java.util.*;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.LinkedHashSet;
import java.io.Writer;
import java.io.OutputStreamWriter;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Egor Kulikov ([email protected])
*/
public class Solution {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
Solutio solver = new Solutio();
int testCount = Integer.parseInt(in.next());
int sum=0,te=0;
for (int i = 1; i <= testCount; i++)
{
solver.solve(i, in, out);
}
out.close();
}
//**********************SOLVE HERE EVERYTHING******************************
//1 2 3 4 5
static class Solutio {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n=in.readInt();
int arr[]=new int[n];
for(int i=0;i<n;i++)
arr[i]=in.readInt();
int arr2[]=new int[2*n],te=0,ch=0;
for(int i=0,k=0;i<n;i++,k+=2)
{
arr2[k]=arr[i];
te=arr[i]+1;ch=0;
while(ch==0 && te<=2*n)
{
ch=1;
for(int j=0;j<2*i;j++)
{
if(arr2[j]==te) {
te++;ch=0;}
}
for(int l=0;l<n;l++)
{
if(arr[l]==te) {
te++;ch=0;}
}
}
arr2[k+1]=te;
if(te>2*n)
{
System.out.println(-1);return;
}
}
//System.out.println(Arrays.toString(arr)+" arr");
for(int i=0;i<2*n;i++)
System.out.print(arr2[i]+" ");
System.out.println();
}
}
//*********************END HERE EVERYTHING*******************************
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public void readIntArrays(int[]... arrays) {
for (int i = 0; i < arrays[0].length; i++) {
for (int j = 0; j < arrays.length; j++) {
arrays[j][i] = readInt();
}
}
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
if (Character.isValidCodePoint(c)) {
res.appendCodePoint(c);
}
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 |
#!/usr/bin/env python
from __future__ import division, print_function
import os
import sys
from io import BytesIO, IOBase
import datetime
if sys.version_info[0] < 3:
from __builtin__ import xrange as range
from future_builtins import ascii, filter, hex, map, oct, zip
def main():
starttime=datetime.datetime.now()
if(os.path.exists('input.txt')):
sys.stdin = open("input.txt","r")
sys.stdout = open("output.txt","w")
for _ in range(int(input())):
n=int(input())
b=[int(x) for x in input().split()]
a=[0]*(2*n)
d={}
for i in b:
d[i]=1
ans=0
for i in range(1,n+1):
a[2*(i)-2]=b[i-1]
t=0
for j in range(b[i-1]+1,2*n+1):
if j not in d:
a[2*(i)-1]=j
d[a[2*(i)-1]]=1
t=1
break
if t==0:
ans=-1
break
if ans==-1:
print(ans)
else:
print(*a)
endtime=datetime.datetime.now()
time=(endtime-starttime).total_seconds()*1000
if(os.path.exists('input.txt')):
print("Time:",time,"ms")
# region fastio
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
def print(*args, **kwargs):
"""Prints the values to a stream, or to sys.stdout by default."""
sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout)
at_start = True
for x in args:
if not at_start:
file.write(sep)
file.write(str(x))
at_start = False
file.write(kwargs.pop("end", "\n"))
if kwargs.pop("flush", False):
file.flush()
if sys.version_info[0] < 3:
sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout)
else:
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# endregion
if __name__ == "__main__":
main() | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n = int(input())
ar1 = list(map(int, input().split()))
ar2 = []
kek = set()
for i in range(1, 2 * n + 1):
if i not in ar1:
kek.add(i)
ans = []
flag = 0
for i in range(n):
ans.append(ar1[i])
num = 2 * n + 1
for num in range(ar1[i] + 1, 2 * n + 1):
if num in kek:
break
if num < ar1[i] or num not in kek:
flag = 1
break
ans.append(num)
kek.discard(num)
if flag == 1:
print(-1)
else:
print(*ans) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | a=int(input())
for i in range(a):
n=int(input())
z=list(map(int,input().split()))
t=[0 for i in range(3*max(z))]
ans=[]
for i in range(len(z)):
if(t[z[i]]==0):
t[z[i]]=1
for i in range(len(z)):
ans.append(z[i])
for j in range(z[i]+1,len(t)):
if(t[j]==0):
t[j]=1
ans.append(j)
break;
t=sorted(ans)
flag=0
for i in range(len(t)):
if(t[i]!=i+1):
flag=1
break;
if(flag==1):
print(-1)
else:
print(' '.join(map(str,ans)))
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import os
import heapq
import sys,threading
import math as mt
import operator
from copy import copy
from collections import defaultdict,deque
from io import BytesIO, IOBase
sys.setrecursionlimit(2*10 ** 5)
#threading.stack_size(2**27)
def gcd(a, b):
if b == 0:
return a
else:
return gcd(b, a % b)
"""def pw(a,b):
result=1
while(b>0):
if(b%2==1): result*=a
a*=a
b//=2
return result"""
def inpt():
return [int(k) for k in input().split()]
def main():
for _ in range(int(input())):
# n,k=inpt()
# k=k*k
# if(k>n):
# print('NO')
# elif((n-k)%2==0):
# print('YES')
# else:
# print('NO')
n=int(input())
ar=inpt()
st=set(ar)
temp=[]
for i in range(1,2*n+1):
if(i not in st):
temp.append(i)
temp.sort()
ans=[0]*(2*n)
j=0
ok=True
for i in range(0,2*n-1,2):
ans[i]=ar[i//2]
st=set()
for i in range(1,2*n,2):
mn=10**9
for j in temp:
if(j not in st and j>ans[i-1]):
mn=min(mn,j)
if(mn==10**9):
ok=False
break
ans[i]=mn
st.add(mn)
if(not ok):
print(-1)
else:
print(*ans)
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
if __name__ == "__main__":
main()
#threading.Thread(target=main).start()
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.*;
import java.io.*;
public class C623
{
public static void main(String [] args)
{
MyScanner sc = new MyScanner();
PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
int t = sc.nextInt();
while (t > 0) {
int n = sc.nextInt();
int [] b = new int[n];
for (int i = 0; i < n; i++) b[i] = sc.nextInt();
TreeSet<Integer> set = new TreeSet<>();
for (int i = 1; i <= 2 * n; i++) {
set.add(i);
}
for (int i = 0; i < n; i++) set.remove(b[i]);
int [] a = new int[2 * n];
boolean ok = true;
for (int i = 0; i < 2 * n; i += 2) {
a[i] = b[i / 2];
if (set.higher(a[i]) == null) {
ok = false; break;
}
a[i + 1] = set.higher(a[i]);
set.remove(a[i]); set.remove(a[i + 1]);
}
if (ok) {
for (int i = 0; i < 2 * n; i++) out.print(a[i] + " ");
out.println();
} else {
out.println(-1);
}
t--;
}
out.close();
}
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
long long int fun(vector<long long int> &v, long long int t, long long int l,
long long int r) {
if (l == r) return l;
if (abs(l - r) == 1) {
long long int t1 = abs(5 * v[l] - 2 * t);
long long int t2 = abs(5 * v[r] * 2 * t);
if (t1 < t2)
return l;
else
return r;
}
long long int m = (l + r) / 2;
long long int t1 = abs(5 * v[m - 1] - 2 * t);
long long int t2 = abs(5 * v[m + 1] - 2 * t);
if (t1 < t2)
return fun(v, t, l, m);
else
return fun(v, t, m, r);
}
int32_t main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << setprecision(10) << fixed;
long long int t;
cin >> t;
while (t--) {
long long int n;
cin >> n;
long long int b[n];
map<long long int, long long int> m;
for (long long int i = 0; i < n; i++) {
cin >> b[i];
m[b[i]] = 1;
}
long long int f = 0;
vector<long long int> v;
for (long long int i = 0; i < n; i++) {
long long int t1 = b[i] + 1;
while (m[t1] != 0) t1++;
if (t1 > n * 2) {
f = 1;
break;
} else {
v.push_back(b[i]);
v.push_back(t1);
m[t1] = 1;
}
}
if (f == 1)
cout << "-1" << endl;
else {
for (long long int i = 0; i < v.size(); i++) cout << v[i] << " ";
cout << endl;
}
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | # ------------------- fast io --------------------
import os
import sys
from io import BytesIO, IOBase
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# ------------------- fast io --------------------
import bisect
#yeah i have an idea
testcases=int(input())
for j in range(testcases):
n=int(input())
vals=list(map(int,input().split()))
setty=set(vals)
unused=[]
for s in range(1,2*n+1):
if not(s in setty):
unused.append(s)
outy=[]
broke=False
for s in range(n):
b1=vals[s]
b2=unused[min(bisect.bisect_left(unused,b1),len(unused)-1)]
if b1<b2:
unused.pop(min(bisect.bisect_left(unused,b1),len(unused)-1))
outy.append(b1)
outy.append(b2)
else:
broke=True
if broke==True:
print(-1)
else:
print(*outy) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n = int(input())
arr = list(map(int, input().split()))
arr2 = []
for i in arr:
arr2.append(i)
t = i+1
while t in arr or t in arr2:
t += 1
arr2.append(t)
if max(arr2) == 2 * n:
print(*arr2)
else:
print("-1")
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | from bisect import bisect_right
for _ in range(int(input())):
n = int(input())
b = list(map(int, input().split()))
try:
a = [0] * 2 * n
a[::2] = b.copy()
m = sorted(set(range(1, 2 * n + 1)).difference(set(b))) + [float('inf')]
for i in range(1, 2 * n, 2):
a[i] = m.pop(bisect_right(m, a[i-1]))
if list(range(1, 2 * n + 1)) != sorted(a):
print(-1)
else:
print(*a)
except:
print(-1) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #!/usr/bin/env python
def gen(b):
a = list(range(1, 2 * n + 1))
a = [x for x in a if x not in b]
seq = []
for b_ in b:
try:
idx = next(x for x, v in enumerate(a) if v > b_)
seq += [b_, a[idx]]
del a[idx]
except:
return None
return seq
t = int(input())
for _ in range(t):
n = int(input())
b = list(map(int, input().split()))
ans = gen(b)
if ans:
print(*ans)
else:
print(-1)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | # ΠΠΎΠ΄ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ Π½Π°ΠΏΠΈΡΠ°Π» Π½Π° ΡΠ·ΡΠΊΠ΅ Python 3
import sys
import bisect
def main():
n = int(sys.stdin.readline())
q = [int(i) for i in sys.stdin.readline().split()]
w = []
for i in range(1, 2 * n + 1):
if i not in q:
w.append(i)
w.sort()
res = [0 for i in range(2*n)]
for i in range(n):
res[i * 2] = q[i]
for i in range(n - 1):
e = bisect.bisect(w, q[i])
if e != n - i:
r = w[e]
del w[e]
res[i * 2 + 1] = r
else:
print(-1)
return 0
if w[-1] < q[-1]:
print(-1)
return 0
else:
res[-1] = w[-1]
print(*res)
for test in range(int(sys.stdin.readline())):
main() | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | """
// Author : snape_here - Susanta Mukherjee
"""
from __future__ import division, print_function
import os,sys
from io import BytesIO, IOBase
if sys.version_info[0] < 3:
from __builtin__ import xrange as range
from future_builtins import ascii, filter, hex, map, oct, zip
def ii(): return int(input())
def si(): return input()
def mi(): return map(int,input().split())
def li(): return list(mi())
def gcd(x, y):
while y:
x, y = y, x % y
return x
def read():
sys.stdin = open('input.txt', 'r')
sys.stdout = open('output.txt', 'w')
import math
mod=10**9
mod+=7
def main():
for i in range(ii()):
n=ii()
b=li()
a=[0]*205
h=[0]*205
c=[0]*205
for i in range(n):
h[b[i]]=1
pre=1
f=0
for i in range(n):
d=1e7
for j in range(n):
if a[j]:
continue
e=b[j]
if e<d:
d=e
pos=j
a[pos]=1
while(h[pre]):
pre+=1
h[pre]=1
c[pos]=pre
i=0
while(i<n and f==0):
if min(b[i],c[i])!=b[i]:
f=1
i+=1
if f:
print(-1)
else:
for i in range(n):
for j in range(i+1,n):
if min(b[i],c[j])==b[i] and c[i]>=c[j]:
c[i],c[j]=c[j],c[i]
l=[]
for i in range(n):
l.append(b[i])
l.append(c[i])
print(*l)
# region fastio#
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
def print(*args, **kwargs):
"""Prints the values to a stream, or to sys.stdout by default."""
sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout)
at_start = True
for x in args:
if not at_start:
file.write(sep)
file.write(str(x))
at_start = False
file.write(kwargs.pop("end", "\n"))
if kwargs.pop("flush", False):
file.flush()
if sys.version_info[0] < 3:
sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout)
else:
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# endregion
if __name__ == "__main__":
#read()
main()
#Comment read()
| PYTHON |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n = int(input())
s = [*map(int,input().split())]
ans = []
for i in s:
ans.append(i)
t = i+1
while t in s or t in ans:
t += 1
ans.append(t)
if sorted(ans) == [i for i in range(1,2*n + 1)]:
print(*ans)
else:
print(-1) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #!/usr/bin/env python
import os
import sys
from io import BytesIO, IOBase
import threading
from collections import Counter
mod=998244353
def main():
for _ in range(int(input())):
n=int(input())
arr=list(map(int,input().split()))
a=list(zip(arr,range(1,n+1)))
# a.sort()
a.reverse()
taken=[0]*(2*n+1)
ans=[-1]*(2*n+1)
for i in range(n):
taken[arr[i]]=1
b=True
while len(a):
ele,ind=a.pop()
el2=-1
for i in range(ele+1,2*n+1):
if taken[i]==0:
el2=i
break
if el2==-1:
# print(-1)
b=False
break
else:
taken[el2]=1
ans[2*ind-1]=ele
ans[2*ind]=el2
if b:
print(*(ans[1:]))
else:
print(-1)
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# endregion
if __name__ == "__main__":
main() | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #Pye
from os import path
from sys import stdin, stdout
from bisect import bisect_left, bisect_right
maxn = 200005
dd = [0 for i in range(maxn)]
a = [0 for i in range(maxn)]
if path.exists('inp.txt'):
stdin = open("inp.txt", "r")
q = int(stdin.readline())
for _ in range(q):
s = []; check = 0;
n = int(stdin.readline())
res = [0 for i in range(2*n+1)]
for i in range(1, 2*n+1): dd[i] = 0
a[1:] = list(map(int, stdin.readline().split()))
for i in a: dd[i] += 1
for i in range(1, 2*n+1):
if not dd[i]: s.append(i)
for i in range(1, n+1):
if bisect_left(s, a[i]) != len(s):
res[2*i-1] = a[i]
res[2*i] = s[bisect_left(s, a[i])]
s.pop(bisect_left(s, a[i]))
else: check = 1; break
if not check: print(*res[1:])
else: print(-1)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.math.BigInteger;
import java.util.*;
import java.lang.*;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
import java.util.stream.Stream;
public class Contest {
//static ArrayList<Integer> prime=new ArrayList();
public static TreeMap<Long,Integer> t1=new TreeMap();
public static void solve()
{
long m=1;
for(int j=2;j<=1000;j++)
{
if(isprime(j))
{
m=m*j;
if(m>1000000)
{
break;
}else{
t1.put(m,1);
}
}
}
}
public static long gcd(long n1, long n2)
{
if (n2 != 0)
return gcd(n2, n1 % n2);
else
return n1;
}
//////////////////
public static class trie {
int x,y,z;
trie (int x,int y,int z){
this.x=x;
this.y=y;
this.z=z;
}
}
public static class pair {
int x,y;
pair (int x,int y){
this.x=x;
this.y=y;
}
public boolean equals(Object o) {
if(o instanceof pair) {
pair p = (pair)o;
return (x == p.x && y == p.y);
}
return false;
}
public int hashCode() {
return (Integer.hashCode(x) * 3 + Integer.hashCode(y) );
}
}
//////////////////
static class Cmp implements Comparator<pair>
{
public int compare(pair a,pair b)
{
if(a.x==b.x)
{
return(a.y-b.y);
}
return(a.x-b.x);
}
}
//////////////////
//////////////////
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
//////////////////////
//public static ArrayList<Integer> a=new ArrayList();
public static ArrayList<Integer> Divisors(int n)
{
// Note that this loop runs till square root
ArrayList<Integer> a=new ArrayList();
long sum=0;
for (int i=1; i*i<=(n); i++)
{
if (n%i == 0)
{
// If divisors are equal, print only one
if (n/i == i)
{
// printf("%d ", i);
sum=sum+1;
a.add(i);
}
else // Otherwise print both
{
//printf("%d %d ", i, n/i);
sum=sum+2;
a.add(i);
a.add(n/i);
}
}
}
return(a);
}
/////////////////////
public static long SmallestPrimeDivisor(long n)
{
// if divisible by 2
if (n % 2 == 0)
return 2;
// iterate from 3 to sqrt(n)
for (long i = 3; i * i <= n; i += 2) {
if (n % i == 0)
return i;
}
return n;
}
////////////////////
public static boolean isprime(long n)
{
int count=0;
for(long i=2;i*i<=n;i++)
{
if(n%i==0)
{
return(false);
}
}
return(true);
}
//////////////////////
// (x^n)%1000000007
public static long modularExponentiation(long x,long n,long M)
{
if(n==0)
return 1;
else if(n%2 == 0) //n is even
return modularExponentiation((x*x)%M,n/2,M);
else //n is odd
return (x*modularExponentiation((x*x)%M,(n-1)/2,M))%M;
}
public static long nCr(int n,int k)
{
if(k==0)
return 1;
return(n*nCr(n-1,k-1)/k);
}
public static long factorial(int n)
{
if(n==1)
return 1;
return((n)*factorial(n-1));
}
public static void debug(Object...o) {
System.out.println( Arrays.deepToString(o) );
}
public static boolean prime[]=new boolean[100005];
//prime[j]==false means it's a prime.
public static void seive()
{
prime[0]=false;
prime[1]=false;
for(int i=2;i*i<=100005;i++)
{
if(!prime[i])
{
for(int j=i*i;i<=100005;j+=i)
{
prime[j]=true;
}
}
}
}
public static long AtMost(int k,char c[])
{
long ans=0;
int left=0,right=0;
int n=c.length;
HashMap<Character,Integer> h=new HashMap();
h.put('1',0);
while(right<n)
{
h.put(c[right],h.getOrDefault(c[right],0)+1);
while(h.get('1')>k)
{
h.replace(c[left],h.get(c[left])-1);
left++;
}
ans=ans+(right-left+1);
right++;
}
return ans;
}
public static boolean equals(StringBuilder sb1, StringBuilder sb2){
/*
* If both refer to the same object, they are equal
*/
if(sb1 == sb2)
return true;
/*
* If any of them is null, then they are not equal.
* We know both are not null at this point because of the previous
* condition which checks equality.
*/
if(sb1 == null || sb2 == null)
return false;
boolean isEqual = true;
/*
* If both are not same length, they are not equal
*/
if(sb1.length() == sb2.length()){
/*
* Now, compare the characters one by one, and break the loop
* as soon as the characters at given position are different.
*/
for(int i = 0 ; i < sb1.length(); i++){
if(sb1.charAt(i) != sb2.charAt(i)){
isEqual = false;
break;
}
}
}else{
isEqual = false;
}
return isEqual;
}
public static void main(String []args) throws Exception
{
FastReader in =new FastReader();
PrintWriter pw = new PrintWriter(System.out);
//Scanner sc=new Scanner(System.in)
// int x=in.nextInt();
//String a[]=in.nextLine().split(" ");
//String b=in.nextLine();
// StringBuilder s1=new StringBuilder(in.nextLine());
// StringBuilder s2=new StringBuilder(in.nextLine());
int t=in.nextInt();
for(int i=0;i<t;i++)
{
int n=in.nextInt();
int b[]=new int[n];
int a[]=new int[2*n];
TreeMap<Integer,Integer> h=new TreeMap();
for(int j=1;j<=2*n;j++)
{
h.put(j,1);
}
for(int j=0;j<n;j++)
{
b[j]=in.nextInt();
a[2*(j+1)-2]=b[j];
h.remove(b[j]);
}
int m=0;
for(int j=0;j<n;j++)
{
Integer x=h.higherKey(b[j]);
if(x==null)
{
m=1;
}
else
{
a[2*(j+1)-1]=(int)x;
h.remove(x);
}
}
if(m==1)
{
pw.print(-1);
}
else
{
for(int j=0;j<2*n;j++)
{
pw.print(a[j]+" ");
}
}
pw.println("");
}
pw.flush();
pw.close();
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.*;
public class C {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int t = in.nextInt();
for (int r = 0; r < t; r++) {
int n = in.nextInt();
int[] b = new int[n];
int[] a = new int[2 * n];
TreeSet<Integer> set = new TreeSet<>();
for (int i = 1; i <= 2 * n; i++) {
set.add(i);
}
for (int i = 0; i < n; i++) {
int x = in.nextInt();
b[i] = x;
a[(2 * i)] = x;
set.remove(x);
}
boolean noE = true;
for (int i = 0; i < n; i++) {
try {
int x = set.higher(b[i]);
set.remove(x);
a[i * 2 + 1] = x;
} catch (Exception e) {
noE = false;
System.out.println(-1);
break;
}
}
if (noE) {
for (int i : a) {
System.out.print(i + " ");
}
System.out.println();
}
}
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.util.Arrays;
import java.util.BitSet;
import java.util.Comparator;
import java.util.Scanner;
import static java.lang.Math.*;
public class C {
private static class Pair<K, V> {
K k;
V v;
public Pair(K k, V v) {
this.k = k;
this.v = v;
}
}
public static void main(String[] args) {
Scanner in = new Scanner(new BufferedReader(new InputStreamReader(System.in)));
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int t = in.nextInt();
for (int z = 0; z < t; z++) {
int n = in.nextInt();
Pair<Pair<Integer, Integer>, Pair<Integer, Integer>>[] arr = new Pair[n];
BitSet used = new BitSet();
for (int i = 0; i < n; i++) {
int a = in.nextInt();
used.set(a, true);
arr[i] = new Pair<>(new Pair<>(a, i), new Pair<>(a, a));
}
//Arrays.sort(arr, Comparator.comparingInt((o) -> o.k.k));
boolean bad = false;
for (int i = 0; i < n; i++) {
Pair<Pair<Integer, Integer>, Pair<Integer, Integer>> p = arr[i];
int f = used.nextClearBit(p.k.k);
if (f > n * 2) {
out.println("-1");
bad = true;
break;
}
p.v.k = p.k.k;
p.v.v = f;
used.set(f);
}
if (bad) continue;
//Arrays.sort(arr, Comparator.comparingInt((o) -> o.k.v));
for (int i = 0; i < n; i++) {
Pair<Pair<Integer, Integer>, Pair<Integer, Integer>> p = arr[i];
int r = p.k.k;
}
for (int i = 0; i < n; i++) out.print(arr[i].v.k + " " + arr[i].v.v + " ");
out.println();
}
out.close();
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t = int(input())
for _ in range(t):
n = int(input())
a = list(map(int,input().split()))
b = sorted(a)
used = [0 for i in range(2*n+1)]
flg = 1
for i in range(n):
if b[i] > i*2+1:
print(-1)
flg = 0
break
used[b[i]] = 1
if flg == 0:
continue
ans = []
for i in range(n):
ans.append(a[i])
for j in range(a[i],2*n+1):
if used[j] == 0:
ans.append(j)
used[j] = 1
break
print(*ans) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t=int(input())
for _ in range(t):
n=int(input())
l=list(map(int,input().split()))
r=[]
for i in range(1,2*n+1):
if i in l:
pass
else:
r.append(i)
i=0
k=[]
while len(r)>0 or i<n:
for j in range(len(r)):
if l[i]<r[j]:
k.append(r[j])
break
r.remove(r[j])
i=i+1
if len(k)==n:
for i in range(n):
print(l[i],k[i],end=' ')
print()
else:
print('-1')
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for namber in range(int(input())):
tmp = input()
data = list(map(int, input().split()))
sortdat = sorted(data)
if sortdat[0] == 1:
maxlen = 2
for i in range(1, len(data)):
if sortdat[i] - sortdat[i - 1] > maxlen:
print(-1)
break
elif sortdat[i] - sortdat[i - 1] == maxlen:
maxlen = 2
else:
maxlen += 2 - sortdat[i] + sortdat[i - 1]
else:
out = [False] * (len(data) * 2)
for j in data:
out[j - 1] = True
prn = ''
for j in data:
prn += str(j) + ' '
tmp = j
while out[tmp]:
tmp += 1
prn += str(tmp + 1) + ' '
out[tmp] = True
print(prn)
else:
print(-1)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.*;
import static java.lang.System.*;
public class Main
{
public static void main(String[] args) {
Scanner s = new Scanner(in);
int t = s.nextInt();
s.nextLine();
while (t-- > 0) {
int n = s.nextInt();
int[] a = new int[n];
boolean[] taken = new boolean[n * 2 + 1];
boolean tooLarge = false;
int largest = 0;
for (int i = 0; i < n; i++) {
int temp = s.nextInt();
if (temp >= n * 2) {
tooLarge = true;
break;
}
a[i] = temp;
taken[temp] = true;
if (temp > largest) largest = temp;
}
s.nextLine();
if (tooLarge) {
out.println(-1);
continue;
}
boolean fail = false;
int usableNums = 0;
for (int i = 1; i < largest; i++) {
if (!taken[i]) usableNums--;
else usableNums++;
if (usableNums < 0) {
fail = true;
break;
}
}
if (fail) {
out.println(-1);
continue;
}
for (int i = 0; i < n; i++) {
out.print(a[i] + " ");
int temp = a[i] + 1;
while (taken[temp]) temp++;
taken[temp] = true;
out.print(temp + " ");
}
out.println();
}
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int mod = 1e9 + 7;
int b[100 + 5], a[200 + 10];
bool used[200 + 10];
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int t, n;
cin >> t;
while (t--) {
cin >> n;
memset(a, -1, sizeof a);
memset(used, false, sizeof used);
memset(b, -1, sizeof b);
bool flag = false;
for (int i = 0; i < n; i++) {
cin >> b[i];
}
for (int i = 0; i < 2 * n; i += 2) {
a[i] = b[i / 2];
used[b[i / 2]] = true;
}
for (int i = 1; i < 2 * n; i += 2) {
flag = false;
for (int j = a[i - 1] + 1; j <= 2 * n; j++) {
if (!used[j]) {
a[i] = j;
used[j] = true;
flag = true;
break;
}
}
if (!flag) {
cout << -1 << endl;
break;
}
}
if (flag) {
for (int i = 0; i < 2 * n; i++) {
cout << a[i] << " ";
}
cout << endl;
}
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 |
import javafx.util.Pair;
import org.omg.CORBA.INTERNAL;
import sun.awt.image.ImageWatched;
import sun.reflect.generics.tree.Tree;
import java.nio.channels.ScatteringByteChannel;
import java.text.SimpleDateFormat;
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int tc = s.nextInt();
tc:for (int t = 0; t < tc; t++) {
int n = s.nextInt();
int boundary = 2*n;
boolean[] flag = new boolean[boundary + 1];
int[] answer = new int[2*n];
int seq[] = new int[n];
for (int i = 0; i < n; i++) {
seq[i] = s.nextInt();
flag[seq[i]] = true;
}
local:for (int i = 0; i < n; i++) {
int num = seq[i];
if (num >= boundary) {
System.out.println(-1);
continue tc;
}
answer[2*i] = num;
for (int j = num+1; j < 2*n+1; j++) {
if (flag[j] == false) {
flag[j] = true;
answer[2*i+1] = j;
continue local;
}
}
System.out.println(-1);
continue tc;
}
for (int k : answer) {
System.out.print(k + " ");
}
System.out.print("\n");
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t = int(input())
for _ in range(t):
n = int(input())
arr = list(map(int,input().split()))
