Search is not available for this dataset
name
stringlengths 2
112
| description
stringlengths 29
13k
| source
int64 1
7
| difficulty
int64 0
25
| solution
stringlengths 7
983k
| language
stringclasses 4
values |
---|---|---|---|---|---|
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t=int(input())
for i in range(t):
n=int(input())
b=[0]*(2*n)
a=list(map(int,input().split()))
if 1 not in a:
print(-1)
else:
f=0
s=set()
for i in range(n):
if a[i]>=2*n:
f=1
break
else:
b[2*i]=a[i]
s.add(a[i])
fl=[]
for i in range(1,2*n+1):
if i not in s:
fl.append(i)
fl.sort()
for i in range(n):
ind=0
while(fl[ind]<b[2*i]):
ind+=1
if ind ==n:
break
if ind==n:
break
b[2*i+1]=fl[ind]
fl[ind]=0
if f==1 or 0 in b:
print(-1)
else:
print(*b,sep=" ") | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class A {
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int TC = sc.nextInt();
while (TC --> 0) {
int n = sc.nextInt();
TreeSet<Integer> set = new TreeSet<>();
for (int i = 1; i <= 2 * n; i++) {
set.add(i);
}
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = sc.nextInt();
set.remove(a[i]);
}
StringBuilder ans = new StringBuilder();
for (int i = 0; i < n; i++) {
ans.append(a[i]).append(" ");
Integer ceil = set.ceiling(a[i]);
if (ceil != null) {
set.remove(ceil);
ans.append(ceil).append(" ");
} else {
ans = new StringBuilder();
ans.append(-1);
break;
}
}
out.println(ans.toString());
}
out.flush();
out.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream system) {br = new BufferedReader(new InputStreamReader(system));}
public Scanner(String file) throws Exception {br = new BufferedReader(new FileReader(file));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String nextLine()throws IOException{return br.readLine();}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public double nextDouble() throws IOException {return Double.parseDouble(next());}
public char nextChar()throws IOException{return next().charAt(0);}
public Long nextLong()throws IOException{return Long.parseLong(next());}
public boolean ready() throws IOException{return br.ready();}
public void waitForInput() throws InterruptedException {Thread.sleep(3000);}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.Scanner;
public class C1315 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int ntc = sc.nextInt();
while(ntc-->0){
int n = sc.nextInt();
int[] arr = new int[n];
int twiceN = 2*n +1;
int[] arrTwice = new int[twiceN];
arrTwice[0] = -1;
StringBuilder ansString = new StringBuilder();
boolean hasAns = true;
for(int i = 0;i<n;i++){
arr[i] = sc.nextInt();
}
for(int i=0;i<n;i++){
arrTwice[arr[i]] = -1;
}
int j;
for(int i=0;i<n;i++){
ansString.append(arr[i]+" ");
for(j=arr[i]+1;j<twiceN;j++){
if(arrTwice[j]!=-1){
ansString.append(j+" ");
arrTwice[j]=-1;
break;
}
}
if(j == twiceN){
hasAns = false;
break;
}
}
if(!hasAns){
System.out.println(-1);
}else{
System.out.println(ansString);
}
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.util.*;
import java.math.*;
public class C {
public void realMain() throws Exception {
BufferedReader fin = new BufferedReader(new InputStreamReader(System.in), 1000000);
String in = fin.readLine();
String[] ar = in.split(" ");
int T = Integer.parseInt(ar[0]);
for(int t = 0; t < T; t++) {
in = fin.readLine();
int n = Integer.parseInt(in);
in = fin.readLine();
int[] b = new int[n];
ar = in.split(" ");
for(int i = 0; i < n; i++) {
b[i] = Integer.parseInt(ar[i]);
}
int[] a = new int[2 * n];
boolean[] used = new boolean[2*n + 1];
for(int i = 0; i < n; i++) {
a[2*i] = b[i];
used[b[i]] = true;
}
for(int i = 1; i < 2*n; i+=2) {
int min = a[i - 1] + 1;
for(int j = 0; j + min <= 2*n; j++) {
if( !used[j + min] ) {
a[i] = j + min;
used[j + min] = true;
break;
}
}
}
boolean[] newused = new boolean[2*n + 1];
for(int i = 0; i < 2*n; i++) {
newused[a[i]] = true;
}
boolean win = true;
for(int i = 1; i < 2*n + 1; i++) {
if(!newused[i]) {
win = false;
}
}
if(!win) {
System.out.println(-1);
} else {
for(int i = 0; i < 2*n; i++) {
System.out.print(a[i] + " ");
}
System.out.println();
}
}
}
public static void main(String[] args) throws Exception {
C c = new C();
c.realMain();
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n = int(input())
lst = list(map(int,input().split()))
lst2 = []
for i in range(1,2*n+1):
lst2.append(i)
if max(lst) < len(lst):
print(-1)
else:
for i in lst:
lst2.remove(i)
lst3 = []
lst4 = [False] * n
for i in lst:
for j in lst2:
if i < j and lst4[lst2.index(j)] == False:
lst3.append(i)
lst3.append(j)
lst4[lst2.index(j)] = True
break
if len(lst3) == 2*n:
print(" ".join(map(str,lst3)))
else:
print(-1) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
bool present[1000] = {0};
int main(int argc, char **argv) {
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
int arr[n];
for (int i = 0; i < n; i++) cin >> arr[i];
for (int i = 1; i <= 2 * n; i++) present[i] = false;
for (int i = 0; i < n; i++) present[arr[i]] = true;
vector<int> choose;
for (int i = 1; i <= 2 * n; i++)
if (!present[i]) choose.push_back(i);
vector<int> result;
bool possible = true;
for (int i = 0; i < n; i++) {
auto idx = lower_bound(choose.begin(), choose.end(), arr[i]);
if (idx == choose.end()) {
possible = false;
} else {
result.push_back(*idx);
choose.erase(idx);
}
}
if (!possible) {
cout << -1 << endl;
} else {
for (int i = 0; i < n; i++) cout << arr[i] << " " << result[i] << " ";
cout << endl;
}
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | """
Author - Satwik Tiwari .
27th Oct , 2020 - Tuesday
"""
#===============================================================================================
#importing some useful libraries.
from __future__ import division, print_function
from fractions import Fraction
import sys
import os
from io import BytesIO, IOBase
from functools import cmp_to_key
# from itertools import *
from heapq import *
from math import gcd, factorial,floor,ceil
from copy import deepcopy
from collections import deque
from bisect import bisect_left as bl
from bisect import bisect_right as br
from bisect import bisect
#==============================================================================================
#fast I/O region
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
def print(*args, **kwargs):
"""Prints the values to a stream, or to sys.stdout by default."""
sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout)
at_start = True
for x in args:
if not at_start:
file.write(sep)
file.write(str(x))
at_start = False
file.write(kwargs.pop("end", "\n"))
if kwargs.pop("flush", False):
file.flush()
if sys.version_info[0] < 3:
sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout)
else:
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
# inp = lambda: sys.stdin.readline().rstrip("\r\n")
#===============================================================================================
### START ITERATE RECURSION ###
from types import GeneratorType
def iterative(f, stack=[]):
def wrapped_func(*args, **kwargs):
if stack: return f(*args, **kwargs)
to = f(*args, **kwargs)
while True:
if type(to) is GeneratorType:
stack.append(to)
to = next(to)
continue
stack.pop()
if not stack: break
to = stack[-1].send(to)
return to
return wrapped_func
#### END ITERATE RECURSION ####
#===============================================================================================
#some shortcuts
def inp(): return sys.stdin.readline().rstrip("\r\n") #for fast input
def out(var): sys.stdout.write(str(var)) #for fast output, always take string
def lis(): return list(map(int, inp().split()))
def stringlis(): return list(map(str, inp().split()))
def sep(): return map(int, inp().split())
def strsep(): return map(str, inp().split())
# def graph(vertex): return [[] for i in range(0,vertex+1)]
def zerolist(n): return [0]*n
def nextline(): out("\n") #as stdout.write always print sring.
def testcase(t):
for pp in range(t):
solve(pp)
def printlist(a) :
for p in range(0,len(a)):
out(str(a[p]) + ' ')
def google(p):
print('Case #'+str(p)+': ',end='')
def lcm(a,b): return (a*b)//gcd(a,b)
def power(x, y, p) :
res = 1 # Initialize result
x = x % p # Update x if it is more , than or equal to p
if (x == 0) :
return 0
while (y > 0) :
if ((y & 1) == 1) : # If y is odd, multiply, x with result
res = (res * x) % p
y = y >> 1 # y = y/2
x = (x * x) % p
return res
def ncr(n,r): return factorial(n) // (factorial(r) * factorial(max(n - r, 1)))
def isPrime(n) :
if (n <= 1) : return False
if (n <= 3) : return True
if (n % 2 == 0 or n % 3 == 0) : return False
i = 5
while(i * i <= n) :
if (n % i == 0 or n % (i + 2) == 0) :
return False
i = i + 6
return True
inf = pow(10,20)
mod = 10**9+7
#===============================================================================================
# code here ;))
def solve(case):
n = int(inp())
a = lis()
if(1 not in a):
print(-1)
return
if(len(set(a)) != n):
print(-1)
return
vis = [0]*(2*n+1)
ans = [-1]*(2*n)
for i in range(n):
vis[a[i]] = 1
ans[2*i] = a[i]
# print(ans)
# print(vis)
for i in range(1,2*n,2):
for j in range(ans[i-1]+1,2*n+1):
if(vis[j] == 0):
ans[i] = j
vis[j] = 1
break
for i in range(1,2*n+1):
if(vis[i] == 0):
print(-1)
return
print(' '.join(str(ans[i]) for i in range(2*n)))
# testcase(1)
testcase(int(inp()))
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import sys
from collections import Counter
def solve(N, B):
counts = Counter(B)
if any(v > 1 for v in counts.values()):
return -1
# Want smallest permutation that is element-wise greater than B
C = []
for x in range(1, 2 * N + 1):
if x not in counts:
C.append(x)
# Sorted B and C must be pairable
if any(b > c for b, c in zip(sorted(B), C)):
return -1
# Brute force with early exit to find min permutation
# This passed but I am not sure if it's the intended solution?
def gen(index=0):
if index == N:
yield C
return
for c, i in sorted(zip(C[index:N], range(index, N))):
if B[index] < c:
C[index], C[i] = C[i], C[index]
yield from gen(index + 1)
# Turns out this is never reached...
assert False
C[index], C[i] = C[i], C[index]
for sol in gen():
A = []
for b, c in zip(B, C):
A.append(str(b))
A.append(str(c))
return " ".join(A)
return -1
if __name__ == "__main__":
input = sys.stdin.readline
T = int(input())
for t in range(T):
N, = map(int, input().split())
B = [int(x) for x in input().split()]
ans = solve(N, B)
print(ans)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n = int(input())
arr = list(map(int,input().split()))
tree = list(range(2*n+10))
def find(st):
if tree[st]!=st:
tree[st] = find(tree[st])
return tree[st]
for c in arr:
tree[find(c)] = find(c+1)
ans = [0]*(2*n)
for i in range(0,2*n,2):
ans[i] = arr[i//2]
f = True
for i in range(1,2*n,2):
d = ans[i-1]
ans[i] = find(d)
tree[ans[i]] = find(ans[i]+1)
if ans[i]>2*n:
f = False
break
if f:
print(*ans)
else:
print(-1)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | from collections import Counter
from collections import defaultdict
import math
t=int(input())
for _ in range(0,t):
n=int(input())
a=list(map(int,input().split()))
l=list()
k=1
d=defaultdict(lambda:0)
for i in range(0,n):
d[a[i]]=1
for i in range(0,n):
f=0
for j in range(a[i]+1,2*n+1):
if(d[j]==0):
f=1
d[j]=1
l.append(a[i])
l.append(j)
break
if(f==0):
k=0
print(-1)
break
if(k==1):
print(*l) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
long long t, n, i, j, k, a, b, c, m, l, r, s;
void dihan() {
cin >> n;
vector<long long> x(n);
for (auto &i : x) cin >> i;
vector<long long> y(2 * n + 1);
for (i = 0; i < n; i++) y[x[i]] = i + 1;
priority_queue<long long> q;
vector<pair<long long, long long> > p;
for (i = 1; i < 2 * n + 1; i++)
if (y[i] != 0)
q.push(-y[i]);
else if (q.size() > 0) {
y[i] = -q.top();
q.pop();
} else {
cout << -1 << endl;
return;
}
for (i = 1; i < 2 * n + 1; i++) p.push_back({y[i], i});
sort(p.begin(), p.end());
for (auto i : p) cout << i.second << " ";
cout << endl;
}
int main() {
ios::sync_with_stdio(0);
cin.tie(nullptr);
cin >> t;
while (t--) dihan();
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | def find(st, num):
mn = -1
for i in st:
if mn == -1:
if i > num:
mn = i
else:
if num < i < mn:
mn = i
return mn
def main():
n = int(input())
st = set()
for i in range(1, (n * 2) + 1):
st.add(i)
lst = list(map(int, input().split()))
for i in lst:
if not i in st:
break
st.remove(i)
line = ""
for i in lst:
elem = find(st, i)
if elem == -1:
print(-1)
return
line += str(i) + " " + str(elem) + " "
st.remove(elem)
print(line)
if __name__ == "__main__":
t = int(input())
for i in range(t):
main()
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #------------------------template--------------------------#
import os
import sys
from math import *
from collections import *
from fractions import *
from bisect import *
from heapq import*
from io import BytesIO, IOBase
def vsInput():
sys.stdin = open('input.txt', 'r')
sys.stdout = open('output.txt', 'w')
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
ALPHA='abcdefghijklmnopqrstuvwxyz'
M=10**9+7
EPS=1e-6
def value():return tuple(map(int,input().split()))
def array():return [int(i) for i in input().split()]
def Int():return int(input())
def Str():return input()
def arrayS():return [i for i in input().split()]
#-------------------------code---------------------------#
# vsInput()
for _ in range(Int()):
n=Int()
a=array()
ans=[0]*(2*n)
have=[]
ok=True
for i in range(1,2*n+1):
if(i not in a):
have.append(i)
# print(a)
# print(have)
for i in range(n):
# print(2*i,2*i+1,ans)
ans[2*i]=a[i]
ind=bisect_left(have,a[i])
try:
ans[2*i+1]=have[ind]
have.remove(have[ind])
except: ok=False
if(ok): print(*ans)
else: print(-1)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int N = int(2e5 + 20);
const int INF = int(1e9 + 5);
const long long LINF = int(1e18 + 20);
int main() {
int t;
cin >> t;
for (; t; t--) {
int n;
cin >> n;
set<int> ok;
for (int i = 1; i <= 2 * n; i++) ok.insert(i);
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
ok.erase(a[i]);
}
vector<int> b(2 * n);
for (int i = 0; i < 2 * n; i += 2) {
b[i] = a[i / 2];
}
bool f = 0;
for (int i = 1; i < 2 * n; i += 2) {
if (ok.lower_bound(b[i - 1]) == ok.end()) {
f = 1;
break;
}
b[i] = *ok.lower_bound(b[i - 1]);
ok.erase(ok.lower_bound(b[i - 1]));
}
if (f) {
cout << "-1\n";
continue;
}
for (int i = 1; i < 2 * n; i += 2)
for (int j = i + 2; j < 2 * n; j += 2) {
if (b[i] > b[j] && b[i] > b[j - 1] && b[j] > b[i - 1]) swap(b[i], b[j]);
}
for (auto i : b) cout << i << ' ';
cout << '\n';
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.math.*;
import java.util.*;
public class Solve {
FastScanner in;
PrintWriter out;
void solve() {
int T = in.nextInt();
while (0 < T--) {
int n = in.nextInt();
int[] b = in.nextIntArray(n);
HashSet<Integer> hs = new HashSet<>();
boolean[] used = new boolean[n*2+1];
for (int i = 0; i < n; i++) {
used[b[i]] = true;
}
int[] a = new int[n*2];
Arrays.fill(a, -1);
for (int i = 0; i < n; i++) {
a[i*2] = b[i];
int tmp = b[i]+1;
while (tmp <= n*2 && used[tmp]) {
tmp++;
}
if (tmp <= n*2 && ! used[tmp]) {
a[i*2+1] = tmp;
used[tmp] = true;
}
}
boolean ok = true;
for (int i = 0; i < n*2; i++) {
if (a[i] == -1) {
ok = false;
break;
}
}
if (ok) {
for (int i = 0; i < n*2; i++) {
out.print(a[i] + " ");
}
out.println();
} else {
out.println(-1);
}
// out.println(Arrays.toString(a));
// 4 1
// -1
// bi = min(a2i-1, a2i)
// 1
// 1 2
// 4 1 3 b n=3
// 4 5 1 2 3 6 a 2n=6
// * *
// * *
// * *
// 1 5 7 2 8
// 1 3 5 6 7 9 2 4 8 10
}
}
void run() {
try {
in = new FastScanner(new File("Solve.in"));
out = new PrintWriter(new File("Solve.out"));
solve();
out.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
void runIO() {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
solve();
out.close();
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
boolean hasMoreTokens() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return false;
st = new StringTokenizer(s);
}
return true;
}
int nextInt() {
return Integer.parseInt(next());
}
int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
return a;
}
long nextLong() {
return Long.parseLong(next());
}
long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextLong();
