code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase__ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """maskformer""" UpperCAmelCase_ : Optional[Any] = {"""hidden_size""": """mask_feature_size"""} UpperCAmelCase_ : Optional[int] = ["""resnet""", """swin"""] UpperCAmelCase_ : Optional[Any] = ["""detr"""] def __init__( self : str , lowercase_ : int = 256 , lowercase_ : int = 256 , lowercase_ : float = 0.1 , lowercase_ : bool = False , lowercase_ : Optional[Dict] = None , lowercase_ : Optional[Dict] = None , lowercase_ : float = 0.02 , lowercase_ : float = 1.0 , lowercase_ : float = 1.0 , lowercase_ : float = 1.0 , lowercase_ : float = 20.0 , lowercase_ : Optional[bool] = None , **lowercase_ : Optional[Any] , ) -> Tuple: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCAmelCase : Tuple = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Optional[int] = backbone_config.pop('model_type' ) UpperCAmelCase : Tuple = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : Dict = config_class.from_dict(lowercase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCAmelCase : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported UpperCAmelCase : List[Any] = ( decoder_config.pop('model_type' ) if isinstance(lowercase_ , lowercase_ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Dict = CONFIG_MAPPING[decoder_type] UpperCAmelCase : List[str] = config_class.from_dict(lowercase_ ) UpperCAmelCase : Any = backbone_config UpperCAmelCase : Optional[int] = decoder_config # main feature dimension for the model UpperCAmelCase : str = fpn_feature_size UpperCAmelCase : List[Any] = mask_feature_size # initializer UpperCAmelCase : Tuple = init_std UpperCAmelCase : int = init_xavier_std # Hungarian matcher && loss UpperCAmelCase : str = cross_entropy_weight UpperCAmelCase : Union[str, Any] = dice_weight UpperCAmelCase : Any = mask_weight UpperCAmelCase : Tuple = use_auxiliary_loss UpperCAmelCase : Any = no_object_weight UpperCAmelCase : str = output_auxiliary_logits UpperCAmelCase : Tuple = self.decoder_config.encoder_attention_heads UpperCAmelCase : int = self.decoder_config.num_hidden_layers super().__init__(**lowercase_ ) @classmethod def UpperCAmelCase_ ( cls : Optional[int] , lowercase_ : PretrainedConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] ) -> int: return cls( backbone_config=lowercase_ , decoder_config=lowercase_ , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[int] ) -> Dict[str, any]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[Any] = self.backbone_config.to_dict() UpperCAmelCase : Dict = self.decoder_config.to_dict() UpperCAmelCase : Optional[int] = self.__class__.model_type return output
695
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
1
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowercase__ = logging.get_logger(__name__) lowercase__ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowercase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : str = field( default=_snake_case , metadata={"""help""": """Model type selected in the list: """ + """, """.join(_snake_case )} ) UpperCAmelCase_ : str = field( default=_snake_case , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) UpperCAmelCase_ : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCAmelCase_ : int = field( default=128 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) UpperCAmelCase_ : int = field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) UpperCAmelCase_ : int = field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) UpperCAmelCase_ : bool = field( default=_snake_case , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) UpperCAmelCase_ : bool = field( default=_snake_case , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) UpperCAmelCase_ : float = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) UpperCAmelCase_ : int = field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) UpperCAmelCase_ : int = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) UpperCAmelCase_ : int = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """train""" UpperCAmelCase_ : List[Any] = """dev""" class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : SquadDataTrainingArguments UpperCAmelCase_ : List[SquadFeatures] UpperCAmelCase_ : Split UpperCAmelCase_ : bool def __init__( self : str , lowercase_ : SquadDataTrainingArguments , lowercase_ : PreTrainedTokenizer , lowercase_ : Optional[int] = None , lowercase_ : Union[str, Split] = Split.train , lowercase_ : Optional[bool] = False , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = "pt" , ) -> str: UpperCAmelCase : List[Any] = args UpperCAmelCase : List[str] = is_language_sensitive UpperCAmelCase : Tuple = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase_ , lowercase_ ): try: UpperCAmelCase : Optional[Any] = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) UpperCAmelCase : List[Any] = mode # Load data features from cache or dataset file UpperCAmelCase : Dict = 'v2' if args.version_2_with_negative else 'v1' UpperCAmelCase : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : Dict = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: UpperCAmelCase : Union[str, Any] = time.time() UpperCAmelCase : Optional[int] = torch.load(lowercase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. UpperCAmelCase : int = self.old_features['features'] UpperCAmelCase : Dict = self.old_features.get('dataset' , lowercase_ ) UpperCAmelCase : List[Any] = self.old_features.get('examples' , lowercase_ ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" ' future run' ) else: if mode == Split.dev: UpperCAmelCase : Optional[Any] = self.processor.get_dev_examples(args.data_dir ) else: UpperCAmelCase : int = self.processor.get_train_examples(args.data_dir ) UpperCAmelCase , UpperCAmelCase : Optional[int] = squad_convert_examples_to_features( examples=self.examples , tokenizer=lowercase_ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=lowercase_ , ) UpperCAmelCase : Any = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , lowercase_ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : List[str] ) -> Union[str, Any]: return len(self.features ) def __getitem__( self : Union[str, Any] , lowercase_ : int ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset UpperCAmelCase : Any = self.features[i] UpperCAmelCase : List[str] = torch.tensor(feature.input_ids , dtype=torch.long ) UpperCAmelCase : Union[str, Any] = torch.tensor(feature.attention_mask , dtype=torch.long ) UpperCAmelCase : Optional[Any] = torch.tensor(feature.token_type_ids , dtype=torch.long ) UpperCAmelCase : Union[str, Any] = torch.tensor(feature.cls_index , dtype=torch.long ) UpperCAmelCase : Optional[int] = torch.tensor(feature.p_mask , dtype=torch.float ) UpperCAmelCase : Optional[int] = torch.tensor(feature.is_impossible , dtype=torch.float ) UpperCAmelCase : Any = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: UpperCAmelCase : Union[str, Any] = torch.tensor(feature.start_position , dtype=torch.long ) UpperCAmelCase : str = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
695
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase_ ) print('The following activities are selected:' ) # The first activity is always selected UpperCAmelCase : List[Any] = 0 print(UpperCAmelCase_ , end=',' ) # Consider rest of the activities for j in range(UpperCAmelCase_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(UpperCAmelCase_ , end=',' ) UpperCAmelCase : Tuple = j if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = [1, 3, 0, 5, 8, 5] lowercase__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
695
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
1
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: UpperCAmelCase : Union[str, Any] = inspect.getfile(accelerate.test_utils ) UpperCAmelCase : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) UpperCAmelCase : Dict = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase : str = f""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() UpperCAmelCase : List[Any] = [sys.executable] + distributed_args execute_subprocess_async(lowercase_ , env=os.environ.copy() )
695
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
1
'''simple docstring''' import argparse import os import re lowercase__ = "src/diffusers" # Pattern that looks at the indentation in a line. lowercase__ = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ = re.compile(r"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ = re.compile(r"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ = re.compile(r"\[([^\]]+)\]") def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = _re_indent.search(UpperCAmelCase_ ) return "" if search is None else search.groups()[0] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_="" , UpperCAmelCase_=None , UpperCAmelCase_=None ): UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : List[str] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(UpperCAmelCase_ ): index += 1 UpperCAmelCase : Optional[int] = ['\n'.join(lines[:index] )] else: UpperCAmelCase : List[Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCAmelCase : Tuple = [lines[index]] index += 1 while index < len(UpperCAmelCase_ ) and (end_prompt is None or not lines[index].startswith(UpperCAmelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(UpperCAmelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(UpperCAmelCase_ ) ) if index < len(UpperCAmelCase_ ) - 1: UpperCAmelCase : List[str] = [lines[index + 1]] index += 1 else: UpperCAmelCase : Any = [] else: blocks.append('\n'.join(UpperCAmelCase_ ) ) UpperCAmelCase : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(UpperCAmelCase_ ) > 0: blocks.append('\n'.join(UpperCAmelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(UpperCAmelCase_ ): blocks.append('\n'.join(lines[index:] ) ) return blocks def UpperCamelCase( UpperCAmelCase_ ): def _inner(UpperCAmelCase_ ): return key(UpperCAmelCase_ ).lower().replace('_' , '' ) return _inner def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_=None ): # If no key is provided, we use a noop. def noop(UpperCAmelCase_ ): return x if key is None: UpperCAmelCase : Dict = noop # Constants are all uppercase, they go first. UpperCAmelCase : Dict = [obj for obj in objects if key(UpperCAmelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCAmelCase : Optional[Any] = [obj for obj in objects if key(UpperCAmelCase_ )[0].isupper() and not key(UpperCAmelCase_ ).isupper()] # Functions begin with a lowercase, they go last. UpperCAmelCase : Optional[int] = [obj for obj in objects if not key(UpperCAmelCase_ )[0].isupper()] UpperCAmelCase : List[Any] = ignore_underscore(UpperCAmelCase_ ) return sorted(UpperCAmelCase_ , key=UpperCAmelCase_ ) + sorted(UpperCAmelCase_ , key=UpperCAmelCase_ ) + sorted(UpperCAmelCase_ , key=UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ ): # This inner function sort imports between [ ]. def _replace(UpperCAmelCase_ ): UpperCAmelCase : Dict = match.groups()[0] if "," not in imports: return F"""[{imports}]""" UpperCAmelCase : Any = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCAmelCase : Optional[int] = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(UpperCAmelCase_ )] ) + "]" UpperCAmelCase : Optional[int] = import_statement.split('\n' ) if len(UpperCAmelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCAmelCase : Union[str, Any] = 2 if lines[1].strip() == '[' else 1 UpperCAmelCase : Dict = [(i, _re_strip_line.search(UpperCAmelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] UpperCAmelCase : int = sort_objects(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : x[1] ) UpperCAmelCase : str = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(UpperCAmelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: UpperCAmelCase : Dict = _re_bracket_content.sub(_replace , lines[1] ) else: UpperCAmelCase : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCAmelCase : Optional[int] = keys[:-1] UpperCAmelCase : List[Any] = get_indent(lines[1] ) + ', '.join([F"""\"{k}\"""" for k in sort_objects(UpperCAmelCase_ )] ) return "\n".join(UpperCAmelCase_ ) else: # Finally we have to deal with imports fitting on one line UpperCAmelCase : List[Any] = _re_bracket_content.sub(_replace , UpperCAmelCase_ ) return import_statement def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_=True ): with open(UpperCAmelCase_ , 'r' ) as f: UpperCAmelCase : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCAmelCase : Tuple = split_code_in_indented_blocks( UpperCAmelCase_ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(UpperCAmelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. UpperCAmelCase : Tuple = main_blocks[block_idx] UpperCAmelCase : Optional[int] = block.split('\n' ) # Get to the start of the imports. UpperCAmelCase : Any = 0 while line_idx < len(UpperCAmelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCAmelCase : List[Any] = len(UpperCAmelCase_ ) else: line_idx += 1 if line_idx >= len(UpperCAmelCase_ ): continue # Ignore beginning and last line: they don't contain anything. UpperCAmelCase : Tuple = '\n'.join(block_lines[line_idx:-1] ) UpperCAmelCase : Any = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. UpperCAmelCase : Optional[Any] = split_code_in_indented_blocks(UpperCAmelCase_ , indent_level=UpperCAmelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend UpperCAmelCase : List[Any] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCAmelCase : Dict = [(pattern.search(UpperCAmelCase_ ).groups()[0] if pattern.search(UpperCAmelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCAmelCase : Optional[Any] = [(i, key) for i, key in enumerate(UpperCAmelCase_ ) if key is not None] UpperCAmelCase : List[str] = [x[0] for x in sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCAmelCase : str = 0 UpperCAmelCase : Tuple = [] for i in range(len(UpperCAmelCase_ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: UpperCAmelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(UpperCAmelCase_ ) count += 1 # And we put our main block back together with its first and last line. UpperCAmelCase : Dict = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(UpperCAmelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(UpperCAmelCase_ , 'w' ) as f: f.write('\n'.join(UpperCAmelCase_ ) ) def UpperCamelCase( UpperCAmelCase_=True ): UpperCAmelCase : List[str] = [] for root, _, files in os.walk(UpperCAmelCase_ ): if "__init__.py" in files: UpperCAmelCase : Optional[int] = sort_imports(os.path.join(UpperCAmelCase_ , '__init__.py' ) , check_only=UpperCAmelCase_ ) if result: UpperCAmelCase : List[str] = [os.path.join(UpperCAmelCase_ , '__init__.py' )] if len(UpperCAmelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(UpperCAmelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") lowercase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
695
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
1
'''simple docstring''' lowercase__ = 65521 def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = 1 UpperCAmelCase : Optional[Any] = 0 for plain_chr in plain_text: UpperCAmelCase : int = (a + ord(UpperCAmelCase_ )) % MOD_ADLER UpperCAmelCase : List[str] = (b + a) % MOD_ADLER return (b << 16) | a
695
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
1
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = tmp_path / 'cache' UpperCAmelCase : int = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Any = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = tmp_path / 'cache' UpperCAmelCase : List[str] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : int = features.copy() if features else default_expected_features UpperCAmelCase : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Union[str, Any] = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[Any] = tmp_path / 'cache' UpperCAmelCase : List[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : List[str] = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCAmelCase : Union[str, Any] = parquet_path elif issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCAmelCase : Dict = [parquet_path] UpperCAmelCase : Any = tmp_path / 'cache' UpperCAmelCase : int = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : int = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=("train",) ): assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for split in splits: UpperCAmelCase : Any = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : str = tmp_path / 'cache' UpperCAmelCase : Dict = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Any = ParquetDatasetReader( {'train': parquet_path} , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = tmp_path / 'cache' UpperCAmelCase : List[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : List[Any] = features.copy() if features else default_expected_features UpperCAmelCase : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Optional[int] = ParquetDatasetReader({'train': parquet_path} , features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if split: UpperCAmelCase : Optional[int] = {split: parquet_path} else: UpperCAmelCase : Optional[Any] = 'train' UpperCAmelCase : Optional[Any] = {'train': parquet_path, 'test': parquet_path} UpperCAmelCase : Union[str, Any] = tmp_path / 'cache' UpperCAmelCase : List[str] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : Union[str, Any] = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = ParquetDatasetWriter(SCREAMING_SNAKE_CASE_ , tmp_path / 'foo.parquet' ) assert writer.write() > 0 UpperCAmelCase : Tuple = pq.ParquetFile(tmp_path / 'foo.parquet' ) UpperCAmelCase : Optional[Any] = pf.read() assert dataset.data.table == output_table def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = str(shared_datadir / 'test_image_rgb.jpg' ) UpperCAmelCase : Any = {'image': [image_path]} UpperCAmelCase : Optional[int] = Features({'image': Image()} ) UpperCAmelCase : Tuple = Dataset.from_dict(SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : Optional[int] = ParquetDatasetWriter(SCREAMING_SNAKE_CASE_ , tmp_path / 'foo.parquet' ) assert writer.write() > 0 UpperCAmelCase : Optional[int] = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) ) assert dataset.features == reloaded_dataset.features UpperCAmelCase : Tuple = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=SCREAMING_SNAKE_CASE_ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected' , [ (Features({'foo': Value('int32' )} ), None), (Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): assert get_writer_batch_size(SCREAMING_SNAKE_CASE_ ) == expected
700
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: # A mock response for an HTTP head request to emulate server down UpperCAmelCase : Optional[int] = mock.Mock() UpperCAmelCase : Union[str, Any] = 500 UpperCAmelCase : int = {} UpperCAmelCase : Any = HTTPError UpperCAmelCase : Optional[Any] = {} # Download this model to make sure it's in the cache. UpperCAmelCase : int = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=lowerCAmelCase__ ) as mock_head: UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase_ ( self : List[Any] ) -> Dict: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase : int = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class A_ ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCAmelCase_ ( cls : List[str] ) -> List[Any]: UpperCAmelCase : str = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def UpperCAmelCase_ ( cls : Optional[int] ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def UpperCAmelCase_ ( self : Any ) -> Any: UpperCAmelCase : List[str] = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token ) UpperCAmelCase : Any = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase__ , repo_id='test-feature-extractor' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) UpperCAmelCase : int = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase__ , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) UpperCAmelCase : str = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: CustomFeatureExtractor.register_for_auto_class() UpperCAmelCase : str = CustomFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( f"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor' )
