Search is not available for this dataset
name
stringlengths
2
112
description
stringlengths
29
13k
source
int64
1
7
difficulty
int64
0
25
solution
stringlengths
7
983k
language
stringclasses
4 values
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
# N, M, P = map(int, input().split()) # A = list(map(int, input().split())) T = int(input()) for t in range(T): N = int(input()) B = list(map(int, input().split())) S = set(B) out = [] for n in range(2*N): if n%2 == 0: out.append(str(B[n//2])) else: curr = B[(n-1)//2] fl = 0 for i in range(1, (N*2)+1): if i > curr and i not in S: out.append(str(i)) S.add(i) fl = 1 break if fl == 0: break if fl == 0: print(-1) else: print(" ".join(out))
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.*; import java.util.*; public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Unstoppable solver = new Unstoppable(); int t=in.nextInt(); while(t-->0) solver.solve(in, out); out.close(); } static class Unstoppable { public void solve(InputReader in, PrintWriter out) { int n=in.nextInt(); int a[]=new int[n]; int b[]=new int[n]; int flag=0; HashSet<Integer> h=new HashSet<>(); for(int i=0;i<n;i++) { a[i]=in.nextInt(); h.add(a[i]); } for(int i=0;i<n;i++) { for(int j=a[i]+1;j<=n*2;j++) { if(!h.contains(j)) { h.add(j); b[i]=j; break; } } if(b[i]==0){flag=1; break; } } if(flag==1) out.println("-1"); else{ for(int i=0;i<n;i++){ out.print(a[i]+" "+b[i]+" "); } out.println(""); } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public long nextLong(){ return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; const int inf = 1e9 + 7; const long long INF = 1e18; template <typename T1, typename T2> inline bool chmin(T1& a, T2 b) { if (a > b) { a = b; return 1; } return 0; } template <typename T1, typename T2> inline bool chmax(T1& a, T2 b) { if (a < b) { a = b; return 1; } return 0; } template <typename T> T gcd(T a, T b) { if (b == 0) return a; return gcd(b, a % b); } template <typename T> T lcm(T a, T b) { return a / gcd(a, b) * b; } template <typename T> T pow(T a, int b) { return b ? pow(a * a, b / 2) * (b % 2 ? a : 1) : 1; } const int mod = 1000000007; long long modpow(long long a, int b) { return b ? modpow(a * a % mod, b / 2) * (b % 2 ? a : 1) % mod : 1; } template <class T> ostream& operator<<(ostream& os, const vector<T>& vec) { for (int i = 0; i < ((int)vec.size()); ++i) { if (i) os << " "; os << vec[i]; } return os; } template <class T, class U> ostream& operator<<(ostream& os, const pair<T, U>& p) { os << p.first << " " << p.second; return os; } template <class T> inline void add(T& a, int b) { a += b; if (a >= mod) a -= mod; } void solve(); int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); int T; cin >> T; while (T--) { solve(); } } void solve() { int n; cin >> n; vector<int> b(n); for (int i = 0; i < (n); ++i) cin >> b[i]; vector<int> a(2 * n); for (int i = 0; i < (n); ++i) a[2 * i] = b[i]; set<int> t; for (int i = 0; i < (n); ++i) t.insert(b[i]); set<int> s; for (int i = 0; i < (2 * n); ++i) if (!t.count(i + 1)) s.insert(i + 1); for (int i = 0; i < (n); ++i) { auto it = s.upper_bound(b[i]); if (it == s.end()) { cout << -1 << endl; return; } a[2 * i + 1] = *it; s.erase(it); } cout << a << endl; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; const int MAX = 5e5 + 10; int b[105], a[205], n; int main() { int t; cin >> t; while (t--) { cin >> n; for (int i = 1; i <= n; i++) cin >> b[i]; map<int, int> mp; set<int> s; for (int i = 1, j = 1; i <= 2 * n; i += 2, j++) { a[i] = b[j]; mp[a[i]] = 1; } for (int i = 1; i <= 2 * n; i++) { if (!mp[i]) s.insert(i); } bool flag = 1; for (int i = 2; i <= 2 * n; i += 2) { if (s.upper_bound(a[i - 1]) == s.end()) { flag = 0; break; } auto it = *s.upper_bound(a[i - 1]); a[i] = it; s.erase(it); } if (!flag) cout << -1 << endl; else { for (int i = 1; i <= 2 * n; i++) cout << a[i] << " "; cout << endl; } } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
t=int(input()) elt=[] for i in range(t): n=int(input()) l=[] c=[] chaine=input() el=chaine.split(" ") for e in el: l.append(int(e)) c.append(int(e)) elt.append((n,c,l)) for n,c,l in elt: for k in range(2*n): m=0 if k+1 not in l: g=0 for p in c: if k+1>p: l.insert(l.index(p)+1,k+1) c.remove(p) g=1 break if g==0: m=-1 print(-1) break if m==0: for g in l: print(g,end=' ') print('')
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int b[100]; int a[201]; int main(void) { int t; cin >> t; while (t--) { int n; cin >> n; set<int> left; for (int i = 1; i <= (2 * n); i++) { left.insert(i); } for (int i = 0; i < n; i++) { cin >> b[i]; left.erase(b[i]); } int can = 1; for (int i = 0; i < n; i++) { a[2 * i] = b[i]; auto it = left.upper_bound(b[i]); if (it == left.end()) { can = 0; break; } a[2 * i + 1] = *it; left.erase(it); } if (!can) cout << "-1\n"; else { for (int i = 0; i < 2 * n; i++) { cout << a[i] << ' '; } cout << '\n'; } } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
t = int(input()) for _ in range(t): n = int(input()) b = list(map(int, input().split())) flag = True s = set(b) ans = [] for i in range(n): ans.append(b[i]) k = b[i] while(k in s): k += 1 if k > n*2: flag = False break ans.append(k) s.add(k) if flag: print(" ".join(map(str, ans))) else: print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.util.*; import java.math.*; public class HelloWorld { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int t = scanner.nextInt(); while(t-- > 0) { int n = scanner.nextInt(); int[] arr = new int[n]; boolean[] a = new boolean[2 * n + 1]; for(int i =0 ; i < n; i++) { arr[i] = scanner.nextInt(); a[arr[i]] = true; } int[] result = new int[2 * n]; boolean works = true; for(int i = 0; i < arr.length; i++) { int current = arr[i]; result[i * 2] = current; while(current < a.length && a[current++]) { continue; } current--; if(a[current]) { System.out.println(-1); works = false; break; } a[current] = true; result[i * 2 + 1] = current; } if(!works) { continue; } for(int i = 0; i < result.length; i++) { System.out.print(result[i] + " "); } System.out.println(); } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> #pragma GCC optimize("Ofast") using namespace std; const long double PI = acos(-1.0L); const long long MOD = 1000000007LL; template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } template <class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } void solve() { int N; cin >> N; vector<int> B(N); for (int i = 0; i < (int)(N); ++i) cin >> B[i]; set<int> ppp, dic; for (int i = 0; i < (int)(N); ++i) ppp.emplace(B[i]); for (int i = 0; i < (int)(2 * N); ++i) if (!ppp.count(i + 1)) dic.emplace(i + 1); vector<int> ans(2 * N); for (int i = 0; i < (int)(N); ++i) { ans[i * 2] = B[i]; bool ok = false; for (auto j : dic) { if (j > B[i]) { ans[i * 2 + 1] = j; ok = true; break; } } if (!ok) { cout << -1 << '\n'; return; } else dic.erase(ans[i * 2 + 1]); } for (int i = 0; i < (int)(2 * N); ++i) cout << ans[i] << " "; cout << '\n'; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int Q; cin >> Q; while (Q--) { solve(); } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
testcases=int(input()) masterlist=[] for i in range(testcases): input() tempseq=list(map(int,input().split(" "))) masterlist.append(tuple(tempseq)) def lexicographer(tup): buildlist=[] for i in range(len(tup)): val=tup[i] buildlist.append(val) run=True orig=val+1 while run==True: if orig in buildlist or orig in tup: orig+=1 else: buildlist.append(orig) run=False maxim=max(buildlist) for i in range(1,maxim): if i not in buildlist: return [-1] return buildlist for sequence in masterlist: ans=lexicographer(sequence) str="" for i in ans: str+="{} ".format(i) print(str)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.util.*; import java.io.*; public class Main { /** * * k = 1 * * 2^17+1 2^17 0 * 1 2^17+1 1 * * dp[2][2] = max( */ public static void main(String[] args) { FastReader sc = new FastReader(); int t = sc.nextInt(); outer: while (t-->0) { int n = sc.nextInt(); int[] arr = new int[n + 1]; for (int i = 1; i <= n; i++) { arr[i] = sc.nextInt(); } int[] ans = new int[2 * n + 1]; boolean[] used = new boolean[2*n+1]; for (int i = 1; i <= n; i++) { ans[2 * i - 1] = arr[i]; used[arr[i]] = true; } for (int i = 2; i <= 2 * n; i+=2) { int val = ans[i-1] + 1; while (val <= 2 * n && used[val]) { val++; } if (val > 2 * n) { System.out.println(-1); continue outer; } used[val] = true; ans[i] = val; } for (int i = 1; i <= 2*n; i++) { System.out.print(ans[i] + " "); } System.out.println(); } } // private static void solve(int[] ans, int n, int[] arr) { // boolean[] used = new boolean[2*n+1]; // for (int i = 1; i <= n; i++) { // ans[2 * i - 1] = arr[i]; // used[arr[i]] = true; // } // for (int i = 2; i <= 2 * n; i+=2) { // int val = ans[i-1] + 1; // while (val <= 2 * n && used[val]) { // val++; // } // if (val > 2 * n) { // System.out.println(-1); // return; // } // used[val] = true; // ans[i] = val; // } // // for (int i = 1; i <= 2*n; i++) { // System.out.print(ans[i] + " "); // } // System.out.println(); // } /**\ * * 4 * 2 3 4 5 * * * 1 2 3 4 5 6 7 8 * 2 6 3 7 4 8 5 9 */ // 1 1 1 0 0 0 // 0 0 1 1 1 1 static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } /** * 7 3 * 3 1 5 * 9 6 5 * * i = 1: 1 * i = 2: 2 * i = 3: 3 * * * 1 2 3 3 3 3 3 */ /** * * 1+1 **/
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import sys input = sys.stdin.readline def fastio(): from io import StringIO from atexit import register global input sys.stdin = StringIO(sys.stdin.read()) input = lambda : sys.stdin.readline().rstrip('\r\n') sys.stdout = StringIO() register(lambda : sys.__stdout__.write(sys.stdout.getvalue())) fastio() INF = 10**20 MOD = 998244353 I = lambda:list(map(int,input().split())) from math import gcd from math import ceil from collections import defaultdict as dd, Counter from bisect import bisect_left as bl, bisect_right as br t, = I() while t: t -= 1 n, = I() a = I() ans = [0] * (2 * n) v = [0] * (2 * n + 1) for i in range(0, 2 * n, 2): ans[i] = a[i // 2] v[ans[i]] = 1 for i in range(1, 2 * n, 2): cur = ans[i - 1] for j in range(1, 2 * n + 1): if v[j] == 0 and j > cur: v[j] = 1 ans[i] = j break else: print(-1) break else: print(*ans)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; signed main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long t; cin >> t; while (t--) { long long n; cin >> n; long long b[n]; unordered_map<long long, long long> mapp; for (long long i = 0; i < n; i++) { cin >> b[i]; mapp[b[i]]++; } long long a[n]; long long x = 0; long long z = 0; for (long long i = 0; i < n; i++) { bool chk = false; for (long long j = b[i] + 1; j <= 2 * n; j++) { if (mapp[j]) { continue; } else { chk = true; a[x] = j; mapp[a[x]]++; x++; break; } } if (chk == false) { z++; break; } } if (z) { cout << "-1" << '\n'; } else { for (long long i = 0; i < n; i++) { cout << b[i] << " " << a[i] << " "; } cout << '\n'; } } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
for _ in range(int(input())): n=int(input());A=list(map(int,input().split()));mark=[];C=[] for i in A: m=i+1 while True : if m in A or m in C: m+=1 else: break mark.append(i);mark.append(m);C.append(m) Ans=[];jaya=mark.copy();jaya.sort() for i in range(1,2*n+1): Ans.append(i) if jaya==Ans: print(*mark) else: print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.LinkedHashMap; import java.util.LinkedList; import java.util.List; import java.util.*; import java.util.Queue; import java.util.StringTokenizer; import java.math.BigInteger; public class hello2 {static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static String sum (String s) { String s1 = ""; if(s.contains("a")) s1+="a"; if(s.contains("e")) s1+="e"; if(s.contains("i")) s1+="i"; if(s.contains("o")) s1+="o"; if(s.contains("u")) s1+="u"; return s1; } public static void main(String[] args) { FastReader sc =new FastReader(); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(); int[] b=new int[n]; int min = Integer.MAX_VALUE; int max = Integer.MIN_VALUE; for(int i=0;i<n;i++){ b[i]=sc.nextInt(); if(max<b[i]){ max=b[i]; } if(min>b[i]){ min=b[i]; } } if(max==2*n){ System.out.println(-1); continue; } else if(min!=1){ System.out.println(-1); continue; } else{ int arr[] = new int[2*n]; int count[] = new int[2*n+1]; int ind=0; for(int i=0;i<n;i++){ arr[ind]=b[i]; count[arr[ind]]=1; ind+=2; } int f=0; for(int i=0;i<2*n;i++){ if(arr[i]>0){continue;} else{ int x = arr[i-1]+1; while(x<=2*n && count[x]==1){ x++; } if(x>2*n){ x=1; while(x<=2*n && count[x]==1){ x++; } if(x<arr[i-1]){ f=1; break; } arr[i]=x; count[x]=1; } else{ arr[i]=x; count[x]=1; } } } if(f==1){ System.out.println(-1); continue; } for(int i=0;i<2*n;i++){ System.out.print(arr[i]+" "); } System.out.println(); } } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