}
return a;
}
BigInteger nextBigInteger() {
return new BigInteger(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
double[] nextDoubleArray(int n) {
double[] a = new double[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextDouble();
}
return a;
}
}
public static void main(String[] args) {
new Solve().runIO();
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | /*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
import java.io.*;
import java.util.*;
public class C1315
{
public static void main(String args[])throws IOException
{
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
for(int z=1;z<=t;z++)
{
int n=sc.nextInt();
int b[]=new int[n];
TreeSet<Integer> set=new TreeSet<>();
for(int i=1;i<=2*n;i++)
{
set.add(i);
}
for(int i=0;i<n;i++)
{
b[i]=sc.nextInt();
set.remove(b[i]);
}
int a[]=new int[2*n];
int f=0;
for(int i=0;i<n;i++)
{
a[2*i]=b[i];
if(set.higher(b[i])==null)
{
f=1;break;
}
int x=set.higher(b[i]);
a[2*i +1]=x;
set.remove(x);
}
if(f==1)
System.out.println(-1);
else
{
for(int i=0;i<2*n;i++)
{
System.out.print(a[i]+" ");
}
System.out.println();
}
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.util.*;
import java.lang.*;
import java.math.*;
public class Main
{
public static void main(String[] args) throws IOException{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int t=Integer.parseInt(br.readLine());
while (t-->0){
int n=Integer.parseInt(br.readLine());
Integer[] b=new Integer[2*n];
String s=br.readLine();
StringTokenizer st=new StringTokenizer(s);
for(int i=0;i<2*n;i+=2){
b[i]=Integer.parseInt(st.nextToken());
b[i+1]=b[i];
}
Set<Integer> set = new HashSet<Integer>(Arrays.asList(b));
Set<Integer> a=new TreeSet<Integer>();
for(int i=1;i<=2*n;i++){
if(!set.contains(i)){
a.add(i);
}
}
int flag=0;
for(int i=1;i<2*n;i+=2){
flag=0;
for(int it : a){
if(it>b[i]){
b[i]=it;
flag=1;
a.remove(it);
break;
}
}
if(flag==0){
System.out.println(-1);
break;
}
}
if(flag!=0){
for(int i=0;i<2*n;i++)
System.out.print(b[i]+" ");
System.out.println();
}
}
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.ArrayList;
import java.util.HashSet;
import java.util.Scanner;
import java.util.Set;
public class C623 {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner obj=new Scanner(System.in);
int t=obj.nextInt();
while(t-->0)
{
int n=obj.nextInt();
Set<Integer> set=new HashSet();
Set<Integer> set2=new HashSet();
int[] arr=new int[n];
for(int i=0;i<n;i++)
{
arr[i]=obj.nextInt();
set.add(arr[i]);
}
ArrayList<Integer> a=new ArrayList<>();
for(int i=0;i<n;i++)
{
for(int j=arr[i]+1;j<=2*n;j++)
{
if(!set.contains(j)&&(!set2.contains(j)))
{
//System.out.println("**");
set2.add(arr[i]);
set2.add(j);
a.add(arr[i]);
a.add(j);
set.remove(arr[i]);
set.remove(j);
break;
}
}
}
if(set2.size()==2*n)
{
for(int i=0;i<2*n;i++)
{
System.out.print(a.get(i)+" ");
}
System.out.println();
}
else
System.out.println("-1");
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.*;
import java.io.*;
import java.math.*;
public class C623{
public static int lower(ArrayList<Integer> a,int x){
int low=0;
int high=a.size();
while(low<high){
int mid=(low+high)/2;
if(x<=a.get(mid))
high=mid;
else
low=mid+1;
}
return low;
}
public static void main(String args[]){
FastReader sc = new FastReader();
int t,n,i;
t=sc.nextInt();
while(t-->0){
n=sc.nextInt();
int b[]=new int[n+1];
int a[]=new int[2*n+1];
int f[]=new int[2*n+1];
Arrays.fill(f,1);
for(i=1;i<=n;i++){
b[i]=sc.nextInt();
a[2*i-1]=b[i];
f[b[i]]--;
}
int flag=1;
ArrayList<Integer> sch=new ArrayList<>();
for(i=1;i<=2*n;i++){
if(f[i]==1)
sch.add(i);
}
//out.println(sch);
for(i=2;i<=2*n;i+=2){
int idx=lower(sch,a[i-1]);
if(idx==sch.size()){
flag=0;
break;
}
else{
a[i]=sch.get(idx);
sch.remove(idx);
}
}
if(flag==0){
out.println(-1);
continue;
}
for(i=1;i<=2*n;i++)
out.print(a[i]+" ");
out.println();
}
out.flush();
}
static PrintWriter out;
static class FastReader{
BufferedReader br;
StringTokenizer st;
public FastReader(){
br=new BufferedReader(new InputStreamReader(System.in));
out=new PrintWriter(System.out);
}
String next(){
while(st==null || !st.hasMoreElements()){
try{
st= new StringTokenizer(br.readLine());
}
catch (IOException e){
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt(){
return Integer.parseInt(next());
}
long nextLong(){
return Long.parseLong(next());
}
double nextDouble(){
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try{
str=br.readLine();
}
catch(IOException e){
e.printStackTrace();
}
return str;
}
}
public static boolean isPrime(int n) {
if(n<2) return false;
for(int i=2;i<=(int)Math.sqrt(n);i++) {
if(n%i==0) return false;
}
return true;
}
public static void print(int a[],int l,int r){
int i;
for(i=l;i<=r;i++)
out.print(a[i]+" ");
out.println();
}
public static long fastexpo(long x, long y, long p){
long res=1;
while(y > 0){
if((y & 1)==1)
res= ((res%p)*(x%p))%p;
y= y >> 1;
x = ((x%p)*(x%p))%p;
}
return res;
}
public static boolean[] sieve (int n) {
boolean primes[]=new boolean[n+1];
Arrays.fill(primes,true);
primes[0]=primes[1]=false;
for(int i=2;i*i<=n;i++){
if(primes[i]){
for(int j=i*i;j<=n;j+=i)
primes[j]=false;
}
}
return primes;
}
public static long gcd(long a,long b){
return (BigInteger.valueOf(a).gcd(BigInteger.valueOf(b))).longValue();
}
public static void merge(int a[],int l,int m,int r){
int n1,n2,i,j,k;
n1=m-l+1;
n2=r-m;
int L[]=new int[n1];
int R[]=new int[n2];
for(i=0;i<n1;i++)
L[i]=a[l+i];
for(j=0;j<n2;j++)
R[j]=a[m+1+j];
i=0;j=0;
k=l;
while(i<n1&&j<n2){
if(L[i]<=R[j]){
a[k]=L[i];
i++;
}
else{
a[k]=R[j];
j++;
}
k++;
}
while(i<n1){
a[k]=L[i];
i++;
k++;
}
while(j<n2){
a[k]=R[j];
j++;
k++;
}
}
public static void sort(int a[],int l,int r){
int m;
if(l<r){
m=(l+r)/2;
sort(a,l,m);
sort(a,m+1,r);
merge(a,l,m,r);
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | from bisect import bisect_left as bl
from bisect import bisect_right as br
import heapq
import math
from collections import *
from functools import reduce,cmp_to_key
import sys
input = sys.stdin.readline
M = mod = 10**9 + 7
def factors(n):return sorted(set(reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))))
def inv_mod(n):return pow(n, mod - 2, mod)
def li():return [int(i) for i in input().rstrip('\n').split(' ')]
def st():return input().rstrip('\n')
def val():return int(input().rstrip('\n'))
def li2():return [i for i in input().rstrip('\n').split(' ')]
def li3():return [int(i) for i in input().rstrip('\n')]
for _ in range(val()):
n = val()
b = li()
a = [0 for i in range(2*n)]
for i in range(n):
a[2*i] = b[i]
s = set([i for i in range(1,2*n + 1)])
for i in b:s.remove(i)
for i in range(1,2*n,2):
temp = a[i-1]
while temp + 1 not in s and temp + 1 <= 2*n:temp += 1
temp += 1
if temp == 2*n + 1:
ans = -1
a = -1
break
a[i] = temp
s.remove(temp)
if a != -1:print(*a)
else:print(-1) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t = int(input())
for _ in range(t):
n = int(input())
b = list(map(int, input().split()))
c = set(b)
l = []
valid = True
for i in b:
temp = i + 1
while temp in c:
temp += 1
if temp > 2*n:
print(-1)
valid = False
break
l += [i, temp]
c.add(temp)
if valid:
print(' '.join(map(str, l)))
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | T = int(input().strip())
debug = False
for t in range(T):
N = int(input().strip())
A = list(map(int, input().split()))
totalSum = 2*N*(2*N+1)/2
total=0
d={}
for a in A:
d[a]=1
B = []
for a in A:
B.append(a)
total+=a
x=a
while True:
x = x+1
if x not in d:
d[x]=1
B.append(x)
total+=x
break
if total==totalSum:
print(*B)
else:
print(-1) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Problem623C {
public static void main(String[] args) throws Exception {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
PrintWriter writer = new PrintWriter(System.out);
int testCases = Integer.parseInt(reader.readLine());
for (int t = 0; t < testCases; t++) {
int n = Integer.parseInt(reader.readLine());
StringTokenizer tokenizer = new StringTokenizer(reader.readLine());
int[] b = new int[n];
for (int i = 0; i < n; i++) {
b[i] = Integer.parseInt(tokenizer.nextToken());
}
writer.println(solve(b));
}
writer.close();
}
public static String solve(int[] b) {
StringBuilder builder = new StringBuilder();
int n = b.length;
boolean[] nums = new boolean[2 * n + 5];
for (int i : b) {
nums[i] = true;
}
for (int i = 0; i < b.length; i++) {
builder.append(b[i]);
builder.append(' ');
boolean flag = false;
for (int j = b[i] + 1; j <= 2 * n; j++) {
if (!nums[j]) {
builder.append(j);
builder.append(' ');
nums[j] = true;
flag = true;
break;
}
}
if (!flag) {
return "-1";
}
}
return builder.toString().substring(0, builder.length() - 1);
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int a[101], ac[202];
void solve() {
int n;
cin >> n;
bool f = 0;
memset(ac, 0, sizeof(ac));
for (int i = 0; i < n; i++) {
cin >> a[i];
ac[a[i]] = 1;
}
if (ac[1] == 0) {
f = 1;
}
vector<int> v;
for (int i = 0; i < n; i++) {
bool k = 0;
for (int j = a[i] + 1; j <= 2 * n; j++) {
if (ac[j] == 0) {
ac[j] = 1;
k = 1;
v.push_back(a[i]);
v.push_back(j);
break;
}
}
if (k == 0) {
f = 1;
break;
}
}
if (f) {
cout << "-1\n";
return;
} else {
for (int i : v) {
cout << i << " ";
}
}
cout << "\n";
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
long long t = 1;
cin >> t;
while (t--) {
solve();
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n=int(input())
u=False
s=[]
k=[]
l=list(map(int,input().split()))
for i in range(1,2*n+1):
if i not in l:
k.append(i)
#print(k)
for i in range(n):
s.append(l[i])
for j in range(len(k)):
#print(k[j],l[i])
if k[j]>l[i]:
s.append(k[j])
del k[j]
u=True
break
if not u:
print("-1")
break
if u and len(s)==2*n:
print(*s,sep=" ")
elif u:
print("-1")
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const double PI = atan(1.0) * 4;
const int64_t INF = 100000000000000003;
const int32_t LOG = 21;
const int MOD = 1e9 + 7;
int32_t main() {
ios_base::sync_with_stdio(false), cin.tie(NULL), cout.tie(NULL);
int tests = 1;
cin >> tests;
for (int ii = 0; ii < tests; ii++) {
int n;
cin >> n;
vector<int> v(2 * n, 0);
int b[n];
for (int i = 0; i < n; i++) {
cin >> b[i];
}
set<int> second;
for (int i = 1; i < 2 * n + 1; i++) second.insert(i);
for (int i = 0; i < n; i++) {
v[2 * i] = b[i];
second.erase(b[i]);
}
bool g = true;
for (int i = 0; i < n; i++) {
int x = v[2 * i];
auto it = second.lower_bound(x);
if (it == second.end()) {
g = false;
break;
}
v[2 * i + 1] = *it;
second.erase(v[2 * i + 1]);
}
if (!g)
cout << -1 << '\n';
else {
for (int i = 0; i < 2 * n; i++) cout << v[i] << " ";
cout << '\n';
}
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for tin in range(int(input())):
n=int(input())
b=list(map(int,input().split()))
c=[0]*(2*n+1)
for _ in range(len(b)):
c[b[_]]=1
a=[0]*(2*n)
v=0
for _ in range(n):
a[v]=b[_]
x=0
for j in range(b[_],2*n+1):
if c[j]!=1:
a[v+1]=j
c[j]=1
x+=1
break
if x==0:
break
v+=2
if v!=2*n:
print(-1)
else:
for _ in range(2*n-1):
print(a[_],end=" ")
print(a[-1]) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int i, j, n, k, t, a[240], b[105], p[240];
int main() {
cin >> t;
for (k = 1; k <= t; k++) {
cin >> n;
for (i = 0; i++ < n;) {
cin >> b[i];
p[b[i]] = 1;
}
for (i = 0; i++ < n;) {
for (j = b[i]; p[j] && j <= 2 * n;) j++;
if (j > 2 * n) {
cout << -1 << endl;
goto G;
}
a[2 * i - 1] = b[i];
a[2 * i] = j;
p[j] = 1;
}
for (i = 0; i++ < 2 * n;) cout << a[i] << ' ';
cout << endl;
G:
for (i = 0; i++ < 2 * n;) p[i] = 0;
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
long double pi = 3.14159265358979;
using namespace std;
int inf = 1e9;
void fastIO() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
}
void solve() {
int n;
cin >> n;
vector<int> a(2 * n);
vector<bool> cur(2 * n, true);
for (int i = 0; i < 2 * n; i += 2) {
cin >> a[i];
a[i]--;
cur[a[i]] = false;
}
for (int i = 1; i < 2 * n; i += 2) {
int pos = inf;
for (int j = 2 * n - 1; j >= 0; j--)
if (cur[j] && j > a[i - 1]) pos = min(pos, j);
if (pos == inf) {
cout << -1 << "\n";
return;
}
a[i] = pos;
cur[pos] = false;
}
for (int i = 0; i < 2 * n; i++) cout << a[i] + 1 << " ";
cout << "\n";
return;
}
int main() {
fastIO();
int t;
cin >> t;
for (int i = 0; i < t; i++) solve();
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | from collections import defaultdict
t = int(input())
for _ in range(t):
n = int(input())
b = list(map(int, input().split()))
b = list(map(lambda x: x-1, b))
flag = [False]*(2*n)
for bi in b:
flag[bi] = True
pair = defaultdict(int)
f = True
for bi in b:
for i in range(bi+1, 2*n):
if not flag[i]:
pair[bi] = i
flag[i] = True
break
else:
f = False
if not f:
print(-1)
continue
ans = []
for bi in b:
ans.append(min(bi, pair[bi]))
ans.append(max(bi, pair[bi]))
ans = list(map(lambda x: x+1, ans))
print(*ans) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | if __name__ == '__main__':
t = int(input())
for _ in range(t):
n = int(input())
l = [int(i) for i in input().split(' ')]
res = []
a = sorted(list(set([i for i in range(1, 2 * n + 1)]) - set(l)))
# print(l)
# print(a)
for i in range(n):
cur = l[i]
for j in a:
if j > cur:
res.append(cur)
res.append(j)
a.remove(j)
break
# print(res)
if len(res) == n * 2:
print(' '.join([str(i) for i in res]))
else:
print(-1)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int t, a[109], n, vis[300];
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
;
cin >> t;
while (t--) {
cin >> n;
memset(vis, 0, sizeof vis);
int good = 1;
for (int i = 1; i <= n; i++) {
cin >> a[i];
vis[a[i]]++;
if (vis[a[i]] > 1) good = 0;
}
if (!good) {
cout << -1 << "\n";
continue;
}
vector<int> v;
for (int i = 1; i <= n; i++) {
v.push_back(a[i]);
for (int j = a[i] + 1; j <= 2 * n; j++)
if (!vis[j]) {
v.push_back(j);
vis[j]++;
break;
}
if ((int)v.size() % 2) break;
}
if (v.size() != 2 * n) {
cout << -1 << "\n";
continue;
}
for (auto i : v) cout << i << " ";
cout << "\n";
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | from functools import reduce
import os
import sys
from math import *
from collections import *
from fractions import *
from bisect import *
from heapq import*
from io import BytesIO, IOBase
input = lambda: sys.stdin.readline().rstrip("\r\n")
def value():return tuple(map(int,input().split()))
def arr():return [int(i) for i in input().split()]
def sarr():return [int(i) for i in input()]
def inn():return int(input())
mo=1000000007
#----------------------------CODE------------------------------#
for _ in range(int(input())):
n=inn()
a=arr()
d=defaultdict(int)
ans=[]
for i in a:
d[i]+=1
for i in range(n):
res=a[i]
for j in range(a[i]+1,2*n+1):
if(j not in d):
ans+=[(res,j)]
d[j]+=1
break
flag=0
for i in range(1,2*n+1):
if(i not in d):
flag=1
break
if(flag==1):
print(-1)
else:
for i in range(n):
print(ans[i][0],ans[i][1],end=" ")
print()
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t = int(input())
while t > 0:
n = int(input())
b = [int(x) for x in input().split()]
a = [0] * (2 * n + 1)
for i in b:
a[i] = 1
s = [0] * (2 * n + 1)
counter = 1
failed = False
for i in b:
s[counter] = i
found = False
for j in range(i + 1, 2 * n + 1):
if a[j] == 0:
s[counter + 1] = j
a[j] = 1
found = True
break
if not found:
print("-1")
failed = True
break
counter += 2
if not failed:
s = s[1:]
print(' '.join(map(str, s)))
t -= 1
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t=int(input())
for l in range(t):
n=int(input())
tab=[0 for i in range(2*n)]
s=input().split()
for k in s:
tab[int(k)-1]=1
num=[]
for i in s:
j=int(i)-1
num.append(j+1)
for k in range(j,2*n):
if tab[k]==0:
tab[k]=1
num.append(k+1)
break
co=tab.count(0)
if co==0:
for m in num:
print(m,end=" ")
print()
else:
print("-1")
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.*;
public class RestoringPermutation{
public static int find(Set<Integer> unusedNums, int a)
{
int min = 300;
for(int i : unusedNums)
{
if(i > a && i < min)
min = i;
}
return min;
}
public static void main(String []args){
Scanner s1 = new Scanner(System.in);
int t = Integer.parseInt(s1.nextLine());
for(int q = 0; q < t; q++)
{
int n = Integer.parseInt(s1.nextLine());
String s = s1.nextLine();
String[] sequence = s.split(" ");
int[] arr = new int[2*sequence.length];