d = {i:0 for i in range(1,n*2+1)}
for i in arr:
d[i] = 1
resultset = []
gflag = True
for i in arr:
flag = False
# print(i,d)
for j in range(i+1,n*2+1):
if d[j] == 0:
resultset.append(i)
resultset.append(j)
d[j] = 1
flag = True
break
if not flag:
gflag = False
break
print(' '.join(str(i) for i in resultset) if gflag else -1) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n = int(input())
b = [int(__) for __ in input().split()]
shit = list(range(1, 2 * n + 1))
ans = []
flag = 1
for i in b:
shit.remove(i)
for i in b:
for j in shit:
if j > i:
ans.append(i)
ans.append(j)
shit.remove(j)
flag = 1
break
else:
flag = 0
if flag == 0:
break
if flag == 0:
print(-1)
else:
for i in ans:
print(i, end=' ')
print('')
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.Scanner;
public class Perms {
public static void main(String[] args) {
Scanner scanner= new Scanner(System.in);
int tCount= scanner.nextInt();
int [][]cases= new int[tCount][];
for(int i=0; i<tCount;i++){
int itemsCount= scanner.nextInt();
int[]arr= new int[itemsCount];
for(int j=0;j<itemsCount;j++){
arr[j]=scanner.nextInt();
}
cases[i]=arr;
}
for (int i=0; i<cases.length;i++){
printArr(perms(cases[i]));
}
}
static void printArr(int[]arr){
for (int i=0; i<arr.length;i++){
System.out.print(arr[i]+" ");
}
System.out.println();
}
static int[] perms(int []a){
int len= a.length;
int[] noResult={-1};
int[] result= new int [2*len];
if(max(a,len)>2*len||find(a,len,2*len)){
return noResult;
}
for(int i=0;i<len;i++){
result[2*i]=a[i];
}
for(int i=0;i<len;i++){
int ind=2*i+1;
for(int j=1;j<=2*len;j++){
if((!find(result,2*len,j))&&j>result[ind-1]){
result[ind]=j;
break;
}
}
if(result[ind]==0){
return noResult;
}
}
return result;
}
static int max(int[]arr, int len){
int m= arr[0];
for(int i=1;i<len;i++){
if(arr[i]>m){
m= arr[i];
}
}
return m;
}
static boolean find(int[]arr, int len, int x){
for(int i=0;i<len;i++){
if(arr[i]==x){
return true;
}
}
return false;
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t=input()
from collections import Counter,defaultdict
for i in range(t):
n=input()
l=list(map(int,raw_input().split()))
l1=[]
c=Counter(l)
d=defaultdict(int)
ans=True
for j in l:
for k in range(j+1,201):
if c[k]<>1 and d[k]<>1:
l1.append(j)
l1.append(k)
d[j]=1
d[k]=1
break
for j in range(1,max(l1)+1):
if d[j]==0:
ans=False
break
if ans==True:
s=''
for j in l1:
s=s+str(j)+' '
print s.rstrip(' ')
else:
print -1
| PYTHON |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t = int(input())
for _ in range(t):
n = int(input())
b = list(map(int, input().split()))
if max(b) >= n*2 or 1 not in b:
print(-1)
else:
a = [0]*(2*n)
ok = True
for i in range(n):
a[i*2] = b[i]
while 0 in a:
moved = False
for i in range(1, 1+2*n):
ind = a.index(0)
if i not in a and i > a[ind-1]:
a[ind] = i
moved = True
break
if not moved:
ok = False
break
if not ok:
print(-1)
else:
print(*a) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Comparator;
import java.util.InputMismatchException;
import java.util.TreeSet;
public class Main {
private static final String NO = "NO";
private static final String YES = "YES";
InputStream is;
PrintWriter out;
String INPUT = "";
private static final long MOD = 1000000007L;
private static final long MAX = Long.MAX_VALUE / 2;
void solve() {
int T = ni();
outer: while (T-- > 0) {
int N = ni();
int[][] a = new int[N][];
TreeSet<Integer> s = new TreeSet<Integer>();
for (int i = 1; i <= 2 * N; i++)
s.add(i);
for (int i = 0; i < N; i++) {
a[i] = new int[] { i, ni(), 0 };
s.remove(a[i][1]);
}
for (int i = 0; i < N; i++) {
Integer n = s.ceiling(a[i][1]);
if (n == null) {
out.println(-1);
continue outer;
}
s.remove(n);
a[i][2] = n;
}
StringBuffer sb = new StringBuffer();
for (int e[] : a) {
sb.append(e[1]).append(' ').append(e[2]).append(' ');
}
out.println(sb);
}
}
long power(long a, long b) {
long x = 1, y = a;
while (b > 0) {
if (b % 2 != 0) {
x = (x * y) % MOD;
}
y = (y * y) % MOD;
b /= 2;
}
return x % MOD;
}
private long gcd(long a, long b) {
while (a != 0) {
long tmp = b % a;
b = a;
a = tmp;
}
return b;
}
void run() throws Exception {
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
if (!INPUT.isEmpty())
tr(System.currentTimeMillis() - s + "ms");
}
public static void main(String[] args) throws Exception {
new Main().run();
}
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private boolean vis[];
private int readByte() {
if (lenbuf == -1)
throw new InputMismatchException();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = is.read(inbuf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private int skip() {
int b;
while ((b = readByte()) != -1 && isSpaceChar(b))
;
return b;
}
private double nd() {
return Double.parseDouble(ns());
}
private char nc() {
return (char) skip();
}
private String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != '
// ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while (p < n) {
if (!(isSpaceChar(b)))
buf[p++] = (char) b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m) {
char[][] map = new char[n][];
for (int i = 0; i < n; i++)
map[i] = ns(m);
return map;
}
private int[] na(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = ni();
return a;
}
private Integer[] na2(int n) {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = ni();
return a;
}
private int[][] na(int n, int m) {
int[][] a = new int[n][];
for (int i = 0; i < n; i++)
a[i] = na(m);
return a;
}
private Integer[][] na2(int n, int m) {
Integer[][] a = new Integer[n][];
for (int i = 0; i < n; i++)
a[i] = na2(m);
return a;
}
private int ni() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
private long[] nl(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nl();
return a;
}
private long nl() {
long num = 0;
int b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
private static void tr(Object... o) {
System.out.println(Arrays.deepToString(o));
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t = int(input())
for _ in range(t):
n = int(input())
b = list(map(int, input().split()))
a = [0] * 1111
for c in b:
a[c] = 1
res = []
for x in b:
flag = False
for j in range(x+1, 2*n+1):
if a[j] == 0:
flag = True
a[j] = 2
res.append(x)
res.append(j)
break
if not flag:
res = [-1]
break
print(' '.join([str(c) for c in res]))
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t = int(input())
for _ in range(t):
n = int(input())
b = list(map(int, input().split()))
c = [0]*(2*n)
d = []
for i in range(0, 2*n, 2):
c[i] = b[i//2]
for j in range(1, (2*n)+1):
if (j not in c):
d.append(j)
for i in range(n):
for j in range(0, 2*n, 2):
if (c[j+1] == 0):
if (d[i] > c[j]):
c[j+1] = d[i]
break
if (0 in c):
print("-1")
else:
print(*c) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.TreeSet;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
*
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastReader in = new FastReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
CRestoringPermutation solver = new CRestoringPermutation();
solver.solve(1, in, out);
out.close();
}
static class CRestoringPermutation {
public void solve(int testNumber, FastReader sc, PrintWriter out) {
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int[] b = new int[n];
for (int i = 0; i < n; ++i) b[i] = sc.nextInt();
n = 2 * n;
int[] a = new int[n];
TreeSet<Integer> tree = new TreeSet<>();
for (int i = 1; i <= n; ++i) tree.add(i);
int ptr = 0;
for (int i = 0; i < n; i += 2) {
a[i] = b[ptr++];
tree.remove(a[i]);
}
boolean yes = false;
for (int i = 1; i < n && !yes; i += 2) {
int x = a[i - 1];
if (tree.higher(x) == null)
yes = true;
else {
a[i] = tree.higher(x);
tree.remove(a[i]);
}
}
if (yes) out.print(-1);
else for (int i = 0; i < a.length; ++i) out.print(a[i] + " ");
out.println();
}
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader(InputStream stream) {
br = new BufferedReader(new
InputStreamReader(stream), 32768);
}
public String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | if __name__ == '__main__':
for _ in range (int(input())):
n = int(input())
l = list(map(int, input().split()))
a = min(l)
b = max(l)
if a != 1 or b == 2*n:
print(-1)
else:
B = []
d = dict()
for i in range (n):
d.setdefault(l[i],1)
for i in range (1,(2*n)+1):
d.setdefault(i,0)
if d[i] == 0:
B.append(i)
B.sort()
ans = []
i = 0
while i < n:
ans.append(l[i])
for j in range (len(B)):
if B[j] > l[i]:
ans.append(B[j])
B.pop(j)
break
i+=1
if len(ans) < 2*n:
print(-1)
continue
print(*ans) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | /**
* ******* Created on 23/2/20 10:07 PM*******
*/
import java.io.*;
import java.util.*;
public class C1315 implements Runnable {
private static final int MAX = (int) (1E5 + 5);
private static final int MOD = (int) (1E9 + 7);
private static final long Inf = (long) (1E14 + 10);
private void solve() throws IOException {
int t = reader.nextInt();
int[] b = new int[105];
int[] a = new int[210];
List<Integer>list = new ArrayList<>();
Set<Integer>set = new HashSet<>();
while(t-->0){
set.clear();
int n = reader.nextInt();
for(int i=1;i<=n;i++) {
b[i] = reader.nextInt();
set.add(b[i]);
}
boolean flag = true;
for(int i=1;i<=n; i++){
int val = 2*n+1;
for(int j=b[i]+1;j<=2*n;j++){
if(!set.contains(j)){
val =j;break;
}
}
if(val > 2*n)
flag =false;
a[2*i-1]=b[i];
a[2*i]= val;
set.add(val);
}
set.clear();
for(int i=1;i<=2*n;i++){
if(set.contains(a[i]))
flag =false;
set.add(a[i]);
}
if(!flag)
writer.print("-1");
else
for(int i=1;i<=2*n;i++)
writer.print(a[i]+" ");
writer.println();
}
}
public static void main(String[] args) throws IOException {
try (Input reader = new StandardInput(); PrintWriter writer = new PrintWriter(System.out)) {
new C1315().run();
}
}
StandardInput reader;
PrintWriter writer;
@Override
public void run() {
try {
reader = new StandardInput();
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
}
}
interface Input extends Closeable {
String next() throws IOException;
default int nextInt() throws IOException {
return Integer.parseInt(next());
}
default long nextLong() throws IOException {
return Long.parseLong(next());
}
default double nextDouble() throws IOException {
return Double.parseDouble(next());
}
default int[] readIntArray() throws IOException {
return readIntArray(nextInt());
}
default int[] readIntArray(int size) throws IOException {
int[] array = new int[size];
for (int i = 0; i < array.length; i++) {
array[i] = nextInt();
}
return array;
}
default long[] readLongArray(int size) throws IOException {
long[] array = new long[size];
for (int i = 0; i < array.length; i++) {
array[i] = nextLong();
}
return array;
}
}
private static class StandardInput implements Input {
private final BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
private StringTokenizer stringTokenizer;
@Override
public void close() throws IOException {
reader.close();
}
@Override
public String next() throws IOException {
if (stringTokenizer == null || !stringTokenizer.hasMoreTokens()) {
stringTokenizer = new StringTokenizer(reader.readLine());
}
return stringTokenizer.nextToken();
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n = int(input())
b = list(map(int, input().split()))
ans = []
for i in b:
ans.append(i)
t = i+1
while(t in b) or (t in ans):
t += 1
ans.append(t)
if(max(ans) == 2*n):
print(*ans)
else:
print("-1") | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import sys
import collections
input = sys.stdin.readline
def main():
t = int(input())
for _ in range(t):
N = int(input())
B = [int(x) for x in input().split()]
c = collections.Counter()
ans = []
for b in B:
if c[b] > 0:
print(-1)
break
ans.append(b)
c[b] += 1
i = 1
while c[b + i] != 0 or b + i in B:
i += 1
ans.append(b + i)
c[b + i] += 1
else:
for i in range(1, 2 * N + 1):
if c[i] == 0:
print(-1)
break
else:
print(*ans)
if __name__ == '__main__':
main()
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.*;
import java.io.*;
public class Main{
static int repow(int b,int p){
long a = b;
long res=1;
while(p>0){
if(p%2==1){
res*=a;
}
a*=a;
p/=2;
}
return (int)res;
}
static int repow(int b,int p,int modder){
long a = b%modder;
long res=1;
while(p>0){
if(p%2==1){
res=(res*a)%modder;
}
a=(a*a)%modder;
p/=2;
}
return (int)res;
}
static long repow(long b,long p){
long a = b;
long res=1;
while(p>0){
if(p%2==1){
res*=a;
}
a*=a;
p/=2;
}
return res;
}
static long repow(long b,long p,long modder){
long a = b%modder;
long res=1;
while(p>0){
if(p%2==1){
res=(res*a)%modder;
}
a=(a*a)%modder;
p/=2;
}
return res;
}
static long gcd(long c,long d){
while(true){
long f=c%d;
if(f==0){
return d;
}
c=d;
d=f;
}
}
static long lcm(long c,long d){
return c/gcd(c,d)*d;
}
static ArrayList<Integer> divList(int n){
ArrayList<Integer> div=new ArrayList<Integer>();
for(int i=1;i*i<=n;i++){
if(n%i==0){
div.add(i);
if(i*i!=n){
div.add((int)(n/i));
}
}
}
return div;
}
static HashSet<Integer> divSet(int n){
HashSet<Integer> div=new HashSet<Integer>();
for(int i=1;i*i<=n;i++){
if(n%i==0){
div.add(i);
div.add((int)(n/i));
}
}
return div;
}
static Map<Long,Integer> pFacMap(long x){
Map<Long,Integer> mp=new HashMap<>();
long t=x;
for(long i=2;i*i<=x&&i<=t;i++){
if(t%i==0){
int num=0;
while(t%i==0){
t/=i;
num++;
}
mp.put(i,num);
}
}
if(t!=1){
mp.put(t,1);
}
return mp;
}
static boolean iP(long n){
if(n==2){
return true;
}
if((n&1)==0||n==1){
return false;
}
// if(n>3037007383L){
if(n>Integer.MAX_VALUE){
return tameshiwari(n);
}
long d=n-1;
int s=0;
while((d&1)==0){
d/=2;
s++;
}
int[] aa = {2,3,5,7,11,13,17};
for(int i=0;i<7&&aa[i]<n;i++){
int a = aa[i];