# import sys def main(): for t in range(int(input())): n = int(input()) s = [i for i in range(1,2*n+1)] l = [int(j) for j in input().split()] for i in range(n): s.remove(l[i]) z = list(zip(l, [i for i in range(n)])) # z.sort() s.sort() ans = [0]*(2*n) # print(z, s) for i in range(n): num = z[i][0] # print(s, ans) for j in s: if j>num: ans[2*z[i][1]]=num ans[2*z[i][1]+1]=j s.remove(j) break else: print(-1) break else: print(" ".join(map(str, ans))) # ans.append((z[i][0], s[i], z[i])) # ans.append(s[i]) main()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; long long int dif(long long int a, long long int b) { return ((a / b) + (a % b != 0)); } vector<long long int> v; long long int c[100100], par[100100]; int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long int t; cin >> t; while (t--) { long long int n, f = 0, k; cin >> n; pair<long long int, long long int> a[n], sol[2 * n]; v.clear(); for (long long int i = 0; i < 2 * n + 2; i++) { par[i] = 0; c[i] = 0; } for (long long int i = 0; i < n; i++) { cin >> a[i].first; a[i].second = i; c[a[i].first] = 1; if (a[i].first >= 2 * n) { f = 1; } } if (f) { cout << -1 << '\n'; continue; } sort(a, a + n); for (long long int i = 1; i <= 2 * n; i++) { if (!c[i]) v.push_back(i); } for (long long int i = 0; i < n; i++) { k = lower_bound(v.begin(), v.end(), a[i].first) - v.begin(); if (k == v.size()) { f = 1; break; } par[a[i].first] = v[k]; v.erase(v.begin() + k); } if (f) { cout << -1 << '\n'; continue; } for (long long int i = 0; i < n; i++) { sol[a[i].second] = {a[i].first, par[a[i].first]}; } for (long long int i = 0; i < n; i++) { for (long long int j = i + 1; j < n; j++) { if (sol[i].second > sol[j].second && sol[i].first < sol[j].second && sol[j].first < sol[i].second) { swap(sol[j].second, sol[i].second); } } } for (long long int i = 0; i < n; i++) { cout << min(sol[i].first, sol[i].second) << " " << max(sol[i].first, sol[i].second) << " "; } cout << '\n'; } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while (t--) { int n; cin >> n; int b[n + 1]; int i, j; for (int i = 1; i <= n; i++) cin >> b[i]; int a[2 * n + 1]; bool vis[2 * n + 1]; for (int i = 0; i <= 2 * n; i++) vis[i] = false; for (int i = 1; i <= n; i++) { a[2 * i - 1] = b[i]; vis[b[i]] = true; } bool flag = false; for (int i = 1; i <= n; i++) { flag = false; for (j = b[i] + 1; j <= 2 * n; j++) { if (!vis[j]) { a[2 * i] = j; vis[j] = true; flag = true; break; } } if (!flag) { break; } } if (!flag) { cout << "-1\n"; } else { for (int i = 1; i <= 2 * n; i++) cout << a[i] << " "; cout << endl; } } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.*; import java.util.*; public class Permutation { public static void main(String[] args) { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int t = sc.nextInt(); for (int i1 = 0; i1 < t; i1 ++){ int n = sc.nextInt(); int[] a = new int[2 * n]; boolean[] taken = new boolean[2 * n + 1]; for (int i2 = 0; i2 < n; i2 ++){ a[i2 * 2] = sc.nextInt(); taken[a[i2 * 2]] = true; } for (int i3 = 0; i3 < n; i3 ++){ for (int i4 = a[i3 * 2] + 1; i4 <= 2 * n; i4 ++){ if (!taken[i4]){ a[i3 * 2 + 1] = i4; taken[i4] = true; break; } } } boolean works = true; StringBuilder ans = new StringBuilder(); for (int i5 = 0; i5 < 2 * n; i5 ++){ ans.append(a[i5]); ans.append(" "); if (a[i5] == 0){ pw.println(-1); works = false; break; } } if (works){ pw.println(ans); } } pw.close(); } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Scanner; /** * Built using CHelper plug-in * Actual solution is at the top * * @author ky112233 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC(); int testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } static class TaskC { public void solve(int testNumber, Scanner in, PrintWriter out) { int n = in.nextInt(); int[] b = new int[n]; int[] arr = new int[2 * n]; for (int i = 0; i < n; i++) { int num = in.nextInt(); b[i] = num; arr[num - 1] = 1; } int[] comp = new int[n]; for (int i = 0; i < n; i++) { int temp = b[i]; int j; for (j = temp; j < 2 * n; j++) { if (arr[j] == 0) { arr[j] = 1; comp[i] = j + 1; break; } } if (j == 2 * n) { out.println(-1); return; } } for (int i = 0; i < n; i++) { out.print(b[i] + " " + comp[i] + " "); } out.println(); } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.util.*; import static java.lang.Math.*; import java.io.*; import java.math.BigDecimal; import java.math.BigInteger; import java.math.MathContext; public class A { public static void main(String[] args) throws NumberFormatException, IOException { // TODO Auto-generated method stub BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); int t = Integer.parseInt(br.readLine()); while (t-- > 0) { int n = Integer.parseInt(br.readLine()); StringTokenizer st = new StringTokenizer(br.readLine()); int[] a = new int[2 * n]; int[] b = new int[2 * n]; for (int i = 0; i < b.length; i += 2) { a[i] = Integer.parseInt(st.nextToken()); b[a[i] - 1] = 1; } boolean f = true; for (int i = 0; i < b.length; i += 2) { int idx = -1; for (int j = a[i]; j < 2*n; j++) { if (b[j] == 0) { idx = j + 1; b[j] = 1; break; } } if (idx == -1) { f = false; break; } a[i + 1] = idx; } if (!f) pw.println(-1); else { for (int i = 0; i < b.length; i++) { pw.print(a[i] + " "); } pw.println(); } } pw.flush(); pw.close(); } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.*; import java.util.*; public class Code2802 { public static void main(String args[]){ Reader s = new Reader(); int t = s.nextInt(); // 4 1 3 Outer: while(t-- > 0){ int n = s.nextInt(); int a[]= new int[2*n]; boolean b[] = new boolean[2*n]; for(int i=0;i<a.length;i=i+2){ a[i] = s.nextInt(); b[a[i] - 1] = true; } for (int i = 1; i <a.length ; i = i +2) { for (int j = a[i-1] + 1; j <=a.length ; j++) { if(!b[j-1]){ b[j-1] = true; a[i] = j; break; } } } for (int i = 0; i < a.length; i++) { if(a[i] == 0){ System.out.println(-1); continue Outer; } } for (int i = 0; i < a.length ; i++) { System.out.print(a[i]+" "); } System.out.println(); } } static class Reader { private InputStream mIs; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public Reader() { this(System.in); } public Reader(InputStream is) { mIs = is; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = mIs.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public String nextLine() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public String next() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } double nextDouble() { return Double.parseDouble(next()); } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
for _ in range(int(input())): n = int(input()) b = [int(i) for i in input().split()] missed = [] sorted_b = sorted(b) for ind, num in enumerate(sorted_b): if ind != 0: missed.extend(list(range(sorted_b[ind - 1] + 1, num))) else: missed.extend(list(range(1, num))) if sorted_b[-1] != 2 * n: missed.extend((range(sorted_b[-1] + 1, 2 * n + 1))) # print(missed) ans = [] flag = 0 for num in b: m = float('inf') for candidate in missed: if num < candidate < m: m = candidate if m != float('inf'): del missed[missed.index(m)] else: flag = 1 break if min(m, num) == num: ans.extend([num, m]) if flag == 0: print(*ans) else: print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.util.*; public class Solution { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader( new InputStreamReader(System.in)); StringBuilder out=new StringBuilder(); int t=Integer.parseInt(br.readLine()); for(int j=0;j<t;j++){ int n=Integer.parseInt(br.readLine()); int[] arr=new int[n]; StringTokenizer s=new StringTokenizer(br.readLine()); boolean not_one=true; boolean maximum=false; for(int i=0;i<n;i++){ arr[i]=Integer.parseInt(s.nextToken()); if(arr[i]==1) not_one=false; if(arr[i]==(2*n)) maximum=true; } if(not_one|| maximum) { out.append("-1"+"\n"); continue; } int[] ans=new int[2*n]; HashSet<Integer>h=new HashSet<>(); for(int i=0;i<n;i++){ ans[2*i]=arr[i]; h.add(arr[i]); } boolean o=false; for(int i=1;i<2*n;i=i+2){ int k=ans[i-1]; while(k<=2*n && h.contains(k)) k++; if(k==2*n+1){ out.append("-1"+"\n"); o=true; break; } ans[i]=k; h.add(k); } if(o==true) continue; for(int i=0;i<2*n;i++){ out.append(ans[i]+" "); } out.append("\n"); } System.out.println(out); } } class Segment{ int s; int e; public Segment(int x,int y){ s=x; e=y; } } class SortSeg implements Comparator<Segment> { // Used for sorting in ascending order of // roll number public int compare(Segment a, Segment b) { int lena= a.e-a.s+1; int lenb= b.e-b.s+1; if(lena==lenb) return a.s - b.s; else //decsending order return lenb-lena; } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
I = input for _ in range(int(I())): try: n = int(I()) b = list(map(int, I().split(' '))) a = [0 for i in range((2 * n) + 1)] s = [] for i in range(n): if a[b[i]] == 0: a[b[i]] = 1 s.append(str(b[i])) s.append('0') else: assert 1 == 0 for i in range(n): t = 0 for j in range(b[i] + 1, (2 * n) + 1): if a[j] == 0: t = j a[j] = 1 break if t == 0: assert 1 == 0 s[2*(i+ 1)-1] = str(t) # print(s) for i in range(1, (2 * n) + 1): if a[i] == 0: assert 1 == 0 for i in s: print(i,end=' ') print() except AssertionError: print('-1')
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
from sys import stdin,stderr def rl(): return [int(w) for w in stdin.readline().split()] def solve(n, b): f = [True for i in range(2*n+1)] for x in b: if not f[x]: return [-1] f[x] = False a = [] for x in b: a.append(x) for y in range(x+1, 2*n+1): if f[y]: a.append(y) f[y] = False break else: return [-1] return a t, = rl() for _ in range(t): print(*solve(rl()[0], rl()))
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
I=input exec(int(I())*'I();b=*map(int,I().split()),;s={*range(2*len(b)+1)}-{*b};a=[]\ntry:\n for x in b:a+=x,min(s-{*range(x)});s-={*a}\nexcept:a=-1,\nprint(*a);')
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; void solve(int n, int b[]) { set<int> s; int a[2 * n]; for (int i = 0; i < (int)2 * n; i++) { s.insert(i + 1); } for (int i = 0; i < (int)n; i++) { s.erase(b[i]); } if (*min_element(s.begin(), s.end()) == 1 || *max_element(b, b + n) == 2 * n) { cout << "-1\n"; return; } else { for (int i = 0; i < (int)2 * n; i++) { if (i % 2 == 0) a[i] = b[i / 2]; else { if ((s.upper_bound(b[i / 2])) != s.end()) { a[i] = *s.upper_bound(b[i / 2]); s.erase(*s.upper_bound(b[i / 2])); } else { cout << "-1\n"; return; } } } } for (auto x : a) cout << x << " "; cout << "\n"; } int32_t main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); int tc; cin >> tc; while (tc--) { int n; cin >> n; int b[n]; for (int i = 0; i < (int)n; i++) { cin >> b[i]; } solve(n, b); } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; long long t, i, a[100000], h, b[10000], k[10000], g, p, r, l, n; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); cin >> t; while (t--) { cin >> n; for (i = 1; i <= n; i++) { cin >> a[i]; b[a[i]]++; } i = 0; l = 0; g = 0; h = n; while (h-- and l == 0) { g++; i++; k[g] = a[i]; r = a[i] + 1; p = 0; while (p == 0) { if (b[r] == 0) { p++; b[r]++; } r++; } if (r - 1 > n * 2) { l++; } g++; k[g] = r - 1; } if (l == 1) { cout << -1; } else { for (i = 1; i <= n * 2; i++) { cout << k[i] << " "; } } cout << '\n'; fill(b, b + 3 * n, 0); } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while (t--) { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; set<int> s; for (int i = 1; i <= 2 * n; i++) s.insert(i); vector<int> b(2 * n); bool er = false; for (int i = 0; i < n; i++) { if (s.find(a[i]) == s.end()) { er = true; break; } else s.erase(a[i]); b[2 * i] = a[i]; } for (int i = 0; i < n; i++) { auto it = s.upper_bound(a[i]); if (it == s.end()) { er = true; break; } b[2 * i + 1] = *it; s.erase(it); } if (er) cout << "-1\n"; else { for (int i = 0; i < 2 * n; i++) cout << b[i] << " "; cout << "\n"; } } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import sys import math