Set<Integer> usedNums = new HashSet<Integer>();
Set<Integer> unusedNums = new HashSet<Integer>();
for(int i = 0; i < sequence.length; i++)
{
arr[2*i] = Integer.parseInt(sequence[i]);
usedNums.add(Integer.parseInt(sequence[i]));
}
for(int i = 1; i <= 2*sequence.length; i++)
{
if(!usedNums.contains(i))
unusedNums.add(i);
}
for(int i = 0; i < sequence.length; i++)
{
arr[2*i + 1] = find(unusedNums, arr[2*i]);
if(arr[2*i+1] == 300)
{
System.out.println(-1);
break;
}
unusedNums.remove(arr[2*i+1]);
}
if(unusedNums.size() ==0){
for(int i = 1; i <= 2*sequence.length; i++)
{
System.out.print(arr[i-1] + " ");
}
System.out.println();}
}
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n=int(input())
b=list(map(int,input().split()))
done = [0]*(2*n+1)
if min(b)!=1 or max(b)==2*n:
print(-1)
else:
ans = [0]*(2*n+1)
for i in range(len(b)):
done[b[i]]=1
ans[2*i+1] = b[i]
# print(ans)
for i in range(1,n+1):
for j in range(ans[2*i-1]+1,2*n+1):
if done[j]==0:
ans[2*i]=j
done[j]=1
break
if 0 in ans[1:]:
print(-1)
else:
print(*ans[1:])
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.*;
public class EXPCH {
static long modInverse(long a, long m)
{
long m0 = m;
long y = 0, x = 1;
if (m == 1)
return 0;
while (a > 1)
{
long q = a / m;
long t = m;
m = a % m;
a = t;
t = y;
y = x - q * y;
x = t;
}
if (x < 0)
x += m0;
return x;
}
public static class pair implements Comparable<pair>{
int idx,val;
public pair(int i,int j) {
idx=i;
val=j;
}
@Override
public int compareTo(pair o) {
// TODO Auto-generated method stub
return this.val-o.val;
}
}
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
StringBuilder st=new StringBuilder();
while(t-->0) {
TreeSet<Integer>hs=new TreeSet<>();
int n=sc.nextInt();
int a[]=new int[2*n+1];
pair b[]=new pair[n+1];
b[0]=new pair(0,0);
for(int i=1;i<=2*n;i++) {
hs.add(i);
}
for(int i=1;i<=n;i++) {
b[i]=new pair(i,sc.nextInt());
hs.remove(b[i].val);
}
//Arrays.parallelSort(b);
boolean f=true;
for(int i=1;i<=n;i++) {
int val=b[i].val;
int idx=b[i].idx;
if(hs.ceiling(val+1)==null) {
f=false;break;
}
int no=hs.ceiling(val+1);
a[idx*2]=no;
a[idx*2-1]=val;
hs.remove(no);
}
if(!f) {
st.append(-1+"\n");
continue;
}
for(int i=1;i<=2*n;i++) {
st.append(a[i]+" ");
}
st.append("\n");
}
System.out.println(st);
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
long long M = 1e9 + 7;
void solve() {
long long int n;
cin >> n;
vector<long long int> b(n);
map<long long int, long long int> mp;
set<long long int> st;
for (long long int i = 0; i < n; i++) {
cin >> b[i];
mp[b[i]]++;
}
for (long long int i = 1; i <= 2 * n; i++) {
if (!mp[i]) st.insert(i);
}
vector<long long int> a(2 * n, -1);
for (long long int i = 0, j = 0; i < 2 * n; i++, j++) {
a[i] = b[j];
i++;
}
for (long long int i = 0; i < 2 * n; i++) {
if (a[i] == -1) {
if (st.lower_bound(a[i - 1]) == st.end()) {
cout << -1 << "\n";
return;
}
auto it = st.lower_bound(a[i - 1]);
a[i] = *it;
st.erase(a[i]);
}
}
for (auto x : a) {
cout << x << " ";
}
cout << "\n";
}
signed main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
;
long long int t;
cin >> t;
while (t--) {
solve();
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.util.*;
public class QB_Jan
{
static class Print
{
private final BufferedWriter bw;
public Print()
{
this.bw=new BufferedWriter(new OutputStreamWriter(System.out));
}
public void print(Object object)throws IOException
{
bw.append(""+object);
}
public void println(Object object)throws IOException
{
print(object);
bw.append("\n");
}
public void close()throws IOException
{
bw.close();
}
}
static class Scan
{
private byte[] buf=new byte[1024*1024];
private int index;
private InputStream in;
private int total;
public Scan()
{
in=System.in;
}
public int scan()throws IOException
{
if(total<0)
throw new InputMismatchException();
if(index>=total)
{
index=0;
total=in.read(buf);
if(total<=0)
return -1;
}
return buf[index++];
}
public int scanInt()throws IOException
{
int integer=0;
int n=scan();
while(isWhiteSpace(n))
n=scan();
int neg=1;
if(n=='-')
{
neg=-1;
n=scan();
}
while(!isWhiteSpace(n))
{
if(n>='0'&&n<='9')
{
integer*=10;
integer+=n-'0';
n=scan();
}
else throw new InputMismatchException();
}
return neg*integer;
}
public double scanDouble()throws IOException
{
double doub=0;
int n=scan();
while(isWhiteSpace(n))
n=scan();
int neg=1;
if(n=='-')
{
neg=-1;
n=scan();
}
while(!isWhiteSpace(n)&&n!='.')
{
if(n>='0'&&n<='9')
{
doub*=10;
doub+=n-'0';
n=scan();
}
else throw new InputMismatchException();
}
if(n=='.')
{
n=scan();
double temp=1;
while(!isWhiteSpace(n))
{
if(n>='0'&&n<='9')
{
temp/=10;
doub+=(n-'0')*temp;
n=scan();
}
else throw new InputMismatchException();
}
}
return doub*neg;
}
public long scanLong() throws IOException
{
long ret = 0;
long c = scan();
while (c <= ' ')
{
c = scan();
}
boolean neg = (c == '-');
if (neg)
{
c = scan();
}
do
{
ret = ret * 10 + c - '0';
}
while ((c = scan()) >= '0' && c <= '9');
if (neg)
{
return -ret;
}
return ret;
}
public String scanString()throws IOException
{
StringBuilder sb=new StringBuilder();
int n=scan();
while(isWhiteSpace(n))
n=scan();
while(!isWhiteSpace(n))
{
sb.append((char)n);
n=scan();
}
return sb.toString();
}
private boolean isWhiteSpace(int n)
{
if(n==' '||n=='\n'||n=='\r'||n=='\t'||n==-1)
return true;
return false;
}
}
public static void main(String args[]) throws Exception
{
Scan scan=new Scan();
Print p=new Print();
int T=scan.scanInt();
loop:
while (T-->0)
{
int N=scan.scanInt();
int b[]=new int[N+1];
HashSet<Integer> hashSet=new HashSet<Integer>();
for(int i=1;i<=N;i++)
{
b[i]=scan.scanInt();
hashSet.add(b[i]);
}
int a[]=new int[(2*N)+1];
for(int i=1;i<=N;i++)
{
int temp=b[i]+1;
a[2*i-1]=b[i];
while(hashSet.contains(temp))
{
temp++;
}
if(temp>2*N)
{
p.println("-1");
continue loop;
}
else
{
hashSet.add(temp);
a[(2*i)]=temp;
}
}
for(int i=1;i<=2*N;i++)
{
p.print(a[i]+" ");
}
p.print("\n");
}
p.close();
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import sys
from bisect import bisect_left
reader = (s.rstrip() for s in sys.stdin)
input = reader.__next__
def find_ge(a, x):
'Find leftmost item greater than or equal to x'
i = bisect_left(a, x)
if i != len(a):
return a[i]
return False
def gift():
for _ in range(cou):
n = int(input())
lst= [int(x) for x in input().split()]
newlst=lst[:]
newlst.sort()
less=0
big=0
onein=False
bignotin=True
error=False
full=list(range(1,n*2+1))
for ele in newlst:
if ele<=n:
less+=1
else:
big+=1
if ele==1:
onein=True
if ele==n*2:
bignotin=False
full.remove(ele)
#print(onein,bignotin,less<big,full)
if onein and bignotin and less>=big:
res=[]
#print(lst,full)
for ele in lst:
#print(res)
found=find_ge(full,ele)
#print(found)
if not found:
error=True
break
res.append(ele)
res.append(found)
full.remove(found)
if error:
yield -1
else:
yield " ".join(str(x) for x in res)
else:
yield -1
if __name__ == '__main__':
cou= int(input())
ans = gift()
print(*ans,sep='\n')
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.*;
import java.io.*;
import java.util.Map.*;
public class C_1315 {
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int t = sc.nextInt();
big:
while(t-->0) {
int n = sc.nextInt();
int[] array = sc.nextIntArray(n);
TreeSet<Integer> set = new TreeSet<>();
for(int i = 1; i <= n * 2; i++)
set.add(i);
for(int i = 0; i < n; i++)
set.remove(array[i]);
int[] ans = new int[n];
for(int i = 0; i < n; i++) {
if(set.higher(array[i]) == null) {
pw.println(-1);
continue big;
}
int x = set.higher(array[i]);
ans[i] = x;
set.remove(x);
}
for(int i = 0; i < n; i++)
pw.print(array[i] + " " + ans[i] + (i == n - 1 ? "\n" : " "));
}
pw.flush();
}
public static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream system) {
br = new BufferedReader(new InputStreamReader(system));
}
public Scanner(String file) throws Exception {
br = new BufferedReader(new FileReader(file));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public char nextChar() throws IOException {
return next().charAt(0);
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public int[] nextIntArray(int n) throws IOException {
int[] array = new int[n];
for (int i = 0; i < n; i++)
array[i] = nextInt();
return array;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] array = new Integer[n];
for (int i = 0; i < n; i++)
array[i] = new Integer(nextInt());
return array;
}
public long[] nextLongArray(int n) throws IOException {
long[] array = new long[n];
for (int i = 0; i < n; i++)
array[i] = nextLong();
return array;
}
public double[] nextDoubleArray(int n) throws IOException {
double[] array = new double[n];
for (int i = 0; i < n; i++)
array[i] = nextDouble();
return array;
}
public static int[] shuffle(int[] a) {
int n = a.length;
Random rand = new Random();
for (int i = 0; i < n; i++) {
int tmpIdx = rand.nextInt(n);
int tmp = a[i];
a[i] = a[tmpIdx];
a[tmpIdx] = tmp;
}
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
public void waitForInput() throws InterruptedException {
Thread.sleep(3000);
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | from sys import stdin, gettrace
if not gettrace():
def input():
return next(stdin)[:-1]
def main():
def solve():
n = int(input())
bb = [int(a) for a in input().split()]
avail = [False] + [True] * 2 * n
for b in bb:
avail[b] = False
res = []
for b in bb:
if b == n*2:
print(-1)
return
res.append(b)
c = b+1
while not avail[c]:
c+=1
if c == 2*n+1:
print(-1)
return
res.append(c)
avail[c] = False
print(' '.join(map(str, res)))
q = int(input())
for _ in range(q):
solve()
if __name__ == "__main__":
main() | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.*;
import java.io.*;
//odd selsection 1363-A
public class CodeForce {
public static void main(String[] args) {
FastScanner sc = new FastScanner();
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int[] b = new int[n];
for (int i = 0; i < b.length; i++) {
b[i] = sc.nextInt();
}
int[] arr = ultimate(b, n);
if (arr == null)
System.out.println(-1);
else
printarr(arr);
}
}
public static void printarr(int[] a) {
for (int i = 0; i < a.length; i++) {
System.out.print(a[i] + " ");
}
System.out.println();
}
public static int[] ultimate(int[] b, int n) {
int[] a = new int[2 * n];
boolean[] vis = new boolean[2 * n + 1];
for (int i = 0; i < b.length; i++) {
a[(i + 1) * 2 - 2] = b[i];
vis[b[i]] = true;
}
for (int i = 1; i < a.length; i += 2) {
for (int j = 1; j < vis.length; j++) {
if (!vis[j] && j > a[i - 1]) {
a[i] = j;
vis[j] = true;
break;
}
}
}
for (int i = 1; i < vis.length; i++) {
if (!vis[i])
return null;
}
return a;
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import sys
input = sys.stdin.readline
for _ in range(int(input())):
n = int(input())
y = [*map(int, input().split())]
x = {*range(1, 2*n+1)}.difference(y)
res = []
for i in y:
a = [j for j in x if i < j]
if a:
b = min(a)
x.remove(b)
res.extend([i, b])
else:
print(-1)
break
if not x:
print(*res) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.math.*;
import java.security.*;
import java.text.*;
import java.util.*;
import java.util.concurrent.*;
import java.util.regex.*;
import java.util.Arrays;
public class project
{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) throws Exception
{
FastReader sc = new FastReader();
int t=sc.nextInt();
while(t>0){
int i,m=1,p;
int n=sc.nextInt();
int b[]=new int[n];
int a[]=new int[2*n+1];
int f[]=new int[2*n+1];
boolean flag=true;
for(i=0;i<n;i++) b[i]=sc.nextInt();
for(i=0;i<n;i++){
a[2*i+1]=b[i];
f[b[i]]++;
}
for(i=2;i<2*n+1;i=i+2){
m=1;
flag=true;
while(flag){
if(a[i-1]+m>2*n) {flag=false;break;}
else{
if(f[a[i-1]+m]==0) break;
else if(f[a[i-1]+m]==1) m++;
}
}
if(!flag) {System.out.print("-1");break;}
else{
a[i]= a[i-1]+m; f[a[i-1]+m]++;}
}
if(flag){
for(i=1;i<2*n+1;i++) System.out.print(a[i]+" ");}
System.out.print("\n");
t--;
}
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
vector<int> b(n);
vector<int> q;
unordered_set<int> s;
for (int i = 0; i < n; i++) {
cin >> b[i];
s.insert(b[i]);
}
for (int i = 1; i <= 2 * n; i++) {
if (s.count(i) == 0) q.push_back(i);
}
vector<int> perm;
bool p = true;
for (int i = 0; i < 2 * n && p; i++) {
if (i % 2 == 0) {
perm.push_back(b[i / 2]);
} else {
auto it = lower_bound(q.begin(), q.end(), b[i / 2]);
if (it == q.end()) {
cout << -1 << endl;
p = false;
} else {
perm.push_back(*it);
q.erase(it);
}
}
}
if (p) {
for (int i : perm) {
cout << i << " ";
}
cout << endl;
}
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
double getTime() { return clock() / (double)CLOCKS_PER_SEC; }
void read(){};
template <typename T, typename... Args>
void read(T& a, Args&... args) {
cin >> a;
read(args...);
}
void print(){};
template <typename T, typename... Args>
void print(T a, Args... args) {
cout << a << " \n"[sizeof...(args) == 0];
print(args...);
}
void solve() {
int n;
cin >> n;
vector<int> a(n);
vector<int> cnt(201, 0);
for (int i = 0; i < n; i++) {
read(a[i]);
cnt[a[i]] = 1;
}
vector<int> ans;
for (int i = 0; i < n; i++) {
ans.push_back(a[i]);
int k = 1;
while (cnt[a[i] + k]) k++;
ans.push_back(a[i] + k);
cnt[a[i] + k] = 1;
if (a[i] + k > n + n) {
print(-1);
return;
}
}
for (auto x : ans) cout << x << ' ';
puts("");
}
int main() {
int t;
read(t);
while (t--) solve();
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
void solve() {
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
int a[n];
int maxi = 2 * n;
unordered_map<int, int> map;
for (long long i = 0; i < n; i++) {
cin >> a[i];
map[a[i]]++;
}
if (map.count(1) <= 0) {
cout << -1 << endl;
continue;
}
if (map.count(maxi) > 0) {
cout << -1 << endl;
continue;
}
vector<int> ans;
for (int i = 0; i < n; i++) {
int greater = -1;
for (int j = a[i] + 1; j <= 2 * n; j++) {
if (map.count(j) <= 0) {
map[j]++;
greater = j;
break;
}
}
if (greater == -1) {
cout << -1;
break;
} else {
ans.push_back(a[i]);
;
ans.push_back(greater);
;
}
}
if (ans.size() == 2 * n) {
for (long long i = 0; i < ans.size(); i++) {
cout << ans[i] << " ";
}
}
cout << endl;
}
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
solve();
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | t=int(input())
for kk in range(t):
n=int(input())
l=list(map(int,input().split()))
l1=list(filter(lambda x:x not in l,range(1,n*2+1)))
l2=[]
for i in l:
j=0
flag=0
while j<len(l1):
if l1[j]>i:
l2.append(l1[j])
flag=1
del l1[j]
break
j+=1
if flag==0:
break
if flag==0:
print(-1)
else:
for i in range(2*n):
if i%2:
print(l2.pop(0))
else:
print(l.pop(0))
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | # import sys
# sys.stdin = open("test.txt", 'r')
for _ in range(int(input())):
n = int(input())
b = list(map(int, input().split()))
p = list(range(1, 2*n+1))
inb = set(b)
a = {}
for i, v in enumerate(b):
if v == 2*n:
print(-1)
break
c = [z for z in p[p.index(v)+1:] if z not in inb]
if len(c) == 0:
print(-1)
break
i += 1
a[2 * i-1] = v
a[2*i] = c[0]
p.remove(v)
p.remove(c[0])
else:
string = ''
for i in range(1, 2*n+1):
string += str(a[i]) + ' '
print(string)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
vector<int> b(n + 5);
vector<int> a(2 * n + 10);
vector<pair<int, int>> p;
map<int, int> mp;
for (int i = 1; i <= n; i++) {
cin >> b[i];
mp[b[i]]++;
a[2 * i - 1] = b[i];
p.push_back({b[i], 2 * i});
}
bool ok = true;
for (int i = 0; i < p.size(); i++) {
int st = p[i].first + 1;
while (st <= 2 * n && mp[st] > 0) {
st++;
}
if (st > 2 * n) {
ok = false;
break;
}
a[p[i].second] = st;
mp[st]++;
}
if (!ok) {
cout << -1 << "\n";
continue;
}
for (int i = 1; i <= n; i++) {
if (a[2 * i - 1] > a[2 * i]) swap(a[2 * i - 1], a[2 * i]);
}
map<int, int> kek;
for (int i = 1; i <= 2 * n; i++) {
kek[a[i]]++;
}
for (int i = 1; i <= 2 * n; i++) {
if (kek[i] != 1) {
ok = false;
break;
}
}
if (!ok) {
cout << -1 << "\n";
continue;
}
for (int i = 1; i <= 2 * n; i++) {
cout << a[i] << " ";
}
cout << "\n";
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import copy
for i in range(int(input())):
n=int(input())
l=[int(j) for j in input().split()][:n]
l1=list(set(list(range(1,2*n+1))).difference(set(l)))
t=copy.deepcopy(l)
l1.sort()
m=-1
for k in range(n):
h=-1
for j in range(n):
if(l1[j]>t[k]):
if l1[j] not in l:
a=l.index(t[k])
l.insert(a+1,l1[j])