long t = d;
long y=repow(a,t,n);
while(t!=n-1&&y!=1&&y!=n-1){
y = (y*y)%n;
t=t<<1;
}
if(y!=n-1&&(t&1)==0){
return false;
}
}
return true;
}
static boolean tameshiwari(long n){
for(long i=2;i*i<=n;i++){
if(n%i==0){
return false;
}
}
return true;
}
static class NCK{
int max;
int mod;
long[] fac;
long[] finv;
long[] inv;
NCK(){
this(510000,1000000007);
}
NCK(int max,int mod){
this.max=max;
this.mod=mod;
pre(max,mod);
}
void pre(int nmax,int nmod){
fac = new long[nmax];
finv = new long[nmax];
inv = new long[nmax];
fac[0]=fac[1]=1;
finv[0]=finv[1]=1;
inv[1]=1;
for(int i=2;i<nmax;i++){
fac[i]=fac[i-1]*i%nmod;
inv[i]=nmod-inv[nmod%i]*(nmod/i)%nmod;
finv[i]=finv[i-1]*inv[i]%nmod;
}
}
long nCk(int n,int k){
if(n<k){return 0;}
if(n<0||k<0){return 0;}
return fac[n]*(finv[k]*finv[n-k]%mod)%mod;
}
}
static <T extends Comparable<T>> int BSA(List<T> l,T target){
return BSA(l,target,0,l.size(),(s1,s2)->s1.compareTo(s2));
}
static <T> int BSA(List<T> l,T target,Comparator<T> c){
return BSA(l,target,0,l.size(),c);
}
static <T extends Comparable<T>> int BSA(List<T> l,T target,int left,int right){
return BSA(l,target,left,right,(s1,s2)->s1.compareTo(s2));
}
static <T> int BSA(List<T> l,T target,int left,int right,Comparator<T> c){
int lt = left;
int rt = right-1;
while(lt<=rt){
T gaze=l.get(lt+(rt-lt)/2);
if(c.compare(gaze,target)<0){
lt=lt+(rt-lt)/2+1;
}else if(c.compare(gaze,target)>0){
rt=lt+(rt-lt)/2-1;
}else{
return lt+(rt-lt)/2;
}
}
return -1;
}
static <T extends Comparable<T>> int BSF(List<T> l,T target){
return BSF(l,target,0,l.size(),(s1,s2)->s1.compareTo(s2));
}
static <T> int BSF(List<T> l,T target,Comparator<T> c){
return BSF(l,target,0,l.size(),c);
}
static <T extends Comparable<T>> int BSF(List<T> l,T target,int left,int right){
return BSF(l,target,left,right,(s1,s2)->s1.compareTo(s2));
}
static <T> int BSF(List<T> l,T target,int left,int right,Comparator<T> c){
int lt = left;
int rt = right-1;
while(lt<=rt){
T gaze=l.get(lt+(rt-lt)/2);
if(c.compare(gaze,target)<0){
lt=lt+(rt-lt)/2+1;
}else if(c.compare(gaze,target)>=0){
rt=lt+(rt-lt)/2-1;
}
}
return lt;
}
static <T extends Comparable<T>> int BSL(List<T> l,T target){
return BSL(l,target,0,l.size(),(s1,s2)->s1.compareTo(s2));
}
static <T> int BSL(List<T> l,T target,Comparator<T> c){
return BSL(l,target,0,l.size(),c);
}
static <T extends Comparable<T>> int BSL(List<T> l,T target,int left,int right){
return BSL(l,target,left,right,(s1,s2)->s1.compareTo(s2));
}
static <T> int BSL(List<T> l,T target,int left,int right,Comparator<T> c){
int lt = left;
int rt = right-1;
while(lt<=rt){
T gaze=l.get(lt+(rt-lt)/2);
if(c.compare(gaze,target)<=0){
lt=lt+(rt-lt)/2+1;
}else if(c.compare(gaze,target)>0){
rt=lt+(rt-lt)/2-1;
}
}
return lt;
}
static <T extends Comparable<T>> int BSA(T[] a,T target){
return BSA(a,target,0,a.length,(s1,s2)->s1.compareTo(s2));
}
static <T> int BSA(T[] a,T target,Comparator<T> c){
return BSA(a,target,0,a.length,c);
}
static <T extends Comparable<T>> int BSA(T[] a,T target,int left,int right){
return BSA(a,target,left,right,(s1,s2)->s1.compareTo(s2));
}
static <T> int BSA(T[] a,T target,int left,int right,Comparator<T> c){
int lt = left;
int rt = right-1;
while(lt<=rt){
T gaze=a[lt+(rt-lt)/2];
if(c.compare(gaze,target)<0){
lt=lt+(rt-lt)/2+1;
}else if(c.compare(gaze,target)>0){
rt=lt+(rt-lt)/2-1;
}else{
return lt+(rt-lt)/2;
}
}
return -1;
}
static <T extends Comparable<T>> int BSF(T[] a,T target){
return BSF(a,target,0,a.length,(s1,s2)->s1.compareTo(s2));
}
static <T> int BSF(T[] a,T target,Comparator<T> c){
return BSF(a,target,0,a.length,c);
}
static <T extends Comparable<T>> int BSF(T[] a,T target,int left,int right){
return BSF(a,target,left,right,(s1,s2)->s1.compareTo(s2));
}
static <T> int BSF(T[] a,T target,int left,int right,Comparator<T> c){
int lt = left;
int rt = right-1;
while(lt<=rt){
T gaze=a[lt+(rt-lt)/2];
if(c.compare(gaze,target)<0){
lt=lt+(rt-lt)/2+1;
}else if(c.compare(gaze,target)>=0){
rt=lt+(rt-lt)/2-1;
}
}
return lt;
}
static <T extends Comparable<T>> int BSL(T[] a,T target){
return BSL(a,target,0,a.length,(s1,s2)->s1.compareTo(s2));
}
static <T> int BSL(T[] a,T target,Comparator<T> c){
return BSL(a,target,0,a.length,c);
}
static <T extends Comparable<T>> int BSL(T[] a,T target,int left,int right){
return BSL(a,target,left,right,(s1,s2)->s1.compareTo(s2));
}
static <T> int BSL(T[] a,T target,int left,int right,Comparator<T> c){
int lt = left;
int rt = right-1;
while(lt<=rt){
T gaze=a[lt+(rt-lt)/2];
if(c.compare(gaze,target)<=0){
lt=lt+(rt-lt)/2+1;
}else if(c.compare(gaze,target)>0){
rt=lt+(rt-lt)/2-1;
}
}
return lt;
}
static int BSA(int[] a,int target){
return BSA(a,target,0,a.length,true);
}
static int BSA(int[] a,int target, boolean syojun){
return BSA(a,target,0,a.length,syojun);
}
static int BSA(int[] a,int target,int left,int right){
return BSA(a,target,left,right,true);
}
static int BSA(int[] a,int target,int left,int right,boolean syojun){
int lt = left;
int rt = right-1;
while(lt<=rt){
int gaze=a[lt+(rt-lt)/2];
if((syojun&&gaze<target)||(!syojun&&gaze>target)){
lt=lt+(rt-lt)/2+1;
}else if((syojun&&gaze>target)||(!syojun&&gaze<target)){
rt=lt+(rt-lt)/2-1;
}else{
return lt+(rt-lt)/2;
}
}
return -1;
}
static int BSF(int[] a,int target){
return BSF(a,target,0,a.length,true);
}
static int BSF(int[] a,int target,boolean syojun){
return BSF(a,target,0,a.length,syojun);
}
static int BSF(int[] a,int target,int left,int right){
return BSF(a,target,left,right,true);
}
static int BSF(int[] a,int target,int left,int right,boolean syojun){
int lt = left;
int rt = right-1;
while(lt<=rt){
int gaze=a[lt+(rt-lt)/2];
if((syojun&&gaze<target)||(!syojun&&gaze>target)){
lt=lt+(rt-lt)/2+1;
}else if((syojun&&gaze<=target)||(!syojun&&gaze>=target)){
rt=lt+(rt-lt)/2-1;
}
}
return lt;
}
static int BSL(int[] a,int target){
return BSL(a,target,0,a.length,true);
}
static int BSL(int[] a,int target,boolean syojun){
return BSL(a,target,0,a.length,syojun);
}
static int BSL(int[] a,int target,int left,int right){
return BSL(a,target,left,right,true);
}
static int BSL(int[] a,int target,int left,int right,boolean syojun){
int lt = left;
int rt = right-1;
while(lt<=rt){
int gaze=a[lt+(rt-lt)/2];
if((syojun&&gaze<=target)||(!syojun&&gaze>=target)){
lt=lt+(rt-lt)/2+1;
}else if((syojun&&gaze>target)||(!syojun&&gaze<target)){
rt=lt+(rt-lt)/2-1;
}
}
return lt;
}
static int BSA(long[] a,long target){
return BSA(a,target,0,a.length,true);
}
static int BSA(long[] a,long target, boolean syojun){
return BSA(a,target,0,a.length,syojun);
}
static int BSA(long[] a,long target,int left,int right){
return BSA(a,target,left,right,true);
}
static int BSA(long[] a,long target,int left,int right,boolean syojun){
int lt = left;
int rt = right-1;
while(lt<=rt){
long gaze=a[lt+(rt-lt)/2];
if((syojun&&gaze<target)||(!syojun&&gaze>target)){
lt=lt+(rt-lt)/2+1;
}else if((syojun&&gaze>target)||(!syojun&&gaze<target)){
rt=lt+(rt-lt)/2-1;
}else{
return lt+(rt-lt)/2;
}
}
return -1;
}
static int BSF(long[] a,long target){
return BSF(a,target,0,a.length,true);
}
static int BSF(long[] a,long target,boolean syojun){
return BSF(a,target,0,a.length,syojun);
}
static int BSF(long[] a,long target,int left,int right){
return BSF(a,target,left,right,true);
}
static int BSF(long[] a,long target,int left,int right,boolean syojun){
int lt = left;
int rt = right-1;
while(lt<=rt){
long gaze=a[lt+(rt-lt)/2];
if((syojun&&gaze<target)||(!syojun&&gaze>target)){
lt=lt+(rt-lt)/2+1;
}else if((syojun&&gaze<=target)||(!syojun&&gaze>=target)){
rt=lt+(rt-lt)/2-1;
}
}
return lt;
}
static int BSL(long[] a,long target){
return BSL(a,target,0,a.length,true);
}
static int BSL(long[] a,long target,boolean syojun){
return BSL(a,target,0,a.length,syojun);
}
static int BSL(long[] a,long target,int left,int right){
return BSL(a,target,left,right,true);
}
static int BSL(long[] a,long target,int left,int right,boolean syojun){
int lt = left;
int rt = right-1;
while(lt<=rt){
long gaze=a[lt+(rt-lt)/2];
if((syojun&&gaze<=target)||(!syojun&&gaze>=target)){
lt=lt+(rt-lt)/2+1;
}else if((syojun&&gaze>target)||(!syojun&&gaze<target)){
rt=lt+(rt-lt)/2-1;
}
}
return lt;
}
static int kmp(String t,String p){
int[] f=new int[p.length()+1];
int i=0;
int j=1;
f[1]=0;
while(j<p.length()){
if(i==0||p.charAt(i-1)==p.charAt(j-1)){
i++;
j++;
f[j]=i;
}else{
i=f[i];
}
}
i=1;
j=1;
while(i<=p.length()&&j<=t.length()){
if(i==0||p.charAt(i-1)==t.charAt(j-1)){
i++;
j++;
}else{
i=f[i];
}
}
return i==(p.length()+1)?j-i:-1;
}
static String StSort(String s){
StringBuilder sb = new StringBuilder(s);
int lg = sb.length();
int l;
int r;
int gaze;
for(int i=1;i<lg;i++){
l=0;
r=i-1;
while(l<=r){
gaze=(l+r)/2;
if(sb.charAt(gaze)<=sb.charAt(i)){
l=gaze+1;
}else if(sb.charAt(gaze)>sb.charAt(i)){
r=gaze-1;
}
}
sb.insert(l,sb.charAt(i));
sb.deleteCharAt(i+1);
}
return sb.toString();
}
static class Xy{
int x;
int y;
Xy(int x,int y){
this.x=x;
this.y=y;
}
public int manht(Xy o){
return Math.abs(x-o.x)+Math.abs(y-o.y);
}
public String toString(){
return "["+x+","+y+"]";
}
public double henkaku(){
return Math.atan2(y,x);
}
public static int hencom(Xy s1,Xy s2){
return (int)Math.signum(s1.henkaku()-s2.henkaku());
}
public boolean equals(Object o){
return x==((Xy)o).x&&y==((Xy)o).y;
}
}
static class Zip1{
Map<Long,Integer> zip=new HashMap<>();
long[] unzip;
Zip1(long[] a){
Arrays.sort(a);
long mae=0;int zure=0;
for(int i=0;i<a.length;i++){
if(i==0||mae!=a[i]){
zip.put(a[i],i-zure);
mae=a[i];
}else{
zure++;
}
}
unzip=new long[size()];
zure=0;
for(int i=0;i<a.length;i++){
if(i==0||mae!=a[i]){
unzip[i-zure]=a[i];
}else{
zure++;
}
}
}
int zip(long t){
return zip.get(t);
}
long unzip(int i){
return unzip[i];
}
int size(){
return zip.size();
}
}
static class UnFd{
int n;
int[] a;
int forest;
UnFd(int n){
forest=this.n=n;
a = new int[n];
for(int i=0;i<n;i++){
a[i] = i;
}
}
boolean isRoot(int i){
return a[i]==i;
}
int rootOf(int i){
if(isRoot(i)){
return i;
}
return a[i] = rootOf(a[i]);
}
boolean ud(int i,int j){
return rootOf(i)==rootOf(j);
}
boolean marge(int i,int j){
if(ud(i,j)){
return false;
}
i=rootOf(i);
j=rootOf(j);
a[Integer.max(i,j)]=Integer.min(i,j);
forest-=1;
return true;
}
int[] roots(){
int[] rs = new int[forest];
int p=0;
for(int i=0;i<n;i++){
if(isRoot(i)){
rs[p]=i;
p++;
}
}
return rs;
}
}
static class SegTree<T>{
int n;
int m;
java.util.function.BinaryOperator<T> op;
int[] l;
int[] r;
T[] a;
T ident;
SegTree(int n,java.util.function.BinaryOperator<T> op,T ident){
this.n=n;
this.op=op;
this.ident=ident;
int ii=n-1;
int p=0;
while(ii>0){
ii/=2;
p++;
}
m=repow(2,p+1)-1;
@SuppressWarnings("unchecked")
T[] b=(T[])(new Object[m]);
a=b;
Arrays.fill(a,ident);
l=new int[m];
r=new int[m];
for(int i=0;i<=m/2;i++){
l[m/2+i]=i;
r[m/2+i]=i+1;
}
for(int i=m/2-1;i>=0;i--){
l[i]=l[lch(i)];
r[i]=r[rch(i)];
}
}
SegTree(int n,java.util.function.BinaryOperator<T> op,T ident,T[] ary){
this.n=n;
this.op=op;
this.ident=ident;
int ii=n-1;
int p=0;
while(ii>0){
ii/=2;
p++;
}
m=repow(2,p+1)-1;
@SuppressWarnings("unchecked")
T[] b=(T[])(new Object[m]);
a=b;
for(int i=0;i<n;i++){
a[m/2+i]=ary[i];
}
for(int i=m/2+n;i<m;i++){
a[i]=ident;
}
for(int i=m/2-1;i>=0;i--){
a[i]=op.apply(a[lch(i)],a[rch(i)]);
}
l=new int[m];
r=new int[m];
for(int i=0;i<=m/2;i++){
l[m/2+i]=i;
r[m/2+i]=i+1;
}
for(int i=m/2-1;i>=0;i--){
l[i]=l[lch(i)];
r[i]=r[rch(i)];
}
}
public T getAll(){
return a[0];
}
public T get(int from,int to){
if(from<0||n<to||from>=to){
throw new IllegalArgumentException(String.valueOf(from)+","+String.valueOf(to));
}
return get(from,to,0);
}
private T get(int from,int to,int node){
if(from==l[node]&&to==r[node]){
return a[node];
}else{
if(to<=l[node]+(r[node]-l[node])/2){
return get(from,to,lch(node));
}else if(l[node]+(r[node]-l[node])/2<=from){
return get(from,to,rch(node));
}else{
return op.apply(get(from,l[node]+(r[node]-l[node])/2,lch(node)),get(l[node]+(r[node]-l[node])/2,to,rch(node)));
}
}
}
public void set(T ob,int i){
if(i<0||n<=i){
throw new IndexOutOfBoundsException(String.valueOf(i)+"isOutFromLength "+String.valueOf(n));
}
int j=m/2+i;
a[j]=ob;
while(true){
if(j==0){
break;
}
j=prt(j);
a[j]=op.apply(a[lch(j)],a[rch(j)]);
}
}
static private int prt(int node){
return (node-1)/2;
}
static private int lch(int node){
return 2*node+1;
}
static private int rch(int node){
return 2*node+2;
}
public String toString(){
return Arrays.toString(a);
}
}
static boolean next_permutation(int[] per){
if(per.length<2){
return false;
}
int i;
for(i=per.length-1;i>0;i--){
if(per[i-1]<per[i]){
break;
}
}
if(0<i){
i--;
int tmp;
int j;
for(j=per.length-1;j>i;j--){
if(per[j]>per[i]){
break;
}
}
//swap(i,j)
tmp=per[i];
per[i]=per[j];
per[j]=tmp;
for(int k=i+1;k<(i+1+per.length)/2;k++){
//swap(k,per.length-k+i)
tmp=per[k];
per[k]=per[per.length-k+i];
per[per.length-k+i]=tmp;
}
return true;
}
int tmp;
for(int k=0;k<per.length;k++){
//swap(k,per.length-k-1)
tmp=per[k];
per[k]=per[per.length-k-1];
per[per.length-k-1]=tmp;
}
return false;
}
static boolean next_bits(boolean[] b){
for(int i=0;i<b.length;i++){
if(b[i]){
b[i]=false;
}else{
b[i]=true;
return true;
}
}
return false;
}
static class Scnr{
private final InputStream ins;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
Scnr(){
this(System.in);
}
Scnr(InputStream in){
ins = in;
}
private boolean hasNextByte(){
if(ptr<buflen){
return true;
}else{
ptr = 0;
try{
buflen = ins.read(buffer);
}catch(IOException e){
e.printStackTrace();
}
if(buflen<=0){
return false;
}
}
return true;