701
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
0
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class A_ ( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = VQModel UpperCAmelCase_ : Union[str, Any] = """sample""" @property def UpperCAmelCase_ ( self : List[str] , lowercase_ : List[str]=(32, 32) ) -> Tuple: UpperCAmelCase : Any = 4 UpperCAmelCase : str = 3 UpperCAmelCase : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) return {"sample": image} @property def UpperCAmelCase_ ( self : Tuple ) -> str: return (3, 32, 32) @property def UpperCAmelCase_ ( self : List[Any] ) -> Any: return (3, 32, 32) def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: UpperCAmelCase : Union[str, Any] = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 3, } UpperCAmelCase : int = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self : List[str] ) -> Dict: pass def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: pass def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Dict = VQModel.from_pretrained('fusing/vqgan-dummy' , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : int = VQModel.from_pretrained('fusing/vqgan-dummy' ) model.to(UpperCAmelCase_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) UpperCAmelCase : List[Any] = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) UpperCAmelCase : List[Any] = image.to(UpperCAmelCase_ ) with torch.no_grad(): UpperCAmelCase : List[str] = model(UpperCAmelCase_ ).sample UpperCAmelCase : Dict = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase : Union[str, Any] = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
702
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
0
'''simple docstring''' import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowercase__ = logging.getLogger() def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Dict = {} UpperCAmelCase : List[str] = os.path.join(UpperCAmelCase_ , 'all_results.json' ) if os.path.exists(UpperCAmelCase_ ): with open(UpperCAmelCase_ , 'r' ) as f: UpperCAmelCase : Tuple = json.load(UpperCAmelCase_ ) else: raise ValueError(F"""can\'t find {path}""" ) return results lowercase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class A_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: import xla_spawn UpperCAmelCase : Dict = self.get_auto_remove_tmp_dir() UpperCAmelCase : Tuple = f""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): UpperCAmelCase : List[Any] = time() xla_spawn.main() UpperCAmelCase : Any = time() UpperCAmelCase : str = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: import xla_spawn UpperCAmelCase : Any = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(A_ , 'argv' , A_ ): xla_spawn.main()
703
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCamelCase( ): UpperCAmelCase : int = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=_lowercase , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=_lowercase , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=_lowercase ) return parser.parse_args() def UpperCamelCase( ): UpperCAmelCase : str = parse_args() # Import training_script as a module. UpperCAmelCase : Dict = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCAmelCase : Union[str, Any] = script_fpath.stem UpperCAmelCase : Optional[Any] = importlib.import_module(_lowercase ) # Patch sys.argv UpperCAmelCase : Tuple = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
704
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : Any = 42 UpperCAmelCase_ : Any = None UpperCAmelCase_ : Union[str, Any] = None def UpperCamelCase( ): UpperCAmelCase : int = Node(1 ) UpperCAmelCase : str = Node(2 ) UpperCAmelCase : int = Node(3 ) UpperCAmelCase : Any = Node(4 ) UpperCAmelCase : Dict = Node(5 ) return tree def UpperCamelCase( UpperCAmelCase_ ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase( UpperCAmelCase_ ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase( UpperCAmelCase_ ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase( UpperCAmelCase_ ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : list[Any] = [] if root is None: return output UpperCAmelCase : Optional[Any] = deque([root] ) while process_queue: UpperCAmelCase : List[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : list[Any] = [] def populate_output(UpperCAmelCase_ , UpperCAmelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(_A , _A ) return output def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : list[Any] = [] def populate_output(UpperCAmelCase_ , UpperCAmelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(_A , _A ) return output def UpperCamelCase( UpperCAmelCase_ ): if root is None: return [] UpperCAmelCase : list[Sequence[Node | None]] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : int = height(_A ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_A , _A ) ) UpperCAmelCase : str = 1 else: output.append(get_nodes_from_right_to_left(_A , _A ) ) UpperCAmelCase : int = 0 return output def UpperCamelCase( ): # Main function for testing. UpperCAmelCase : str = make_tree() print(F"""In-order Traversal: {inorder(_A )}""" ) print(F"""Pre-order Traversal: {preorder(_A )}""" ) print(F"""Post-order Traversal: {postorder(_A )}""" , '\n' ) print(F"""Height of Tree: {height(_A )}""" , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(_A ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(_A ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(_A , level=_A ) ) print('\nZigZag order Traversal: ' ) print(zigzag(_A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
705
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
0
'''simple docstring''' import numpy as np from PIL import Image def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[Any] = np.array(lowerCamelCase_ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) UpperCAmelCase : Tuple = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : str = 0 # compute the shape of the output matrix UpperCAmelCase : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCAmelCase : Dict = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCAmelCase : List[Any] = 0 UpperCAmelCase : Optional[int] = 0 return updated_arr def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = np.array(lowerCamelCase_ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : int = 0 UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[Any] = 0 # compute the shape of the output matrix UpperCAmelCase : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCAmelCase : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCAmelCase : List[Any] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : Optional[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image lowercase__ = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
706
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
0
'''simple docstring''' import math from datetime import datetime, timedelta def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = year % 19 UpperCAmelCase : Optional[int] = year % 4 UpperCAmelCase : int = year % 7 UpperCAmelCase : int = math.floor(year / 1_00 ) UpperCAmelCase : Optional[int] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) UpperCAmelCase : List[Any] = leap_day_inhibits / 4 UpperCAmelCase : Union[str, Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCAmelCase : List[str] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCAmelCase : List[str] = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCAmelCase : Union[str, Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase_ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase_ , 4 , 18 ) else: return datetime(UpperCAmelCase_ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): lowercase__ = "will be" if year > datetime.now().year else "was" print(f'''Easter in {year} {tense} {gauss_easter(year)}''')
707
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : List[str] ) -> List[str]: UpperCAmelCase : Any = tempfile.mkdtemp() # fmt: off UpperCAmelCase : Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) UpperCAmelCase : List[Any] = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } UpperCAmelCase : Dict = os.path.join(self.tmpdirname , lowercase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Any , **lowercase_ : Any ) -> List[Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase_ ( self : Tuple , **lowercase_ : Any ) -> Tuple: return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self : List[str] ) -> int: UpperCAmelCase : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase : Any = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : Optional[Any] = self.get_tokenizer() UpperCAmelCase : Optional[int] = self.get_image_processor() UpperCAmelCase : int = VisionTextDualEncoderProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[int] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCAmelCase : str = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) UpperCAmelCase : str = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> str: UpperCAmelCase : Any = self.get_image_processor() UpperCAmelCase : Optional[int] = self.get_tokenizer() UpperCAmelCase : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) UpperCAmelCase : str = self.prepare_image_inputs() UpperCAmelCase : Any = image_processor(lowercase_ , return_tensors='np' ) UpperCAmelCase : Union[str, Any] = processor(images=lowercase_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : str = self.get_image_processor() UpperCAmelCase : Optional[Any] = self.get_tokenizer() UpperCAmelCase : Dict = VisionTextDualEncoderProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) UpperCAmelCase : int = '''lower newer''' UpperCAmelCase : List[str] = processor(text=lowercase_ ) UpperCAmelCase : Tuple = tokenizer(lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase_ ( self : int ) -> Tuple: UpperCAmelCase : Optional[int] = self.get_image_processor() UpperCAmelCase : Dict = self.get_tokenizer() UpperCAmelCase : Dict = VisionTextDualEncoderProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) UpperCAmelCase : Dict = '''lower newer''' UpperCAmelCase : List[Any] = self.prepare_image_inputs() UpperCAmelCase : Dict = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(lowercase_ ): processor() def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : List[str] = self.get_image_processor() UpperCAmelCase : str = self.get_tokenizer() UpperCAmelCase : str = VisionTextDualEncoderProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) UpperCAmelCase : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase : Tuple = processor.batch_decode(lowercase_ ) UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: UpperCAmelCase : Union[str, Any] = self.get_image_processor() UpperCAmelCase : List[str] = self.get_tokenizer() UpperCAmelCase : Tuple = VisionTextDualEncoderProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) UpperCAmelCase : Optional[int] = '''lower newer''' UpperCAmelCase : Dict = self.prepare_image_inputs() UpperCAmelCase : Any = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