h=1
break
if(h==-1):
print("-1")
m=1
break
if(m==-1):
for k in l:
print(k,end=" ")
print()
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int N = 205;
int b[N], p[N], a[N];
int n;
void check() {
for (int i = 0; i < 2 * n; i += 2) {
a[i] = b[i / 2];
bool flag = false;
for (int j = b[i / 2] + 1; j <= 2 * n; ++j) {
if (p[j] == 0) {
p[j] = 1, a[i + 1] = j;
flag = true;
break;
}
}
if (!flag) {
printf("-1\n");
return;
}
}
for (int i = 0; i < 2 * n; ++i) printf("%d ", a[i]);
printf("\n");
}
int main() {
int t;
cin >> t;
while (t--) {
scanf("%d", &n);
memset(p, 0, sizeof(p));
for (int i = 0; i < n; ++i) scanf("%d", &b[i]), p[b[i]] = 1;
check();
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import bisect
t = int(input())
for i in range(t):
n = int(input())
l = list(map(int,input().split()))
l1 = []
l2 = []
c = 0
l3 = sorted(l)
for i in range(min(l)+1,2*n+1):
if i not in l:
l1.append(i)
if len(l1) == 0:
print(-1)
else:
for i in l:
if len(l1) == 0:
c+=1
break
w = bisect.bisect_left(l1,i)
if w == len(l1):
c+=1
break
l2.append(i)
l2.append(l1[w])
del l1[w]
if c == 0:
print(*l2)
else:
print(-1)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | from sys import stdin
from collections import deque
mod = 10**9 + 7
import sys
import random
# sys.setrecursionlimit(10**6)
from queue import PriorityQueue
# def rl():
# return [int(w) for w in stdin.readline().split()]
from bisect import bisect_right
from bisect import bisect_left
from collections import defaultdict
from math import sqrt,factorial,gcd,log2,inf,ceil
# map(int,input().split())
# # l = list(map(int,input().split()))
# from itertools import permutations
import heapq
# input = lambda: sys.stdin.readline().rstrip()
input = lambda : sys.stdin.readline().rstrip()
from sys import stdin, stdout
from heapq import heapify, heappush, heappop
from itertools import permutations
from math import factorial as f
def ncr(x, y):
return f(x) // (f(y) * f(x - y))
t = int(input())
for _ in range(t):
n = int(input())
l = list(map(int,input().split()))
seti = set(i for i in range(1,2*n+1))
set1 = set(i for i in l)
ans = []
flag = 0
ba = [i for i in range(1,2*n+1)]
for i in range(n):
z = l[i]
if z not in seti:
flag = 1
break
else:
seti.remove(z)
ans.append(z)
ka = len(ans)
for j in ba:
if j>z and j in seti and j not in set1:
ans.append(j)
seti.remove(j)
break
if len(ans) == ka:
flag = 1
break
# print(ans)
if flag == 1:
print(-1)
else:
print(*ans)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for ttt in range(int(input())):
n=int(input())
arr=list(map(int,input().split()))
if 2*n in arr or 1 not in arr:
print(-1)
continue
res=[]
for i in range(n):
res.append(arr[i])
for j in range(arr[i]+1,2*n+1):
if (j not in arr) and (j not in res):
res.append(j)
break
if(len(res)==2*n):
print(*res)
else:
print(-1) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 7;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
long long int a[n];
map<long long int, long long int> m;
for (int i = 0; i < n; i++) {
cin >> a[i];
m[a[i]] = 1;
}
vector<long long int> v;
int yo = 0;
for (int i = 0; i < n; i++) {
if (a[i] + 1 > 2 * n) {
yo = 1;
break;
}
if (!m[a[i] + 1]) {
v.push_back(a[i]);
v.push_back(a[i] + 1);
m[a[i] + 1] = 1;
} else {
long long int z = -1;
for (int j = a[i] + 1; j <= 2 * n; j++) {
if (!m[j]) {
z = j;
break;
}
}
if (z != -1) {
v.push_back(a[i]);
v.push_back(z);
m[z] = 1;
} else
yo = 1;
}
if (yo == 1) break;
}
if (yo == 1)
cout << "-1" << endl;
else {
for (int i = 0; i < v.size(); i++) cout << v[i] << " ";
cout << endl;
}
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | ##############--->>>>> Deepcoder Amit Kumar Bhuyan <<<<<---##############
"""
Perfection is achieved not when there is nothing more to add, but rather when there is nothing more to take away.
"""
from __future__ import division, print_function
import os,sys
from io import BytesIO, IOBase
if sys.version_info[0] < 3:
from __builtin__ import xrange as range
from future_builtins import ascii, filter, hex, map, oct, zip
def ii(): return int(input())
def si(): return input()
def mi(): return map(int,input().strip().split(" "))
def msi(): return map(str,input().strip().split(" "))
def li(): return list(mi())
def dmain():
sys.setrecursionlimit(1000000)
threading.stack_size(1024000)
thread = threading.Thread(target=main)
thread.start()
#from collections import deque, Counter, OrderedDict,defaultdict
#from heapq import nsmallest, nlargest, heapify,heappop ,heappush, heapreplace
#from math import log,sqrt,factorial,cos,tan,sin,radians
#from bisect import bisect,bisect_left,bisect_right,insort,insort_left,insort_right
#from decimal import *
#import threading
#from itertools import permutations
#Copy 2D list m = [x[:] for x in mark] .. Avoid Using Deepcopy
import sys
input = sys.stdin.readline
scanner = lambda: int(input())
string = lambda: input().rstrip()
get_list = lambda: list(read())
read = lambda: map(int, input().split())
get_float = lambda: map(float, input().split())
# from bisect import bisect_left as lower_bound;
# from bisect import bisect_right as upper_bound;
# from math import ceil, factorial;
def ceil(x):
if x != int(x):
x = int(x) + 1
return x
def factorial(x, m):
val = 1
while x>0:
val = (val * x) % m
x -= 1
return val
def fact(x):
val = 1
while x > 0:
val *= x
x -= 1
return val
# swap_array function
def swaparr(arr, a,b):
temp = arr[a];
arr[a] = arr[b];
arr[b] = temp;
## gcd function
def gcd(a,b):
if b == 0:
return a;
return gcd(b, a % b);
## lcm function
def lcm(a, b):
return (a * b) // math.gcd(a, b)
def is_integer(n):
return math.ceil(n) == math.floor(n)
## nCr function efficient using Binomial Cofficient
def nCr(n, k):
if k > n:
return 0
if(k > n - k):
k = n - k
res = 1
for i in range(k):
res = res * (n - i)
res = res / (i + 1)
return int(res)
## upper bound function code -- such that e in a[:i] e < x;
## prime factorization
def primefs(n):
## if n == 1 ## calculating primes
primes = {}
while(n%2 == 0 and n > 0):
primes[2] = primes.get(2, 0) + 1
n = n//2
for i in range(3, int(n**0.5)+2, 2):
while(n%i == 0 and n > 0):
primes[i] = primes.get(i, 0) + 1
n = n//i
if n > 2:
primes[n] = primes.get(n, 0) + 1
## prime factoriazation of n is stored in dictionary
## primes and can be accesed. O(sqrt n)
return primes
## MODULAR EXPONENTIATION FUNCTION
def power(x, y, p):
if y == 0:
return 1
res = 1
x = x % p
if (x == 0) :
return 0
while (y > 0) :
if ((y & 1) == 1) :
res = (res * x) % p
y = y >> 1
x = (x * x) % p
return res
## DISJOINT SET UNINON FUNCTIONS
def swap(a,b):
temp = a
a = b
b = temp
return a,b;
# find function with path compression included (recursive)
# def find(x, link):
# if link[x] == x:
# return x
# link[x] = find(link[x], link);
# return link[x];
# find function with path compression (ITERATIVE)
def find(x, link):
p = x;
while( p != link[p]):
p = link[p];
while( x != p):
nex = link[x];
link[x] = p;
x = nex;
return p;
# the union function which makes union(x,y)
# of two nodes x and y
def union(x, y, link, size):
x = find(x, link)
y = find(y, link)
if size[x] < size[y]:
x,y = swap(x,y)
if x != y:
size[x] += size[y]
link[y] = x
## returns an array of boolean if primes or not USING SIEVE OF ERATOSTHANES
def sieve(n):
prime = [True for i in range(n+1)]
prime[0], prime[1] = False, False
p = 2
while (p * p <= n):
if (prime[p] == True):
for i in range(p * p, n+1, p):
prime[i] = False
p += 1
return prime
# Euler's Toitent Function phi
def phi(n) :
result = n
p = 2
while(p * p<= n) :
if (n % p == 0) :
while (n % p == 0) :
n = n // p
result = result * (1.0 - (1.0 / (float) (p)))
p = p + 1
if (n > 1) :
result = result * (1.0 - (1.0 / (float)(n)))
return (int)(result)
def is_prime(n):
if n == 0:
return False
if n == 1:
return True
for i in range(2, int(n ** (1 / 2)) + 1):
if not n % i:
return False
return True
def next_prime(n, primes):
while primes[n] != True:
n += 1
return n
#### PRIME FACTORIZATION IN O(log n) using Sieve ####
MAXN = int(1e5 + 5)
def spf_sieve():
spf[1] = 1;
for i in range(2, MAXN):
spf[i] = i;
for i in range(4, MAXN, 2):
spf[i] = 2;
for i in range(3, ceil(MAXN ** 0.5), 2):
if spf[i] == i:
for j in range(i*i, MAXN, i):
if spf[j] == j:
spf[j] = i;
## function for storing smallest prime factors (spf) in the array
################## un-comment below 2 lines when using factorization #################
spf = [0 for i in range(MAXN)]
# spf_sieve();
def factoriazation(x):
res = []
for i in range(2, int(x ** 0.5) + 1):
while x % i == 0:
res.append(i)
x //= i
if x != 1:
res.append(x)
return res
## this function is useful for multiple queries only, o/w use
## primefs function above. complexity O(log n)
def factors(n):
res = []
for i in range(1, int(n ** 0.5) + 1):
if n % i == 0:
res.append(i)
res.append(n // i)
return list(set(res))
## taking integer array input
def int_array():
return list(map(int, input().strip().split()));
def float_array():
return list(map(float, input().strip().split()));
## taking string array input
def str_array():
return input().strip().split();
def binary_search(low, high, w, h, n):
while low < high:
mid = low + (high - low) // 2
# print(low, mid, high)
if check(mid, w, h, n):
low = mid + 1
else:
high = mid
return low
## for checking any conditions
def check(val, pair):
summ = 0
for x in pair:
if x[1] > val:
summ += x[0]
return summ > val
## for sorting according to second position
def sortSecond(val):
return val[1]
#defining a couple constants
MOD = int(1e9)+7;
CMOD = 998244353;
INF = float('inf'); NINF = -float('inf');
alphs = "abcdefghijklmnopqrstuvwxyz"
################### ---------------- TEMPLATE ENDS HERE ---------------- ###################
from itertools import permutations
import math
import bisect as bis
import random
import sys
import collections as collect
import functools as fnt
from decimal import Decimal
# from sys import stdout
# import numpy as np
"""
_______________
rough work here
_______________
n piranhas with sizes a1, a2, .... an
scientist of berland state univ
want to find if there is dominant piranha
the piranha is dominant if
it can eat all the other
piranhas in the aquarium
piranha can eat only one of the adjacent piranhas during one move
piranha can do as many moves as it needs
piranha i can eat i - 1
"""
def solve():
n = scanner()
b = get_list()
a = []
vis = [0] * (2 * n)
mp = {}
for x in b:
mp[x] = 1
if x > 2 * n:
print(-1)
return
vis[x - 1] = 1
for x in b:
a.append(x)
mp[x] = 1
for i in range(1, 201):
if i > x and mp.get(i) == None:
a.append(i)
if i > 2 * n:
print(-1)
return
vis[i - 1] = 1
mp[i] = 1
break
if sum(vis) == 2 * n:
print(*a)
else:
print(-1)
# region fastio
# template taken from https://github.com/cheran-senthil/PyRival/blob/master/templates/template.py
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
def print(*args, **kwargs):
"""Prints the values to a stream, or to sys.stdout by default."""
sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout)
at_start = True
for x in args:
if not at_start:
file.write(sep)
file.write(str(x))
at_start = False
file.write(kwargs.pop("end", "\n"))
if kwargs.pop("flush", False):
file.flush()
if sys.version_info[0] < 3:
sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout)
else:
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# endregion
if __name__ == "__main__":
#read()
# sys.stdin = open("input.txt", "r")
# sys.stdout = open("output.txt", "w")
t = scanner()
for i in range(t):
solve()
#dmain()
# Comment Read()
# fin_time = datetime.now()
# print("Execution time (for loop): ", (fin_time-init_time))
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | # from collections import deque
import sys
input = lambda: sys.stdin.readline().strip()
for i in range(int(input())):
n = int(input())
b = list(map(int,input().split()))
q = [i+1 for i in range(2*n)]
used = set(b)
j = 0
a = [0]*2*n
f = True
for i in range(n):
a[2*i]=b[i]
for i in range(n):
for j in q[b[i]-1:]:
if j not in used:
used.add(j)
a[2*i+1]=j
break
if a[2*i+1]==0:
f = False
break
if not f:
print(-1)
continue
else:
print(' '.join(map(str,a))) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | # ///////////////////////////////////////////////////////////////////////////
# //////////////////// LEGEND ////////////////////////
# ///////////////////////////////////////////////////////////////////////////
import sys,os,io
from sys import stdin
import math
from collections import defaultdict
from heapq import heappush, heappop, heapify
from bisect import bisect_left , bisect_right
from io import BytesIO, IOBase
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
alphabets = list('abcdefghijklmnopqrstuvwxyz')
#for deep recursion__________________________________________-
from types import GeneratorType
def bootstrap(f, stack=[]):
def wrappedfunc(*args, **kwargs):
if stack:
return f(*args, **kwargs)
else:
to = f(*args, **kwargs)
while True:
if type(to) is GeneratorType:
stack.append(to)
to = next(to)
else:
stack.pop()
if not stack:
break
to = stack[-1].send(to)
return to
return wrappedfunc
def ncr(n, r, p):
num = den = 1
for i in range(r):
num = (num * (n - i)) % p
den = (den * (i + 1)) % p
return (num * pow(den,p - 2, p)) % p
def primeFactors(n):
l = []
while n % 2 == 0:
l.append(2)
n = n / 2
for i in range(3,int(math.sqrt(n))+1,2):
while n % i== 0:
l.append(int(i))
n = n / i
if n > 2:
l.append(n)
# c = dict(Counter(l))
return list(set(l))
# return c
def power(x, y, p) :
res = 1
x = x % p
if (x == 0) :
return 0
while (y > 0) :
if ((y & 1) == 1) :
res = (res * x) % p
y = y >> 1 # y = y/2
x = (x * x) % p
return res
#____________________GetPrimeFactors in log(n)________________________________________
def sieveForSmallestPrimeFactor():
MAXN = 100001
spf = [0 for i in range(MAXN)]
spf[1] = 1
for i in range(2, MAXN):
spf[i] = i
for i in range(4, MAXN, 2):
spf[i] = 2
for i in range(3, math.ceil(math.sqrt(MAXN))):
if (spf[i] == i):
for j in range(i * i, MAXN, i):
if (spf[j] == j):
spf[j] = i
return spf
def getPrimeFactorizationLOGN(x):
spf = sieveForSmallestPrimeFactor()
ret = list()
while (x != 1):
ret.append(spf[x])
x = x // spf[x]
return ret
#____________________________________________________________
def SieveOfEratosthenes(n):
#time complexity = nlog(log(n))
prime = [True for i in range(n+1)]
p = 2
while (p * p <= n):
if (prime[p] == True):
for i in range(p * p, n+1, p):
prime[i] = False
p += 1
return prime
def si():
return input()
def divideCeil(n,x):
if (n%x==0):
return n//x
return n//x+1
def ii():
return int(input())
def li():
return list(map(int,input().split()))
# ///////////////////////////////////////////////////////////////////////////
# //////////////////// DO NOT TOUCH BEFORE THIS LINE ////////////////////////
# ///////////////////////////////////////////////////////////////////////////
if(os.path.exists('input.txt')):
sys.stdin = open("input.txt","r") ; sys.stdout = open("output.txt","w")
else:
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
class SortedList:
def __init__(self, iterable=[], _load=200):
"""Initialize sorted list instance."""
values = sorted(iterable)
self._len = _len = len(values)
self._load = _load
self._lists = _lists = [values[i:i + _load] for i in range(0, _len, _load)]
self._list_lens = [len(_list) for _list in _lists]
self._mins = [_list[0] for _list in _lists]
self._fen_tree = []
self._rebuild = True
def _fen_build(self):
"""Build a fenwick tree instance."""
self._fen_tree[:] = self._list_lens
_fen_tree = self._fen_tree
for i in range(len(_fen_tree)):
if i | i + 1 < len(_fen_tree):
_fen_tree[i | i + 1] += _fen_tree[i]
self._rebuild = False
def _fen_update(self, index, value):
"""Update `fen_tree[index] += value`."""
if not self._rebuild:
_fen_tree = self._fen_tree
while index < len(_fen_tree):
_fen_tree[index] += value
index |= index + 1
def _fen_query(self, end):
"""Return `sum(_fen_tree[:end])`."""
if self._rebuild:
self._fen_build()
_fen_tree = self._fen_tree
x = 0
while end:
x += _fen_tree[end - 1]
end &= end - 1
return x
def _fen_findkth(self, k):
"""Return a pair of (the largest `idx` such that `sum(_fen_tree[:idx]) <= k`, `k - sum(_fen_tree[:idx])`)."""