}
private int readByte(){
if(hasNextByte()){
return buffer[ptr++];
}else{
return -1;
}
}
private static boolean isPrintableChar(int c){
return 33<=c&&c<=126;
}
public boolean hasNext(){
while(hasNextByte()&&!isPrintableChar(buffer[ptr])){
ptr++;
}
return hasNextByte();
}
public String next(){
return nextBuilder().toString();
}
public StringBuilder nextBuilder(){
if(!hasNext()){
throw new NoSuchElementException();
}
StringBuilder sb = new StringBuilder();
int b = readByte();
while(isPrintableChar(b)){
sb.appendCodePoint(b);
b = readByte();
}
return sb;
}
public double nextDouble(){
return Double.parseDouble(next());
}
public long nextLong(){
if(!hasNext()){
throw new NoSuchElementException();
}
long n = 0;
boolean minus = false;
int b = readByte();
if(b=='-'){
minus=true;
b=readByte();
}
if(b<'0'||'9'<b){
throw new NumberFormatException();
}
while(true){
if('0'<=b&&b<='9'){
n*=10;
n+=b-'0';
}else if(b==-1||!isPrintableChar(b)){
return minus?-n:n;
}else{
throw new NumberFormatException();
}
b=readByte();
}
}
public int nextInt(){
long nl=nextLong();
if(nl<Integer.MIN_VALUE||Integer.MAX_VALUE<nl){
throw new NumberFormatException();
}
return (int) nl;
}
public String[] nextA(int n){
String[] a = new String[n];
nextA(a,n);
return a;
}
public void nextA(String[] a,int n){
nextA(a,0,n);
}
public void nextA(String[] a,int off,int len){
for(int i=off;i<off+len;i++){
a[i]=next();
}
}
public int[] nextAInt(int n){
int[] a = new int[n];
nextAInt(a,n);
return a;
}
public void nextAInt(int[] a,int n){
nextAInt(a,0,n);
}
public void nextAInt(int[] a,int off,int len){
for(int i=off;i<off+len;i++){
a[i] = nextInt();
}
}
public long[] nextALong(int n){
long[] a = new long[n];
nextALong(a,n);
return a;
}
public void nextALong(long[] a,int n){
nextALong(a,0,n);
}
public void nextALong(long[] a,int off,int len){
for(int i=off;i<off+len;i++){
a[i] = nextLong();
}
}
public double[] nextADouble(int n){
double[] a = new double[n];
nextADouble(a,n);
return a;
}
public void nextADouble(double[] a,int n){
nextADouble(a,0,n);
}
public void nextADouble(double[] a,int off,int len){
for(int i=off;i<off+len;i++){
a[i] = nextDouble();
}
}
public List<Integer> nextLInt(int n){
List<Integer> l = new ArrayList<>(n);
for(int i=0;i<n;i++){
l.add(sc.nextInt());
}
return l;
}
public List<Long> nextLLong(int n){
List<Long> l = new ArrayList<>(n);
for(int i=0;i<n;i++){
l.add(sc.nextLong());
}
return l;
}
public List<Double> nextLDouble(int n){
List<Double> l = new ArrayList<>(n);
for(int i=0;i<n;i++){
l.add(sc.nextDouble());
}
return l;
}
}
static Scnr sc = new Scnr();
static PrintWriter out = new PrintWriter(System.out);
public static void main(String args[]){
int t=sc.nextInt();
for(int tt=0;tt<t;tt++){
solve();
}
out.flush();
}
public static void solve(){
int n=sc.nextInt();
int[] b=sc.nextAInt(n);
int[] q=new int[2*n+1];
Arrays.fill(q,-1);
for(int i=0;i<b.length;i++){
q[b[i]]=i;
}
int[] a=new int[2*n];
for(int i=1;i<=2*n;i++){
if(q[i]!=-1){
a[q[i]*2]=i;
continue;
}
boolean flag=false;
for(int j=0;j<n;j++){
if(b[j]<i&&a[j*2+1]==0){
a[j*2+1]=i;
flag=true;
break;
}
}
if(flag){
continue;
}
// System.err.println(Arrays.toString(a));
out.println(-1);
return;
}
for(int i=0;i<2*n-1;i++){
out.print(a[i]+" ");
}
out.println(a[2*n-1]);
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int n;
int num[110];
int ans[220];
bool used[220];
void init() {
for (int i = 0; i <= 105; i++) {
num[i] = 0;
ans[i * 2] = ans[2 * i + 1] = 0;
used[i * 2] = used[2 * i + 1] = 0;
}
}
void solve() {
for (int i = 1; i <= n; i++) {
ans[2 * i - 1] = num[i];
used[num[i]] = 1;
}
for (int i = 1; i <= n; i++) {
for (int j = ans[2 * i - 1]; j <= n * 2; j++) {
if (!used[j]) {
used[j] = 1;
ans[2 * i] = j;
break;
}
}
if (ans[i * 2] == 0) {
puts("-1");
return;
}
}
for (int i = 1; i <= 2 * n; i++) {
cout << ans[i] << ' ';
}
puts("");
}
int main() {
int t;
cin >> t;
while (t--) {
init();
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> num[i];
}
solve();
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | TC = int(input())
def get_unused(nums, res):
unused = set(range(1, 2 * n + 1))
for v in res:
unused.remove(v)
return unused
def solve(nums):
res = []
n = len(nums)
extra = 10 * n
used = [0] * (2 * n + 1)
for num in nums:
res.append(extra)
res.append(num)
used[num] = 1
for i in range(n):
found = False
for j in range(nums[i] + 1, 2 * n + 1):
if not used[j]:
res[2 * i] = j
used[j] = 1
found = True
break
if not found:
return []
if res[2 * i] > res[2 * i + 1]:
res[2 * i], res[2 * i + 1] = res[2 * i + 1], res[2 * i]
return res
for _ in range(TC):
n = int(input())
*nums, = map(int, input().split())
res = solve(nums)
if res:
print(*res)
else:
print(-1)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t=int(input())
for _ in range(t):
n=int(input())
B=[int(i) for i in input().split()]
B_set=set(B)
check=True
Ans=[]
Used=[True]*(2*n)
for i in range(2*n):
if i+1 in B_set:
Used[i]=False
for b in B:
Ans.append(b)
for i in range(b,2*n):
if Used[i]:
Ans.append(i+1)
Used[i]=False
break
else:
check=False
if check:
print(*Ans)
else:
print(-1) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.util.*;
import java.lang.Math;
public class Main{
static BufferedReader reader;
static StringTokenizer tokenizer;
static PrintWriter writer;
static int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
static long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
static double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
static String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
static String nexts() throws IOException {
tokenizer = new StringTokenizer(reader.readLine());
String s="";
while (tokenizer.hasMoreTokens()) {
s+=tokenizer.nextElement()+" ";
}
return s;
}
public static int gcd(int x, int y){
if (y == 0) return x; else return gcd(y, x % y);
}
public static boolean isPrime(int nn)
{
if(nn<=1){
return false; }
if(nn<=3){
return true; }
if (nn%2==0||nn%3==0){
return false; }
for (int i=5;i*i<=nn;i=i+6){
if(nn%i==0||nn%(i+2)==0){
return false; }
}
return true;
}
public static void shuffle(int[] A) {
for (int i = 0; i < A.length; i++) {
int j = (int)(i * Math.random());
int tmp = A[i];
A[i] = A[j];
A[j] = tmp;
}
}
public static void shufflel(Long[] A) {
for (int i = 0; i < A.length; i++) {
int j = (int)(i * Math.random());
long tmp = A[i];
A[i] = A[j];
A[j] = tmp;
}
}
public static String reverse(String input)
{
StringBuilder input2=new StringBuilder();
input2.append(input);
input2 = input2.reverse();
return input2.toString();
}
public static long power(int x, long n)
{
// long mod = 1000000007;
if (n == 0) {
return 1;
}
long pow = power(x, n / 2);
if ((n & 1) == 1) {
return (x * pow * pow);
}
return (pow * pow);
}
public static long power(long x, long y, long p) //x^y%p
{
long res = 1;
x = x % p;
while (y > 0) {
if (y % 2 == 1) {
res = (res * x) % p;
}
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
static long ncr(int n, int k)
{
long res = 1;
// Since C(n, k) = C(n, n-k)
if (k > n - k) {
k = n - k;
}
// Calculate value of [n*(n-1)*---*(n-k+1)] / [k*(k-1)*---*1]
for (int i = 0; i < k; ++i) {
res *= (n - i);
res /= (i + 1);
}
return res;
}
public static int inv(int a, int m) //Returns modulo inverse of a with respect to m using extended euclid algorithm
{
int m0=m,t,q;
int x0=0,x1=1;
if(m==1){
return 0; }
while(a>1)
{
q=a/m;
t=m;
m=a%m;a=t;
t=x0;
x0=x1-q*x0;
x1=t; }
if(x1<0){
x1+=m0; }
return x1;
}
static int modInverse(int n, int p)
{
return (int)power((long)n, (long)(p - 2),(long)p);
}
static int ncrmod(int n, int r, int p)
{
if (r == 0) // Base case
return 1;
int[] fac = new int[n + 1]; // Fill factorial array so that we can find all factorial of r, n and n-r
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % p;
return (fac[n] * modInverse(fac[r], p) % p * modInverse(fac[n - r], p) % p) % p; //IMPORTANT
}
static int upper(int a[], int x) //Returns rightest index of x in sorted arr else -1
{ //If not present returns index of just smaller element
int n=a.length;
int l=0;
int r=n-1;
int ans=-1;
while(l<=r){
int m=(r-l)/2+l;
if(a[m]<=x){
ans=m;
l=m+1;
}
else{
r=m-1;
}
}
return ans;
}
static int lower(int a[], int x) //Returns leftest index of x in sorted arr else n
{ //If not present returns index of just greater element
int n=a.length;
int l=0;
int r=n-1;
int ans=n;
while(l<=r){
int m=(r-l)/2+l;
if(a[m]>=x){
ans=m;
r=m-1;
}
else{
l=m+1;
}
}
return ans;
}
public static long stringtoint(String s){ // Convert bit string to number
long a = 1;
long ans = 0;
StringBuilder sb = new StringBuilder();
sb.append(s);
sb.reverse();
s=sb.toString();
for(int i=0;i<s.length();i++){
ans = ans + a*(s.charAt(i)-'0');
a = a*2;
}
return ans;
}
String inttostring(long a,long m){ // a is number and m is length of string required
String res = ""; // Convert a number in bit string representation
for(int i=0;i<(int)m;i++){
if((a&(1<<i))==1){
res+='1';
}else
res+='0';
}
StringBuilder sb = new StringBuilder();
sb.append(res);
sb.reverse();
res=sb.toString();
return res;
}
static class R implements Comparable<R>{
int x, y;
public R(int x, int y) { //a[i]=new R(x,y);
this.x = x;
this.y = y;
}
public int compareTo(R o) {
return x-o.x; //Increasing order(Which is usually required)
}
}
/* FUNCTION TO SORT HASHMAP ACCORDING TO VALUE
//USE IT AS FOLLOW
//Make a new list
List<Map.Entry<Integer, Integer> > list =
new LinkedList<Map.Entry<Integer, Integer> >(h.entrySet());
// Sort the list
Collections.sort(list, new Comparator<Map.Entry<Integer, Integer> >() {
public int compare(Map.Entry<Integer, Integer> o1,
Map.Entry<Integer, Integer> o2)
{
return (o1.getValue()).compareTo(o2.getValue()); //This is used to sort string stored as VALUE, use below function here accordingly
}
});
// put data from sorted list to new hashmap
HashMap<String, Integer> temp = new LinkedHashMap<String, Integer>();
for (Map.Entry<String, Integer> aa : list) {
temp.put(aa.getKey(), aa.getValue());
}
return temp; //Now temp is our new sorted hashmap
OR
for(int i = 0;i<h.size();i++) //accessing elements from the list made
{
int count = list.get(i).getValue(); //Value
while(count >= 0)
{
int key=list.get(i).getKey(); //key
count -- ;
}
}
////////////////////////////////////////////////////////////////////////////////////////
public int compare(Entry<Integer, Integer> o1, Entry<Integer, Integer> o2)
{
if(o1.getValue() != o2.getValue())
return o1.getValue() > o2.getValue()?1:-1; //Sorts Value in increasing order
else if(o1.getValue() == o2.getValue()){
return o1.getKey() > o2.getKey() ? 1:-1; //If value equal, then sorts key in increasing order
}
return Integer.MIN_VALUE;
}
*/
//Check if palindrome string - System.out.print(A.equals(new StringBuilder(A).reverse().toString())?"Yes":"No");
public static void main(String[] args) throws IOException {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
}
private static void solve() throws IOException {
int t = nextInt();
while(t-->0){
//String s= nextToken();
//String[] s = str.split("\\s+");
//ArrayList<Integer> ar=new ArrayList<Integer>();
//HashSet<Integer> set=new HashSet<Integer>();
//HashMap<Integer,String> h=new HashMap<Integer,String>();
//R[] a1=new R[n];
//char[] c=nextToken().toCharArray();
int n = nextInt();
//long n = nextLong();
int[] b=new int[n+1];
int[] a=new int[(2*n)+1];
int[] h=new int[(2*n)+1];
//long[] a=new long[n];
for(int i=1;i<=n;i++){
b[i]=nextInt();
h[b[i]]++;
}
//shuffle(a);
//shufflel(a);
//Arrays.sort(a);
// if(h[1]==0||h[2*n]!=0){
// writer.println(-1);
// continue;
// }
int j=1;
int qq=0;
for(int i=1;i<=n;i++){
int c=b[i];
int c1=-1;
for(int p=c;p<=2*n;p++){
if(h[p]==0){
c1=p;
break;
}
}
if(c1==-1){
qq=1;
break;
}
h[c1]++;
a[j]=Math.min(c,c1);
a[j+1]=Math.max(c,c1);
j+=2;
}
if(qq==1){
writer.println(-1);
continue;
}
for(int i=1;i<=2*n;i++){
writer.print(a[i]+" ");
}
writer.println();
}
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
#pragma GCC optimize("Ofast")
#pragma GCC target("sse,sse2,sse3,sse3,sse4,popcnt,abm,mmx")
using namespace std;
const int MX = 1e9 + 1;
const int Imp = -1;
const int N = 1e6 + 5;
const int M = 1e6 + 5;
const long long INF = 1e18 + 1;
int main() {
ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int q;
cin >> q;
while (q--) {
int n;
cin >> n;
int a[n * 2];
set<int> st;
bool ok = 1;
for (int i = 1; i <= 2 * n; ++i) st.insert(i);
for (int i = 0; i < n; ++i) {
int x;
cin >> x;
if (x == n * 2) {
ok = 0;
}
a[i * 2] = x;
a[i * 2 + 1] = -1;
st.erase(x);
}
vector<int> v;
for (int i = 0; i < n * 2; ++i) {
if (a[i] == -1) {
if (st.lower_bound(a[i - 1]) == st.end()) {
ok = 0;
break;
}
int x = *st.lower_bound(a[i - 1]);
v.push_back(x);
st.erase(x);
} else {
v.push_back(a[i]);
}
}
if (!ok) {
cout << "-1\n";
continue;
} else {
for (int i = 0; i < 2 * n; ++i) {
cout << v[i] << ' ';
}
cout << '\n';
}
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | class GFG:
def __init__(self,graph, seq):
# residual graph
self.graph = graph
self.ppl = len(graph)
self.jobs = len(graph[0])
self.seq = seq
# A DFS based recursive function
# that returns true if a matching
# for vertex u is possible
def bpm(self, u, matchR, seen):
# Try every job one by one
for v in range(self.jobs-1,-1,-1):
# If applicant u is interested
# in job v and v is not seen
if self.graph[u][v] and seen[v] == False:
# Mark v as visited
seen[v] = True
'''If job 'v' is not assigned to
an applicant OR previously assigned
applicant for job v (which is matchR[v])
has an alternate job available.