import itertools import functools import collections import operator import fileinput import copy from collections import * ORDA = 97 # a def ii(): return int(input()) def mi(): return map(int, input().split()) def li(): return [int(i) for i in input().split()] def lcm(a, b): return abs(a * b) // math.gcd(a, b) def revn(n): return str(n)[::-1] def dd(): return collections.defaultdict(int) def ddl(): return collections.defaultdict(list) def sieve(n): if n < 2: return list() prime = [True for _ in range(n + 1)] p = 3 while p * p <= n: if prime[p]: for i in range(p * 2, n + 1, p): prime[i] = False p += 2 r = [2] for p in range(3, n + 1, 2): if prime[p]: r.append(p) return r def divs(n, start=2): r = [] for i in range(start, int(math.sqrt(n) + 1)): if (n % i == 0): if (n / i == i): r.append(i) else: r.extend([i, n // i]) return r def divn(n, primes): divs_number = 1 for i in primes: if n == 1: return divs_number t = 1 while n % i == 0: t += 1 n //= i divs_number *= t def prime(n): if n == 2: return True if n % 2 == 0 or n <= 1: return False sqr = int(math.sqrt(n)) + 1 for d in range(3, sqr, 2): if n % d == 0: return False return True def convn(number, base): new_number = 0 while number > 0: new_number += number % base number //= base return new_number def cdiv(n, k): return n // k + (n % k != 0) def ispal(s): # Palindrome for i in range(len(s) // 2 + 1): if s[i] != s[-i - 1]: return False return True # a = [1,2,3,4,5] -----> print(*a) ----> list print krne ka new way def function(arr, size,dp): if size == 1 or size == 0: return 1 key = ''.join(map(str, arr[:size])) if dp[key]: return dp[key] output = function(arr, size-1, dp) key = ''.join(map(str, arr[:size-1])) dp[key] = output if (arr[size-2]*10 + arr[size-1]) <= 26: output += function(arr, size-2, dp) key = ''.join(map(str, arr[:size-2])) dp[key] = output return output def main(): for _ in range(ii()): n = ii() arr = li() b =[0]*2*n d = [True]*(2*n + 1) i = 0 for ele in arr: d[ele] = False b[i] = ele i += 2 ok = True for i in range(1,2*n,2): e = b[i-1] + 1 while e <= 2*n: if d[e]: d[e] = False b[i] = e break e += 1 else: ok = False break if ok: print(*b) else: print(-1) main()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.*; import java.util.*; import java.lang.*; public class c1 { public static FScanner scan; public static PrintWriter out; public static void main(String[] args) { scan=new FScanner(); out=new PrintWriter(new BufferedOutputStream(System.out)); // int t=1; int t=scan.nextInt(); while(t-->0) { int n=scan.nextInt(); int[] a=new int[n],ans=new int[2*n]; ArrayList<Integer> unused=new ArrayList<>(); for(int c=0;c<2*n;c++) unused.add(c+1); for(int c=0;c<n;c++) { a[c]=scan.nextInt(); ans[2*c]=a[c]; unused.remove(unused.indexOf(a[c])); } boolean possible=true; for(int c=0;c<n;c++) { int num=bs(ans[2*c],unused); if(num==-1) { possible=false; break; } else { ans[2*c+1]=unused.get(num); unused.remove(num); } } if(!possible) out.println(-1); else { for(int c=0;c<2*n;c++) out.print(ans[c]+" "); out.println(); } } out.close(); } //-----------------------------------------------------HERE--------------------------------------------------------- static int bs(int min,ArrayList<Integer> list) { int start=0,end=list.size()-1,ans=-1; while(start<=end) { int mid=(start+end)/2; if(list.get(mid)>=min) { ans=mid; end=mid-1; } else start=mid+1; } return ans; } //------------------------------------------------------------------------------------------------------------------ //scanner public static class FScanner { BufferedReader br; StringTokenizer st; public FScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.*; import java.math.*; import java.util.*; import java.lang.*; public class RestoringPermutation { public static void main(String[] args) { FastScanner I = new FastScanner(); //Input OutPut O = new OutPut(); //Output int T = I.nextInt(); while (T-->0) { int N = I.nextInt(); boolean[] vis = new boolean[2*N+1]; int[] ans = new int[2*N]; int[] a = new int[N]; boolean bad = false; for (int i = 0; i < N; i++) { a[i] = I.nextInt(); vis[a[i]] = true; } for (int cur = 0; cur < N; cur++) { int conv = cur+1; //Conversion to one-based indexing int L = conv*2-1; int R = conv*2; L--; R--; //Converting back to 0 based indexing ans[L] = a[cur]; //The minimum should come first if lexicographically minimal //solution is needed boolean added=false; for (int pair = a[cur]+1; pair <= 2*N; pair++) { //Looking for larger partner if (!vis[pair]) { added=true; ans[R]=pair; vis[pair]=true; break; } } if (!added) { bad=true; break; } } if (bad) O.pln(-1); else { for (int i = 0; i < 2*N; i++) O.p(ans[i]+" "); O.p("\n"); } } } public static void sort(long[] a) {Arrays.sort(a);} public static void sort(int[] a) {Arrays.sort(a);} public static void sort(String[] a) {Arrays.sort(a);} public static void sort(char[] a) {Arrays.sort(a);} public static long ceil(long num, long den) {long ans = num/den; if (num%den!=0) ans++; return ans;} public static long GCD(long a, long b) { if (a==0||b==0) return Math.max(a,b); return GCD(Math.min(a, b),Math.max(a, b)%Math.min(a, b)); } public static long FastExp(long base, long exp, long mod) { long ans=1; while (exp>0) { if (exp%2==1) ans*=base; exp/=2; base*=base; base%=mod; ans%=mod; } return ans; } public static long ModInv(long num,long mod) {return FastExp(num,mod-2,mod);} static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() {return Integer.parseInt(next());} long nextLong() {return Long.parseLong(next());}; } static class OutPut{ PrintWriter w = new PrintWriter(System.out); void pln(int x) {w.println(x);w.flush();} void pln(long x) {w.println(x);w.flush();} void pln(String x) {w.println(x);w.flush();} void pln(char x) {w.println(x);w.flush();} void pln(StringBuilder x) {w.println(x);w.flush();} void p(int x) {w.print(x);w.flush();} void p(long x) {w.print(x);w.flush();} void p(String x) {w.print(x);w.flush();} void p(char x) {w.print(x);w.flush();} void p(StringBuilder x) {w.print(x);w.flush();} } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
for tc in range(int(input())): n = int(input()) b = list(map(int, input().split(' '))) b.insert(0, 0) a = (2*n+1)*[0] s = set() flag = True for i in range(1,n+1): a[2*i-1] = b[i] if b[i] in s: flag = False break s.add(b[i]) for i in range(1,len(b)): val = b[i]+1 while val in s: val+=1 a[2*i] = val s.add(val) for i in range(1,2*n+1): if not i in s: flag = False break if flag: print(*a[1:]) else: print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.util.*; import java.io.*; public class Solution{ long rem = 1000000007L; public Solution(){ Scanner sc = new Scanner(System.in); int tests = sc.nextInt(); for(int t=1; t<=tests; t++){ int n = sc.nextInt(); int[] b = new int[n]; boolean[] found = new boolean[(2*n)+1]; boolean possible = false; for(int i=0; i<n; i++){ b[i] = sc.nextInt(); found[b[i]] = true; } int[] res = new int[2*n]; int index = 0; for(int i=0; i<n; i++){ res[index++] = b[i]; possible = false; for(int j=b[i]+1; j<found.length; j++){ if(!found[j]){ found[j] = true; res[index++] = j; possible = true; break; } } if(!possible){ break; } } if(!possible){ System.out.println("-1"); } else{ for(int i=0; i<(res.length-1); i++){ System.out.print(res[i] + " "); } System.out.println(res[res.length-1]); } } } public static void main(String[] args){ new Solution(); } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import math import atexit import io import sys # input = sys.stdin.readline _OUTPUT_BUFFER = io.StringIO() sys.stdout = _OUTPUT_BUFFER @atexit.register def write(): sys.__stdout__.write(_OUTPUT_BUFFER.getvalue()) def array_to_string(a): s = "" for i in a: s += str(i) return s t = int(input()) while t>0: t = t-1 n = int(input()) b = list(map(int,input().split())) temp = [1 for i in range(4*n)] temp = [0] + temp a = [0 for i in range(2*n)] for i in range(n): temp[b[i]] = 0 a[2*i] = b[i] # print("a",a) for i in range(n): num = b[i] for j in range(num+1,len(temp)): if temp[j] == 1: a[2*i+1] = j temp[j] = 0 break if max(a)>2*n: print(-1) continue for i in a: print(i,end = " ") print()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; long long t, n, a[1005], dd[2005], kt, b[2005], m; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> t; while (t--) { memset(dd, 0, sizeof(dd)); memset(b, 0, sizeof(b)); m = 0; cin >> n; for (long long i = 1; i <= n; i++) { cin >> a[i]; dd[a[i]] = 1; } for (long long i = 1; i <= n; i++) { kt = 0; for (long long j = a[i] + 1; j <= 2 * n; j++) if (dd[j] == 0) { kt = j; break; } if (kt == 0) { m = -1; break; } else { m++; b[m] = a[i]; m++; b[m] = kt; dd[kt] = 1; } } if (m == -1) cout << m << '\n'; else { for (long long i = 1; i <= m; i++) cout << b[i] << " "; cout << '\n'; } } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(0); cout.tie(0); cin.tie(0); int t = 1; cin >> t; while (t--) { int n; cin >> n; int a[n], b[2 * n]; unordered_map<int, int> m; int flag = 0; for (long long int i = 0; i < n; i++) { cin >> a[i]; m[a[i]]++; } if (!m[1] or m[2 * n]) cout << -1 << endl; else { flag = 0; int j = 0; for (long long int i = 0; i < n; i++) { b[j] = a[i]; j += 2; } j = 1; int in = b[j - 1]; for (long long int i = 0; i < n; i++) { in = b[j - 1] + 1; while (m[in]) { in++; if (in == 2 * n + 1) { flag = 1; break; } } m[in]++; b[j] = in; j += 2; } if (flag) cout << -1 << endl; else for (long long int i = 0; i < 2 * n; i++) cout << b[i] << " "; cout << endl; } } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
t = int(input()) while(t): t=t-1 n = int(input()) b = [int(s) for s in input().split()] dic = [0]*((2*n)+1) for i in b: dic[i] = 1 x = (2*n)+1 a = [] ans = 1 # print(dic) for i in b: flag = 0 # print(i) for j in range(i+1,x): if dic[j] == 0: # print(" {}".format(j)) n = j dic[j] = 1 flag = 1 break # print(flag) # print(n) # print(dic) if flag == 0: ans = -1 break else: a.append(i) a.append(n) if ans == 1: for i in a: print(i,end=" ") print() else: print(ans)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
from sys import stdin from collections import defaultdict import bisect input=stdin.readline t=int(input()) for _ in range(t): n=int(input()) a=list(map(int,input().split())) dict=defaultdict(int) arr=[] for i in range(n): arr.append([a[i],i]) dict[a[i]]=1 arr.sort() #print(arr) tmp=[] for i in range(1,2*n+1): if dict[i]==0: tmp.append(i) #print(tmp) fl=0 farr={} for i in range(len(tmp)): if arr[i][0]>tmp[i]: fl=1 break if fl==1: print(-1) continue # a, temp for x in a: val=tmp[bisect.bisect_right(tmp,x)] tmp.remove(val) print(x,val,end=" ") print()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
def Input(): tem = input().split() ans = [] for it in tem: ans.append(int(it)) return ans from collections import Counter T = Input()[0] def solve(n, b): m = 2*n a = [] for i in range(n): a.append([b[i],i]) a.sort(reverse=True) vis=[0 for i in range(m+1)] ans=[0 for i in range(m)] for i in range(n): vis[a[i][0]]=1 for i in range(n): flag = False big_a = None for j in range(m,a[i][0],-1): if vis[j]==0: flag = True big_a = j vis[j]=1 break if flag: ans[2*a[i][1]]=a[i][0] ans[2*a[i][1]+1]=big_a else: return [-1] for i in range(1,m,2): for j in range(i+2,m,2): if ans[j]<ans[i] and ans[j]>ans[i-1] and ans[i]>ans[j-1]: ans[i],ans[j]=ans[j],ans[i] return ans for tt in range(T): n = Input()[0] b = Input() ans=solve(n,b) if ans[0]==-1: print(-1) else: print(ans[0],end='') for i in range(1,2*n): print('',ans[i],end='') print()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
t=int(input()) while t: n=int(input()) b=input().split() visited=[0 for i in range(2*n+1)] a=[] for i in range(n): b[i]=int(b[i]) visited[b[i]]=1 for i in range(n): a.append(b[i]) flag=False for j in range(b[i]+1,2*n+1): if(visited[j]==0): flag=True visited[j]=1 a.append(j) break if(flag==False):break if(flag==False):print(-1) else:print(*a) t-=1
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
for _ in range(int(input())): n = int(input()) se = set() flag = True li = list(map(int, input().split())) for ele in li: se.add(ele) newli = [] for ele in li: newli.append(ele) srch = ele + 1 if srch>2*n: flag = False break while True: if srch not in se: newli.append(srch) se.add(srch) break else: srch+=1 if srch>2*n: flag = False break if flag == False: print("-1", end = "") else: for ele in newli: print(ele, end=" ") print()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