_list_lens = self._list_lens
if k < _list_lens[0]:
return 0, k
if k >= self._len - _list_lens[-1]:
return len(_list_lens) - 1, k + _list_lens[-1] - self._len
if self._rebuild:
self._fen_build()
_fen_tree = self._fen_tree
idx = -1
for d in reversed(range(len(_fen_tree).bit_length())):
right_idx = idx + (1 << d)
if right_idx < len(_fen_tree) and k >= _fen_tree[right_idx]:
idx = right_idx
k -= _fen_tree[idx]
return idx + 1, k
def _delete(self, pos, idx):
"""Delete value at the given `(pos, idx)`."""
_lists = self._lists
_mins = self._mins
_list_lens = self._list_lens
self._len -= 1
self._fen_update(pos, -1)
del _lists[pos][idx]
_list_lens[pos] -= 1
if _list_lens[pos]:
_mins[pos] = _lists[pos][0]
else:
del _lists[pos]
del _list_lens[pos]
del _mins[pos]
self._rebuild = True
def _loc_left(self, value):
"""Return an index pair that corresponds to the first position of `value` in the sorted list."""
if not self._len:
return 0, 0
_lists = self._lists
_mins = self._mins
lo, pos = -1, len(_lists) - 1
while lo + 1 < pos:
mi = (lo + pos) >> 1
if value <= _mins[mi]:
pos = mi
else:
lo = mi
if pos and value <= _lists[pos - 1][-1]:
pos -= 1
_list = _lists[pos]
lo, idx = -1, len(_list)
while lo + 1 < idx:
mi = (lo + idx) >> 1
if value <= _list[mi]:
idx = mi
else:
lo = mi
return pos, idx
def _loc_right(self, value):
"""Return an index pair that corresponds to the last position of `value` in the sorted list."""
if not self._len:
return 0, 0
_lists = self._lists
_mins = self._mins
pos, hi = 0, len(_lists)
while pos + 1 < hi:
mi = (pos + hi) >> 1
if value < _mins[mi]:
hi = mi
else:
pos = mi
_list = _lists[pos]
lo, idx = -1, len(_list)
while lo + 1 < idx:
mi = (lo + idx) >> 1
if value < _list[mi]:
idx = mi
else:
lo = mi
return pos, idx
def add(self, value):
"""Add `value` to sorted list."""
_load = self._load
_lists = self._lists
_mins = self._mins
_list_lens = self._list_lens
self._len += 1
if _lists:
pos, idx = self._loc_right(value)
self._fen_update(pos, 1)
_list = _lists[pos]
_list.insert(idx, value)
_list_lens[pos] += 1
_mins[pos] = _list[0]
if _load + _load < len(_list):
_lists.insert(pos + 1, _list[_load:])
_list_lens.insert(pos + 1, len(_list) - _load)
_mins.insert(pos + 1, _list[_load])
_list_lens[pos] = _load
del _list[_load:]
self._rebuild = True
else:
_lists.append([value])
_mins.append(value)
_list_lens.append(1)
self._rebuild = True
def discard(self, value):
"""Remove `value` from sorted list if it is a member."""
_lists = self._lists
if _lists:
pos, idx = self._loc_right(value)
if idx and _lists[pos][idx - 1] == value:
self._delete(pos, idx - 1)
def remove(self, value):
"""Remove `value` from sorted list; `value` must be a member."""
_len = self._len
self.discard(value)
if _len == self._len:
raise ValueError('{0!r} not in list'.format(value))
def pop(self, index=-1):
"""Remove and return value at `index` in sorted list."""
pos, idx = self._fen_findkth(self._len + index if index < 0 else index)
value = self._lists[pos][idx]
self._delete(pos, idx)
return value
def bisect_left(self, value):
"""Return the first index to insert `value` in the sorted list."""
pos, idx = self._loc_left(value)
return self._fen_query(pos) + idx
def bisect_right(self, value):
"""Return the last index to insert `value` in the sorted list."""
pos, idx = self._loc_right(value)
return self._fen_query(pos) + idx
def count(self, value):
"""Return number of occurrences of `value` in the sorted list."""
return self.bisect_right(value) - self.bisect_left(value)
def __len__(self):
"""Return the size of the sorted list."""
return self._len
def __getitem__(self, index):
"""Lookup value at `index` in sorted list."""
pos, idx = self._fen_findkth(self._len + index if index < 0 else index)
return self._lists[pos][idx]
def __delitem__(self, index):
"""Remove value at `index` from sorted list."""
pos, idx = self._fen_findkth(self._len + index if index < 0 else index)
self._delete(pos, idx)
def __contains__(self, value):
"""Return true if `value` is an element of the sorted list."""
_lists = self._lists
if _lists:
pos, idx = self._loc_left(value)
return idx < len(_lists[pos]) and _lists[pos][idx] == value
return False
def __iter__(self):
"""Return an iterator over the sorted list."""
return (value for _list in self._lists for value in _list)
def __reversed__(self):
"""Return a reverse iterator over the sorted list."""
return (value for _list in reversed(self._lists) for value in reversed(_list))
def __repr__(self):
"""Return string representation of sorted list."""
return 'SortedList({0})'.format(list(self))
def solve():
n = ii()
b = li()
d = defaultdict(lambda:0)
for i in b:
d[i]=1
noth = []
for i in range(1,2*n+1):
if d[i]==0:
noth.append(i)
ans = []
s = SortedList(noth)
# b.sort()
for i in range(n):
ptr = s.bisect_left(b[i])
if ptr==len(s) or s[ptr]<b[i]:
print(-1)
return
ans.append(b[i])
ans.append(s[ptr])
s.remove(s[ptr])
print(*ans)
t = 1
t = ii()
for _ in range(t):
solve()
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | /* package codechef; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Main
{
public static void main (String[] args) throws java.lang.Exception
{
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
int t=Integer.parseInt(bf.readLine());
while(t-->0)
{
int n=Integer.parseInt(bf.readLine());
String s[]=bf.readLine().split(" ");
ArrayList<Integer> al=new ArrayList<>();
for(int i=0;i<n;i++)
{
al.add(Integer.parseInt(s[i]));
}
int range=2*n;
ArrayList<Integer> al2=new ArrayList<>();
boolean sangam=true;
for(int i=0;i<n;i++)
{
int z=al.get(i);
al2.add(z);
z++;
while(true)
{
if(al.contains(z) || al2.contains(z))
{
z++;
}
else
{
if(z<=range)
{
al2.add(z);
break;
}
else
{
sangam=false;
break;
}
}
}
if(sangam==false)
{
break;
}
}
// System.out.println(al);
// System.out.println(al2);
if(sangam)
{
for(int i=0;i<al2.size();i++)
{
System.out.print(al2.get(i)+" ");
}
System.out.println();
}
else
{
System.out.println(-1);
}
}
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int mark[2005];
int main() {
long long n, m, i, j, t, x, y, w, k, a, b;
cin >> t;
while (t--) {
cin >> n;
vector<pair<int, int> > v;
memset(mark, 0, sizeof mark);
for (i = 0; i < n; i++) {
cin >> x;
v.push_back({x, -1});
mark[x] = 1;
}
set<int> s;
for (i = 1; i <= 2 * n; i++) {
if (mark[i] == 0) {
s.insert(i);
}
}
int flag = 1;
for (i = 0; i < n; i++) {
x = v[i].first;
int ans = -1;
for (auto xx : s) {
if (xx > x) {
ans = xx;
break;
}
}
if (ans == -1) {
flag = -1;
break;
} else {
v[i].second = ans;
s.erase(ans);
}
}
if (flag == -1) {
cout << (-1) << "\n";
} else {
for (i = 0; i < n; i++) {
cout << min(v[i].first, v[i].second) << " "
<< max(v[i].first, v[i].second) << " ";
}
cout << "\n";
}
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n=int(input())
b=[int(x) for x in input().split()]
a=[]
for i in range(n):
a.append(b[i])
k=b[i]
while k in a or k in b:k+=1
if k>2*n:print(-1);break
a.append(k)
else:print(*a) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | I=input
for _ in[0]*int(I()):
I();b=*map(int,I().split()),;s={*range(2*len(b)+1)}-{*b};a=[]
try:
for x in b:a+=x,min(s-{*range(x)});s-={*a}
except:a=-1,
print(*a) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n=int(input())
a=list(map(int,input().split()))
dic={};ans=[];boo=False
for i in a:
dic[i]=0
for i in a:
ans.append(i)
temp=i+1
while(True):
if(temp>2*n):
boo=True
break
if(temp not in dic.keys()):
dic[temp]=0
ans.append(temp)
break
temp+=1
if(boo):
break
if(boo):
print(-1)
else:
print(*ans)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.util.*;
public class test {
static int m[];
public static void main(String[] args) throws Exception {
FastReader sc = new FastReader();
int t=sc.nextInt();
while (t-->0){
StringBuilder sb=new StringBuilder();
int N=sc.nextInt();
int sum[]=new int[N];
boolean con[]=new boolean[2*N + 1];
TreeSet<Integer> set=new TreeSet<>();
for (int i=0;i<N;i++){
sum[i]=sc.nextInt();
con[sum[i]]=true;
}
for (int i=1;i<=2*N;i++){
if (!con[i])set.add(i);
}
boolean z=false;
for (int j=0;j<N;j++) {
Integer x=set.ceiling(sum[j]);
if (x==null){
z=true;
break;
}
sb.append(sum[j]+" "+x+" ");
set.remove(x);
}
if (z) System.out.println(-1);
else System.out.println(sb);
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.*;
public class Sol{
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0){
int n=sc.nextInt();
int[] b=new int[n+1];
int[] bb=new int[n];
int le=2*n;
Set<Integer> h=new HashSet<>(); int min=0;
ArrayList<Integer> al= new ArrayList<>();
ArrayList<Integer> alb= new ArrayList<>();
ArrayList<Integer> aa= new ArrayList<>();
Map<Integer,Integer> mp=new HashMap<>();
for(int i=1;i<=n;i++){ b[i]=sc.nextInt();
bb[i-1]=b[i];
alb.add(b[i]);
h.add(b[i]);
if(min<b[i]){
min=b[i];
}
}
boolean ok=true;
for(int i=1;i<=n ;i++){
ok=false;
for(int jjj=0;jjj<=le;jjj++){
int j=b[i]+jjj;
if(!alb.contains(j)&& ok!=true && j<=le){
alb.add(j);
aa.add(j);
ok=true;
}
}
}
/* int p=1;
Arrays.sort(bb);
Collections.sort(aa);
int[] cc=new int[le+1];
for(int i=1;i<=le;i+=2){
mp.put( bb[i-p],aa.get(i-p));
p++;
}
*/
if( h.size()!=n|| min>=n*2 ||aa.size()!=n){
System.out.println("-1");
}
else{
for(int i=1;i<=n;i++){
System.out.print( b[i]+" "+aa.get(i-1)+" ");
}
System.out.println();
}
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int maxn = 3e5 + 20;
const int inf = 0x3f3f3f3f;
const int modd = 1e9 + 7;
inline int read() {
int x = 0, f = 1;
char c = getchar();
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') f = -1, c = getchar();
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
}
template <class T>
inline void sc(T &x) {
char c;
x = 0;
while ((c = getchar()) < '0')
;
while (c >= '0' && c <= '9') x = x * 10 + (c - 48), c = getchar();
}
inline long long gcd(long long a, long long b) {
return b == 0 ? a : gcd(b, a % b);
}
inline long long exgcd(long long a, long long b, long long &x, long long &y) {
long long d;
(b == 0 ? (x = 1, y = 0, d = a)
: (d = exgcd(b, a % b, y, x), y -= a / b * x));
return d;
}
inline long long qpow(long long a, long long n) {
long long sum = 1;
while (n) {
if (n & 1) sum = sum * a % modd;
a = a * a % modd;
n >>= 1;
}
return sum;
}
inline long long qmul(long long a, long long n) {
long long sum = 0;
while (n) {
if (n & 1) sum = (sum + a) % modd;
a = (a + a) % modd;
n >>= 1;
}
return sum;
}
inline long long inv(long long a) { return qpow(a, modd - 2); }
struct Coke {
int v, id;
} a[maxn];
bool cmp1(Coke c, Coke d) { return c.v < d.v; }
bool cmp2(Coke c, Coke d) { return c.id < d.id; }
int vis[205];
int ans[maxn];
vector<int> vec;
int main() {
int t;
scanf("%d", &t);
while (t--) {
int n;
scanf("%d", &n);
for (int i = 1; i <= 2 * n; i++) vis[i] = 0;
vec.clear();
for (int i = 1; i <= n; i++)
scanf("%d", &a[i].v), a[i].id = i, ans[i * 2 - 1] = a[i].v;
sort(a + 1, a + 1 + n, cmp1);
for (int i = 1; i <= n; i++) vis[a[i].v] = a[i].id;
int now = 0, flag = 1;
for (int i = 1; i <= 2 * n; i++)
if (!vis[i]) vec.push_back(i);
sort(a + 1, a + 1 + n, cmp2);
for (int i = 1; i <= n; i++) {
auto it = lower_bound(vec.begin(), vec.end(), a[i].v);
if (it == vec.end()) {
flag = 0;
break;
}
ans[a[i].id * 2] = *it;
vec.erase(it);
}
if (!flag) {
printf("-1\n");
continue;
}
for (int i = 1; i <= 2 * n; i++) printf("%d%c", ans[i], " \n"[i == 2 * n]);
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.HashMap;
import java.util.Scanner;
public class Main {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
int T = sc.nextInt();
while (T-- > 0) {
int a = sc.nextInt();
int[] x = new int[a + 1];
int min = 1;
int[] y = new int[a * 2 + 1];
boolean bo = true;
HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
for (int i = 1; i <= a; i++) {
x[i] = sc.nextInt();
map.put(x[i], 1);
}
for (int i = 1; i <= a; i++) {
int k = -1;
for (int j = x[i] + 1; j <= 2 * a; j++) {
if (!map.containsKey(j)) {
map.put(j, 1);
k = j;
break;
}
}
if (k == -1) {
bo = false;
System.out.println(-1);
break;
} else {
y[i * 2] = k;
y[i * 2 - 1] = x[i];
}
}
if (bo) {
for (int i = 1; i < 2 * a; i++) {
System.out.print(y[i] + " ");
}
System.out.println(y[2 * a]);
}
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.Scanner;
public class Test2 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int test = scanner.nextInt();
for(int t = 0; t<test; ++t){
int n = scanner.nextInt();
int[] sc = new int[(2 * n )+1];
int[] op = new int[(2 * n )+1];
int[] a = new int [n+1];
for(int i=1; i<=n; ++i){
a[i] = scanner.nextInt();
sc[a[i]] = 1;
op[2*i-1] = a[i];
}
boolean found = false;
for(int i=1; i<=n; ++i){
found = false;
for(int j = a[i]+1; j<=(2*n) ; ++j){
if(sc[j]==0){
op[2*i] = j;
sc[j] = 1;
found = true;
break;
}
}
if(!found){
break;
}
}
if(!found){
System.out.println("-1");
}
else{
for(int i=1; i<=(2*n); ++i){
System.out.print(op[i] + " ");
}
System.out.println();
}
}
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.Scanner;
import java.util.Stack;
import java.util.Arrays;
public class C{
public static void main(String[] args){
Scanner in = new Scanner(System.in);
int t = in.nextInt();
StringBuilder res = new StringBuilder();
o1: for(int j = 0;j<t;++j){
StringBuilder resLocal = new StringBuilder();
int n = in.nextInt();
int[] b = new int[n];
for(int i = 0;i<n;++i) b[i] = in.nextInt();
int[] a = new int[2*n];
int[] flag = new int[2*n+1];
for(int i = 0;i<n;++i){
if(flag[b[i]] == 1){
res.append("-1\n");
continue o1;
}
a[2*i] = b[i];
flag[b[i]] = 1;
}
// System.out.println(Arrays.toString(a) + "\n");
for(int i = 0;i<2*n;++i){
if(a[i] == 0) {
for(int k = a[i-1];k<=2*n;++k){
if(flag[k] == 1) continue;
// System.out.println(flag[k] + " " + k + " " + i);
flag[k] = 1;
a[i] = k;
break;
}
}
if(a[i] == 0){
res.append("-1\n");
continue o1;
}
resLocal.append(a[i] + " ");
}
res.append(resLocal.append("\n").toString());
}
System.out.println(res);
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.util.*;
public class Main
{
static BufferedReader br;
static StringTokenizer st;
static PrintWriter pr = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
public static class HS<T> extends HashSet<T> {};
public static void main(String[] args) throws IOException
{
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
int t = nxtInt();
while(t-- > 0)
{
st = new StringTokenizer(br.readLine());
int n = nxtInt();
int[] a = new int[n*2];
HS<Integer> mrk = new HS<>();
st = new StringTokenizer(br.readLine());
for(int i=0; i<n; i++)
{
a[i*2] = nxtInt();
mrk.add(a[i*2]);
}
boolean flg = true;
StringBuilder ans = new StringBuilder();
for(int i=1; i<a.length; i+=2)
{
int num = a[i-1];
while(num<n*2+1 && mrk.contains(num)) num++;
if(num > n*2)
{
flg = false;
break;
}
a[i] = num;
mrk.add(num);
ans.append(a[i-1] + " " + a[i] + " ");
}
pr.println(flg? ans: -1);
}
pr.flush();
pr.close();
}
static int nxtInt(){
return Integer.parseInt(nxt());
}
static long nxtLong(){
return Long.parseLong(nxt());
}
static double nxtDoub(){
return Double.parseDouble(nxt());
}
static String nxt(){
return st.nextToken();
}
static String nxtLn() throws IOException{
return br.readLine();
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
int i, j, k, n, t, c;
cin >> t;
for (; t > 0; t--) {
c = 1;
cin >> n;
int a[2 * n];
bool x[2 * n + 1];
memset(x, 0, sizeof(x));
j = 1;
for (i = 0; i < n; i++) {
cin >> k;
a[2 * i] = k;
x[k] = 1;
}
for (i = 0; i < n; i++) {
j = a[2 * i];
j++;
for (; x[j] == 1 && j <= 2 * n; j++)
;
if (j <= 2 * n) {
a[2 * i + 1] = j;
x[j] = 1;
} else
break;
}
if (i == n)
for (i = 0; i < n; i++) cout << a[2 * i] << " " << a[2 * i + 1] << " ";
else
cout << -1;
cout << endl;
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | from collections import Counter as C,defaultdict as D,deque as Q
from operator import itemgetter as I
from itertools import product as P