Since v is marked as visited in the
above line, matchR[v] in the following
recursive call will not get job 'v' again'''
if matchR[v] == -1 or self.bpm(matchR[v],
matchR, seen):
matchR[v] = u
return True
return False
# Returns maximum number of matching
def maxBPM(self):
'''An array to keep track of the
applicants assigned to jobs.
The value of matchR[i] is the
applicant number assigned to job i,
the value -1 indicates nobody is assigned.'''
matchR = [-1] * self.jobs
# Count of jobs assigned to applicants
result = 0
for i in self.seq:
i -= 1
# Mark all jobs as not seen for next applicant.
seen = [False] * self.jobs
# Find if the applicant 'u' can get a job
if self.bpm(i, matchR, seen):
result += 1
# print(matchR)
self.matchR = matchR
return result
t = int(input())
for _ in range(t):
n = int(input())
b = list(map(int, input().split()))
g = [[0 for _ in range(2*n)] for _ in range(2*n)]
for i in b:
for j in range(i,2*n):
if j+1 not in b:
g[i-1][j] = 1
m = GFG(g, b)
if m.maxBPM() != n:
print(-1)
else:
for i in b:
print(i, m.matchR.index(i-1)+1, end=' ')
print()
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
long long t;
cin >> t;
while (t--) {
long long n;
cin >> n;
long long b[n];
for (long long i = 0; i < n; i++) cin >> b[i];
bool c[2 * n + 1];
memset(c, true, 2 * n + 1);
long long a[2 * n];
memset(a, -1, 2 * n);
for (long long i = 0; i < n; i++) {
a[2 * (i + 1) - 1] = b[i];
c[b[i]] = false;
}
bool T = true;
for (long long i = 0; i < 2 * n; i += 2) {
long long j = a[i + 1];
while (c[j] == false && j <= 2 * n) {
j++;
}
if (j > 2 * n) {
T = false;
break;
}
a[i] = j;
c[j] = false;
}
if (!T) {
cout << -1 << endl;
continue;
}
for (long long i = 0; i < 2 * n; i += 2) {
if (a[i] > a[i + 1]) {
swap(a[i], a[i + 1]);
}
}
for (long long i = 0; i < 2 * n; i++) {
cout << a[i] << " ";
}
cout << endl;
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t=int(input())
for i in range(t):
n=int(input())
L=[int(j) for j in input().split()]
L1=[0]*(2*n)
L2=[]
for k in range(0,2*n,2):
L1[k]=L[k//2]
for l in range(1,(2*n)+1,1):
if(l not in L1):
L2.append(l)
for x in range(n):
for y in range(0,2*n,2):
if(L1[y+1]==0):
if(L2[x]>L1[y]):
L1[y+1]=L2[x]
break
if(0 in L1):
print(-1)
else:
print(*L1)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const long long N = 200 + 10;
const long long M = 1e5 + 10;
const long long inf = 1e9 + 7;
const long long Mod = 1e9 + 7;
const double eps = 1e-6;
int T;
int n;
int a[N], b[N];
bool fix[N];
bool f;
void init() {
for (int i = 0; i < N; ++i) {
fix[i] = 0;
}
f = 1;
}
int main() {
scanf("%d", &T);
while (T--) {
scanf("%d", &n);
init();
for (int i = 1; i <= n; ++i) {
scanf("%d", b + i);
a[2 * i - 1] = b[i];
fix[b[i]] = 1;
}
for (int i = 2; i <= 2 * n; i += 2) {
bool find = 0;
for (int j = b[i / 2] + 1; j <= 2 * n; ++j) {
if (fix[j]) continue;
a[i] = j;
fix[j] = 1;
find = 1;
break;
}
if (find == 0) {
f = 0;
break;
}
}
if (f == 0)
puts("-1");
else {
for (int i = 1; i <= 2 * n; ++i) printf("%d ", a[i]);
puts("");
}
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | from collections import defaultdict
for _ in range(int(input())):
N = int(input())
List = [int(x) for x in input().split()]
Dict = defaultdict(int)
for i in List:
Dict[i] = 1
Res = []
flag = 0
for i in range(N):
Res.append(List[i])
if(List[i] == 2*N):
flag = 1
print(-1)
break
for j in range(List[i]+1,2*N+1):
if(Dict[j]==0):
Res.append(j)
Dict[j] = 1
break
elif(j==2*N and Dict[j] == 1):
flag = 1
print(-1)
break
if(flag==1):
break
if(flag == 0):
print(*Res)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
int T;
cin >> T;
bool used[314] = {};
int A[210] = {};
while (T--) {
int N;
cin >> N;
for (int i = 0; i < N; i++) {
cin >> A[i * 2];
used[A[i * 2]] = true;
}
for (int i = 0; i < N; i++) {
int j = A[i * 2] + 1;
while (used[j]) j++;
A[i * 2 + 1] = j;
used[j] = true;
}
bool ok = true;
for (int i = 1; i <= N * 2; i++) {
if (!used[i]) ok = false;
}
if (!ok)
cout << -1 << endl;
else {
for (int i = 0; i < N * 2; i++) cout << A[i] << " ";
cout << endl;
}
ok = true;
fill(used, used + 310, false);
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int MAXN = 200009;
const long long MOD = 119 << 23 | 1;
class {
public:
int a[222], b[222];
void solve() {
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
set<int> Se;
for (int i = 1; i <= 2 * n; ++i) {
Se.insert(i);
}
for (int i = 0; i < n; ++i) cin >> a[i], Se.erase(a[i]);
bool ok = 1;
for (int i = 0; i < 2 * n; i += 2) {
auto it = Se.lower_bound(a[i / 2]);
if (it == Se.end()) {
ok = 0;
break;
}
b[i] = a[i / 2];
b[i + 1] = *it;
Se.erase(it);
}
if (ok) {
for (int i = 0; i < 2 * n; ++i) cout << b[i] << " ";
cout << '\n';
} else {
cout << -1 << '\n';
}
}
}
} NSPACE;
int main() {
;
ios_base::sync_with_stdio(false);
cout.tie(0);
cin.tie(0);
NSPACE.solve();
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import sys
import math
import heapq
import collections
fast_reader = sys.stdin.readline
fast_writer = sys.stdout.write
def input():
return fast_reader().strip()
def print(*argv):
fast_writer(' '.join((str(i)) for i in argv))
fast_writer('\n')
def printspace(*argv):
fast_writer(' '.join((str(i)) for i in argv))
fast_writer(' ')
def inputnum():
return(int(input()))
def inputnums():
return(map(int,input().split()))
def inputlist():
return(list(map(int,input().split())))
def inputstring():
return([x for x in input()])
def inputstringnum():
return([ord(x)-ord('a') for x in input()])
def inputmatrixchar(rows):
arr2d = [[j for j in input().strip()] for i in range(rows)]
return arr2d
def inputmatrixint(rows):
arr2d = []
for _ in range(rows):
arr2d.append([int(i) for i in input().split()])
return arr2d
t = int(input())
for q in range(t):
n = inputnum()
b = inputlist()
s = []
ans = []
for i in range(1, 2*n + 1):
if i not in b:
s.append(i)
for i in range(n):
ans.append(b[i])
for j in range(n):
if s[j] > b[i]:
ans.append(s[j])
s[j] = -1
break
s.sort()
if s[n-1] != -1:
print(-1)
else:
print(*ans)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n=int(input())
b=list(map(int,input().split()))[:n]
a=[]
for i in range(n):
a.append(b[i])
k=b[i]
while(k in a or k in b):
k+=1
if(k>2*n):
print(-1)
break
a.append(k)
else:
print(*a)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | def solve():
n = eval(input())
b = input().split()
vis = [0 for i in range(0, 420)]
a = [0 for i in range(0, 400)]
pos = 0
flag = True
for x in b:
vis[int(x)] = 1
for x in b:
y = int(x)
pos += 1
a[2 * pos - 1] = y
ok = False
for j in range(y + 1, 2 * n + 1):
if vis[j] == 0:
vis[j] = 1
a[pos * 2] = j
ok = True
break
if ok == False:
flag = False
break
if flag == False:
print(-1)
else:
for i in range(1, 2 * n + 1):
print(a[i], end=" ")
print("")
t = eval(input())
while t:
solve()
t -= 1
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const long long M = 1e8 + 7, maxn = 4e5 + 5;
long long int ans, n, m, x, y, q, k, a, b, sum;
int32_t main() {
cin >> q;
while (q--) {
cin >> n;
long long int a[n];
set<long long int> s;
k = 0;
for (long long int i = 1; i <= 2 * n; i++) s.insert(i);
s.insert(M);
for (long long int i = 0; i < n; i++) {
cin >> a[i];
if (!s.count(a[i])) {
k = 1;
} else
s.erase(a[i]);
}
long long int b[2 * n];
long long int j = 0;
for (long long int i = 1; i < 2 * n; i += 2) {
x = *s.lower_bound(a[j]);
if (x == M) {
k = 1;
break;
}
b[i] = x;
s.erase(x);
j++;
}
j = 0;
if (k) {
cout << -1 << endl;
} else {
for (long long int i = 1; i < 2 * n; i += 2) {
cout << a[j] << " " << b[i] << " ";
j++;
}
cout << endl;
}
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
int t;
cin >> t;
while (t--) {
int n, tmp;
cin >> n;
int a[2 * n];
bool ss[2 * n + 1];
for (int i = (0); i < (2 * n); i++) a[i] = -1;
for (int i = (0); i < (2 * n + 1); i++) ss[i] = false;
for (int i = (0); i < (n); i++) {
cin >> a[i * 2];
ss[a[i * 2]] = true;
}
bool is = false;
for (int i = 0; i < 2 * n; i += 2) {
bool is1 = true;
for (int j = (a[i] + 1); j < (2 * n + 1); j++) {
if (!ss[j]) {
a[i + 1] = j;
ss[j] = true;
is1 = false;
break;
}
}
if (is1) {
is = true;
break;
}
}
if (!is) {
for (int i : a) cout << i << ' ';
cout << endl;
} else {
cout << -1 << endl;
}
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
long long int t = 1;
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> t;
while (t--) {
long long int start = 0, end = 0, n, m, x = 0, y = 0, index = 0;
cin >> n;
long int arr[n];
unordered_map<long int, bool> mp;
for (long int i = 1; i <= 2 * n; i++) mp[i] = true;
for (long int i = 0; i < n; i++) {
cin >> arr[i];
mp[arr[i]] = false;
}
vector<long int> v;
for (long int i = 0; i < n; i++) {
v.push_back(arr[i]);
start = 0;
for (long int j = arr[i] + 1; j <= 2 * n; j++) {
if (mp[j]) {
start = 1;
mp[j] = false;
v.push_back(j);
break;
}
}
if (start == 0) {
end = 1;
cout << -1 << '\n';
break;
}
}
if (end == 0) {
for (auto it : v) cout << it << " ";
cout << '\n';
}
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n = int(input())
lst = [int(i) for i in input().split()]
s = {*(range(2 * n + 1))} - {*lst}
a = []
try:
for i in lst:
minn = min(s - {*range(i)})
s -= {minn}
a += i, minn
except:
a = -1,
print(*a)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int T;
cin >> T;
while (T--) {
int n;
cin >> n;
int aa[n + 1], cc[n + 1], bb[n * 2 + 2], dd[2 * n + 2];
for (int i = 0; i < 2 * n + 2; i++) bb[i] = 1;
for (int i = 0; i < n; i++) {
cin >> aa[i];
cc[i] = aa[i];
bb[aa[i]] = 0;
}
sort(cc, cc + n);
bool f = true;
if (cc[0] != 1 && cc[n - 1] == 2 * n) f = false;
int j;
for (int i = 0; i < n; i++) {
j = aa[i];
while (!bb[j] && j <= 2 * n) j++;
if (j > 2 * n) {
f = false;
break;
}
dd[i * 2] = aa[i];
dd[i * 2 + 1] = j;
bb[j] = 0;
}
if (!f)
cout << "-1" << endl;
else {
for (int i = 0; i < 2 * n; i++) cout << dd[i] << " ";
cout << endl;
}
}
return 0;
;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
int inp[n];
set<int> s;
for (int i = 0; i < n; i++) {
cin >> inp[i];
s.insert(inp[i]);
}
vector<pair<int, int> > ans;
int act;
for (int i = 0; i < n; i++) {
act = inp[i] + 1;
while (act <= 2 * n) {
if (s.count(act) == 0) {
ans.push_back(pair<int, int>(inp[i], act));
s.insert(act);
break;
} else
act++;
}
if (act > 2 * n) break;
}
if (act > 2 * n)
cout << "-1\n";
else {
for (int i = 0; i < n; i++) {
if (i == n - 1)
cout << ans[i].first << " " << ans[i].second << "\n";
else
cout << ans[i].first << " " << ans[i].second << " ";
}
}
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | /* package codechef; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Codechef
{
public static void resPermu(int[] arr, int n){
HashSet<Integer> hset = new HashSet<Integer>();
for(int i = 0 ;i<n ;i++)
hset.add(arr[i]);
int max= 0;
int[] result = new int[2*n];
int index =0;
for(int i = 0 ;i<n;i++){
result[index] = arr[i];
int curr = arr[i];
while(hset.contains(curr)){
curr++;
}
index++;
if(curr>max)
max = curr;
result[index] = curr;
index++;
hset.add(curr);
}
if(max>(n*2)){
System.out.print(-1);
}else{
for(int i = 0;i<2*n;i++){
System.out.print(result[i]+" ");
}
}
System.out.println();
return;
}
public static void main (String[] args) throws java.lang.Exception
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int itr = Integer.parseInt(br.readLine());
while(itr-->0){
int n = Integer.parseInt(br.readLine());
String[] s =br.readLine().split(" ");
int[] arr = new int[n];
for(int i = 0 ;i<n ;i++)
arr[i] = Integer.parseInt(s[i]);
resPermu(arr,n);
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n = int(input())
dic = {x : 1 for x in range(1, 2*n+1)}
b = [];ans=True
for el in map(int, input().split()):
if el == 2*n:print(-1);ans = False
dic[el] = 0
b.append(el)
if ans:
if dic[1] == 1:print(-1);continue
a = {}
for el in b:
i = 1
while dic[i+el] == 0:
if i+el>=2*n:
ans = False;break
i+= 1
a[el] = i+el
dic[i+el] = 0
answ = []
for el in b:
answ.extend([el, a[el]])
if ans:
print(*answ)
else:
print(-1) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.util.*;
import java.lang.*;
import java.math.*;
public class C {