def helper(helpArr,num): for i in range(num,len(helpArr)): if helpArr[i]==0: return i+1 return -1 def soln(n,arr): helpArr=[0]*(2*n) for i in arr: helpArr[i-1]=1 ans=[] for i in arr: temp=helper(helpArr,i) if temp==-1: return -1 helpArr[temp-1]=1 ans.append(i) ans.append(temp) return ans for _ in range(int(input())): n=int(input()) arr=list(map(int,input().split())) ans=soln(n,arr) if ans==-1: print(-1) else: print(*ans)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
for t in range(int(input())): n=int(input()) arr=list(map(int,input().split())) ans=[0]*(n*2) for i in range(n): ele=arr[i] ans[2*i]=ele included=set(arr) i=1 broken=0 while i<(2*n): starting=ans[i-1] ending=(2*n) for j in range(starting+1,ending+1): if j not in included: ans[i]=j included.add(j) break if ans[i]==0: broken+=1 break i+=2 if broken==0: print(*ans) else: print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; signed main() { long long tt; cin >> tt; while (tt--) { long long n; cin >> n; vector<long long> a(2 * n), b(n); set<long long> help; for (long long i = 0; i < n; ++i) { cin >> b[i]; help.insert(2 * i); help.insert(2 * i + 1); } vector<pair<long long, long long> > all(n); for (long long i = 0; i < n; ++i) { a[2 * i] = b[i] - 1; help.erase(b[i] - 1); all[i] = {b[i] - 1, i}; } sort(all.begin(), all.end()); long long i = 0; bool ans = true; for (auto u : help) { if (a[all[i].second * 2] > u) { cout << -1; ans = false; break; } a[all[i].second * 2 + 1] = u; ++i; } if (ans) { for (auto u : help) { all.push_back({u, -1}); } sort(all.begin(), all.end()); set<long long> now; for (i = 0; i < all.size(); ++i) { if (all[i].second != -1) now.insert(all[i].second); else { auto k = *now.begin(); a[2 * k + 1] = all[i].first; now.erase(k); } } for (i = 0; i < 2 * n; ++i) cout << a[i] + 1 << " "; } cout << "\n"; } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
t=int(input()) while t: t-=1 n=int(input()) b=list(map(int, input().split())) cpy=b[::] s=list(set(range(1, 2*n+1)) - set(b)) s.sort() cpy.sort() d=dict() for val, k in enumerate(cpy): d[k]=val ans=[] flag=True for i in b: val=0 for j in s: if i<j: val=j s.remove(j) break if val: ans.append(i) ans.append(val) else: flag=False break if flag: print(*ans) else: print('-1')
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") using namespace std; const long double PI = acos(-1); const int N = 1e5 + 10; const int mod = 1e9 + 7; const int mod1 = 998244353; const long long INF = 2e18; template <class T> inline void amin(T& x, const T& y) { if (y < x) x = y; } template <class T> inline void amax(T& x, const T& y) { if (x < y) x = y; } int read() { long long s = 0, f = 1; char c = getchar(); while (c < '0' || c > '9') { if (c == '-') f = -1; c = getchar(); } while (c >= '0' && c <= '9') { s = s * 10 + c - '0'; c = getchar(); } return s * f; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); int t; cin >> t; while (t--) { int n; cin >> n; bool visited[210]; memset(visited, 0, sizeof(visited)); int a[105]; vector<int> v; vector<int> t; int k = mod; int p = -mod; bool flag = false; for (int i = 1; i <= n; i++) { cin >> a[i]; t.push_back(a[i]); visited[a[i]] = true; k = min(k, a[i]); p = max(p, a[i]); } sort(t.begin(), t.end()); for (int i = 1; i <= 2 * n; i++) { if (!visited[i]) { v.push_back(i); visited[i] = true; } } sort(v.begin(), v.end()); for (int i = 0; i < n; i++) { if (t[i] > v[i]) { flag = true; } } if (flag) { cout << "-1\n"; continue; } else { for (int i = 1; i <= n; i++) { cout << a[i] << " "; for (int j = 0; j < n; j++) { if (v[j] > a[i] && visited[v[j]]) { cout << v[j] << " "; visited[v[j]] = false; break; } } } } cout << "\n"; } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
t = int(input()) for i in range(t): n = int(input()) ans = [0] * ((2 * n)) list2 = [True] * (2 * n + 1) b = list(map(int, input().split())) fin = True for k,j in enumerate(b): ans[2*k] = j list2[j] = False for l,j in enumerate(b): for k in range(j+1, 2 * n +1): if list2[k] == True: list2[k] = False ans[2*l+1] = k break else: fin = False break if fin == True: print(" ".join(map(str,ans))) else: print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
t = int(input()) while t: t -= 1 n = int(input()) b = [int(i) for i in input().split()] a = [] if (not 1 in b) or 2*n in b: print("-1") else: disp = [] for i in range(1,2*n+1): if not i in b: disp.append([i, True]) for i in b: min = -1 a.append(i) for j in disp: if j[1] and j[0] > i: min = j[0] j[1] = False break else: print(min) break a.append(min) else: print(*a)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); cin.tie(0); long long int n; int t; cin >> t; while (t--) { cin >> n; vector<long long int> v(n), vv; for (long long int i = 0; i <= n - 1; i++) cin >> v[i]; bool arr[210]; memset(arr, 0, sizeof(arr)); bool ok = 0, ans = 1; for (long long int i = 0; i <= n - 1; i++) arr[v[i]] = 1; for (long long int i = 0; i < n; i++) { ok = 0; vv.push_back(v[i]); for (long long int j = v[i] + 1; j <= 2 * n; j++) { if (arr[j] == 0) { vv.push_back(j); arr[j] = 1; ok = 1; break; } } if (!ok) { ans = 0; break; } } if (ans) { for (long long int i = 0; i <= n + n - 1; i++) cout << vv[i] << ' '; cout << endl; } else cout << -1 << endl; } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; template <typename T> inline T gcd(T a, T b) { while (b != 0) swap(b, a %= b); return a; } template <typename T> inline void seethis(vector<T> vect) { for (T x : vect) cout << x << " "; cout << "\n"; } void err(istream_iterator<string> it) {} template <typename T, typename... Args> void err(istream_iterator<string> it, T a, Args... args) { cerr << *it << " = " << a << endl; err(++it, args...); } int lcm(int a, int b) { return a * (b / gcd(a, b)); } bool cmp(const pair<int, int> &a) { return a.first < a.second; } long long int modpower(long long int a, long long int b, long long int c) { long long int res = 1; while (b) { if (b & 1LL) res = (res * a) % c; a = (a * a) % c; b >>= 1; } return res; } int main() { cin.tie(0); cout.tie(0); ios_base::sync_with_stdio(false); ; int t; cin >> t; while (t--) { int n; cin >> n; vector<int> b(n); vector<int> ans(2 * n); vector<bool> aval(2 * n + 1, true); for (int i = 0; i < n; i++) { cin >> b[i]; aval[b[i]] = false; ans[2 * i] = b[i]; } bool flag = true; for (int i = 1; i < 2 * n; i += 2) { int x = -1; for (int j = ans[i - 1] + 1; j <= 2 * n; j++) if (aval[j]) { x = j; aval[j] = false; break; } if (x == -1) { flag = false; break; } ans[i] = x; } if (flag) { seethis(ans); } else { cout << "-1\n"; } } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.util.*;import java.io.*;import java.math.*; public class Main { public static void process()throws IOException { int n=ni(),arr[]=new int[n+1]; HashSet<Integer> t_set = new HashSet<Integer>(); for(int i=1;i<=n;i++){ t_set.add(arr[i]=ni()); } TreeSet<Integer> set = new TreeSet<Integer>(); // StringBuilder res = new StringBuilder(); for(int i=1;i<=2*n;i++){ if(!t_set.contains(i)) set.add(i); } ArrayList<Integer> li = new ArrayList<>(); li.add(0); for(int i=1;i<=n;i++){ Integer x=set.higher(arr[i]); if(x==null){ pn(-1); return; } li.add(arr[i]); li.add(x); set.remove(x); } for(int i=1;i<=2*n;i++) p(li.get(i)+" "); pn(""); } static AnotherReader sc; static PrintWriter out; public static void main(String[]args)throws IOException { out = new PrintWriter(System.out); sc=new AnotherReader(); boolean oj = true; oj = System.getProperty("ONLINE_JUDGE") != null; if(!oj) sc=new AnotherReader(100); long s = System.currentTimeMillis(); int t=1; t=ni(); while(t-->0) process(); out.flush(); if(!oj) System.out.println(System.currentTimeMillis()-s+"ms"); System.out.close(); } static void pn(Object o){out.println(o);} static void p(Object o){out.print(o);} static void pni(Object o){out.println(o);System.out.flush();} static int ni()throws IOException{return sc.nextInt();} static long nl()throws IOException{return sc.nextLong();} static double nd()throws IOException{return sc.nextDouble();} static String nln()throws IOException{return sc.nextLine();} static long gcd(long a, long b)throws IOException{return (b==0)?a:gcd(b,a%b);} static int gcd(int a, int b)throws IOException{return (b==0)?a:gcd(b,a%b);} static int bit(long n)throws IOException{return (n==0)?0:(1+bit(n&(n-1)));} static boolean multipleTC=false; static long mod=(long)1e9+7l; static void r_sort(int arr[],int n){ Random r = new Random(); for (int i = n-1; i > 0; i--){ int j = r.nextInt(i+1); int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } Arrays.sort(arr); } static long mpow(long x, long n) { if(n == 0) return 1; if(n % 2 == 0) { long root = mpow(x, n / 2); return root * root % mod; }else { return x * mpow(x, n - 1) % mod; } } static long mcomb(long a, long b) { if(b > a - b) return mcomb(a, a - b); long m = 1; long d = 1; long i; for(i = 0; i < b; i++) { m *= (a - i); m %= mod; d *= (i + 1); d %= mod; } long ans = m * mpow(d, mod - 2) % mod; return ans; } ///////////////////////////////////////////////////////////////////////////////////////////////////////// static class AnotherReader{BufferedReader br; StringTokenizer st; AnotherReader()throws FileNotFoundException{ br=new BufferedReader(new InputStreamReader(System.in));} AnotherReader(int a)throws FileNotFoundException{ br = new BufferedReader(new FileReader("input.txt"));} String next()throws IOException{ while (st == null || !st.hasMoreElements()) {try{ st = new StringTokenizer(br.readLine());} catch (IOException e){ e.printStackTrace(); }} return st.nextToken(); } int nextInt() throws IOException{ return Integer.parseInt(next());} long nextLong() throws IOException {return Long.parseLong(next());} double nextDouble()throws IOException { return Double.parseDouble(next()); } String nextLine() throws IOException{ String str = ""; try{ str = br.readLine();} catch (IOException e){ e.printStackTrace();} return str;}} ///////////////////////////////////////////////////////////////////////////////////////////////////////////// }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; inline int read() { int ans = 0, sign = 1; char ch = getchar(); while (ch < '0' || ch > '9') { if (ch == '-') sign = -1; ch = getchar(); } while (ch >= '0' && ch <= '9') { ans = ans * 10 + (ch - '0'); ch = getchar(); } return ans * sign; } const double PI = acos(-1.0); const int mod = 1e9 + 7; const int N = 100 + 5; int a[N], b[N + N]; int vis[N + N]; void solve() { int n = read(); bool flag = true; for (int i = 1; i <= n; i++) { a[i] = read(); } memset(b, 0, sizeof(b)); memset(vis, 0, sizeof(vis)); for (int i = 1; i <= n; i++) { b[i * 2 - 1] = a[i]; vis[a[i]] = 1; } for (int i = 1; i <= n; i++) { for (int j = a[i] + 1; j <= 2 * n; j++) if (!vis[j] && j > a[i]) { b[i * 2] = j; vis[j] = 1; break; } if (!b[i * 2]) { flag = false; break; } } if (!flag) cout << "-1" << endl; else { for (int i = 1; i <= 2 * n - 1; i++) { cout << b[i] << " "; } cout << b[2 * n] << endl; } } int main() { int t = read(); while (t--) { solve(); } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import sys input = lambda: sys.stdin.readline().rstrip() def last_proverka(v): for i in range(len(v)): i += 1 if i not in v: return -1 return True # v - ans # h - b def l_proverka(v, c): for i in range(len(c)): if v[i] == c[i]: return False return True def x(m, sr): for i in range(1000): if i > sr and i not in m and i not in a: return i return False for _ in range(int(input())): n = int(input()) b = list(map(int, input().split())) a = [0] * 2 * n for i in range(n): a[2 * i] = b[i] k = True for i in range(2 * n): if a[i] == 0: c = x(b, a[i - 1]) if c == False: k = False break else: a[i] = c if last_proverka(a) == True: print(*a) else: print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
for _ in range(int(input())): n=int(input()) B=list(map(int,input().split())) A=[] for i in range(n): A.append(B[i]) for j in range(B[i]+1,1000): if(j not in A and j not in B): A.append(j) break C=[] for i in range(0,2*n): C.append(A[i]) C.sort() ans=-1 for j in range(0,2*n): if(C[i]!=i+1): ans=0 break if(ans==0): print("-1") else: print(*A)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