from bisect import bisect_left as BL,bisect_right as BR
from heapq import heappush as HPUSH,heappop as HPOP
from math import floor as MF,ceil as MC, gcd as MG,factorial as F,sqrt as SQRT, inf as INFINITY,log as LOG
from sys import stdin, stdout
INPUT=stdin.readline
PRINT=stdout.write
def player1():
print("")
def player2():
print("")
def isPrime(n):
for i in range(2,MC(SQRT(n))+1):
if n%i==0:
return False
return True
def factors(x):
ans=[]
for i in range(1,MC(SQRT(x))+1):
if x%i==0:
ans.append(i)
if x%(x//i)==0:
ans.append(x//i)
return ans
def main():
for _ in range(int(INPUT())):
n=int(INPUT());b=list(map(int,INPUT().split( )))
c=C(b)
if c[2*n]:
PRINT("%d "%(-1))
continue
a=[i for i in range(1,2*n+1) if c[i]==0]
ans=[];l=len(a)
for v in b:
index=BR(a,v)
if index==l:
ans=-1
break
ans.append(a[index])
a.remove(a[index])
l-=1
else:
for x,y in zip(b,ans):
PRINT("%d %d "%(x,y))
continue
PRINT("%d "%(-1))
main() | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.Scanner;
public class RestoringPermutation {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int T = sc.nextInt();
while(T-->0){
int n = sc.nextInt();
int arr[] = new int[n];
int covered[] = new int[2*n+1];
for(int i=0;i<n;i++){
int num = sc.nextInt();
arr[i] = num;
covered[num] = 1;
}
int ans[] = new int[n];
int count = 0;
for(int i=0;i<n;i++){
int num = arr[i];
for(int j=num+1;j<=2*n;j++){
if(covered[j] == 0){
ans[i] = j;
covered[j] = 1;
count++;
break;
}
}
}
if(count == n){
for(int i=0;i<n;i++){
System.out.print(arr[i]+" "+ans[i]+" ");
}
System.out.println();
}
else
System.out.println("-1");
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 |
for i in range(int(input())):
n = int(input())
b_array = list(map(int, input().split()))
a_array = sorted(list(set(list(map(int, range(1, 2*n+1)))) - set(b_array)))
sorted_array = sorted(list(map(list, list(zip(b_array, list(map(int, range(n))))))))
#print(sorted_array)
final_array = [0]*(2*n)
state = True
for j in range(2*n):
if j % 2 == 0:
final_array[j] = b_array[int(j/2)]
else:
final_array[j] = 0
#print(final_array)
#print(a_array)
#print(sorted_array)
for j in range(n):
if sorted_array[j][0] < a_array[j]:
final_array[2*sorted_array[j][1]+1] = a_array[j]
else:
print(-1)
state = False
break
if state == True:
for j in range(n-1):
while True:
k = 2
p = -1
while ((j*2)+1+k < 2*n):
if ((final_array[j*2] < final_array[(j*2)+1+k]) and (final_array[(j*2)+k] < final_array[(j*2)+1]) and (final_array[(j*2)+1] > final_array[(j*2)+1+k])):
p = (j*2)+1+k
k+=2
if p != -1:
final_array[(j*2)+1], final_array[p] = final_array[p], final_array[(j*2)+1]
else:
break
print(' '.join(list(map(str, final_array))))
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n = int(input())
seq = list(map(int, input().split()))
if(len(set(seq))) != n or max(seq) > 2 * n - 1:
print(-1)
continue
myst = set(range(1, 2 * n + 1)) - set(seq)
myst = list(sorted(myst))
#fnd = list(sorted(map(lambda tp: (tp[1], tp[0]), enumerate(seq))))
ans = []
fl = True
for x in seq:
upbnd = 0
while upbnd < len(myst) and myst[upbnd] < x:
upbnd += 1
if upbnd == len(myst):
fl = False
break
ans.append(x)
ans.append(myst[upbnd])
myst.pop(upbnd)
if not fl:
print(-1)
else:
print(*ans)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
int t;
cin >> t;
int n;
int in;
bool ispossible;
bool ischanged;
while (t--) {
ispossible = true;
map<int, bool> isused;
vector<int> a;
vector<int> b;
cin >> n;
for (int i = 0; i < n; i++) {
cin >> in;
a.push_back(in);
isused[in] = true;
}
for (int i = 0; i < n; i++) {
ischanged = false;
for (int j = a[i] + 1; j <= 2 * n; j++) {
if (!isused[j]) {
b.push_back(j);
isused[j] = true;
ischanged = true;
break;
}
}
if (!ischanged) {
ispossible = false;
break;
}
}
if (!ispossible) {
cout << -1 << endl;
} else {
for (int i = 0; i < n; i++) {
cout << a[i] << ' ';
cout << b[i] << ' ';
}
cout << endl;
}
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n=int(input())
L=[int(x) for x in input().strip().split(" ")]
exist=set(L)
todo=set()
for i in range(1,2*n+1):
if i not in exist:
todo.add(i)
res=[]
flag=True
for x in L:
for e in range(x+1,2*n+1):
if e in todo:
res.append(x)
res.append(e)
todo.remove(e)
break
else:
flag=False
break
if not flag:
print(-1)
else:
for x in res:
print(x,end=" ")
print()
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int N = 3e5 + 500;
const long long mod = 1e9 + 7;
const long long cmod = 998244353;
const long long inf = 1LL << 61;
const int M = 1e6 + 500;
const long long int ths = 1LL << 40;
const int NN = 5e3 + 6;
void solve() {
long long int n;
cin >> n;
long long int b[n + 1], a[2 * n + 1];
set<long long int> s;
for (int i = 1; i <= 2 * n; i++) s.insert(i);
for (int i = 1; i <= n; i++) {
cin >> b[i];
s.erase(b[i]);
}
vector<long long int> v;
for (auto it : s) v.push_back(it);
long long int idx = 1;
bool ok = 1;
for (int i = 1; i <= n; i++) {
a[idx] = b[i];
idx++;
long long int x = *s.upper_bound(b[i]);
if (s.count(x) == 0) {
ok = 0;
break;
}
s.erase(x);
a[idx] = x;
idx++;
}
if (!ok) {
cout << -1;
} else {
for (int i = 1; i <= 2 * n; i++) cout << a[i] << ' ';
}
cout << '\n';
return;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
solve();
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #Ashish Sagar
import math
q=int(input())
#q=1
for _ in range(q):
n=int(input())
b=list(map(int,input().split()))
ans=[0]*(2*n)
if min(b)!=1 or max(b)==2*n:
print(-1)
else:
l=[1]*(2*n+1)
for i in range(n):
l[b[i]]=0
#print(l)
'''aa=[]
for i in range(1,2*n+1):
if l[i]==1:
aa.append(i)'''
#print(aa)
k=0
for i in range(2*n):
if i%2==0:
ans[i]=b[k]
k+=1
l[0]=0
#print(l)
for i in range(0,2*n,2):
for j in range(ans[i]+1,2*n+1):
if l[j]==1:
ans[i+1]=j
l[j]=0
break
if ans.count(0)!=0:
print(-1)
else:
print(*ans) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.ArrayList;
import java.util.Collections;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.Queue;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.util.Random;
import java.io.PrintWriter;
/*
Solution Created: 19:12:15 23/02/2020
Custom Competitive programming helper.
*/
public class Main {
public static void solve(Reader in, Writer out) {
int t = in.nextInt();
while (t-- > 0) {
int n = in.nextInt();
int[] b = in.na(n);
int[] a = new int[2*n];
boolean can = true;
for(int i = 0; i<n; i++) a[i*2] = b[i];
boolean[] used = new boolean[2*n+1];
for(int i = 0; i<n; i++) used[b[i]] = true;
int[] left = new int[n];
int idx = 0;
for(int i = 1; i<=2*n; i++) if(!used[i]) left[idx++] = i;
for(int i = 0; i<n; i++) {
idx = i*2+1;
int last = a[idx-1];
boolean found = false;
for(int j = 0; j<n&&(!found); j++) {
if(left[j]==-1) continue;
if(left[j]>last) {
found = true;
a[idx] = left[j];
left[j] = -1;
}
}
if(!found) can = false;
}
if(can) {
for(int i = 0; i<2*n; i++) out.print(a[i]+" ");
out.println();
}else out.println(-1);
}
}
public static void main(String[] args) {
Reader in = new Reader();
Writer out = new Writer();
solve(in, out);
out.exit();
}
static class Graph {
private ArrayList<Integer> con[];
private boolean[] visited;
public Graph(int n) {
con = new ArrayList[n];
for (int i = 0; i < n; ++i)
con[i] = new ArrayList();
visited = new boolean[n];
}
public void reset() {
Arrays.fill(visited, false);
}
public void addEdge(int v, int w) {
con[v].add(w);
}
public void dfs(int cur) {
visited[cur] = true;
for (Integer v : con[cur]) {
if (!visited[v]) {
dfs(v);
}
}
}
public void bfs(int cur) {
Queue<Integer> q = new LinkedList<>();
q.add(cur);
visited[cur] = true;
while (!q.isEmpty()) {
cur = q.poll();
for (Integer v : con[cur]) {
if (!visited[v]) {
visited[v] = true;
q.add(v);
}
}
}
}
}
static class Reader {
static BufferedReader br;
static StringTokenizer st;
private int charIdx = 0;
private String s;
public Reader() {
this.br = new BufferedReader(new InputStreamReader(System.in));
}
public int[] na(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public double[] nd(int n) {
double[] a = new double[n];
for (int i = 0; i < n; i++)
a[i] = nextDouble();
return a;
}
public char nextChar() {
if (s == null || charIdx >= s.length()) {
if (st == null || !st.hasMoreTokens())
try {
readLine();
} catch (Exception e) {
}
s = st.nextToken();
charIdx = 0;
}
return s.charAt(charIdx++);
}
public long[] nl(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public char[] nca() {
return next().toCharArray();
}
public String[] nS(int n) {
String[] a = new String[n];
for (int i = 0; i < n; i++)
a[i] = next();
return a;
}
public int nextInt() {
if (st == null || !st.hasMoreTokens())
try {
readLine();
} catch (Exception e) {
}
return Integer.parseInt(st.nextToken());
}
public double nextDouble() {
if (st == null || !st.hasMoreTokens())
try {
readLine();
} catch (Exception e) {
}
return Double.parseDouble(st.nextToken());
}
public Long nextLong() {
if (st == null || !st.hasMoreTokens())
try {
readLine();
} catch (Exception e) {
}
return Long.parseLong(st.nextToken());
}
public String next() {
if (st == null || !st.hasMoreTokens())
try {
readLine();
} catch (Exception e) {
}
return st.nextToken();
}
public static void readLine() {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
}
}
}
static class Solution {
public static void solve(Reader in, Writer out) {
}
}
static class Sort {
static Random random = new Random();
public static void sortArray(int[] s) {
shuffle(s);
Arrays.sort(s);
}
public static void sortArray(long[] s) {
shuffle(s);
Arrays.sort(s);
}
public static void sortArray(String[] s) {
shuffle(s);
Arrays.sort(s);
}
public static void sortArray(char[] s) {
shuffle(s);
Arrays.sort(s);
}
private static void shuffle(int[] s) {
for (int i = 0; i < s.length; ++i) {
int j = random.nextInt(i + 1);
int t = s[i];
s[i] = s[j];
s[j] = t;
}
}
private static void shuffle(long[] s) {
for (int i = 0; i < s.length; ++i) {
int j = random.nextInt(i + 1);
long t = s[i];
s[i] = s[j];
s[j] = t;
}
}
private static void shuffle(String[] s) {
for (int i = 0; i < s.length; ++i) {
int j = random.nextInt(i + 1);
String t = s[i];
s[i] = s[j];
s[j] = t;
}
}
private static void shuffle(char[] s) {
for (int i = 0; i < s.length; ++i) {
int j = random.nextInt(i + 1);
char t = s[i];
s[i] = s[j];
s[j] = t;
}
}
}
static class Util{
static boolean isPrime(int n) {
if (n <= 1) return false;
if (n <= 3) return true;
if (n % 2 == 0 || n % 3 == 0) return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
public static int upperBound(long[] a, long v) {
int l=0, h=a.length-1, ans = -1;
while(l<h) {
int mid = (l+h)/2;
if(a[mid]<=v) {
ans = mid;
l = mid+1;
}else h = mid-1;
}
return ans;
}
public static int lowerBound(long[] a, long v) {
int l=0, h=a.length-1, ans = -1;
while(l<h) {
int mid = (l+h)/2;
if(v<=a[mid]) {
ans = mid;
h = mid-1;
}else l = mid-1;
}
return ans;
}
public static boolean[] getSieve(int n) {
boolean[] isPrime = new boolean[n+1];
for (int i = 2; i <= n; i++) isPrime[i] = true;
for (int i = 2; i*i <= n; i++) if (isPrime[i])
for (int j = i; i*j <= n; j++) isPrime[i*j] = false;
return isPrime;
}
public static int gcd(int a, int b) {
if (a == 0)
return b;
return gcd(b%a, a);
}
public static long modAdd(long a, long b, long mod) {
return (a%mod+b%mod)%mod;
}
public static long modMul(long a, long b, long mod) {
return ((a%mod)*(b%mod))%mod;
}
public static void dbg(Object... o) {
System.out.println(Arrays.deepToString(o));
}
}
static class Writer {
private PrintWriter pw;
public Writer(){
pw = new PrintWriter(System.out);
}
public void printArray(int[] a) {
for(int i = 0; i<a.length; i++) print(a[i]+" ");
}
public void printlnArray(int[] a) {
for(int i = 0; i<a.length; i++) print(a[i]+" ");
pw.println();
}
public void printArray(long[] a) {
for(int i = 0; i<a.length; i++) print(a[i]+" ");
}
public void printlnArray(long[] a) {
for(int i = 0; i<a.length; i++) print(a[i]+" ");
pw.println();
}
public void print(Object o) {
pw.print(o.toString());
}
public void println(Object o) {
pw.println(o.toString());
}
public void println() {
pw.println();
}
public void flush() {
pw.flush();
}
public void exit() {
pw.close();
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.*;import java.io.*;import java.math.*;
public class Main
{
public static void process()throws IOException
{
int n=ni();
TreeSet<Integer> set = new TreeSet<Integer>();
for(int i=1;i<=2*n;i++)
set.add(i);
int[]B=nai(n);
for(int i=0;i<n;i++)
set.remove(B[i]);
// System.err.println(set);
int[]A=new int[2*n];
for(int i=0;i<2*n;i++)
{
if(i%2==0)
A[i]=B[i/2];
else
{
if(set.ceiling(A[i-1])==null)
{
pn("-1");
return;
}
A[i]=set.ceiling(A[i-1]);
set.remove(set.ceiling(A[i-1]));
}
}
for(int i=0;i<A.length;i++)
p(A[i]+" ");
pn("");
}
static AnotherReader sc;
static PrintWriter out;
public static void main(String[]args)throws IOException
{
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
if(oj){sc=new AnotherReader();out=new PrintWriter(System.out);}
else{sc=new AnotherReader(100);out=new PrintWriter("output.txt");}
int t=1;
t=ni();
while(t-->0) {process();}
out.flush();out.close();
}
static void pn(Object o){out.println(o);}
static void p(Object o){out.print(o);}
static void pni(Object o){out.println(o);out.flush();}
static int ni()throws IOException{return sc.nextInt();}
static long nl()throws IOException{return sc.nextLong();}
static double nd()throws IOException{return sc.nextDouble();}
static String nln()throws IOException{return sc.nextLine();}
static int[] nai(int N)throws IOException{int[]A=new int[N];for(int i=0;i!=N;i++){A[i]=ni();}return A;}
static long[] nal(int N)throws IOException{long[]A=new long[N];for(int i=0;i!=N;i++){A[i]=nl();}return A;}
static long gcd(long a, long b)throws IOException{return (b==0)?a:gcd(b,a%b);}
static int gcd(int a, int b)throws IOException{return (b==0)?a:gcd(b,a%b);}
static int bit(long n)throws IOException{return (n==0)?0:(1+bit(n&(n-1)));}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
static class AnotherReader{BufferedReader br; StringTokenizer st;
AnotherReader()throws FileNotFoundException{
br=new BufferedReader(new InputStreamReader(System.in));}
AnotherReader(int a)throws FileNotFoundException{
br = new BufferedReader(new FileReader("input.txt"));}
String next()throws IOException{
while (st == null || !st.hasMoreElements()) {try{
st = new StringTokenizer(br.readLine());}
catch (IOException e){ e.printStackTrace(); }}
return st.nextToken(); } int nextInt() throws IOException{
return Integer.parseInt(next());}
long nextLong() throws IOException
{return Long.parseLong(next());}
double nextDouble()throws IOException { return Double.parseDouble(next()); }
String nextLine() throws IOException{ String str = ""; try{
str = br.readLine();} catch (IOException e){
e.printStackTrace();} return str;}}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.*;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class Main {
public static void main(String[] args) throws IOException {
Scanner s = new Scanner(System.in);
int tests = s.nextInt();
while(tests--!=0){
int n = s.nextInt();
int freq[] = new int[2*n +1];
int arr[] = new int[2*n +1];
boolean flag = false;
TreeSet<Integer>ts = new TreeSet<>();
for(int i=0;i<2*n;i+=2){
arr[i]= s.nextInt();
freq[arr[i]]++;
}
for(int i=1;i<=2*n;i++){
if(freq[i]==0)ts.add(i);
}
for(int i=1;i<=2*n;i+=2){
int x = arr[i-1];
if(ts.ceiling(x)==null){
flag=true;
break;
}
else{
arr[i]=ts.ceiling(x);
ts.remove(arr[i]);
}
}
if(flag) System.out.println(-1);
else{
for(int i=0;i<2*n;i++){
System.out.print(arr[i]+" ");
}
System.out.println();
}
}
}
}
class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public double nextDouble() throws IOException
{
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if(x.charAt(0) == '-')
{
neg = true;
start++;
}
for(int i = start; i < x.length(); i++)
if(x.charAt(i) == '.')