public void run() throws Exception {
FastScanner sc = new FastScanner();
int test = sc.nextInt();
outer:
for (int j = 0; j<test; j++) {
int n = sc.nextInt();
int[] b = new int[n];
int[] a = new int[2*n];
int[] dupb = new int[n];
int[] not = new int[n];
for (int i = 0; i<n; i++) {
b[i] = sc.nextInt();
dupb[i] = b[i];
a[2*i] = b[i];
}
Arrays.sort(dupb);
int point = 0;
int points = 0;
for (int i = 1; i<=2*n; i++) {
if (point==n) {
not[points] = i;
points++;
}
else if (dupb[point] == i) {
point++;
}
else {
not[points] = i;
points++;
}
}
if (not[0] == 1 || dupb[n-1] == 2*n) {
System.out.println(-1);
continue;
}
boolean[] ok = new boolean[n];
Arrays.fill(ok, true);
for (int i = 0; i<n; i++) {
for (int x = 0; x<n+1; x++) {
if (x == n) {
System.out.println(-1);
continue outer;
}
else if (a[2*i]>not[x]) {
;
}
else if (!ok[x]) ;
else {
a[2*i+1] = not[x];
ok[x] = false;
break;
}
}
}
for (int i = 0; i<n; i++) {
System.out.print(a[2*i] + " " + a[2*i+1] + " ");
}
System.out.println();
}
}
static class FastScanner {
public BufferedReader reader;
public StringTokenizer tokenizer;
public FastScanner() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
public static void main (String[] args) throws Exception {
new C().run();
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for t in range(int(input())):
n=int(input())
a=list(map(int,input().split()))
b=[0 for i in range(2*n)]
c=[False for i in range(2*n)]
i=0
j=0
while(i<2*n):
b[i]=a[j]-1
c[a[j]-1]=True
i+=2
j+=1
i,k,flag=1,0,1
while(i<2*n):
k=b[i-1]
flag=1
while(k<2*n):
if(c[k]==False):
c[k]=True
flag=0
break
k+=1
if(flag==0):
b[i]=k
else:
break
i+=2
if(flag==1):
print(-1)
else:
for i in range(2*n):
print(b[i]+1,end=' ')
print() | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const double PI = acos(-1.0);
const int T = 102;
int a[T], b[T];
int main() {
ios_base::sync_with_stdio(false);
int tc;
cin >> tc;
while (tc--) {
int n;
cin >> n;
vector<pair<int, int> > need;
set<int> disp;
for (int i = 1; i <= 2 * n; i++) disp.insert(i);
for (int i = 1; i <= n; i++) {
cin >> b[i];
disp.erase(b[i]);
a[2 * i - 1] = b[i];
need.emplace_back(2 * i, b[i]);
}
sort(need.begin(), need.end(), greater<pair<int, int> >());
bool f = 0;
while (need.size()) {
pair<int, int> top = need.back();
need.pop_back();
int at = -1;
for (auto x : disp) {
if (x > top.second) {
at = x;
break;
}
}
if (at == -1) {
f = 1;
break;
} else {
disp.erase(at);
a[top.first] = at;
}
}
if (f)
cout << -1 << '\n';
else {
for (int i = 1; i <= 2 * n; i++) cout << a[i] << " ";
cout << '\n';
}
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n = int(input())
array = list(map(int, input().split()))
dick = {}
for i in array:
dick[i] = 1
ans = [0]*(2*n)
for i in range(n):
ans[2*i] = array[i]
flag = True
for i in range(n):
k = ans[2*i]
klag = False
for j in range(k+1, 2*n +1):
if dick.get(j, 0) == 0:
dick[j] = 1
klag = True
ans[2*i + 1] = j
break
if klag == False:
flag = False
break
if not flag:
print(-1)
else:
print(*ans) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t = int(input())
for x in range(t):
n = int(input())
arr = list(map(int, input().split()))
count = 0
a = 0
out = []
fail = False
while(a < n):
out.append(arr[a])
count = out[-1]
while(count < 2*n):
count+=1
if (not count in arr) and (not count in out):
if count > arr[a]:
out.append(count)
count = 2*n + 10
if(out[-1] == arr[a]):
fail = True
a = 2*n + 1
a+=1
if fail:
print(int(-1))
else:
print(*out) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 55;
int a[N];
pair<int, int> c[N];
int b[N];
bool vis[N];
int main() {
int t;
cin >> t;
while (t--) {
memset(vis, 0, sizeof vis);
int n;
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> a[i];
vis[a[i]] = 1;
c[i] = {a[i], i};
b[i * 2 - 1] = a[i];
}
bool q = 0;
for (int i = 1; i <= n; i++) {
int j;
for (j = a[i] + 1; j <= n * 2; j++) {
if (vis[j] == 0) {
vis[j] = 1;
b[i * 2] = j;
break;
}
}
if (j == n * 2 + 1) {
q = 1;
cout << "-1\n";
break;
}
}
if (!q)
for (int i = 1; i <= n; i++) {
if (a[i] != min(b[i * 2], b[i * 2 - 1])) {
q = 1;
cout << "-1\n";
break;
}
}
if (!q) {
for (int i = 1; i <= n * 2; i++) cout << b[i] << ' ';
cout << endl;
}
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t=int(input())
for i in range(t):
n=int(input())
l=[0]*2*n+[0,0]
b=list(map(int,input().split()))
if 1 not in b:print(-1)
else:
t=1
b.insert(0,0)
for i in range(1,n+1):
l[2*i-1],w=b[i],b[i]
while w in b or w in l:w+=1
if w>2*n:t=0;break
l[2*i]=w
l.pop(0)
l.pop(-1)
if t:print(*l)
else:print(-1) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import javax.jws.soap.SOAPBinding;
import java.io.*;
import java.lang.reflect.Array;
import java.security.acl.LastOwnerException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.stream.Collectors;
public class Main {
static Long max = (long) (2 * 10E5);
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
// Arrays.stream(br.readLine().split("\\s+")).map(Integer::parseInt).toArray(Integer[]::new);
// Arrays.stream(br.readLine().split("\\s+")).map(Long::parseLong).toArray(Long[]::new);
// Integer.parseInt(br.readLine());
// Long.parseLong(br.readLine());
public static void main(String[] args) throws IOException {
int t = Integer.parseInt(br.readLine());
for (int _t = 0; _t < t; _t++) {
int n = Integer.parseInt(br.readLine());
Integer[] b = Arrays.stream(br.readLine().split("\\s+")).map(Integer::parseInt).toArray(Integer[]::new);
HashSet<Integer> original = new HashSet<>(Arrays.asList(b));
HashSet<Integer> notUsed = new HashSet<>();
for (int i = 1; i <= 2 * n; i++)
if (!original.contains(i))
notUsed.add(i);
ArrayList<Integer> permutation = new ArrayList<>();
for (int i = 0; i < n; i++) {
permutation.add(b[i]);
for (int j = b[i] + 1; j <= 2 * n; j++)
if (notUsed.contains(j)) {
permutation.add(j);
notUsed.remove(j);
break;
}
if (permutation.size() != (i + 1) * 2)
break;
}
if (permutation.size() == 2 * n){
for (int i = 0; i < 2 * n - 1; i++)
bw.write(permutation.get(i) + " ");
bw.write(permutation.get(2 * n - 1) + "\n");
} else
bw.write("-1\n");
}
bw.flush();
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t=int(input())
for i in range(t):
n=int(input())
arr=list(map(int,input().split()))
tot=[j for j in range(1,n*2+1)]
rem=[j for j in tot if j not in arr]
rem=sorted(rem)
liste=[]
for j in range(n):
b1=arr[j]
flag=False
for k in range(len(rem)):
if(rem[k]>b1):
liste.append(b1)
liste.append(rem[k])
del rem[k]
flag=True
break
if(flag==False):
print("-1")
break
if(flag==True):
print(*liste) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
signed main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
long long t;
cin >> t;
while (t--) {
long long n;
cin >> n;
pair<long long, long long> a[n];
long long re[2 * n + 1];
map<long long, long long> mp;
for (long long i = 0; i < n; i++) {
cin >> a[i].first;
mp[a[i].first] = 1;
a[i].second = i;
}
bool ch = true;
long long ma = 2 * n;
for (long long i = 0; i < n; i++) {
ma = a[i].first;
while (ma <= 2 * n && mp[ma] == 1) {
ma++;
}
if (ma > 2 * n) {
ch = false;
break;
}
if (a[i].second % 2 == 0) {
re[2 * a[i].second] = a[i].first;
re[2 * a[i].second + 1] = ma;
mp[ma] = 1;
} else {
re[2 * a[i].second] = a[i].first;
re[2 * a[i].second + 1] = ma;
mp[ma] = 1;
}
}
if (!ch)
cout << -1 << endl;
else {
for (long long i = 0; i < 2 * n; i++) cout << re[i] << " ";
cout << endl;
}
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t=int(input())
for _ in range(t):
n=int(input())
l=list(map(int,input().split()))
a=[*range(1,2*n+1)]
b=[i for i in a + l if i not in a or i not in l]
b.sort()
ans=[]
used=[]
f=0
for i in l:
for j in b:
if j>i and j not in used:
used.append(j)
ans.append(i)
ans.append(j)
break
if len(ans)!=2*n:
print(-1)
else:
print(*ans)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
void solve() {
long long n;
cin >> n;
long long a[n + 10];
map<long long, long long> mp;
for (long long i = 0; i < n; i++) {
cin >> a[i];
mp[a[i]] = 1;
}
vector<long long> v;
for (long long i = 0; i < n; i++) {
v.push_back(a[i]);
for (long long j = a[i] + 1; j <= 2 * n; j++) {
if (mp[j] == 0) {
mp[j] = 1;
v.push_back(j);
break;
}
}
}
if (v.size() == 2 * n) {
for (auto x : v) {
cout << x << " ";
}
cout << "\n";
return;
}
cout << "-1"
<< "\n";
}
int main() {
long long t;
cin >> t;
while (t--) solve();
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Vector;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.util.Collections;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author xwchen
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int t = in.nextInt();
while (t-- > 0) {
int n = in.nextInt();
int[] b = new int[n + 1];
int[] pos = new int[2 * n + 1];
int[] a = new int[2 * n + 1];
boolean[] occur = new boolean[n * 2 + 1];
for (int i = 1; i <= n; ++i) {
b[i] = in.nextInt();
occur[b[i]] = true;
pos[b[i]] = 2 * i - 1;
}
Vector<Integer> others = new Vector<>();
for (int i = 1; i <= 2 * n; ++i) {
if (!occur[i]) {
others.add(i);
}
}
Collections.sort(others);
Arrays.sort(b, 1, n + 1);
boolean OK = true;
for (int i = 1; i <= n; ++i) {
int other = others.get(i - 1);
if (b[i] > others.get(i - 1)) {
OK = false;
break;
} else {
pos[other] = pos[b[i]] + 1;
}
}
if (!OK) {
out.println(-1);
continue;
}
for (int i = 1; i <= 2 * n; ++i) {
a[pos[i]] = i;
}
boolean move = false;
do {
move = false;
for (int i = 2; i <= 2 * n; i += 2) {
for (int j = i + 2; j <= 2 * n; j += 2) {
int p = i;
int q = j;
if (a[p] > a[q] && a[p - 1] < a[q] && a[q - 1] < a[p]) {
int tmp = a[p];
a[p] = a[q];
a[q] = tmp;
move = true;
}
}
}
} while (move);
for (int i = 1; i <= 2 * n; ++i) {
out.print(a[i] + " ");
}
out.println();
}
}
}
static class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer = new StringTokenizer("");
public InputReader(InputStream inputStream) {
this.reader = new BufferedReader(
new InputStreamReader(inputStream));
}
public String next() {
while (!tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | def min_largest(arr, x):
start = 0
end = len(arr) - 1
while start <= end:
mid = start + (end - start) // 2
if arr[mid] < x:
start = mid + 1
else:
end = mid - 1
result = start if start < len(arr) else -1
return result
def permutation(arr, n):
present = set(arr)
missing = [i for i in range(1, 2*n+1) if i not in present]
result = []
for number in arr:
result.append(number)
temp = min_largest(missing, number)
if temp == -1:
return [-1]
result.append(missing.pop(temp))
return result
if __name__ == '__main__':
T = int(input())
for t in range(T):
n = int(input())
arr = list(map(int, input().split()))
result = permutation(arr, n)
for item in result:
print(item, end=' ')
print()
'''
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10
''' | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.Scanner;
public class Solution {
public static void main(String[] args) {
/*
*
*/
Scanner scan = new Scanner(System.in);
int t = scan.nextInt();
while(t-->0) {
int n = scan.nextInt();
int[] arr = new int[(2*n)];
boolean flag=false;
int[] nums = new int[2*n+1];
for(int i=0;i<2*n;i+=2) {
int num=scan.nextInt();
if(num>=2*n) flag=true;
arr[i]=num;
nums[num]++;
if(nums[num]>1) flag=true;
}
if(flag) {
System.out.println("-1");
continue;
}
for(int i=0;i<2*n;i+=2) {
int num = arr[i];
for(int j=num+1;j<2*n+1;j++) {
if(nums[j]==0) {
nums[j]=1;
arr[i+1]=j;
break;
}
}
if(arr[i+1]==0) {
System.out.println(-1);
flag=true;
break;
}
}
if(!flag) {
for(int i=0;i<2*n;i++) {
if(i>0) System.out.print(" ");
System.out.print(arr[i]);
}
System.out.println();
}
}
scan.close();
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.util.*;
import java.math.*;
import java.lang.*;
import static java.lang.Math.*;
public class MakingString implements Runnable
{
static class InputReader
{
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int read()
{
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars)
{
curChar = 0;
try
{
numChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
public int nextInt()
{
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.')