for i in range(int(input())): n=int(input()) nums=[int(i) for i in input().split()] check=set(nums) s=max(nums) l=[int(i)+1 if int(i)+1 not in check else 0 for i in range(2*n)] l=sorted(list(set(l))) l.remove(0) o="" b=0 for i in nums: s=0 while s<len(l) and l[s]<i: s+=1 if s==len(l): b=1 break else: o+=str(i)+" "+str(l[s])+" " l.remove(l[s]) if b: print(-1) else: print(o[:-1])
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import javax.swing.*; import java.awt.desktop.SystemSleepEvent; import java.util.*; import java.io.*; public class Main { public static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } } public class pair { int a; int b; pair(int p, int q) { a = p; b = q; } public int hashCode() { return new Integer(a).hashCode() * 31 + new Integer(b).hashCode(); } } public static int gcd(int a, int b) { if (a == 1 || b == 1) return 1; if (a == 0) return b; if (b == 0) return a; return gcd(b % a, a); } public static void main(String[] args) { FastReader s = new FastReader(); int t=s.nextInt(); while(t>0) { int n=s.nextInt(); int[] arr=new int[n]; int[] ans=new int[2*n]; HashSet<Integer> set=new HashSet<>(); for(int i=0;i<n;i++) { arr[i] = s.nextInt(); set.add(arr[i]); } boolean c=true; for(int i=0;i<n;i++) { ans[2*i] = arr[i]; for(int j=arr[i];j<=2*n;j++) { if(!set.contains(j)) { ans[2*i + 1] = j; set.add(j); break; } if(j==2*n) c=false; } } if(c==false) System.out.println(-1); else { for(int i=0;i<2*n;i++) System.out.print(ans[i]+" "); System.out.println(); } t--; } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import os import sys from io import BytesIO, IOBase # region fastio BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # ------------------------------ from math import factorial from collections import Counter, defaultdict from heapq import heapify, heappop, heappush def RL(): return map(int, sys.stdin.readline().rstrip().split()) def N(): return int(input()) def comb(n, m): return factorial(n) / (factorial(m) * factorial(n - m)) if n >= m else 0 def perm(n, m): return factorial(n) // (factorial(n - m)) if n >= m else 0 def mdis(x1, y1, x2, y2): return abs(x1 - x2) + abs(y1 - y2) mod = 1000000007 INF = float('inf') # ------------------------------ def main(): for _ in range(N()): n = N() arr = list(RL()) rec = [0]*(2*n+1) res = [0]*(2*n) for i in range(n): rec[arr[i]] = 1 tag = False # print(rec) for i in range(0, 2*n, 2): res[i] = arr[i//2] for j in range(arr[i//2]+1, 2*n+1): if rec[j]!=1: rec[j] = 1 res[i+1] = j break else: tag = True break if tag: break # print(rec) if tag: print(-1) else: print(*res) if __name__ == "__main__": main()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
from sys import stdin from collections import defaultdict from bisect import bisect_right input=stdin.readline t=int(input()) for _ in range(t): n=int(input()) a=list(map(int,input().split())) dict=defaultdict(int) arr=[] for i in range(n): arr.append([a[i],i]) dict[a[i]]=1 arr.sort() #print(arr) tmp=[] for i in range(1,2*n+1): if dict[i]==0: tmp.append(i) fl=0 farr={} for i in range(len(tmp)): if arr[i][0]>tmp[i]: fl=1 break if fl==1: print(-1) continue # a,, for x in a: val=tmp[bisect_right(tmp,x)] tmp.remove(val) print(x,val,end=" ") print()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.*;import java.util.*;import java.math.*; public class Main { static long mod=1000000007l; static int max=Integer.MAX_VALUE,min=Integer.MIN_VALUE; static long maxl=Long.MAX_VALUE,minl=Long.MIN_VALUE; static BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); static StringTokenizer st; static int max(int a,int b){return Math.max(a,b);} static int min(int a,int b){return Math.min(a,b);} static int abs(int a){return Math.abs(a);} static long max(long a,long b){return Math.max(a,b);} static long min(long a,long b){return Math.min(a,b);} static long abs(long a){return Math.abs(a);} static int sq(int a){return (int)Math.sqrt(a);} static long sq(long a){return (long)Math.sqrt(a);} static int ncr(int n,int c,long m) { long a=1l; for(int x=n-c+1;x<=n;x++)a=((a*x)%m); long b=1l; for(int x=2;x<=c;x++)b=((b*x)%m); long v=(div((int)b,m-2,m)%m); return (int)((a*v)%m); } static int fib(int n) { double p=(1+Math.sqrt(5))/2; return (int)Math.round(Math.pow(p,n)/Math.sqrt(5)); } static boolean[] sieve(int n) { boolean bo[]=new boolean[n+1]; bo[0]=true;bo[1]=true; for(int x=4;x<=n;x+=2)bo[x]=true; for(int x=3;x*x<=n;x+=2) { if(!bo[x]) { for(int y=x*x;y<=n;y+=x)bo[y]=true; } } return bo; } static int[] fac(int n) { int bo[]=new int[n+1]; bo[0]=0;bo[1]=1; for(int x=1;x<=n;x++) { for(int y=x;y<=n;y+=x)bo[y]++; } return bo; } static int gcd(int a,int b) { if(b==0)return a; return gcd(b,a%b); } static long div(long a,long b,long m) { long r=1l; a%=m; while(b>0) { if((b&1)==1)r=(r*a)%m; b>>=1; a=(a*a)%m; } return r; } static int i()throws IOException { if(!st.hasMoreTokens()) st=new StringTokenizer(br.readLine()); return Integer.parseInt(st.nextToken()); } static long l()throws IOException { if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine()); return Long.parseLong(st.nextToken()); } static String s()throws IOException { if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine()); return st.nextToken(); } static double d()throws IOException { if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine()); return Double.parseDouble(st.nextToken()); } static char c()throws IOException { if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine()); return st.nextToken().charAt(0); } static boolean b()throws IOException { if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine()); return Boolean.parseBoolean(st.nextToken()); } static void p(Object p){System.out.print(p);} static void p(String p){System.out.print(p);} static void p(int p){System.out.print(p);} static void p(double p){System.out.print(p);} static void p(long p){System.out.print(p);} static void p(char p){System.out.print(p);} static void p(boolean p){System.out.print(p);} static void pl(Object p){System.out.println(p);} static void pl(String p){System.out.println(p);} static void pl(int p){System.out.println(p);} static void pl(char p){System.out.println(p);} static void pl(double p){System.out.println(p);} static void pl(long p){System.out.println(p);} static void pl(boolean p){System.out.println(p);} static void pl(){System.out.println();} static int[] ari(int n)throws IOException { int ar[]=new int[n]; st=new StringTokenizer(br.readLine()); for(int x=0;x<n;x++) ar[x]=Integer.parseInt(st.nextToken()); return ar; } static int[][] ari(int n,int m)throws IOException { int ar[][]=new int[n][m]; for(int x=0;x<n;x++) { st=new StringTokenizer(br.readLine()); for(int y=0;y<m;y++)ar[x][y]=Integer.parseInt(st.nextToken()); } return ar; } static long[] arl(int n)throws IOException { long ar[]=new long[n]; st=new StringTokenizer(br.readLine()); for(int x=0;x<n;x++) ar[x]=Long.parseLong(st.nextToken()); return ar; } static long[][] arl(int n,int m)throws IOException { long ar[][]=new long[n][m]; for(int x=0;x<n;x++) { st=new StringTokenizer(br.readLine()); for(int y=0;y<m;y++)ar[x][y]=Long.parseLong(st.nextToken()); } return ar; } static String[] ars(int n)throws IOException { String ar[]=new String[n]; st=new StringTokenizer(br.readLine()); for(int x=0;x<n;x++) ar[x]=st.nextToken(); return ar; } static double[] ard(int n)throws IOException { double ar[]=new double[n]; st=new StringTokenizer(br.readLine()); for(int x=0;x<n;x++)ar[x]=Double.parseDouble(st.nextToken()); return ar; } static double[][] ard(int n,int m)throws IOException { double ar[][]=new double[n][m]; for(int x=0;x<n;x++) { st=new StringTokenizer(br.readLine()); for(int y=0;y<m;y++)ar[x][y]=Double.parseDouble(st.nextToken()); } return ar; } static char[] arc(int n)throws IOException { char ar[]=new char[n]; st=new StringTokenizer(br.readLine()); for(int x=0;x<n;x++)ar[x]=st.nextToken().charAt(0); return ar; } static char[][] arc(int n,int m)throws IOException { char ar[][]=new char[n][m]; for(int x=0;x<n;x++) { String s=br.readLine(); for(int y=0;y<m;y++)ar[x][y]=s.charAt(y); } return ar; } static void p(int ar[]) { StringBuilder sb=new StringBuilder("");; for(int a:ar) sb.append(a+" "); System.out.println(sb); } static void p(int ar[][]) { StringBuilder sb; for(int a[]:ar) { sb=new StringBuilder(""); for(int aa:a) sb.append(aa+" "); System.out.println(sb); } } static void p(long ar[]) { StringBuilder sb=new StringBuilder(""); for(long a:ar)sb.append(a+" "); System.out.println(sb); } static void p(long ar[][]) { StringBuilder sb; for(long a[]:ar) { sb=new StringBuilder(""); for(long aa:a)sb.append(aa+" "); System.out.println(sb); } } static void p(String ar[]) { StringBuilder sb=new StringBuilder(""); for(String a:ar)sb.append(a+" "); System.out.println(sb); } static void p(double ar[]) { StringBuilder sb=new StringBuilder(""); for(double a:ar)sb.append(a+" "); System.out.println(sb); } static void p(double ar[][]) { StringBuilder sb; for(double a[]:ar) { sb=new StringBuilder(""); for(double aa:a)sb.append(aa+" "); System.out.println(sb); } } static void p(char ar[]) { StringBuilder sb=new StringBuilder(""); for(char aa:ar)sb.append(aa+" "); System.out.println(sb); } static void p(char ar[][]) { StringBuilder sb; for(char a[]:ar) { sb=new StringBuilder(""); for(char aa:a)sb.append(aa+" "); System.out.println(sb); } } static public void main(String[] args)throws Exception { st=new StringTokenizer(br.readLine()); int t=i(); o: while(t-->0) { int n=i(); int ar[]=ari(n); int kk[]=new int[2*n+1]; // for(int x=0;x<n;x++)kk[x]=ar[x]; // Arrays.sort(kk); for(int x=0;x<n;x++) { kk[ar[x]]=-1; } TreeSet<Integer> tt=new TreeSet<>(); for(int x=1;x<=2*n;x++)tt.add(x); for(int a:ar)tt.remove(a); StringBuilder sb=new StringBuilder(""); int i=0; List<Integer> ll=new LinkedList<>(); boolean bo[]=new boolean[2*n+1]; for(int a:tt) { bo[a]=true; //ll.add(a); i++; while(kk[i]!=-1)i++; kk[i]=a; if(a<i) { pl(-1); continue o; } } i=1; for(int a:ar) { while(true) { if(!bo[i]) { i++; if(i==(2*n)+1)i=1; } else { if(a<i) { sb.append(a+" "+i+" "); bo[i]=false; i=1; break; } i++; if(i==(2*n)+1)i=1; } //pl(sb); } } pl(sb); } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while (t--) { int n; cin >> n; int b[n]; unordered_set<int> s; for (int i = 0; i < n; i++) { cin >> b[i]; s.insert(b[i]); } int a[2 * n], k = 0; for (int i = 0; i < 2 * n; i++) { if (i % 2 == 0) { a[i] = b[k++]; } } int p = 0; for (int i = 1; i <= 2 * n; i++) { if (s.find(i) == s.end()) { if (a[p] < i) { a[p + 1] = i; s.insert(i); p += 2; i = 1; } } } int flag = 0; for (int i = 0; i < 2 * n; i++) { if (a[i] >= 1 && a[i] <= 2 * n) { flag = 0; } else { flag = 1; break; } } if (flag == 0) { for (int i = 0; i < 2 * n; i++) { cout << a[i] << " "; } } else { cout << "-1"; } cout << endl; } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
//189301019.akshay import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Scanner; import java.util.Random; import java.util.Arrays; import java.util.StringTokenizer; import java.util.ArrayList; import java.util.HashMap; import java.util.HashSet; import java.util.Collections; public class A { public static void main(String[] args) { FastReader sc=new FastReader(); StringBuffer ans=new StringBuffer(); int test=sc.nextInt(); outer:while(test-->0) { int n=sc.nextInt(); int arr[]=new int[n]; boolean vis[]=new boolean[2*n+1]; int res[]=new int[2*n]; int c=0; for(int i=0;i<n;i++) { arr[i]=sc.nextInt(); res[c]=arr[i];c+=2; vis[arr[i]]=true; } for(int i=1;i<2*n;i+=2) { // for(int j:res) // System.out.print(j+" "); // System.out.println(); for(int j=res[i-1]+1;j<=2*n;j++) if(!vis[j]) { vis[j]=true; res[i]=j; break; } if(res[i] == 0) { ans.append("-1\n"); continue outer; } } for(int i:res) ans.append(i+" "); ans.append("\n"); } System.out.print(ans); } static final Random random=new Random(); static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static void ruffleSort(long[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n); long temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