{
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
}
else
{
sb.append(x.charAt(i));
if(dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg?-1:1);
}
public boolean ready() throws IOException {return br.ready();}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | //package Practise;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Random;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class RestoringPermutation {
public static void main(String args[]) {
FastScanner fs=new FastScanner();
int t=fs.nextInt();
for(int t1=0;t1<t;t1++) {
int n=fs.nextInt();
int []arr=new int[n];
boolean []check=new boolean[2*n+1];
for(int i=0;i<n;i++) {
arr[i]=fs.nextInt();
check[arr[i]]=true;
}
TreeSet<Integer> set=new TreeSet<>();
for(int i=1;i<check.length;i++) {
if(!check[i])
set.add(i);
}
List<Integer> list=new ArrayList<>();boolean flag=false;
for(int i=0;i<arr.length;i++) {
list.add(arr[i]);
Integer val=set.higher(arr[i]);
flag=val==null?true:false;
if(flag)
break;
list.add(val);
set.remove((Object)val);
}
if(flag)
System.out.println("-1");
else {
for(int val:list)
System.out.print(val+" ");
System.out.println();
}
}
}
private static int[] readArray(int n) {
// TODO Auto-generated method stub
return null;
}
static final Random random=new Random();
static void ruffleSort(int[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n), temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | test=int(input())
for i in range(test):
n = int(input())
b = list(map(int, input().split()))
a = [0 for i in range(n+n)]
l = [0 for i in range(n+n+1)]
for i in range(n):
a[2*i] = b[i]
l[b[i]] = 1
ans = 1
for i in range(n):
bool = 0
for j in range(b[i]+1, n+n+1):
if l[j] == 1:
continue
a[2*i+1] = j
l[j] = 1
bool = 1;
break
if bool == 0:
ans = 0
break
if ans == 0:
print(-1)
else:
for i in range(n+n):
print(a[i], end = ' ')
print() | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
void solve() {
int64_t n;
cin >> n;
int64_t b[n + 1], a[2 * n + 1];
map<int64_t, int64_t> f;
while (1 > 2)
;
while (1 > 2)
;
while (1 > 2)
;
bool fl = 0;
for (int64_t i = 1; i <= n; ++i) {
cin >> b[i];
while (1 > 2)
;
while (1 > 2)
;
while (1 > 2)
;
if (f[b[i]] == 1) {
cout << -1 << '\n';
fl = 1;
break;
} else
f[b[i]] = 1;
}
if (fl == 1) {
return;
}
while (1 > 2)
;
while (1 > 2)
;
while (1 > 2)
;
for (int64_t i = 1; i <= n; ++i) {
int64_t x;
for (x = b[i]; x <= 2 * n + 1; ++x)
if (f[x] == 0) break;
if (x == 2 * n + 1) {
cout << -1 << endl;
fl = 1;
while (1 > 2)
;
while (1 > 2)
;
while (1 > 2)
;
break;
}
f[x] = 1;
a[2 * i - 1] = min(x, b[i]);
while (1 > 2)
;
while (1 > 2)
;
while (1 > 2)
;
a[2 * i] = max(x, b[i]);
}
if (fl == 1) {
return;
}
for (int64_t i = 1; i <= 2 * n; ++i) {
cout << a[i] << ' ';
}
while (1 > 2)
;
while (1 > 2)
;
while (1 > 2)
;
cout << endl;
}
int32_t main() {
int64_t q;
cin >> q;
while (q--) {
while (1 > 2)
;
while (1 > 2)
;
while (1 > 2)
;
solve();
while (1 > 2)
;
while (1 > 2)
;
while (1 > 2)
;
}
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import sys
from collections import defaultdict
def make(b):
n=len(b)
ans=[-1 for _ in range(2*n)]
vis=defaultdict(int)
for i in range(0,2*n,2):
ans[i]=b[i//2]
vis[b[i//2]]=1
for i in range(1,2*n,2):
for j in range(ans[i-1]+1,2*n+1):
if vis[j]==0:
ans[i]=j
vis[j]=1
break
if ans[i]==-1:
return False
return ans
t=int(sys.stdin.readline())
for _ in range(t):
n=int(sys.stdin.readline())
b=list(map(int,sys.stdin.readline().split()))
a=make(b)
if a:
print(*a)
else:
print(-1)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.*;
import java.util.*;
public class RestoringPermutation{
static Scanner sc = new Scanner(System.in);
static void restorePermutation(){
int n = sc.nextInt();
boolean map[] = new boolean[(2*n + 1)];
int input[] = new int[n];
int output[] = new int[n];
map[0] = true;
for(int i=0;i<n;i++){
int index = sc.nextInt();
input[i] = index;
map[index] = true;
}
for(int i=0;i<n;i++)
{
int curr = input[i];
map[0] = false;
for(int j=curr+1;j<=2*n;j++)
{
if(!map[j])
{
output[i] = j;
map[j] = true;
map[0] = true;
break;
}
}
if(!map[0])
break;
}
if(map[0])
{
for(int i=0;i<n;i++)
System.out.print(input[i] + " " + output[i] + " ");
}
else
System.out.print(-1);
System.out.println();
}
public static void main(String[] args) {
int t = sc.nextInt();
while(t-- > 0)
restorePermutation();
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.File;import java.io.FileInputStream;import java.io.FileNotFoundException;
import java.io.IOException;import java.io.InputStream;import java.io.PrintWriter;
import java.lang.annotation.Retention;import java.lang.annotation.RetentionPolicy;
import java.lang.reflect.Array;import java.lang.reflect.Field;import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;import java.security.AccessControlException;import java.util.ArrayList;
import java.util.Arrays;import java.util.Collection;import java.util.Comparator;
import java.util.List;import java.util.Map;import java.util.Objects;import java.util.TreeMap;
import java.util.TreeSet;import java.util.function.Function;import java.util.stream.Collectors;
import java.util.stream.IntStream;import java.util.stream.LongStream;import java.util.stream.Stream;
public class _p001315C {static public void main(final String[] args) throws IOException
{p001315C._main(args);}
static class p001315C extends Solver{public p001315C(){}@Override public void solve()throws
IOException{int n=sc.nextInt();sc.nextLine();int[]b=Arrays.stream(sc.nextLine().trim().split("\\s+")).filter($s2
->!$s2.isEmpty()).mapToInt(Integer::parseInt).toArray();TreeSet<Integer>seta=new
TreeSet<>();seta.addAll(IntStream.rangeClosed(1,2*n).boxed().collect(Collectors.toList()));
seta.removeAll(Datas.list(b));ArrayList<Integer>res=new ArrayList<>();for(int itb:b){Integer
ita=seta.ceiling(itb);if(ita!=null){res.add(itb);res.add(ita);seta.remove(ita);}
else{res.clear();break;}}if(res.isEmpty()){pw.println(-1);}else{pw.println(Datas.join(res));
}}static public void _main(String[]args)throws IOException{new p001315C().run();}
}static class Datas{static class Pair<K,V>{private K k;private V v;public Pair(final
K t,final V u){this.k=t;this.v=u;}public K getKey(){return k;}public V getValue()
{return v;}}final static String SPACE=" ";public static TreeMap<Integer,Integer>
mapc(final int[]a){return IntStream.range(0,a.length).collect(()->new TreeMap<Integer,
Integer>(),(res,i)->{res.put(a[i],res.getOrDefault(a[i],0)+1);},Map::putAll);}public
static TreeMap<Long,Integer>mapc(final long[]a){return IntStream.range(0,a.length).collect(
()->new TreeMap<Long,Integer>(),(res,i)->{res.put(a[i],res.getOrDefault(a[i],0)+
1);},Map::putAll);}public static<T>TreeMap<T,Integer>mapc(final T[]a,Comparator<T>
cmp){return IntStream.range(0,a.length).collect(cmp!=null?()->new TreeMap<T,Integer>(cmp)
:()->new TreeMap<T,Integer>(),(res,i)->{res.put(a[i],res.getOrDefault(a[i],0)+1);
},Map::putAll);}public static<T>TreeMap<T,Integer>mapc(final T[]a){return mapc(a,
null);}public static TreeMap<Integer,Integer>mapc(final IntStream a){return a.collect(
()->new TreeMap<Integer,Integer>(),(res,v)->{res.put(v,res.getOrDefault(v,0)+1);
},Map::putAll);}public static TreeMap<Long,Integer>mapc(final LongStream a){return
a.collect(()->new TreeMap<Long,Integer>(),(res,v)->{res.put(v,res.getOrDefault(v,
0)+1);},Map::putAll);}public static<T>TreeMap<T,Integer>mapc(final Stream<T>a,Comparator<T>
cmp){return a.collect(cmp!=null?()->new TreeMap<T,Integer>(cmp):()->new TreeMap<T,
Integer>(),(res,v)->{res.put(v,res.getOrDefault(v,0)+1);},Map::putAll);}public static
<T>TreeMap<T,Integer>mapc(final Stream<T>a){return mapc(a,null);}public static<T>
TreeMap<T,Integer>mapc(final Collection<T>a,Comparator<T>cmp){return mapc(a.stream(),
cmp);}public static<T>TreeMap<T,Integer>mapc(final Collection<T>a){return mapc(a.stream());
}public static TreeMap<Integer,List<Integer>>mapi(final int[]a){return IntStream.range(0,
a.length).collect(()->new TreeMap<Integer,List<Integer>>(),(res,i)->{if(!res.containsKey(a[i]))
{res.put(a[i],Stream.of(i).collect(Collectors.toList()));}else{res.get(a[i]).add(i);
}},Map::putAll);}public static TreeMap<Long,List<Integer>>mapi(final long[]a){return
IntStream.range(0,a.length).collect(()->new TreeMap<Long,List<Integer>>(),(res,i)
->{if(!res.containsKey(a[i])){res.put(a[i],Stream.of(i).collect(Collectors.toList()));
}else{res.get(a[i]).add(i);}},Map::putAll);}public static<T>TreeMap<T,List<Integer>>
mapi(final T[]a,Comparator<T>cmp){return IntStream.range(0,a.length).collect(cmp
!=null?()->new TreeMap<T,List<Integer>>(cmp):()->new TreeMap<T,List<Integer>>(),
(res,i)->{if(!res.containsKey(a[i])){res.put(a[i],Stream.of(i).collect(Collectors.toList()));
}else{res.get(a[i]).add(i);}},Map::putAll);}public static<T>TreeMap<T,List<Integer>>
mapi(final T[]a){return mapi(a,null);}public static TreeMap<Integer,List<Integer>>
mapi(final IntStream a){int[]i=new int[]{0};return a.collect(()->new TreeMap<Integer,
List<Integer>>(),(res,v)->{if(!res.containsKey(v)){res.put(v,Stream.of(i[0]).collect(Collectors.toList()));
}else{res.get(v).add(i[0]);}i[0]++;},Map::putAll);}public static TreeMap<Long,List<Integer>>
mapi(final LongStream a){int[]i=new int[]{0};return a.collect(()->new TreeMap<Long,
List<Integer>>(),(res,v)->{if(!res.containsKey(v)){res.put(v,Stream.of(i[0]).collect(Collectors.toList()));
}else{res.get(v).add(i[0]);}i[0]++;},Map::putAll);}public static<T>TreeMap<T,List<Integer>>
mapi(final Stream<T>a,Comparator<T>cmp){int[]i=new int[]{0};return a.collect(cmp
!=null?()->new TreeMap<T,List<Integer>>(cmp):()->new TreeMap<T,List<Integer>>(),
(res,v)->{if(!res.containsKey(v)){res.put(v,Stream.of(i[0]).collect(Collectors.toList()));
}else{res.get(v).add(i[0]);}i[0]++;},Map::putAll);}public static<T>TreeMap<T,List<Integer>>
mapi(final Stream<T>a){return mapi(a,null);}public static<T>TreeMap<T,List<Integer>>
mapi(final Collection<T>a,Comparator<T>cmp){return mapi(a.stream(),cmp);}public
static<T>TreeMap<T,List<Integer>>mapi(final Collection<T>a){return mapi(a.stream());
}public static List<int[]>listi(final int[]a){return IntStream.range(0,a.length).mapToObj(i
->new int[]{a[i],i}).collect(Collectors.toList());}public static List<long[]>listi(final
long[]a){return IntStream.range(0,a.length).mapToObj(i->new long[]{a[i],i}).collect(Collectors.toList());
}public static<T>List<Pair<T,Integer>>listi(final T[]a){return IntStream.range(0,
a.length).mapToObj(i->new Pair<T,Integer>(a[i],i)).collect(Collectors.toList());
}public static List<int[]>listi(final IntStream a){int[]i=new int[]{0};return a.mapToObj(v
->new int[]{v,i[0]++}).collect(Collectors.toList());}public static List<long[]>listi(final
LongStream a){int[]i=new int[]{0};return a.mapToObj(v->new long[]{v,i[0]++}).collect(Collectors.toList());
}public static<T>List<Pair<T,Integer>>listi(final Stream<T>a){int[]i=new int[]{0};
return a.map(v->new Pair<T,Integer>(v,i[0]++)).collect(Collectors.toList());}public
static<T>List<Pair<T,Integer>>listi(final Collection<T>a){int[]i=new int[]{0};return
a.stream().map(v->new Pair<T,Integer>(v,i[0]++)).collect(Collectors.toList());}public
static String join(final int[]a){return Arrays.stream(a).mapToObj(Integer::toString).collect(Collectors.joining(SPACE));
}public static String join(final long[]a){return Arrays.stream(a).mapToObj(Long::toString).collect(Collectors.joining(SPACE));
}public static<T>String join(final T[]a){return Arrays.stream(a).map(v->Objects.toString(v)).collect(Collectors.joining(SPACE));
}public static<T>String join(final T[]a,final Function<T,String>toString){return
Arrays.stream(a).map(v->toString.apply(v)).collect(Collectors.joining(SPACE));}public
static<T>String join(final Collection<T>a){return a.stream().map(v->Objects.toString(v)).collect(Collectors.joining(SPACE));
}public static<T>String join(final Collection<T>a,final Function<T,String>toString)
{return a.stream().map(v->toString.apply(v)).collect(Collectors.joining(SPACE));
}public static<T>String join(final Stream<T>a){return a.map(v->Objects.toString(v)).collect(Collectors.joining(SPACE));
}public static<T>String join(final Stream<T>a,final Function<T,String>toString){
return a.map(v->toString.apply(v)).collect(Collectors.joining(SPACE));}public static
<T>String join(final IntStream a){return a.mapToObj(Integer::toString).collect(Collectors.joining(SPACE));
}public static<T>String join(final LongStream a){return a.mapToObj(Long::toString).collect(Collectors.joining(SPACE));
}public static List<Integer>list(final int[]a){return Arrays.stream(a).mapToObj(Integer::valueOf).collect(Collectors.toList());
}public static List<Integer>list(final IntStream a){return a.mapToObj(Integer::valueOf).collect(Collectors.toList());
}public static List<Long>list(final long[]a){return Arrays.stream(a).mapToObj(Long::valueOf).collect(Collectors.toList());
}public static List<Long>list(final LongStream a){return a.mapToObj(Long::valueOf).collect(Collectors.toList());
}public static<T>List<T>list(final Stream<T>a){return a.collect(Collectors.toList());
}public static<T>List<T>list(final Collection<T>a){return a.stream().collect(Collectors.toList());
}public static<T>List<T>list(final T[]a){return Arrays.stream(a).collect(Collectors.toList());
}public static String yesNo(final boolean res){return res?"YES":"NO";}public static
String dump(Object obj){String res="";if(obj!=null){Class cl=obj.getClass();String
cls=cl.getName();if(cls.startsWith("[")){res+="[";for(int i=0;;i++){try{Object o
=Array.get(obj,i);String s=dump(o);if(i>0){res+=", ";}res+=s;}catch(ArrayIndexOutOfBoundsException
ex){break;}}res+="]";}else if(Collection.class.isAssignableFrom(cl)){@SuppressWarnings("unchecked")final