{
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next()
{
return readString();
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
// if modulo is required set value accordingly
public static long[][] matrixMultiply2dL(long t[][],long m[][])
{
long res[][]= new long[t.length][m[0].length];
for(int i=0;i<t.length;i++)
{
for(int j=0;j<m[0].length;j++)
{
res[i][j]=0;
for(int k=0;k<t[0].length;k++)
{
res[i][j]+=t[i][k]+m[k][j];
}
}
}
return res;
}
static long combination(long n,long r)
{
long ans=1;
for(long i=0;i<r;i++)
{
ans=(ans*(n-i))/(i+1);
}
return ans;
}
static int mat(String a,String b)
{
int count=0;
for(int i=0;i<a.length();i++)
{
if(a.charAt(i)!=b.charAt(i))
count++;
}
return count;
}
static int accumulate(int arr[], int first,
int last)
{
int init = 0;
for (int i = first; i< last; i++) {
init = init + arr[i];
}
return init;
}
// Returns true if it is possible to divide
// array into two halves of same sum.
// This function mainly uses combinationUtil()
static Boolean isPossible(int arr[], int n)
{
// If size of array is not even.
if (n % 2 != 0)
return false;
// If sum of array is not even.
int sum = accumulate(arr, 0, n);
if (sum % 2 != 0)
return false;
// A temporary array to store all
// combination one by one int k=n/2;
int half[] = new int[n/2];
// Print all combination using temporary
// array 'half[]'
return combinationUtil(arr, half, 0, n - 1,
0, n, sum);
}
/* arr[] ---> Input Array
half[] ---> Temporary array to store current
combination of size n/2
start & end ---> Staring and Ending indexes in arr[]
index ---> Current index in half[] */
static Boolean combinationUtil(int arr[], int half[],
int start, int end,
int index, int n,
int sum)
{
// Current combination is ready to
// be printed, print it
if (index == n / 2) {
int curr_sum = accumulate(half, 0 , n/2);
return (curr_sum + curr_sum == sum);
}
// replace index with all possible elements.
// The condition "end-i+1 >= n/2-index" makes
// sure that including one element at index
// will make a combination with remaining
// elements at remaining positions
for (int i = start; i <= end && end - i + 1 >=
n/2 - index; i++) {
half[index] = arr[i];
if (combinationUtil(arr, half, i + 1, end,
index + 1, n, sum))
return true;
}
return false;
}
public static void main(String args[]) throws Exception
{
new Thread(null, new MakingString(),"MakingString",1<<27).start();
}
// **just change the name of class from Main to reuquired**
public void run()
{
InputReader sc = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
int n = sc.nextInt();
for(int i=0;i<n;i++)
{
int t=sc.nextInt();
int arr[]=new int[t];
HashMap <Integer,Integer> map = new HashMap();
int max=0;
int sum=0;
for(int j=0;j<t;j++)
{
arr[j]=sc.nextInt();
sum=sum+arr[j];
max=Math.max(arr[j],max);
map.put(arr[j],j);
}
int res[]=new int[2*t];
for(int j=0;j<t;j++)
{
int temp=arr[j];
while(map.containsKey(temp))
{
temp++;
}
map.put(temp,1);
res[2*j]=arr[j];
res[2*j+1]=temp;
sum=sum+temp;
max=Math.max(temp,max);
}
max=(max*(max+1))/2;
if(max==sum)
{
for(int j=0;j<2*t;j++)
{
w.print(res[j] + " ");
}
}
else
w.print(-1);
w.println("");
}
System.out.flush();
w.close();
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n=int(input())
a=list(map(int,input().split()));d={}
for i in range(n):
d[a[i]]=1
ans=[];f=0
for i in range(n):
if a[i]<2*n:
for j in range(a[i],(2*n)+2):
if not d.get(j) and j<=2*n:
ans.append(a[i])
ans.append(j)
d[j]=1
break
if j>2*n:
print(-1)
f=1
break
else:
print(-1)
f=1
break
if f==1:
break
if f==0:
for i in ans:
print(i,end=' ')
print()
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | nn = int(input())
for tt in range(nn):
total = []
num = int(input())
arr = []
arr1 = str(input())
arr1 = arr1.split()
dicts = {}
last = 2 * num
for i in arr1:
kt = int(i)
arr.append( int(i) )
dicts[kt] = 1
ans = []
flag = 0
for i in arr:
ans.append(i)
while True:
i += 1
if i > last:
flag = 1
break
if i not in dicts:
dicts[i] = 1
ans.append(i)
break
if flag == 1:
break
if flag == 1:
print(-1)
else:
strs = ""
for i in ans:
strs += str(i)
strs += " "
print(strs) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
long long gcd(long long n, long long m) {
if (n == 0) return m;
return gcd(m % n, n);
}
bool ifprime(long long n) {
if (n == 1) return false;
long long i;
for (i = 2; i * i <= n; i++) {
if (n % i == 0) return false;
}
return true;
}
void disp(vector<long long> v) {
for (auto u : v) cout << u << " ";
cout << "\n";
}
void remleadzero(vector<int> &v) {
vector<int> u;
int i = 0;
while (v[i] == 0) i++;
while (i < v.size()) {
u.push_back(v[i]);
i++;
}
v = u;
}
long long fast_expo(long long n, long long m, long long md) {
long long a = 1;
while (m > 0) {
if (m & 1) a = (a * n) % md;
n = (n * n) % md;
m /= 2;
}
return a % md;
}
long long sqroot(long long n) {
long double N = n;
N = sqrtl(N);
long long sq = N - 2;
sq = max(sq, 0LL);
while (sq * sq < n) {
sq++;
}
if ((sq * sq) == n) return sq;
return -1;
}
int dig_sum(long long n) {
int ret = 0;
while (n > 0) {
ret += (n % 10);
n /= 10;
}
return ret;
}
int main() {
ios::sync_with_stdio(false), cin.tie(NULL), cout.tie(NULL);
;
long long t;
cin >> t;
while (t--) {
int n;
cin >> n;
vector<int> v;
for (int i = 1; i <= 2 * n; i++) v.push_back(i);
int b[n];
for (int i = 0; i < n; i++) {
cin >> b[i];
if (count((v).begin(), (v).end(), b[i])) {
int j = 0;
for (; j < v.size(); j++) {
if (v[j] == b[i]) break;
}
v.erase(v.begin() + j);
}
}
sort((v).begin(), (v).end());
vector<int> ans;
int done = 0;
for (int i = 0; i < n; i++) {
ans.push_back(b[i]);
int j, found = 0;
for (j = 0; j < v.size(); j++) {
if (v[j] > b[i]) {
found = 1;
break;
}
}
if (!found) {
done = 1;
break;
}
ans.push_back(v[j]);
v.erase(v.begin() + j);
}
if (done) {
cout << -1 << '\n';
continue;
}
for (int i = 0; i < n; i++) {
if (min(ans[2 * i], ans[2 * i + 1]) != b[i]) {
cout << -1;
done = 1;
break;
}
}
if (!done) {
for (auto u : ans) cout << u << ' ';
}
cout << '\n';
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.BufferedReader;
import java.io.InputStreamReader;
public class Solution {
public static void main(String[] args){
try {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int T = Integer.parseInt(br.readLine());
while (T != 0) {
T--;
int n= Integer.parseInt(br.readLine());
int [] b = new int[n+1];
boolean [] vis = new boolean[2*(n+1)];
String [] si = br.readLine().split(" ");
for(int i=0;i<n;i++){
vis[2*i] = false;
vis[2*i +1] = false;
}
for(int i=0;i<n;i++){
b[i] = Integer.parseInt(si[i]);
vis[b[i]-1]=true;
}
boolean impossible = false;
String res = "";
for(int i=0;i<n;i++){
if(i!=0)
res +=" ";
res+=b[i];
String tmp = "";
for(int j = b[i];j<2*n;j++){
if(!vis[j]){
vis[j]=true;
tmp=" "+Integer.toString(j+1);
break;
}
}
if(tmp == ""){
impossible = true;
break;
}else{
res+=tmp;
}
}
if(impossible){
System.out.println(-1);
}else{
System.out.println(res);
}
}
}catch (Exception e){
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.util.*;
public class GFG {
public static void main (String[] args) throws IOException{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int t=Integer.parseInt(br.readLine().trim());
while(t--!=0){
int n=Integer.parseInt(br.readLine().trim());
String s=br.readLine().trim();
String ss[]=s.split("\\s+");
int a[]=new int[n];
boolean vis[]=new boolean[2*n+1];
for(int i=0;i<n;i++){
a[i]=Integer.parseInt(ss[i]);
vis[a[i]]=true;
}
int res[]=new int[2*n];
boolean pos=true;
for(int i=0;i<n;i++){
int l=2*i;
int r=2*i+1;
/*if(vis[a[i]]){
pos=false;
break;
}
vis[a[i]]=true;*/
res[l]=a[i];
for(int j=a[i]+1;j<=2*n;j++){
if(!vis[j]){
vis[j]=true;
res[r]=j;
break;
}
}
if(res[r]==0){
pos=false;
break;
}
}
if(!pos)
System.out.println("-1");
else{
System.out.print(res[0]);
for(int i=1;i<2*n;i++)
System.out.print(" "+res[i]);
System.out.println();
}
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import sys
sys.setrecursionlimit(10 ** 6)
int1 = lambda x: int(x) - 1
p2D = lambda x: print(*x, sep="\n")
def II(): return int(sys.stdin.readline())
def MI(): return map(int, sys.stdin.readline().split())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def SI(): return sys.stdin.readline()[:-1]
def solve(n,bb):
res=[]
used = [False] * (2 * n + 1)
for b in bb:used[b]=True
for b in bb:
for c in range(b+1,2*n+1):
if not used[c]:
res+=[b,c]
used[c]=True
break
else:
return [-1]
return res
def main():
t=II()
for _ in range(t):
n=II()
bb=LI()
ans=solve(n,bb)
print(*ans)
main() | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class RestoringPermutation1315C {
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int t = sc.nextInt();
while(t-->0) {
int n = sc.nextInt();
int b[] = new int[n];
TreeSet<Integer> ts = new TreeSet<Integer>();
for (int i = 1; i <= 2*n; i++)
ts.add(i);
for (int i = 0; i < n; i++) {
b[i] = sc.nextInt();
ts.remove(b[i]);
}
int ans[] = new int[2*n];
boolean imp = false;
for (int i = 0; i < n && !imp; i++) {
ans[(2*(i+1) - 1) - 1] = b[i];
Integer other = ts.higher(b[i]);
if (other == null)
imp = true;
else {
ans[2*(i+1) - 1] = other;
ts.remove(other);
}
}
if (imp)
out.print(-1);
else
for (int i = 0; i < 2*n; i++) {
if (i > 0)
out.print(" ");
out.print(ans[i]);
}
out.println();
}
out.flush();
out.close();
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner(FileReader f) {
br = new BufferedReader(f);
}
public Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public boolean Ready() throws IOException {
return br.ready();
}
public void waitForInput(long time) {
long ct = System.currentTimeMillis();
while (System.currentTimeMillis() - ct < time) {
}
;
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for t in range(int(input())):
n = int(input())
l = [int(i) for i in input().split()]
visited = [0 for i in range(2 * n)]
res = []
for i in l:
visited[i - 1] = 1
for i in l:
temp = i
while (temp < 2 * n and visited[temp]):
temp += 1
if (temp >= 2 * n):
res = [-1]
break
visited[temp] = 1
res.append(i)
res.append(temp + 1)
print(*res)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
int b[100];
bool used[201];
int pair[201];
int main() {
int T;
scanf("%d", &T);
while (T--) {
std::fill(used, used + 201, false);
int n;
scanf("%d", &n);
for (int i = 0; i < n; ++i) {
int input;
scanf("%d", &input);
b[i] = input;
used[input] = true;
}
bool success = true;
for (int i = 0; i < n; ++i) {
bool found = false;
for (int j = b[i]; j <= 2 * n; ++j) {
if (!used[j]) {
used[j] = true;
pair[b[i]] = j;
found = true;
break;
}
}
if (!found) {
success = false;
break;
}
}
if (success) {
for (int i = 0; i < n; ++i) {
printf("%d %d ", std::min(b[i], pair[b[i]]),
std::max(b[i], pair[b[i]]));
}
printf("\n");
} else {
printf("-1\n");
}
}
return 0;
}
| CPP |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.