# import sys # sys.stdin=open("input1.in","r") # sys.stdout=open("outpul.out","w") for _ in range(int(input())): N=int(input()) L=list(map(int,input().split())) Hash=[0]*(2*N+1) for i in range(N): Hash[L[i]]+=1 Nahi=[] for i in range(N): FLAG=0 for j in range(L[i]+1,2*N+1): if Hash[j]==0: FLAG=1 Nahi.append(L[i]) Nahi.append(j) Hash[j]=1 break if FLAG==0: break if FLAG==0: print("-1") else: for i in range(len(Nahi)): print(Nahi[i],end=" ") print() # Hai.sort() # Nahi.sort() # N=len(Nahi) # count=0 # Pair=[0]*(2*N+1) # FLAG=0 # print(Hai) # print(Nahi) # for i in Hai: # if count<N: # if Nahi[count]<i: # FLAG=1 # break # Pair[i]=Nahi[count] # count+=1 # else: # FLAG=1 # break # if FLAG==1: # print("-1") # else: # for i in range(N): # print(L[i],end=" ") # print(Pair[L[i]],end=" ") # print()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; long long a[250]; long long b[250]; long long c[250]; signed main() { long long t; cin >> t; while (t--) { long long f; cin >> f; memset(b, 0, sizeof(b)); for (long long i = 1; i <= f; i++) { cin >> a[i]; b[a[i]] = 1; } long long cnt = 0; for (long long i = 1; i <= f; i++) { for (long long j = a[i] + 1; j <= 2 * f; j++) { if (b[j] == 0) { b[j] = 1, c[i] = j, cnt++; j = 2 * f + 1; } } } if (cnt != f) { cout << -1 << endl; } else { for (long long i = 1; i <= f; i++) { cout << a[i] << " " << c[i] << " "; } cout << endl; } } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; const long long inf = 1000000000; const long long N = 2 * (1e2) + 5; long long ar[N]; long long ans[N]; int32_t main() { ios_base::sync_with_stdio(false); cin.tie(NULL); ; long long t = 1; cin >> t; while (t--) { long long n; cin >> n; vector<long long> done(2 * n + 1, 0); for (long long i = 1; i <= n; ++i) { cin >> ar[i]; done[ar[i]] = 1; } long long d = 1; for (long long i = 1; i <= n; ++i) { long long x = ar[i]; long long y = 0; for (long long val = x + 1; val <= 2 * n; ++val) { if (!done[val]) { y = val; done[val] = 1; break; } } if (!y) { d = 0; break; } ans[i] = y; } if (!d) cout << -1 << "\n"; else { for (long long i = 1; i <= n; ++i) { cout << ar[i] << " " << ans[i] << " "; } cout << "\n"; } } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.util.*; import java.io.*; public class B{ public static void main(String[] args) { FastScanner fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int t = fs.nextInt(); m:for(int tt=0;tt<t;tt++) { int n = fs.nextInt(); Set<Integer> s = new HashSet(); int[] arr = new int[n]; for(int i=0;i<n;i++) { int a = fs.nextInt(); arr[i] = a; if(s.contains(a)==true) { System.out.println(-1); continue m; } s.add(a); } int[] ans = new int[2*n]; boolean flag = true; int index = 0; for(int i=0;i<n;i++) { int a = arr[i]; int need = a+1; while(s.contains(need)==true)need++; s.add(need); ans[index] = a; ans[index+1] = need; index+=2; } for(int i:s) { if(i>2*n) { flag = false; break; } } if(flag == false) { out.println(-1); } else { for(int i:ans) { out.print(i+" "); } out.println(); } } out.close(); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import sys input = lambda: sys.stdin.readline().rstrip() from bisect import bisect_left as bl, bisect_right as br for _ in range(int(input())): n=int(input()) a=[int(i) for i in input().split()] b=[0]*(n*2) for i in range(0,2*n,2): b[i]=a[i//2] st=set([i for i in range(1,2*n+1)]) for i in a: st.remove(i) st=list(st) st.sort() flag=1 for i in range(1,2*n,2): z=br(st,b[i-1]) if z==len(st): flag=0 break b[i]=st.pop(z) if flag==0: print(-1) continue for i in range(0,(2*n)-1,2): if b[i]>b[i+1] : b[i],b[i+1]=b[i+1],b[i] print(*b)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
t = int(input()) for _ in range(t): n = int(input()) b = [int(x) for x in input().split()] d = sorted(b) c = [] j = 0 for i in range(1, 2 * n + 1): if j < len(d) and i == d[j]: j += 1 else: c.append(i) j = 0 out = [] for val in b: out.append(val) while j < len(c): if c[j] > val: out.append(c[j]) c[j] = -1 j = 0 break else: j += 1 else: print(-1) break else: print(' '.join(map(str, out)))
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; vector<int> v1; vector<int> v2; set<int> s; for (int k = 0; k < t; ++k) { int n; bool f = true; cin >> n; v2.resize(2 * n); for (int i = 0; i < 2 * n; ++i) { s.insert(i + 1); } for (int i = 0; i < n; ++i) { cin >> v2[2 * i]; if (s.find(v2[2 * i]) == s.end()) { f = false; break; } else { s.erase(v2[2 * i]); } } if (!f) { cout << -1 << endl; continue; } else { for (int i = 0; i < n; ++i) { auto ptr = s.lower_bound(v2[2 * i]); if (ptr == s.end()) { cout << -1 << endl; f = false; break; } v2[2 * i + 1] = *ptr; s.erase(ptr); } if (f) { for (auto x : v2) { cout << x << " "; } cout << endl; } } } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; const int MAX = 200005; int a[MAX]; int main() { int t; cin >> t; while (t--) { int n; cin >> n; bool flag = false; int maxc = n * 2; bool b[205]; memset(b, false, sizeof(b)); for (int i = 0; i < n; i++) { cin >> a[i]; b[a[i]] = true; if (a[i] == maxc) { flag = true; } } if (flag) { cout << -1 << endl; continue; } vector<int> ans; for (int i = 0; i < n; i++) { for (int j = 1; j <= 2 * n; j++) { if (b[j] == false) { if (a[i] < j) { b[j] = true; ans.push_back(a[i]); ans.push_back(j); break; } } } } if (ans.size() != 2 * n) { cout << -1 << endl; } else { for (auto &q : ans) { cout << q << " "; } cout << endl; } } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
def read(): n = int(input()) b = list(map(int, input().split())) return n, b def solve(n, b): a = [0] * 2 * n marked = [False] * 2 * n for bi in b: marked[bi - 1] = True for i in range(n): a[2 * i] = b[i] try: next_unmarked = marked.index(False, b[i]) marked[next_unmarked] = True a[2 * i + 1] = next_unmarked + 1 except ValueError: return None return a for t in range(int(input())): result = solve(*read()) if result: print(*result) else: print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; void solve() { int n; cin >> n; vector<int> a(2 * n); set<int> s; for (int i = int(1); i < int(2 * n + 1); ++i) { s.insert(i); } for (int i = 0; i < int(n); ++i) { cin >> a[2 * i]; s.erase(a[2 * i]); } for (int i = 0; i < int(n); ++i) { set<int>::iterator it = s.upper_bound(a[2 * i]); if (it == s.end()) { cout << -1 << '\n'; return; } a[2 * i + 1] = *it; s.erase(it); } for (int i = 0; i < int(2 * n); ++i) { cout << a[i] << ' '; } cout << '\n'; return; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int t; cin >> t; while (t--) solve(); return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; long long int n, m; long long int arr[3000000]; long long int brr[3000000]; long long int an[3000000]; array<long long int, 2> dp[3000000]; string st; vector<long long int> vec; int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); ; long long int TESTS, q, a, s, b, r, k, c, p, w, d, x, i, j, y, z, xs, ys, t; TESTS = 1; cin >> TESTS; while (TESTS--) { cin >> n; for (long long int i = 1; i <= 2 * n; i++) brr[i] = 0; for (long long int i = 0; i <= n - 1; i++) { cin >> arr[i]; brr[arr[i]] = 1; } bool pos = true; for (long long int i = 0; i <= n - 1; i++) { an[2 * i] = arr[i]; bool cur = false; for (long long int j = arr[i]; j <= 2 * n; j++) if (brr[j] == 0) { cur = true; an[2 * i + 1] = j; brr[j] = 1; break; } if (!cur) { pos = false; break; } } if (!pos) { cout << -1 << "\n"; continue; } for (long long int i = 0; i <= 2 * n - 1; i++) cout << an[i] << " "; cout << "\n"; } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.*; import java.lang.reflect.Array; import java.util.*; import java.awt.Point; public class Main { static int mod=(int)1e9+7; public static void main(String[] args) throws Exception { FastReader sc = new FastReader(); StringBuilder sb=new StringBuilder(); int t=sc.nextInt(); while(t-->0){ int n=sc.nextInt(); int[] b=new int[n]; boolean[] c=new boolean[2*n+1]; for(int i=0;i<n;i++)c[b[i]=sc.nextInt()]=true; TreeSet<Integer> treeSet=new TreeSet<>(); for(int i=1;i<=2*n;i++){ if(!c[i])treeSet.add(i); } StringBuilder temp=new StringBuilder(); boolean z=false; for(int i=0;i<n;i++){ Integer x=treeSet.higher(b[i]); if(x==null){ z=true; break; } temp.append(b[i]+" "+x+" "); treeSet.remove(x); } if(z)sb.append("-1\n"); else sb.append(temp+"\n"); } System.out.println(sb); } // static boolean gcd(int a,int b){ // if(b==0)return a==1; // else return gcd(b,a%b); // } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
''' 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 ''' class NotFoundError(Exception): def __str__(self): return "Lexicograohic sequence nnot found" def returnNumber(bFinal, a, index): for i in range(len(a)): # print(a[i], bFinal[index]) if a[i] > bFinal[index] and a[i] not in bFinal: return a[i] raise NotFoundError() testCases = int(input()) for t in range(testCases): n = int(input()) b = list(map(int, input().rstrip().split())) a = [i for i in range(1, 2*n + 1)] bFinal = [None]*2*n for i in range(len(b)): bFinal[2*i] = b[i] for i in b: if i in a: a.pop(a.index(i)) # print(b) # print(a) # print(bFinal) for i in range(n): try: bFinal[2*i + 1] = returnNumber(bFinal, a, 2*i) # print("bFinal[2*i + 1]= ", bFinal[2*i + 1]) except NotFoundError as e: # print(e) bFinal = -1 break # print(bFinal) if type(bFinal) is list: s = '' for m in range(len(bFinal)): if m == len(bFinal) - 1: s = s + str(bFinal[m]) else: s = s + str(bFinal[m]) + ' ' print(s) else: print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import javax.print.DocFlavor; import javax.swing.text.html.HTMLDocument; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.net.Inet4Address; import java.nio.charset.IllegalCharsetNameException; import java.sql.SQLOutput; import java.util.*; import java.util.concurrent.locks.ReentrantReadWriteLock; public class Main { static int[] parent; public static void main(String[] args) throws IOException{ Reader.init(System.in); int t = Reader.nextInt(); while (t-->0) { solve(); } } static int n ; static int m; static int k; static int[] arr; static int A; static int B; static void solve()throws IOException { int n = Reader.nextInt(); int[] b = new int[n]; int[] is = new int[(2*n)+1]; for (int i = 0 ; i < n ; i++){ b[i] = Reader.nextInt(); is[b[i]] = 1; } TreeSet<Integer> set = new TreeSet<>(); for (int i = 1 ; i <= 2*n ; i++){ if (is[i]==0){ set.add(i); } } int[] ans = new int[2*n]; for (int i = 0 ; i < 2*n ; i++){ if (i%2==0){ ans[i] = b[i/2]; } else{ if (set.ceiling(ans[i-1])==null){ System.out.println(-1); return; } else{ ans[i] = set.ceiling(ans[i-1]); set.remove(ans[i]); } } } for (int i = 0 ; i < n+n ; i++){ System.out.print(ans[i] + " "); } System.out.println(); } static int next(long[] arr, long target) { int start = 0, end = arr.length - 1; int ans = -1; while (start <= end) { int mid = (start + end) / 2; // Move to right side if target is // greater. if (arr[mid] <= target) { start = mid + 1; } // Move left side. else { ans = mid; end = mid - 1; } } return ans; } static int find(int x) { return parent[x] == x ? x : (parent[x] = find(parent[x])); } static boolean merge(int x, int y) { x = find(x); y = find(y); if (x==y){ return false; } parent[x] = y; return true; } public static void sortbyColumn(int arr[][], int col) { // Using built-in sort function Arrays.sort Arrays.sort(arr, new Comparator<int[]>() { @Override // Compare values according to columns public int compare(final int[] entry1, final int[] entry2) { // To sort in descending order revert // the '>' Operator if (entry1[col] > entry2[col]) return 1; else return -1; } }); // End of function call sort(). } static class Node{ long a; int i; Node(long a, int i){ this.a = a; this.i = i; } } } class Reader { static BufferedReader reader; static StringTokenizer tokenizer; /** call this method to initialize reader for InputStream */ static void init(InputStream input) { reader = new BufferedReader( new InputStreamReader(input) ); tokenizer = new StringTokenizer(""); } /** get next word */ static String next() throws IOException { while ( ! tokenizer.hasMoreTokens() ) { //TODO add check for eof if necessary tokenizer = new StringTokenizer( reader.readLine() ); } return tokenizer.