Object s=((Collection)obj).stream().map(v->dump(v)).collect(Collectors.joining(", ",
"[","]"));res+=s.toString();}else if(Map.class.isAssignableFrom(cl)){@SuppressWarnings("unchecked")final
Object s=((Map)obj).entrySet().stream().map(v->dump(v)).collect(Collectors.joining(", ",
"{","}"));res+=s.toString();}else if(Character.class.isInstance(obj)|| Integer.class.isInstance(obj)
|| Long.class.isInstance(obj)|| Float.class.isInstance(obj)|| Double.class.isInstance(obj)|| String.class.isInstance(obj)
){res+=Objects.toString(obj);}else if(Map.Entry.class.isInstance(obj)){res+=dump(((Map.Entry)obj).getKey())
+"="+dump(((Map.Entry)obj).getValue());}else if(Stream.class.isInstance(obj)){@SuppressWarnings("unchecked")
final Object s=((Stream)obj).map(v->dump(v)).collect(Collectors.joining(", ","[",
"]"));res+=s.toString();}else{res+=Stream.concat(Arrays.stream(obj.getClass().getFields()).map(v
->{String name=v.getName();String val;try{Object o=v.get(obj);if(o!=null && v.isAnnotationPresent(Dump.class))
{Dump an=v.getAnnotation(Dump.class);Class ocl=o.getClass();val="{";for(String fn:an.fields())
{try{Field f=ocl.getField(fn);val+=fn+"="+dump(f.get(o))+", ";}catch(NoSuchFieldException
nsfex){try{@SuppressWarnings("unchecked")final Method m=ocl.getMethod(fn);val+=fn+"="+dump(m.invoke(o))
+", ";}catch(NoSuchMethodException | IllegalArgumentException | InvocationTargetException
nsmex){}}}if(val.endsWith(", ")){val=val.substring(0,val.length()-2);}val+="}";}
else{val=dump(o);}}catch(IllegalAccessException ex){val="N/A";}return name+"="+val;
}),Arrays.stream(obj.getClass().getMethods()).filter(m->m.isAnnotationPresent(Getter.class)).map(m
->{String name=m.getName();String val;try{Object o=m.invoke(obj);if(o!=null && m.isAnnotationPresent(Dump.class))
{Dump an=m.getAnnotation(Dump.class);Class ocl=o.getClass();val="{";for(String fn:an.fields())
{try{Field f=ocl.getField(fn);val+=fn+"="+dump(f.get(o))+", ";}catch(NoSuchFieldException
nsfex){try{@SuppressWarnings("unchecked")final Method m1=ocl.getMethod(fn);val+=fn+"="+dump(m1.invoke(o))
+", ";}catch(NoSuchMethodException | IllegalArgumentException | InvocationTargetException
nsmex){}}}if(val.endsWith(", ")){val=val.substring(0,val.length()-2);}val+="}";}else
{val=dump(o);}}catch(IllegalAccessException | InvocationTargetException ex){val=
"N/A";}return name+"="+val;})).collect(Collectors.joining(", ","{"+obj.getClass().getName()
+": ","}"));}}if(res.length()==0){res="<null>";}return res;}}@Retention(RetentionPolicy.RUNTIME)
public @interface Dump{String[]fields();}@Retention(RetentionPolicy.RUNTIME)public @interface Getter{}static class
MyScanner{private StringBuilder cache=new StringBuilder();int cache_pos=0;private
int first_linebreak=-1;private int second_linebreak=-1;private StringBuilder sb=
new StringBuilder();private InputStream is=null;public MyScanner(final InputStream
is){this.is=is;}public String charToString(final int c){return String.format("'%s'",
c=='\n'?"\\n":(c=='\r'?"\\r":String.valueOf((char)c)));}public int get(){int res
=-1;if(cache_pos<cache.length()){res=cache.charAt(cache_pos);cache_pos++;if(cache_pos
==cache.length()){cache.delete(0,cache_pos);cache_pos=0;}}else{try{res=is.read();
}catch(IOException ex){throw new RuntimeException(ex);}}return res;}private void
unget(final int c){if(cache_pos==0){cache.insert(0,(char)c);}else{cache_pos--;}}
public String nextLine(){sb.delete(0,sb.length());int c;boolean done=false;boolean
end=false;while((c=get())!=-1){if(check_linebreak(c)){done=true;if(c==first_linebreak)
{if(!end){end=true;}else{cache.append((char)c);break;}}else if(second_linebreak!=
-1 && c==second_linebreak){break;}}if(end && c!=first_linebreak && c!=second_linebreak)
{cache.append((char)c);break;}if(!done){sb.append((char)c);}}return sb.toString();
}private boolean check_linebreak(int c){if(c=='\n'|| c=='\r'){if(first_linebreak
==-1){first_linebreak=c;}else if(c!=first_linebreak && second_linebreak==-1){second_linebreak
=c;}return true;}return false;}public int nextInt(){return Integer.parseInt(next());
}public long nextLong(){return Long.parseLong(next());}public boolean hasNext(){
boolean res=false;int c;while((c=get())!=-1){if(!check_linebreak(c)&& c!=' '&& c
!='\t'){res=true;unget(c);break;}}return res;}public String next(){sb.delete(0,sb.length());
boolean started=false;int c;while((c=get())!=-1){if(check_linebreak(c)|| c==' '||
c=='\t'){if(started){unget(c);break;}}else{started=true;sb.append((char)c);}}return
sb.toString();}public int nextChar(){return get();}public boolean eof(){int c=get();
boolean res=false;if(c!=-1){unget(c);}else{res=true;}return res;}public double nextDouble()
{return Double.parseDouble(next());}}static abstract class Solver{protected String
nameIn=null;protected String nameOut=null;protected boolean singleTest=false;protected
MyScanner sc=null;protected PrintWriter pw=null;private int current_test=0;private
int count_tests=0;protected int currentTest(){return current_test;}protected int
countTests(){return count_tests;}private void process()throws IOException{if(!singleTest)
{count_tests=sc.nextInt();sc.nextLine();for(current_test=1;current_test<=count_tests;
current_test++){solve();pw.flush();}}else{count_tests=1;current_test=1;solve();}
}abstract protected void solve()throws IOException;public void run()throws IOException
{boolean done=false;try{if(nameIn!=null){if(new File(nameIn).exists()){try(FileInputStream
fis=new FileInputStream(nameIn);PrintWriter pw0=select_output();){select_output();
done=true;sc=new MyScanner(fis);pw=pw0;process();}}else{throw new RuntimeException("File "
+new File(nameIn).getAbsolutePath()+" does not exist!");}}}catch(IOException | AccessControlException
ex){}if(!done){try(PrintWriter pw0=select_output();){sc=new MyScanner(System.in);
pw=pw0;process();}}}private PrintWriter select_output()throws FileNotFoundException
{if(nameOut!=null){return new PrintWriter(nameOut);}return new PrintWriter(System.out);
}}static abstract class Tester{static public int getRandomInt(final int min,final
int max){return(min+(int)Math.floor(Math.random()*(max-min+1)));}static public long
getRandomLong(final long min,final long max){return(min+(long)Math.floor(Math.random()
*(max-min+1)));}static public double getRandomDouble(final double min,final double
maxExclusive){return(min+Math.random()*(maxExclusive-min));}abstract protected void
testOutput(final List<String>output_data);abstract protected void generateInput();
abstract protected String inputDataToString();private boolean break_tester=false;
protected void beforeTesting(){}protected void breakTester(){break_tester=true;}
public boolean broken(){return break_tester;}}}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
map<int, int> m;
bool f = true;
vector<int> v;
while (n--) {
int a;
cin >> a;
v.push_back(a);
m[a] += 1;
if (m[a] > 1) f = false;
}
if (!f || !m[1]) {
cout << -1 << endl;
continue;
}
vector<int> o;
set<int> s;
for (int a : v) {
o.push_back(a);
s.insert(a);
for (int i = a + 1; i < 201; i++)
if (!m[i] && s.find(i) == s.end()) {
o.push_back(i);
s.insert(i);
m[i] += 1;
break;
}
}
bool r = true;
int p;
for (int a : s) {
if (f) p = a, f = false;
if (a - p > 1) {
r = false;
break;
}
p = a;
}
f = false;
if (r)
for (int a : o) {
if (f) cout << ' ';
cout << a;
f = true;
}
else
cout << -1;
cout << endl;
}
return 0;
}
| CPP |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import heapq
def restorePermutation(n, A):
ans = []
unUsed = set(list(range(1, 2*n + 1)))
for val in A:
if not 1 <= val <= 2*n: return -1
ans.append(val)
ans.append(-1)
unUsed.remove(val)
minHeapq = [val for val in unUsed]
heapq.heapify(minHeapq)
#idea use BST in future
#use heap for now
for i in range(1, 2*n, 2):
temp = []
while minHeapq and minHeapq[0] < ans[i - 1]:
temp.append(heapq.heappop(minHeapq))
if not minHeapq or (minHeapq and minHeapq[0] < ans[i - 1]):
return -1
ans[i] = heapq.heappop(minHeapq)
while temp:
heapq.heappush(minHeapq, temp.pop())
return ans
testCases = int(input())
while testCases:
n = int(input())
A = [int(val) for val in input().split()]
ans = restorePermutation(n, A)
if ans == -1:
print()
print(ans)
else:
for val in ans:
print(val, end = " ")
testCases -= 1 | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for _ in range(int(input())):
n=int(input())
br=list(map(int,input().split()))
ar=[0]*2*n
for i in range(0,2*n,2):
ar[i]=br[i//2]
se=set(br)
for i in range(0,2*n,2):
for k in range(ar[i]+1,3*n):
if(not(k in se)):
ar[i+1]=k
se.add(k)
break
bbc=ar.copy()
bbc.sort()
ccr=[]
for zz in range(1,2*n+1):
ccr.append(zz)
if(bbc==ccr):
print(*ar)
else:
print(-1) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.StringTokenizer;
public class RestoringPermutation {
public static void main(String[] args) {
FastReader input=new FastReader();
int t=input.nextInt();
while(t-->0)
{
int n=input.nextInt();
LinkedList<Integer> b=new LinkedList<>();
HashSet<Integer> set=new HashSet<>();
LinkedList<Integer> list=new LinkedList<>();
for(int i=0;i<2*n;i++)
{
list.add(i+1);
}
int flag=0;
for(int i=0;i<n;i++)
{
int v=input.nextInt();
b.add(v);
if(set.contains(v))
{
flag=1;
}
else
{
set.add(v);
list.remove((Object)v);
}
}
if(flag==1)
{
System.out.println(-1);
}
else
{
int i=0;
int f=0;
while(i<2*n)
{
int g=next(list,b.get(i));
if(g==-1)
{
f=1;
break;
}
else {
b.add(i + 1, list.get(g));
list.remove(g);
i += 2;
}
}
if(f==1)
{
System.out.println(-1);
}
else
{
for(int j=0;j<b.size();j++)
{
System.out.print(b.get(j)+" ");
}
System.out.println();
}
}
}
}
public static int next(LinkedList<Integer> arr, int target)
{
int start = 0, end = arr.size() - 1;
int ans = -1;
while (start <= end) {
int mid = (start + end) / 2;
if (arr.get(mid) <= target) {
start = mid + 1;
}
else {
ans = mid;
end = mid - 1;
}
}
return ans;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
| JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import sys
input = sys.stdin.readline
def inp():
return(int(input()))
def inlt():
return(list(map(int,input().split())))
def insr():
s = input()
return(list(s[:len(s) - 1]))
def invr():
return(map(int,input().split()))
tests = inp()
testcount = 0
while testcount < tests:
n = inp()
b = inlt()
if 1 not in b or 2*n in b:
print(-1)
else:
arr = []
for elem in b:
i = 1
while i < 4*n:
if elem+i not in b and elem+i not in arr:
arr.append(elem+i)
i += 4*n
else: i += 1
string = ''
i = 0
while i < n:
string += str(b[i]) + ' ' + str(arr[i]) + ' '
i += 1
if max(max(b),max(arr)) > 2*n:
print(-1)
else:
print(string[:len(string)-1])
testcount += 1 | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | import java.util.*;
public class MyClass {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-->0)
{
int n = sc.nextInt();
int[] a = new int[n];
int[] b = new int[2*n+1];
for(int i=0;i<n;i++)
{
a[i] = sc.nextInt();
b[a[i]]=1;
}
ArrayList<Integer> arr = new ArrayList<Integer>();
for(int i=0;i<n;i++)
{
arr.add(a[i]);
int d = 0;
for(int j=1;j<2*n+1;j++)
{
if(j>a[i]&&b[j]==0)
{
d++;
arr.add(j);
b[j]=1;
break;
}
}
if(d==0)
{
arr.add(0);
}
}
int dd=0;
for(int i=0;i<2*n;i++)
{
if(arr.get(i)==0)
{
dd++;
break;
}
}
if(dd==1)
{
System.out.println(-1);
}
else
{
for(int i=0;i<2*n;i++)
{
System.out.print(arr.get(i)+" ");
}
System.out.println();
}
}
}
} | JAVA |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | for t in range(int(input())):
n = int(input())
b = list(map(int, input().split()))
used = [False]*(n*2)
a = []
for x in b:
used[x-1] = True
for x in b:
for i in range(x+1, 2*n+1):
if not used[i-1]:
a.append(x)
a.append(i)
used[i-1] = True
break
else:
print(-1)
break
else:
print(*a)
| PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 | I=input
for _ in[0]*int(I()):
n=2*int(I());a=[0]*n;b=a[::2]=*map(int,I().split()),;c={*range(n+1)}-{*b};i=1
try:
for x in b:y=a[i]=min(c&{*range(x,n+1)});c-={y};i+=2
except:a=-1,
print(*a) | PYTHON3 |
1315_C. Restoring Permutation | You are given a sequence b_1, b_2, β¦, b_n. Find the lexicographically minimal permutation a_1, a_2, β¦, a_{2n} such that b_i = min(a_{2i-1}, a_{2i}), or determine that it is impossible.
Input
Each test contains one or more test cases. The first line contains the number of test cases t (1 β€ t β€ 100).
The first line of each test case consists of one integer n β the number of elements in the sequence b (1 β€ n β€ 100).
The second line of each test case consists of n different integers b_1, β¦, b_n β elements of the sequence b (1 β€ b_i β€ 2n).
It is guaranteed that the sum of n by all test cases doesn't exceed 100.
Output
For each test case, if there is no appropriate permutation, print one number -1.
Otherwise, print 2n integers a_1, β¦, a_{2n} β required lexicographically minimal permutation of numbers from 1 to 2n.
Example
Input
5
1
1
2
4 1
3
4 1 3
4
2 3 4 5
5
1 5 7 2 8
Output
1 2
-1
4 5 1 2 3 6
-1
1 3 5 6 7 9 2 4 8 10 | 2 | 9 |
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Stack;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class zz {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
int t = Integer.parseInt(br.readLine());
while (t-- > 0) {
int n = Integer.parseInt(br.readLine());
StringTokenizer st = new StringTokenizer(br.readLine());
int b[] = new int[n];
int a[] = new int[2 * n];
TreeSet<Integer> ts = new TreeSet<>();
for (int i = 0; i < a.length; i++) {
ts.add(i + 1);
}
for (int i = 0; i < b.length; i++) {
b[i] = Integer.parseInt(st.nextToken());
a[2*i]=b[i];
ts.remove(b[i]);
}
boolean f=true;
for (int i = 0; i < b.length; i++) {
if(ts.ceiling(b[i])==null) {
f=false;
break;
}
a[2*i+1]=ts.ceiling(b[i]);
ts.remove(a[2*i+1]);
}
if(f) {
for(int e:a)
System.out.print(e+" ");
System.out.println();
}
else
System.out.println(-1);
}
}
} | JAVA |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.