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt( next() ); } static long nextLong() throws IOException { return Long.parseLong( next() ); } static double nextDouble() throws IOException { return Double.parseDouble( next() ); } } class MergeSort { // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(int arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m - l + 1; int n2 = r - m; /* Create temp arrays */ int L[] = new int [n1]; int R[] = new int [n2]; /*Copy data to temp arrays*/ for (int i=0; i<n1; ++i) L[i] = arr[l + i]; for (int j=0; j<n2; ++j) R[j] = arr[m + 1+ j]; /* Merge the temp arrays */ // Initial indexes of first and second subarrays int i = 0, j = 0; // Initial index of merged subarry array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } /* Copy remaining elements of L[] if any */ while (i < n1) { arr[k] = L[i]; i++; k++; } /* Copy remaining elements of R[] if any */ while (j < n2) { arr[k] = R[j]; j++; k++; } } // Main function that sorts arr[l..r] using // merge() void sort(int arr[], int l, int r) { if (l < r) { // Find the middle point int m = (l+r)/2; // Sort first and second halves sort(arr, l, m); sort(arr , m+1, r); // Merge the sorted halves merge(arr, l, m, r); } } /* A utility function to print array of size n */ static void printArray(int arr[]) { int n = arr.length; for (int i=0; i<n; ++i) System.out.print(arr[i] + " "); System.out.println(); } // Driver method } class Node implements Comparable<Node>{ int a; int b; Node (int a , int b){ this.a = a; this.b = b; } public int compareTo(Node o) { if ((this.a%2) == (o.a%2)){ return (this.b - o.b); } else{ return this.a - o.a; } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while (t--) { int n; cin >> n; int a[n + 1]; int b[2 * n + 1]; int temp[2 * n + 1]; for (int i = 1; i <= 2 * n; i++) temp[i] = 0; bool con1 = false, con2 = false; for (int i = 1; i <= n; i++) { cin >> a[i]; if (a[i] == 1) con1 = true; if (a[i] == 2 * n) con2 = true; temp[a[i]] = 1; } if (con1 == false or con2 == true) cout << "-1" << endl; else { int check = 0; for (int i = 1; i <= n; i++) { b[2 * i - 1] = a[i]; int j; for (j = a[i] + 1; j <= 2 * n; j++) { if (temp[j] == 0) { temp[j] = 1; b[2 * i] = j; break; } } if (j == 2 * n + 1) { check = -1; } } if (check != -1) { for (int i = 1; i <= 2 * n; i++) cout << b[i] << " "; cout << endl; } else cout << "-1" << endl; } } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; long long M = 1000000007; int main() { ios_base::sync_with_stdio(false); int t; cin >> t; while (t--) { int n; cin >> n; vector<int> v; map<int, int> m; int z = 0; int j; int b[n]; for (long long i = (0); i < (n); i++) { cin >> b[i]; m[b[i]]++; } for (long long i = (0); i < (n); i++) { j = 1; v.push_back(b[i]); while (m[b[i] + j] != 0) { j++; } v.push_back(b[i] + j); m[b[i] + j]++; } vector<int> a(2 * n, 0); for (long long i = (0); i < (2 * n); i++) { a[i] = v[i]; } sort(v.begin(), v.end()); for (long long i = (0); i < (2 * n); i++) { if (v[i] != i + 1) { z++; } } if (z == 0) { for (long long i = (0); i < (2 * n); i++) { cout << a[i] << " "; } cout << endl; } else { cout << -1 << endl; } } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
for T in range(int(input())): n = int(input()) x = list(map(int, input().split(" "))) b = [0] for i in x: b.append(i) vis = [False for cnt_used in range(2*n + 1)] a = [0 for cnt_a in range(2*n + 1)] set_elem_b = True for i in range(1, n+1): num = int(b[i]) if not vis[num]: vis[num] = True else: set_elem_b = False break if not set_elem_b: print(-1) continue find = False for i in range(1, n+1): find = False for j in range(1, 2*n+1): if not vis[j] and j > b[i]: vis[j] = True a[i*2-1] = b[i] a[i*2] = j find = True break if not find: break if not find: print(-1) continue for i in range(1, 2*n+1): print(a[i], end = ' ') print()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
t=int(input()) for _ in range(t): n=int(input()) b=list(map(int,input().split())) if 2*n in b: print(-1) continue arr=[0 for i in range(2*n)] for i in b: arr[i-1]=1 res=[] for i in b: res.append(i) k=i while k<2*n: if arr[k]==0: res.append(k+1) arr[k]=1 break k+=1 if len(res)<2*n: print(-1) else: for i in res: print(i,end=" ") print()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class C1315 { public static void main(String[] args) { FastScanner fs=new FastScanner(); int T=fs.nextInt(); for (int tt=1; tt<=T; tt++) { int n=fs.nextInt(); int firstNum[]=fs.readArray(n); int secondNum[]=new int [n]; int counter[]=new int [2*n+1]; for(int i=0;i<n;i++) { counter[firstNum[i]]++; } boolean isPossible=true; for(int i=0;i<n;i++) { for(int j=firstNum[i];j<=2*n;j++) { if(counter[j]==0) { counter[j]++; secondNum[i]=j; break; } } } for(int i=1;i<=2*n;i++) { if(counter[i]==0) { isPossible=false; break; } } if(isPossible) { for(int i=0;i<n;i++) { System.out.print(firstNum[i]+" "+secondNum[i]+" "); } System.out.println(); } else { System.out.println(-1); } } } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } int[][] readArray(int n,int m) { int[][] a=new int[n][m]; for (int i=0; i<n; i++) for(int j=0; j<m; j++) a[i][j]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; const int M = 220; int a[M], v[M]; int t, n; int main() { scanf("%d", &t); while (t--) { int cd; memset(v, 0, sizeof(v)); scanf("%d", &n); for (int i = 1; i <= 2 * n; i += 2) { scanf("%d", &a[i]); v[a[i]] = 1; } int num = 0; for (int i = 2; i <= 2 * n; i += 2) { if (a[i - 1] == 2 * n) { num = 1; break; } for (int j = a[i - 1] + 1; j <= 2 * n; j++) { if (v[j] == 0) { a[i] = j; v[j] = 1; break; } if (j == 2 * n) { num = 1; break; } } if (num == 1) break; } if (num == 1) printf("-1\n"); else { for (int i = 1; i <= 2 * n; i++) { printf("%d ", a[i]); } puts(""); } } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 10; const int mod = 1e9 + 7; void solve() { int n, m, i, j, k, l, r, x, y, z, a, b, c; cin >> n; vector<int> v(n); for (int zz = 0; zz < n; zz++) cin >> v[zz]; bool chk[n * 2 + 5]; memset(chk, 0, sizeof(chk)); for (i = 0; i < n; i++) { chk[v[i]] = true; } bool yes; vector<int> ans; for (i = 0; i < n; i++) { ans.push_back(v[i]); yes = false; for (j = v[i]; j <= 2 * n; j++) { if (chk[j] == false) { ans.push_back(j); chk[j] = true; yes = true; break; } } if (yes == false) { cout << "-1" << "\n"; return; } } for (int zzz = 0; zzz < ans.size(); zzz++) cout << ans[zzz] << " "; cout << "\n"; } int main() { int t; cin >> t; while (t--) solve(); }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.*; import java.util.*; public class Restoring_Permutation { public static void main(String[] args) { try { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int T = Integer.parseInt(br.readLine()); for (int i = 1; i <= T; i++) { int N = Integer.parseInt(br.readLine()); int[] arr = Arrays.stream(br.readLine().split(" ")).mapToInt(Integer::parseInt).toArray(); check(arr); } } catch (Exception e) { return; } } private static void check(int[] arr) { HashSet<Integer> seq = new HashSet<>(); for(int i=0;i<arr.length;i++){ seq.add(arr[i]); } String s=""; for(int i=0;i<arr.length;i++) { int k = arr[i] + 1; boolean found = false; while(k <= 2*arr.length) { if(!seq.contains(k)){ s += arr[i] + " " + k + " "; found = true; seq.add(k); break; } k++; } if(!found){ System.out.println("-1"); return; } } System.out.println(s); } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.util.*; public class Problem1315c { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); int[] getLine = new int[n]; int[] numLine = new int[210]; for (int j = 0; j < n; j++) { int b = sc.nextInt(); numLine[b]++; getLine[j] = b; } boolean noperm = true; int numHave = 0; for (int j = 1; j < n * 2; j++) { if (numLine[j] > 1) { noperm = false; break; } if (numLine[j] == 1) { numHave++; } if (j % 2 == 1) { if (numHave < j / 2 + 1) { noperm = false; break; } } } if (!noperm) { System.out.println("-1"); continue; } for (int j = 0; j < n; j++) { System.out.print(getLine[j] + " "); for (int k = getLine[j] + 1; ; k++) { if (numLine[k] == 0) { System.out.print(k + " "); numLine[k] = 1; break; } } } System.out.println(); } System.out.flush(); } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
from bisect import * from collections import * from itertools import * import functools import sys import math from decimal import * from copy import * from heapq import * from fractions import * getcontext().prec = 30 MAX = sys.maxsize MAXN = int(1.5e6) MOD = 10**9+7 spf = [i for i in range(MAXN)] spf[0]=spf[1] = -1 def sieve(): for i in range(2,MAXN,2): spf[i] = 2 for i in range(3,int(MAXN**0.5)+1): if spf[i]==i: for j in range(i*i,MAXN,i): if spf[j]==j: spf[j]=i def fib(n,m): if n == 0: return [0, 1] else: a, b = fib(n // 2) c = ((a%m) * ((b%m) * 2 - (a%m)))%m d = ((a%m) * (a%m))%m + ((b)%m * (b)%m)%m if n % 2 == 0: return [c, d] else: return [d, c + d] def charIN(x= ' '): return(sys.stdin.readline().strip().split(x)) def arrIN(x = ' '): return list(map(int,sys.stdin.readline().strip().split(x))) def ncr(n,r): num=den=1 for i in range(r): num = (num*(n-i))%MOD den = (den*(i+1))%MOD return (num*(pow(den,MOD-2,MOD)))%MOD def flush(): return sys.stdout.flush() '''*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*''' for _ in range(int(input())): n = int(input()) b = [0]+arrIN() a = [0]*(2*n+1) if (1 not in b) or (2*n in b): print(-1) continue f = [1]*(2*n+1) for i in range(1,n+1): a[2*i-1] = b[i] f[b[i]] = 0 rem = [i for i in range(1,2*n+1) if f[i]] rem.sort() for i in range(1,n+1): idx = bisect_left(rem,b[i]) if idx==len(rem): print(-1) break a[2*i] = rem[idx] rem.pop(idx) else: print(*a[1:])
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
# from future import print_function,division # range = xrange import sys input = sys.stdin.readline from bisect import bisect_right # sys.setrecursionlimit(10**9) from sys import stdin, stdout def main(): for _ in range(int(input())): n = int(input()) l = [int(s) for s in input().split()] tot = set(i+1 for i in range(2*n)) re = sorted(tot - set(l)) ans = [-1]*(2*n) flag = 0 for i in range(n): ans[2*i] = l[i] w = bisect_right(re,l[i]) if w==len(re): flag = 1 break ans[2*i+1] = re[w] re.remove(re[w]) if flag: print(-1) else: print(*ans) if __name__== '__main__': main()
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import sys input = sys.stdin.readline t = int(input()) for _ in range(t): n = int(input()) b = list(map(int, input().split())) a = [0] * (2 * n) used = [False] * (2 * n + 1) for i in range(2 * n): if i % 2 == 0: a[i] = b[i // 2] used[a[i]] = True poss = True for i in range(2 * n): if i % 2 == 1: for k in range(a[i-1] + 1, 2 * n + 1): if not used[k]: a[i] = k used[k] = True break if a[i] == 0: poss = False break if not poss: print(-1) else: print(*a)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import sys input = sys.stdin.readline t, = map(int, input().split()) for _ in range(t): N = int(input()) B = list(map(int, input().split())) vs = set(B) cc = 0 for i in range(2*N, 0, -1): # print(i) if i in vs: cc -= 1 else: cc += 1 if cc < 0: print(-1) break else: rs = [] for b in B: rs.append(b) for i in range(b+1, 2*N+1): if i not in vs: rs.append(i) vs.add(i) break print(*rs)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while (t--) { int n; cin >> n; int b[n]; set<int> s; for (int i = 0; i < n; i++) { cin >> b[i]; s.insert(b[i]); } bool sad = false; vector<int> a; for (int i = 0; i < n; i++) { a.push_back(b[i]); int x = b[i] + 1; while (s.find(x) != s.end()) { x++; } if (x > 2 * n) { sad = true; break; } else { a.push_back(x); s.insert(x); } } if (sad == true) cout << -1; else { for (int i = 0; i < 2 * n; i++) cout << a[i] << " "; } cout << endl; } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; const int N = 100 + 3; int a[N], b[N], vis[300]; int main() { int t, n, x; map<int, int> mp; cin >> t; while (t--) { cin >> n; int jg = 0, bj = 0; for (int i = 1; i <= n; i++) { cin >> a[i]; b[i * 2 - 1] = a[i]; vis[a[i]]++; if (a[i] >= n * 2) bj = 1; } if (bj == 1) printf("-1\n"); else { for (int i = 2; i <= n * 2; i += 2) { int ks = b[i - 1]; while (vis[ks] == 1) ks++; b[i] = ks; vis[ks]++; if (ks > n * 2) { jg = 1; break; } } if (jg == 1) printf("-1\n"); else { for (int i = 1; i <= 2 * n; i++) { printf("%d ", b[i]); } printf("\n"); } } for (int i = 1; i <= 200; i++) vis[i] = 0; } return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; const int N = 2e2 + 10; const long long mod = 1e9 + 7; const long long inf = 1e18 + 10; long long a[N], b[N], c[N], use[N]; set<int> st[N]; void solve() { long long n; cin >> n; fill(c, c + N, 0); fill(use, use + N, 0); for (int i = 1; i <= n; i++) { cin >> a[i]; use[a[i]] = 1; } for (int i = 1; i <= n; i++) for (int j = a[i] + 1; j <= 2 * n; j++) if (!use[j]) st[i].insert(j); for (int i = 1; i <= n; i++) { if (st[i].empty()) { cout << -1 << '\n'; return; } bool find = 0; for (int j = a[i] + 1; j <= 2 * n; j++) { if (st[i].find(j) == st[i].end() || use[j]) continue; bool nec = 0; for (int k = 1; k <= n; k++) if (k != i && c[k] == 0 && st[k].size() == 1 && st[k].find(j) != st[k].end()) nec = 1; if (nec) continue; b[i] = j; c[i] = 1; for (int k = 1; k <= n; k++) if (st[k].find(j) != st[k].end()) st[k].erase(j); find = 1; break; } if (find == 0) { cout << -1 << '\n'; return; } } for (int i = 1; i <= n; i++) cout << a[i] << ' ' << b[i] << ' '; cout << '\n'; for (int i = 0; i < N; i++) while (st[i].size()) st[i].erase(st[i].begin()); } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); long long q; cin >> q; while (q--) solve(); return 0; }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
# restoring_permutation1.py from collections import defaultdict for _ in range(int(input())): n = int(input()) b = list(map(int,input().split())) mydick = dict() mydick = defaultdict(lambda:0,mydick) for i in range(n): mydick[b[i]]=1 p = 2*n a = [] # a.append(b[0]) ok = True if mydick[p]==1: print(-1) continue for i in range(n): a.append(b[i]) if p-b[i]>=1: j = b[i]+1 while j<=p: if mydick[j]!=1: a.append(j) mydick[j]=1 break j+=1 # a.append(j) if len(a)==p: print(*a) else: print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
n=int(input()) for i in range(n): a_l=int(input()) l=list(map(int,input().split())) temp=[0]*((max(l)*2)+1) dicti={} flag=False for j in range(a_l): if(l[j]>=a_l*2): flag=True break if((1 not in l) or flag==True): print(-1) else: for j in range(a_l): temp[l[j]]=1 for j in range(a_l): for k in range(l[j]+1,len(temp)): if(temp[k]==0): dicti[l[j]]=k temp[k]=1 break sum=0 for a in dicti: sum+=a+dicti[a] if(sum==(((a_l*2)*(a_l*2+1))/2)): for j in range(a_l): print(l[j],end=" ") print(dicti[l[j]],end=" ") else: print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
for _ in range(int(input())): n=int(input()) l=list(map(int,input().split())) ans=[] a=0 for i in range(n): ans.append(l[i]) c=l[i] while(c in l or c in ans): c+=1 if c>2*n: a=-1 break ans.append(c) if a==-1: print(-1) else: print(*ans)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
t=int(input()) for i in range(0,t): n=int(input()) b=[] c=[] a=list(map(int,input().split())) k1=1 k2=n*2 if(k1 in a and k2 not in a): for j in range(1,2*n+1): if(j not in a): b.append(j) for j in range(0,n): k=a[j]+1 f=1 while(k not in b): k=k+1 if(k>2*n): f=0 break if(f==0): print(-1) break c.append(a[j]) c.append(k) b.pop(b.index(k)) if(f==0): continue for j in range(0,2*n): print(c[j],end=" ") print("") else: print(-1)
PYTHON3
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.*; import java.util.*; /** * A simple template for competitive programming problems. */ public class Solution { //final InputReader in = new InputReader("input.txt"); final InputReader in = new InputReader(System.in); final PrintWriter out = new PrintWriter(System.out); final int mod = 1000000007; final int MAX = 1000001; boolean DEBUG = false; void solve() { int T = in.nextInt(); while(T-->0) { int n = in.nextInt(); int[] b = in.nextArray(n); int[] a = new int[n+n]; boolean[] taken = new boolean[n+n+1]; for(int i=0; i<n; i++) { a[i+i] = b[i]; taken[b[i]] = true; } boolean ansFound = true; for(int i=0; i<n; i++) { int num = a[i+i]+1; while(num < taken.length && taken[num]) { num++; } if(num>=taken.length) { ansFound = false; break; } taken[num] = true; a[i+i+1] = num; } if(!ansFound) { out.println(-1); continue; } printArray(a); } } void printArray(int[] a) { for(int k : a) { out.print(k+ " "); } out.println(); } public static void main(String[] args) throws FileNotFoundException { Solution s = new Solution(); s.solve(); s.out.close(); } public Solution() throws FileNotFoundException { } private static class InputReader { private final InputStream stream; private final byte[] buf = new byte[1024]; private int curChar; private int numChars; InputReader(InputStream stream) { this.stream = stream; } InputReader(String fileName) { InputStream stream = null; try { stream = new FileInputStream(fileName); } catch (FileNotFoundException e) { e.printStackTrace(); } this.stream = stream; } int[] nextArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = nextInt(); return arr; } int[][] nextMatrix(int n, int m) { int[][] matrix = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) matrix[i][j] = nextInt(); return matrix; } String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } String nextString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } double nextDouble() { return Double.parseDouble(nextString()); } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } } }
JAVA
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
#include <bits/stdc++.h> using namespace std; const long long N = 2e2 + 5, mod = 1e9 + 7, mod1 = 998244353, mod2 = 1e9 + 9, inf = 1e18 + 7; const long long infll = 1e18 + 7; long long n, m, k; long long ans, cnt, tmp, idx, mx = -inf, mn = inf; long long x, y, z; string s, t; long long a[N], b[N], c[N]; signed main() { ios_base::sync_with_stdio(0); cin.tie(0); long long q = 1; cin >> q; while (q--) { bool ck = 0; memset(c, 0, sizeof(c)); memset(a, 0, sizeof(a)); cin >> n; set<long long> stt; for (long long i = 1; i <= 2 * n; i++) { c[i] = 1; } for (long long i = 1; i <= n; i++) { cin >> b[i]; if (!c[b[i]]) { ck = 1; break; } c[b[i]] = 0; a[2 * i - 1] = b[i]; } if (ck) { cout << -1 << '\n'; continue; } for (long long i = 1; i <= 2 * n; i++) { if (c[i]) { bool ckk = 1; for (long long j = 1; j <= n; j++) { if (b[j] < i && !a[j * 2]) { ckk = 0; a[j * 2] = i; break; } } if (ckk) { ck = 1; break; } } } if (ck) { cout << -1 << '\n'; continue; } for (long long iiii = 1; iiii <= 2 * n; iiii++) cout << a[iiii] << ' '; cout << '\n'; ; } }
CPP
1315_C. Restoring Permutation
You are given a sequence b_1, b_2, …, b_n. Find the lexicographically minimal permutation a_1, a_2, …, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible. Input Each test contains one or more test cases. The first line contains the number of test cases t (1 ≀ t ≀ 100). The first line of each test case consists of one integer n β€” the number of elements in the sequence b (1 ≀ n ≀ 100). The second line of each test case consists of n different integers b_1, …, b_n β€” elements of the sequence b (1 ≀ b_i ≀ 2n). It is guaranteed that the sum of n by all test cases doesn't exceed 100. Output For each test case, if there is no appropriate permutation, print one number -1. Otherwise, print 2n integers a_1, …, a_{2n} β€” required lexicographically minimal permutation of numbers from 1 to 2n. Example Input 5 1 1 2 4 1 3 4 1 3 4 2 3 4 5 5 1 5 7 2 8 Output 1 2 -1 4 5 1 2 3 6 -1 1 3 5 6 7 9 2 4 8 10
2
9
import java.io.*; import java.util.*; public class Codeforces { public static void main(String[] args) throws IOException { FastScanner fs = new FastScanner(); PrintWriter pw = new PrintWriter(System.out); int t = fs.getInt(); while (t-- > 0) { int n = fs.getInt(); int[] ar = fs.getIntArray(n); HashSet<Integer> hash = new HashSet<>(); for (int i = 1; i <= 2 * n; i++) hash.add(i); for (int i = 0; i < ar.length; i++) { hash.remove(ar[i]); } boolean hasAnswer = true; List<Integer> ans = new ArrayList<>(); for (int i = 0; i < ar.length; i++) { int greater = -1; for (Integer num : hash) { if (num > ar[i]) { greater = num; break; } } if (greater == -1) { hasAnswer = false; break; } hash.remove(greater); ans.add(ar[i]); ans.add(greater); } if (hasAnswer) Utility.printList(ans); else System.out.println(-1); } pw.close(); } } class ModularFunctions { static long mod = 1000000007; static long add(long x, long y) { long result = x + y; return result > mod ? result - mod : result; } static long sub(long x, long y) { long result = x - y; return result < 0 ? result + mod : result; } static long mul(long x, long y) { long result = x * y; return result >= mod ? result % mod : result; } static long pow(long x, long y) { long result = 1; x %= mod; while (y > 0) { if ((y & 1) == 1) result = mul(result, x); x = mul(x, x); y = y >>> 1; } return result; } static long modInv(long x) { return pow(x, mod - 2); } } class Utility { static int binarySearch(int[] ar, int x, int start, int end) { int l = start; int r = end; while (l <= r) { int mid = l + (r - l) / 2; if (ar[mid] == x) { return mid; } else if (ar[mid] > x) { r = mid - 1; } else { l = mid + 1; } } return -1; } static int gcd(int a, int b) { if (a > b) { int t = a; a = b; b = t; } if (a == 0) return b; return gcd(b % a, a); } static int lowerBound(int[] ar, int x) { int l = 0; int r = ar.length - 1; while (l <= r) { int mid = l + (r - l) / 2; if (ar[mid] >= x) r = mid - 1; else l = mid + 1; } return r + 1; } static int upperBound(int[] ar, int x) { int l = 0; int r = ar.length - 1; while (l <= r) { int mid = l + (r - l) / 2; if (ar[mid] > x) r = mid - 1; else l = mid + 1; } return l; } static void sort(int[] a) { ArrayList<Integer> l = new ArrayList<>(); for (int i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static void sort(long[] a) { ArrayList<Long> l = new ArrayList<>(); for (long i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static boolean isPalindrome(String s) { char[] ss = s.toCharArray(); int i = 0; int j = s.length() - 1; while (i < j) { if (ss[i] != ss[j]) { return false; } i += 1; j -= 1; } return true; } static boolean isPrime(int n) { if (n <= 1) return false; else if (n == 2) return true; else if (n % 2 == 0) return false; for (int i = 3; i * i <= n; i += 2) { if (n % i == 0) return false; } return true; } static List<Integer> sieveOfErathosthenes(int n) { List<Integer> list = new ArrayList<>(); boolean[] prime = new boolean[n + 1]; for (int i = 0; i <= n; i++) prime[i] = true; for (int p = 2; p <= Math.sqrt(n); p++) { if (prime[p]) { for (int i = p * p; i <= n; i += p) { prime[i] = false; } } } for (int i = 2; i <= n; i++) if (prime[i]) list.add(i); return list; } static void printArray(int[] ar) { for (int i = 0; i < ar.length; i++) { System.out.print(ar[i] + " "); } System.out.println(); } static void printArray(long[] ar) { for (int i = 0; i < ar.length; i++) { System.out.print(ar[i] + " "); } System.out.println(); } static void printList(List<Integer> list) { for (int i = 0; i < list.size(); i++) { System.out.print(list.get(i) + " "); } System.out.println(); } static void printLongList(List<Long> list) { for (int i = 0; i < list.size(); i++) { System.out.print(list.get(i) + " "); } System.out.println(); } static long choose(long n, long k) { if (n < k) return 0; if (k == 0 || k == n) return 1; return choose(n - 1, k - 1) + choose(n - 1, k); } static List<Integer> divisors(int n) { List<Integer> list = new ArrayList<>(); for (int i = 1; i * i < n; i++) { if (n % i == 0) list.add(i); } for (int i = (int) Math.sqrt(n); i >= 1; i--) { if (n % i == 0) list.add(n / i); } return list; } } class Pair implements Comparable<Pair> { Integer first; Integer second; Pair(Integer f, Integer s) { this.first = f; this.second = s; } public String toString() { return "(" + this.first + ", " + this.second + ")"; } @Override public boolean equals(Object object) { if (((Pair) object).first == this.first && ((Pair) object).second == this.second && object instanceof Pair) { return true; } else { return false; } } @Override public int hashCode() { return (String.valueOf(first) + ":" + String.valueOf(second)).hashCode(); } @Override public int compareTo(Pair p) { int f = first.compareTo(p.first); if (f != 0) return f; return Integer.compare(second, p.second); } } class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int getInt() { return Integer.parseInt(next()); } long getLong() { return Long.parseLong(next()); } int[] getIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = getInt(); return a; } long[] getLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = getLong(); return a; } List<Integer> getIntList(int n) { List<Integer> list = new ArrayList<>(); for (int i = 0; i < n; i++) list.add(getInt()); return list; } List<Long> getLongList(int n) { List<Long> list = new ArrayList<>(); for (int i = 0; i < n; i++) list.add(getLong()); return list; } }
JAVA