708
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , lowercase_ : Any , lowercase_ : List[str]=7 , lowercase_ : List[Any]=3 , lowercase_ : Union[str, Any]=18 , lowercase_ : Dict=30 , lowercase_ : str=400 , lowercase_ : Tuple=True , lowercase_ : Optional[Any]=None , lowercase_ : int=True , lowercase_ : Optional[int]=None , lowercase_ : List[str]=True , lowercase_ : List[str]=[0.5, 0.5, 0.5] , lowercase_ : Optional[int]=[0.5, 0.5, 0.5] , ) -> Tuple: UpperCAmelCase : Union[str, Any] = size if size is not None else {'shortest_edge': 18} UpperCAmelCase : List[Any] = crop_size if crop_size is not None else {'height': 18, 'width': 18} UpperCAmelCase : Tuple = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : List[str] = image_size UpperCAmelCase : int = min_resolution UpperCAmelCase : Any = max_resolution UpperCAmelCase : Dict = do_resize UpperCAmelCase : int = size UpperCAmelCase : Optional[Any] = do_center_crop UpperCAmelCase : List[Any] = crop_size UpperCAmelCase : int = do_normalize UpperCAmelCase : List[Any] = image_mean UpperCAmelCase : Optional[Any] = image_std def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = LevitImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : Dict ) -> int: UpperCAmelCase : List[str] = LevitImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : List[Any] ) -> Dict: UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'size' ) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) UpperCAmelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: pass def UpperCAmelCase_ ( self : Any ) -> Optional[int]: # Initialize image_processing UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase : Any = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase_ ( self : Any ) -> List[Any]: # Initialize image_processing UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase : int = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase_ ( self : str ) -> List[str]: # Initialize image_processing UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input UpperCAmelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase : Tuple = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
709
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowercase__ : Any = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } lowercase__ : Optional[int] = logging.WARNING def UpperCamelCase( ): UpperCAmelCase : Union[str, Any] = os.getenv('DATASETS_VERBOSITY' , lowerCamelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def UpperCamelCase( ): return __name__.split('.' )[0] def UpperCamelCase( ): return logging.getLogger(_get_library_name() ) def UpperCamelCase( ): UpperCAmelCase : List[str] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def UpperCamelCase( ): UpperCAmelCase : Dict = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def UpperCamelCase( UpperCAmelCase_ = None ): if name is None: UpperCAmelCase : Union[str, Any] = _get_library_name() return logging.getLogger(lowerCamelCase__ ) def UpperCamelCase( ): return _get_library_root_logger().getEffectiveLevel() def UpperCamelCase( UpperCAmelCase_ ): _get_library_root_logger().setLevel(lowerCamelCase__ ) def UpperCamelCase( ): return set_verbosity(lowerCamelCase__ ) def UpperCamelCase( ): return set_verbosity(lowerCamelCase__ ) def UpperCamelCase( ): return set_verbosity(lowerCamelCase__ ) def UpperCamelCase( ): return set_verbosity(lowerCamelCase__ ) def UpperCamelCase( ): UpperCAmelCase : Dict = False def UpperCamelCase( ): UpperCAmelCase : Optional[Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class A_ : '''simple docstring''' def __init__( self : List[str] , *lowercase_ : List[Any] , **lowercase_ : Dict ) -> Union[str, Any]: # pylint: disable=unused-argument UpperCAmelCase : List[Any] = args[0] if args else None def __iter__( self : str ) -> Optional[Any]: return iter(self._iterator ) def __getattr__( self : Any , lowercase_ : Union[str, Any] ) -> int: def empty_fn(*lowercase_ : List[Any] , **lowercase_ : str ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Tuple ) -> str: return self def __exit__( self : Optional[int] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : int ) -> List[str]: return lowercase__ : Optional[Any] = True class A_ : '''simple docstring''' def __call__( self : Union[str, Any] , *lowercase_ : Union[str, Any] , lowercase_ : Tuple=False , **lowercase_ : List[Any] ) -> Union[str, Any]: if _tqdm_active and not disable: return tqdm_lib.tqdm(*UpperCamelCase_ , **UpperCamelCase_ ) else: return EmptyTqdm(*UpperCamelCase_ , **UpperCamelCase_ ) def UpperCAmelCase_ ( self : int , *lowercase_ : Any , **lowercase_ : str ) -> int: UpperCAmelCase : Dict = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCamelCase_ , **UpperCamelCase_ ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowercase__ : List[str] = _tqdm_cls() def UpperCamelCase( ): global _tqdm_active return bool(_tqdm_active ) def UpperCamelCase( ): global _tqdm_active UpperCAmelCase : Dict = True def UpperCamelCase( ): global _tqdm_active UpperCAmelCase : List[Any] = False
710
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
0
'''simple docstring''' from __future__ import annotations from typing import Any class A_ : '''simple docstring''' def __init__( self : Tuple , lowercase_ : int ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = num_of_nodes UpperCAmelCase : list[list[int]] = [] UpperCAmelCase : dict[int, int] = {} def UpperCAmelCase_ ( self : str , lowercase_ : int , lowercase_ : int , lowercase_ : int ) -> Optional[Any]: self.m_edges.append([u_node, v_node, weight] ) def UpperCAmelCase_ ( self : int , lowercase_ : int ) -> Optional[int]: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : int ) -> List[Any]: if self.m_component[u_node] != u_node: for k in self.m_component: UpperCAmelCase : Optional[int] = self.find_component(__A ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : list[int] , lowercase_ : int , lowercase_ : int ) -> Dict: if component_size[u_node] <= component_size[v_node]: UpperCAmelCase : Tuple = v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: UpperCAmelCase : Optional[int] = self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: UpperCAmelCase : str = [] UpperCAmelCase : List[Any] = 0 UpperCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) UpperCAmelCase : List[Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: UpperCAmelCase : List[Any] = edge UpperCAmelCase : List[str] = self.m_component[u] UpperCAmelCase : Dict = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): UpperCAmelCase : Optional[int] = [u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): UpperCAmelCase : Dict = edge UpperCAmelCase : Optional[Any] = self.m_component[u] UpperCAmelCase : Dict = self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 UpperCAmelCase : Tuple = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def UpperCamelCase( ) -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
0
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowercase__ = "\\n Text data.\n Second line of data." lowercase__ = "file" @pytest.fixture(scope='session' ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp('data' ) / (FILE_PATH + """.zstd""") UpperCAmelCase : Optional[Any] = bytes(__lowerCAmelCase , 'utf-8' ) with zstd.open(__lowerCAmelCase , 'wb' ) as f: f.write(__lowerCAmelCase ) return path @pytest.fixture def UpperCamelCase( UpperCAmelCase_ ): with open(os.path.join(tmpfs.local_root_dir , __lowerCAmelCase ) , 'w' ) as f: f.write(__lowerCAmelCase ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Dict = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} UpperCAmelCase : Dict = input_paths[compression_format] UpperCAmelCase : Dict = tmp_path / """cache""" UpperCAmelCase : Any = DownloadConfig(cache_dir=__lowerCAmelCase , extract_compressed_file=__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cached_path(__lowerCAmelCase , download_config=__lowerCAmelCase ) with open(__lowerCAmelCase ) as f: UpperCAmelCase : Optional[int] = f.read() with open(__lowerCAmelCase ) as f: UpperCAmelCase : Dict = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = """custom_cache""" UpperCAmelCase : Dict = """custom_extracted_dir""" UpperCAmelCase : List[Any] = tmp_path / """custom_extracted_path""" if default_extracted: UpperCAmelCase : List[Any] = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , __lowerCAmelCase ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(__lowerCAmelCase ) ) UpperCAmelCase : List[str] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) UpperCAmelCase : Optional[int] = xz_file UpperCAmelCase : str = ( DownloadConfig(extract_compressed_file=__lowerCAmelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__lowerCAmelCase ) ) UpperCAmelCase : List[str] = cached_path(__lowerCAmelCase , download_config=__lowerCAmelCase ) assert Path(__lowerCAmelCase ).parent.parts[-2:] == expected def UpperCamelCase( UpperCAmelCase_ ): # absolute path UpperCAmelCase : Optional[int] = str(Path(__lowerCAmelCase ).resolve() ) assert cached_path(__lowerCAmelCase ) == text_file # relative path UpperCAmelCase : List[str] = str(Path(__lowerCAmelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__lowerCAmelCase ) == text_file def UpperCamelCase( UpperCAmelCase_ ): # absolute path UpperCAmelCase : Optional[Any] = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(__lowerCAmelCase ): cached_path(__lowerCAmelCase ) # relative path UpperCAmelCase : Union[str, Any] = """./__missing_file__.txt""" with pytest.raises(__lowerCAmelCase ): cached_path(__lowerCAmelCase ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(__lowerCAmelCase ) as f: UpperCAmelCase : Optional[int] = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , __lowerCAmelCase ) def UpperCamelCase( ): with pytest.raises(__lowerCAmelCase ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __lowerCAmelCase ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[Any] = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(__lowerCAmelCase ): http_get('https://huggingface.co' , temp_file=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __lowerCAmelCase ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(__lowerCAmelCase ): ftp_get('ftp://huggingface.co' , temp_file=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __lowerCAmelCase ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(__lowerCAmelCase ): fsspec_get('s3://huggingface.co' , temp_file=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase ): fsspec_head('s3://huggingface.co' )
712
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
0
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Any = FileLock(str(tmpdir / 'foo.lock' ) ) UpperCAmelCase : Dict = FileLock(str(tmpdir / 'foo.lock' ) ) UpperCAmelCase : int = 0.01 with locka.acquire(): with pytest.raises(__UpperCAmelCase ): UpperCAmelCase : List[Any] = time.time() locka.acquire(__UpperCAmelCase ) assert time.time() - _start > timeout def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = 'a' * 10_00 + '.lock' UpperCAmelCase : Tuple = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__UpperCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 UpperCAmelCase : Tuple = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__UpperCAmelCase ): locka.acquire(0 )
713
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
0
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : List[str] = 3.0 class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCAmelCase ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def UpperCAmelCase_ ( self : str ) -> str: UpperCAmelCase : Tuple = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() UpperCAmelCase : Tuple = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCAmelCase : Optional[int] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _UpperCAmelCase ) @require_multi_gpu def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : str = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowercase__ = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase__ = torch.nn.Linear(100, 200) lowercase__ = accelerator.prepare(model) # Check the values changed in kwargs lowercase__ = "" lowercase__ = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
714
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
0
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowercase__ = logging.getLogger(__name__) class A_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : str=None ) -> str: super().__init__( _UpperCamelCase , question_encoder_tokenizer=_UpperCamelCase , generator_tokenizer=_UpperCamelCase , index=_UpperCamelCase , init_retrieval=_UpperCamelCase , ) UpperCAmelCase : Optional[Any] = None def UpperCAmelCase_ ( self : List[str] , lowercase_ : int ) -> List[Any]: logger.info('initializing retrieval' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('dist initialized' ) # needs to be set manually UpperCAmelCase : str = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : Dict = str(distributed_port + 1 ) UpperCAmelCase : str = dist.new_group(ranks=_UpperCamelCase , backend='gloo' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('dist not initialized / main' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def UpperCAmelCase_ ( self : Any ) -> List[Any]: return dist.get_rank(group=self.process_group ) == 0 def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Optional[Any]=torch.floataa ) -> Any: UpperCAmelCase : Optional[Any] = torch.empty(_UpperCamelCase , dtype=_UpperCamelCase ) dist.scatter(_UpperCamelCase , src=0 , scatter_list=_UpperCamelCase , group=self.process_group ) return target_tensor def UpperCAmelCase_ ( self : str ) -> List[Any]: UpperCAmelCase : Optional[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Union[str, Any] = next((addr for addr in addrs if addr.startswith('e' )) , _UpperCamelCase ) return ifname def UpperCAmelCase_ ( self : Any , lowercase_ : np.ndarray , lowercase_ : int ) -> Tuple[np.ndarray, List[dict]]: if not dist.is_initialized(): UpperCAmelCase : Union[str, Any] = self._main_retrieve(_UpperCamelCase , _UpperCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_UpperCamelCase ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : Optional[int] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(_UpperCamelCase )] dist.gather(torch.tensor(_UpperCamelCase ) , dst=0 , gather_list=_UpperCamelCase , group=self.process_group ) # scatter logic UpperCAmelCase : int = question_hidden_states.shape[0] UpperCAmelCase : Any = [] UpperCAmelCase : Tuple = [] if self._is_main(): assert len(_UpperCamelCase ) == world_size UpperCAmelCase : List[str] = self._main_retrieve(torch.cat(_UpperCamelCase ).numpy() , _UpperCamelCase ) UpperCAmelCase : Tuple = torch.tensor(_UpperCamelCase ), torch.tensor(_UpperCamelCase ) UpperCAmelCase : List[Any] = self._chunk_tensor(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase : str = self._chunk_tensor(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase : int = self._scattered(_UpperCamelCase , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Dict = self._scattered(_UpperCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_UpperCamelCase )
715
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
0
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Optional[int] = get_activation('swish' ) self.assertIsInstance(_A , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : str = get_activation('silu' ) self.assertIsInstance(_A , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: UpperCAmelCase : Tuple = get_activation('mish' ) self.assertIsInstance(_A , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase_ ( self : str ) -> List[Any]: UpperCAmelCase : Optional[int] = get_activation('gelu' ) self.assertIsInstance(_A , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
716
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
0
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase__ = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class A_ : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : int = 14 ) -> None: if group not in primes: raise ValueError('Unsupported Group' ) UpperCAmelCase : Any = primes[group]["prime"] UpperCAmelCase : str = primes[group]["generator"] UpperCAmelCase : List[str] = int(hexlify(urandom(32 ) ) , base=16 ) def UpperCAmelCase_ ( self : str ) -> str: return hex(self.__private_key )[2:] def UpperCAmelCase_ ( self : int ) -> str: UpperCAmelCase : Dict = pow(self.generator , self.__private_key , self.prime ) return hex(__lowerCamelCase )[2:] def UpperCAmelCase_ ( self : Dict , lowercase_ : int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(__lowerCamelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def UpperCAmelCase_ ( self : Any , lowercase_ : str ) -> str: UpperCAmelCase : List[str] = int(__lowerCamelCase , base=16 ) if not self.is_valid_public_key(__lowerCamelCase ): raise ValueError('Invalid public key' ) UpperCAmelCase : str = pow(__lowerCamelCase , self.__private_key , self.prime ) return shaaaa(str(__lowerCamelCase ).encode() ).hexdigest() @staticmethod def UpperCAmelCase_ ( lowercase_ : int , lowercase_ : int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(__lowerCamelCase , (prime - 1) // 2 , __lowerCamelCase ) == 1 ) @staticmethod def UpperCAmelCase_ ( lowercase_ : str , lowercase_ : str , lowercase_ : int = 14 ) -> str: UpperCAmelCase : Any = int(__lowerCamelCase , base=16 ) UpperCAmelCase : Tuple = int(__lowerCamelCase , base=16 ) UpperCAmelCase : Optional[Any] = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(__lowerCamelCase , __lowerCamelCase ): raise ValueError('Invalid public key' ) UpperCAmelCase : Dict = pow(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return shaaaa(str(__lowerCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : int ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : Any = 1 UpperCAmelCase : Any = 3 UpperCAmelCase : str = (32, 32) UpperCAmelCase : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def UpperCAmelCase_ ( self : List[str] ) -> Tuple: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=lowerCamelCase_ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def UpperCAmelCase_ ( self : List[str] ) -> str: torch.manual_seed(0 ) UpperCAmelCase : Dict = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) return CLIPTextModel(lowerCamelCase_ ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Tuple = self.dummy_cond_unet_upscale UpperCAmelCase : int = DDPMScheduler() UpperCAmelCase : Optional[int] = DDIMScheduler(prediction_type='v_prediction' ) UpperCAmelCase : List[Any] = self.dummy_vae UpperCAmelCase : Tuple = self.dummy_text_encoder UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCAmelCase : List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase : int = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=350 , ) UpperCAmelCase : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase : Union[str, Any] = '''A painting of a squirrel eating a burger''' UpperCAmelCase : Union[str, Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase : List[Any] = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) UpperCAmelCase : Union[str, Any] = output.images UpperCAmelCase : List[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase : Tuple = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] UpperCAmelCase : str = image[0, -3:, -3:, -1] UpperCAmelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] UpperCAmelCase : List[str] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) UpperCAmelCase : List[Any] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : List[str] ) -> Tuple: UpperCAmelCase : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet_upscale UpperCAmelCase : Any = DDPMScheduler() UpperCAmelCase : Optional[int] = DDIMScheduler(prediction_type='v_prediction' ) UpperCAmelCase : List[str] = self.dummy_vae UpperCAmelCase : int = self.dummy_text_encoder UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCAmelCase : Optional[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase : List[Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase : int = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=350 , ) UpperCAmelCase : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase : int = '''A painting of a squirrel eating a burger''' UpperCAmelCase : List[str] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) UpperCAmelCase : Union[str, Any] = output.images assert image.shape[0] == 2 UpperCAmelCase : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) UpperCAmelCase : Optional[Any] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : List[str] = self.dummy_cond_unet_upscale UpperCAmelCase : Dict = DDPMScheduler() UpperCAmelCase : str = DDIMScheduler(prediction_type='v_prediction' ) UpperCAmelCase : int = self.dummy_vae UpperCAmelCase : Optional[Any] = self.dummy_text_encoder UpperCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCAmelCase : str = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 UpperCAmelCase : List[str] = unet.half() UpperCAmelCase : List[Any] = text_encoder.half() # make sure here that pndm scheduler skips prk UpperCAmelCase : int = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=350 , ) UpperCAmelCase : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase : Any = '''A painting of a squirrel eating a burger''' UpperCAmelCase : Any = torch.manual_seed(0 ) UpperCAmelCase : Dict = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='np' , ).images UpperCAmelCase : Any = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: UpperCAmelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) UpperCAmelCase : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) UpperCAmelCase : Dict = '''stabilityai/stable-diffusion-x4-upscaler''' UpperCAmelCase : Tuple = StableDiffusionUpscalePipeline.from_pretrained(lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() UpperCAmelCase : Dict = '''a cat sitting on a park bench''' UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : Any = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='np' , ) UpperCAmelCase : Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def UpperCAmelCase_ ( self : Any ) -> int: UpperCAmelCase : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) UpperCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) UpperCAmelCase : List[Any] = '''stabilityai/stable-diffusion-x4-upscaler''' UpperCAmelCase : Any = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() UpperCAmelCase : Tuple = '''a cat sitting on a park bench''' UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='np' , ) UpperCAmelCase : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCAmelCase_ ( self : Tuple ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) UpperCAmelCase : List[str] = '''stabilityai/stable-diffusion-x4-upscaler''' UpperCAmelCase : List[Any] = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase : Optional[int] = '''a cat sitting on a park bench''' UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=5 , output_type='np' , ) UpperCAmelCase : Dict = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
718
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowercase__ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class A_ : '''simple docstring''' def __init__( self : Dict , lowercase_ : List[str] , lowercase_ : Optional[int]=16 , lowercase_ : Union[str, Any]=13 , lowercase_ : Optional[Any]=7 , lowercase_ : Dict=14 , lowercase_ : Tuple=10 , lowercase_ : Any=19 , lowercase_ : int=5 , lowercase_ : str=4 , lowercase_ : Dict=True , lowercase_ : Optional[int]=16 , lowercase_ : str=2 , lowercase_ : List[str]=4 , lowercase_ : int=4 , lowercase_ : Tuple="gelu" , lowercase_ : Dict=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : Union[str, Any]=[1, 2, 3, 4, 5] , lowercase_ : Tuple=25 , lowercase_ : List[Any]=5 , ) -> List[Any]: UpperCAmelCase : Optional[int] = d_model UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : Optional[int] = prediction_length UpperCAmelCase : Optional[Any] = context_length UpperCAmelCase : int = cardinality UpperCAmelCase : Optional[int] = num_time_features UpperCAmelCase : int = lags_sequence UpperCAmelCase : List[Any] = embedding_dimension UpperCAmelCase : int = is_training UpperCAmelCase : int = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Any = context_length UpperCAmelCase : Optional[Any] = prediction_length + label_length UpperCAmelCase : List[str] = label_length UpperCAmelCase : Any = moving_average UpperCAmelCase : str = autocorrelation_factor def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Any = config.context_length + max(config.lags_sequence ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) UpperCAmelCase : Any = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) UpperCAmelCase : str = floats_tensor([self.batch_size, _past_length] ) UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs UpperCAmelCase : int = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) UpperCAmelCase : List[str] = floats_tensor([self.batch_size, config.prediction_length] ) UpperCAmelCase : List[str] = { 'past_values': past_values, 'static_categorical_features': static_categorical_features, 'past_time_features': past_time_features, 'past_observed_mask': past_observed_mask, 'future_time_features': future_time_features, 'future_values': future_values, } return inputs_dict def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: UpperCAmelCase : str = self.get_config() UpperCAmelCase : Optional[Any] = self.prepare_autoformer_inputs_dict(__UpperCamelCase ) return config, inputs_dict def UpperCAmelCase_ ( self : str ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : str , lowercase_ : Tuple ) -> Optional[Any]: UpperCAmelCase : Tuple = AutoformerModel(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() UpperCAmelCase : Any = model(**__UpperCamelCase ) UpperCAmelCase : List[Any] = outputs.encoder_last_hidden_state UpperCAmelCase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Optional[int] = model.get_encoder() encoder.save_pretrained(__UpperCamelCase ) UpperCAmelCase : Optional[Any] = AutoformerEncoder.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = model.create_network_inputs(**__UpperCamelCase ) UpperCAmelCase , UpperCAmelCase : List[Any] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) UpperCAmelCase : Union[str, Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) UpperCAmelCase : Dict = encoder(inputs_embeds=__UpperCamelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) UpperCAmelCase : Optional[Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) UpperCAmelCase : Tuple = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) UpperCAmelCase : int = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) UpperCAmelCase : Optional[int] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : List[Any] = model.get_decoder() decoder.save_pretrained(__UpperCamelCase ) UpperCAmelCase : Dict = AutoformerDecoder.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase ) UpperCAmelCase : Optional[Any] = decoder( trend=__UpperCamelCase , inputs_embeds=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class A_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () UpperCAmelCase_ : Any = (AutoformerForPrediction,) if is_torch_available() else () UpperCAmelCase_ : Optional[Any] = {'feature-extraction': AutoformerModel} if is_torch_available() else {} UpperCAmelCase_ : Optional[int] = False UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : Optional[int] = False UpperCAmelCase_ : Optional[int] = False UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : Optional[int] = False def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: UpperCAmelCase : Tuple = AutoformerModelTester(self ) UpperCAmelCase : int = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def UpperCAmelCase_ ( self : str ) -> int: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Any ) -> int: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCAmelCase : List[str] = model_class(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ) UpperCAmelCase , UpperCAmelCase : Dict = model_class.from_pretrained(__UpperCamelCase , output_loading_info=__UpperCamelCase ) self.assertEqual(info['missing_keys'] , [] ) def UpperCAmelCase_ ( self : str ) -> List[Any]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__UpperCamelCase ) @unittest.skip(reason='Model has no tokens embeddings' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: pass def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : List[Any] = inspect.signature(getattr(__UpperCamelCase , 'forward' ) ) # The main input is the name of the argument after `self` UpperCAmelCase : str = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __UpperCamelCase ) def UpperCAmelCase_ ( self : Any ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[str] = model_class(__UpperCamelCase ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : List[Any] = [*signature.parameters.keys()] UpperCAmelCase : Optional[int] = [ 'past_values', 'past_time_features', 'past_observed_mask', 'static_categorical_features', 'static_real_features', 'future_values', 'future_time_features', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('future_observed_mask' ) expected_arg_names.extend( [ 'decoder_attention_mask', 'head_mask', 'decoder_head_mask', 'cross_attn_head_mask', 'encoder_outputs', 'past_key_values', 'output_hidden_states', 'output_attentions', 'use_cache', 'return_dict', ] ) self.assertListEqual(arg_names[: len(__UpperCamelCase )] , __UpperCamelCase ) def UpperCAmelCase_ ( self : int ) -> Any: UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = True UpperCAmelCase : Optional[Any] = getattr(self.model_tester , 'seq_length' , __UpperCamelCase ) UpperCAmelCase : Optional[Any] = getattr(self.model_tester , 'decoder_seq_length' , __UpperCamelCase ) UpperCAmelCase : Tuple = getattr(self.model_tester , 'encoder_seq_length' , __UpperCamelCase ) UpperCAmelCase : Optional[Any] = getattr(self.model_tester , 'd_model' , __UpperCamelCase ) UpperCAmelCase : Tuple = getattr(self.model_tester , 'num_attention_heads' , __UpperCamelCase ) UpperCAmelCase : Union[str, Any] = d_model // num_attention_heads for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = True UpperCAmelCase : List[Any] = False UpperCAmelCase : str = True UpperCAmelCase : Optional[int] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCAmelCase : int = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase : Optional[int] = True UpperCAmelCase : Optional[int] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCAmelCase : Optional[Any] = outputs.encoder_attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) UpperCAmelCase : List[str] = len(__UpperCamelCase ) UpperCAmelCase : List[str] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__UpperCamelCase , __UpperCamelCase ) # decoder attentions UpperCAmelCase : Tuple = outputs.decoder_attentions self.assertIsInstance(__UpperCamelCase , (list, tuple) ) self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions UpperCAmelCase : List[str] = outputs.cross_attentions self.assertIsInstance(__UpperCamelCase , (list, tuple) ) self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[str] = True UpperCAmelCase : Optional[int] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): UpperCAmelCase : str = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(out_len + 2 , len(__UpperCamelCase ) ) UpperCAmelCase : Dict = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: super().test_retain_grad_hidden_states_attentions() def UpperCamelCase( UpperCAmelCase_="train-batch.pt" ): UpperCAmelCase : Optional[Any] = hf_hub_download(repo_id='hf-internal-testing/tourism-monthly-batch' , filename=_A , repo_type='dataset' ) UpperCAmelCase : List[str] = torch.load(_A , map_location=_A ) return batch @require_torch @slow class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : Optional[int] = AutoformerModel.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(__UpperCamelCase ) UpperCAmelCase : int = prepare_batch() with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , future_values=batch['future_values'] , future_time_features=batch['future_time_features'] , )[0] UpperCAmelCase : str = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __UpperCamelCase ) UpperCAmelCase : Optional[Any] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__UpperCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) def UpperCAmelCase_ ( self : int ) -> List[str]: UpperCAmelCase : Optional[Any] = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(__UpperCamelCase ) UpperCAmelCase : Optional[int] = prepare_batch('val-batch.pt' ) with torch.no_grad(): UpperCAmelCase : Dict = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , ).encoder_last_hidden_state UpperCAmelCase : Optional[int] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __UpperCamelCase ) UpperCAmelCase : Any = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__UpperCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) def UpperCAmelCase_ ( self : Dict ) -> int: UpperCAmelCase : Optional[int] = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(__UpperCamelCase ) UpperCAmelCase : List[Any] = prepare_batch('val-batch.pt' ) with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model.generate( static_categorical_features=batch['static_categorical_features'] , past_time_features=batch['past_time_features'] , past_values=batch['past_values'] , future_time_features=batch['future_time_features'] , past_observed_mask=batch['past_observed_mask'] , ) UpperCAmelCase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __UpperCamelCase ) UpperCAmelCase : Tuple = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=__UpperCamelCase ) UpperCAmelCase : Optional[Any] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __UpperCamelCase , rtol=1E-1 ) )
719
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): if not head: return True # split the list to two parts UpperCAmelCase , UpperCAmelCase : Dict = head.next, head while fast and fast.next: UpperCAmelCase : List[Any] = fast.next.next UpperCAmelCase : Optional[Any] = slow.next UpperCAmelCase : str = slow.next UpperCAmelCase : Union[str, Any] = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase : Optional[int] = None while second: UpperCAmelCase : int = second.next UpperCAmelCase : Union[str, Any] = node UpperCAmelCase : Optional[Any] = second UpperCAmelCase : Tuple = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase : Optional[Any] = node.next UpperCAmelCase : int = head.next return True def UpperCamelCase( UpperCAmelCase_ ): if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase : List[str] = head while fast and fast.next: UpperCAmelCase , UpperCAmelCase : str = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase : List[Any] = [slow.val] while slow.next: UpperCAmelCase : Optional[int] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase : Optional[Any] = cur.next return True def UpperCamelCase( UpperCAmelCase_ ): if not head or not head.next: return True UpperCAmelCase : str = {} UpperCAmelCase : Optional[Any] = 0 while head: if head.val in d: d[head.val].append(UpperCAmelCase_ ) else: UpperCAmelCase : int = [pos] UpperCAmelCase : List[str] = head.next pos += 1 UpperCAmelCase : int = pos - 1 UpperCAmelCase : List[str] = 0 for v in d.values(): if len(UpperCAmelCase_ ) % 2 != 0: middle += 1 else: UpperCAmelCase : List[str] = 0 for i in range(0 , len(UpperCAmelCase_ ) ): if v[i] + v[len(UpperCAmelCase_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
720
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
0
'''simple docstring''' lowercase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = [False] * len(__UpperCamelCase ) UpperCAmelCase : str = [s] UpperCAmelCase : Tuple = True while queue: UpperCAmelCase : Dict = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__UpperCamelCase ) UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = u return visited[t] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = [-1] * (len(__UpperCamelCase )) UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : List[str] = [i[:] for i in graph] # Record original cut, copy. while bfs(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): UpperCAmelCase : Dict = float('Inf' ) UpperCAmelCase : List[Any] = sink while s != source: # Find the minimum value in select path UpperCAmelCase : Optional[int] = min(__UpperCamelCase , graph[parent[s]][s] ) UpperCAmelCase : Dict = parent[s] max_flow += path_flow UpperCAmelCase : Tuple = sink while v != source: UpperCAmelCase : int = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase : Optional[int] = parent[v] for i in range(len(__UpperCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
721
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ : Optional[Any] = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Any = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowercase__ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
700
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class A_ : '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = MBartConfig UpperCAmelCase_ : Dict = {} UpperCAmelCase_ : List[str] = 'gelu' def __init__( self : Optional[int] , lowercase_ : Any , lowercase_ : Union[str, Any]=13 , lowercase_ : Optional[int]=7 , lowercase_ : List[Any]=True , lowercase_ : List[str]=False , lowercase_ : str=99 , lowercase_ : Dict=32 , lowercase_ : List[str]=2 , lowercase_ : str=4 , lowercase_ : str=37 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=20 , lowercase_ : Any=2 , lowercase_ : Optional[Any]=1 , lowercase_ : List[Any]=0 , ) -> Optional[int]: UpperCAmelCase : Dict = parent UpperCAmelCase : str = batch_size UpperCAmelCase : Optional[int] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Optional[Any] = use_labels UpperCAmelCase : List[str] = vocab_size UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : List[Any] = pad_token_id UpperCAmelCase : List[str] = bos_token_id def UpperCAmelCase_ ( self : List[str] ) -> int: UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : Union[str, Any] = prepare_mbart_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Dict ) -> Dict: UpperCAmelCase : str = TFMBartModel(config=lowercase_ ).get_decoder() UpperCAmelCase : Optional[Any] = inputs_dict['input_ids'] UpperCAmelCase : Dict = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict['attention_mask'][:1, :] UpperCAmelCase : Union[str, Any] = inputs_dict['head_mask'] UpperCAmelCase : Tuple = 1 # first forward pass UpperCAmelCase : List[Any] = model(lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ , use_cache=lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[Any] = outputs.to_tuple() UpperCAmelCase : Union[str, Any] = past_key_values[1] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , ): if attention_mask is None: UpperCAmelCase : str = tf.cast(tf.math.not_equal(__SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A_ ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : int = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () UpperCAmelCase_ : Any = (TFMBartForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase_ : Any = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase_ : str = True UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : Dict = False def UpperCAmelCase_ ( self : Any , lowercase_ : Dict , lowercase_ : Any , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Tuple ) -> Any: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = TFMBartModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=lowercase_ ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) @require_sentencepiece @require_tokenizers @require_tf class A_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ] UpperCAmelCase_ : Optional[int] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] UpperCAmelCase_ : int = 'facebook/mbart-large-en-ro' @cached_property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase_ ( self : int ) -> Any: UpperCAmelCase : int = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCAmelCase_ ( self : int , **lowercase_ : List[str] ) -> Dict: UpperCAmelCase : str = self.translate_src_text(**lowercase_ ) self.assertListEqual(self.expected_text , lowercase_ ) def UpperCAmelCase_ ( self : List[str] , **lowercase_ : Union[str, Any] ) -> Tuple: UpperCAmelCase : str = self.tokenizer(self.src_text , **lowercase_ , return_tensors='tf' ) UpperCAmelCase : str = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Union[str, Any] = self.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) return generated_words @slow def UpperCAmelCase_ ( self : List[str] ) -> Tuple: self._assert_generated_batch_equal_expected()
701
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
0
'''simple docstring''' from collections.abc import Callable import numpy as np def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : Optional[int] = np.zeros((n + 1,) ) UpperCAmelCase : Union[str, Any] = ya UpperCAmelCase : Optional[int] = xa for k in range(UpperCAmelCase_ ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(UpperCAmelCase_ , y[k] ) UpperCAmelCase : List[str] = y[k] + ( (step_size / 2) * (ode_func(UpperCAmelCase_ , y[k] ) + ode_func(x + step_size , UpperCAmelCase_ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
0
'''simple docstring''' import gc import threading import time import psutil import torch class A_ : '''simple docstring''' def __init__( self : str ) -> List[str]: UpperCAmelCase : List[str] = psutil.Process() UpperCAmelCase : int = False def UpperCAmelCase_ ( self : int ) -> Optional[int]: UpperCAmelCase : List[str] = -1 while True: UpperCAmelCase : List[Any] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: UpperCAmelCase : List[str] = True UpperCAmelCase : int = threading.Thread(target=self.peak_monitor ) UpperCAmelCase : Dict = True self.thread.start() def UpperCAmelCase_ ( self : Optional[int] ) -> int: UpperCAmelCase : str = False self.thread.join() return self.cpu_memory_peak lowercase__ = PeakCPUMemory() def UpperCamelCase( ): # Time UpperCAmelCase : int = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem UpperCAmelCase : List[str] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): UpperCAmelCase : Dict = torch.cuda.memory_allocated(snake_case_ ) torch.cuda.reset_peak_memory_stats() return measures def UpperCamelCase( UpperCAmelCase_ ): # Time UpperCAmelCase : Tuple = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem UpperCAmelCase : int = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 UpperCAmelCase : Dict = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): UpperCAmelCase : Dict = (torch.cuda.memory_allocated(snake_case_ ) - start_measures[str(snake_case_ )]) / 2**20 UpperCAmelCase : Optional[Any] = (torch.cuda.max_memory_allocated(snake_case_ ) - start_measures[str(snake_case_ )]) / 2**20 return measures def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): print(F"""{description}:""" ) print(F"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(snake_case_ )]:.2f}MiB""" ) UpperCAmelCase : Tuple = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
703
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
0
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowercase__ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" lowercase__ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" lowercase__ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self : List[Any] ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def UpperCAmelCase_ ( self : str , lowercase_ : List[List[List[str]]] , lowercase_ : List[List[str]] , lowercase_ : int = 1 , lowercase_ : int = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowercase_ , hypotheses=lowercase_ , min_len=lowercase_ , max_len=lowercase_ ) }
704
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
0
'''simple docstring''' import numpy as np def UpperCamelCase( UpperCAmelCase_ ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( __a ): def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Tuple ) -> int: warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' , a_ , ) super().__init__(*a_ , **a_ )
706
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
0
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = [] for part_id in partition_order: UpperCAmelCase : int = df.where(F"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(__snake_case ): expected_row_ids_and_row_dicts.append((F"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase( ): UpperCAmelCase : List[str] = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() UpperCAmelCase : List[str] = spark.range(1_00 ).repartition(1 ) UpperCAmelCase : List[Any] = Spark(__snake_case ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase( ): UpperCAmelCase : int = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() UpperCAmelCase : Optional[int] = spark.range(10 ).repartition(2 ) UpperCAmelCase : List[Any] = [1, 0] UpperCAmelCase : Any = _generate_iterable_examples(__snake_case , __snake_case ) # Reverse the partitions. UpperCAmelCase : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case , __snake_case ) for i, (row_id, row_dict) in enumerate(generate_fn() ): UpperCAmelCase , UpperCAmelCase : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase( ): UpperCAmelCase : Union[str, Any] = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() UpperCAmelCase : Dict = spark.range(10 ).repartition(1 ) UpperCAmelCase : Optional[Any] = SparkExamplesIterable(__snake_case ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__snake_case ): assert row_id == F"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase( ): UpperCAmelCase : List[str] = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() UpperCAmelCase : Union[str, Any] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: UpperCAmelCase : Optional[int] = lambda UpperCAmelCase_ : x.reverse() UpperCAmelCase : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case , [2, 1, 0] ) UpperCAmelCase : Tuple = SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__snake_case ): UpperCAmelCase , UpperCAmelCase : int = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase( ): UpperCAmelCase : Dict = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() UpperCAmelCase : Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 UpperCAmelCase : List[str] = SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case , [0, 2] ) for i, (row_id, row_dict) in enumerate(__snake_case ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCAmelCase : Optional[int] = SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case , [1, 3] ) for i, (row_id, row_dict) in enumerate(__snake_case ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase( ): UpperCAmelCase : int = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() UpperCAmelCase : Optional[Any] = spark.range(1_00 ).repartition(1 ) UpperCAmelCase : List[str] = Spark(__snake_case ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
707
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
0
'''simple docstring''' import os from math import logaa def UpperCamelCase( UpperCAmelCase_ = "base_exp.txt" ): UpperCAmelCase : float = 0 UpperCAmelCase : Any = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(UpperCAmelCase__ ) , UpperCAmelCase__ ) ) ): UpperCAmelCase : Optional[int] = list(map(UpperCAmelCase__ , line.split(',' ) ) ) if x * logaa(UpperCAmelCase__ ) > largest: UpperCAmelCase : Tuple = x * logaa(UpperCAmelCase__ ) UpperCAmelCase : int = i + 1 return result if __name__ == "__main__": print(solution())
708
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
709
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets lowercase__ : int = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' lowercase__ : Optional[int] = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' lowercase__ : str = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def UpperCAmelCase_ ( self : Dict ) -> Tuple: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def UpperCAmelCase_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any]=None , lowercase_ : str="uniform_average" , lowercase_ : List[Any]=True ) -> Any: UpperCAmelCase : Union[str, Any] = mean_squared_error( __lowerCAmelCase , __lowerCAmelCase , sample_weight=__lowerCAmelCase , multioutput=__lowerCAmelCase , squared=__lowerCAmelCase ) return {"mse": mse}
710
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
0
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowercase__ = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } lowercase__ = {"facebook/blenderbot_small-90M": 512} def UpperCamelCase( UpperCAmelCase_ ) -> List[str]: UpperCAmelCase : Any = set() UpperCAmelCase : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase : int = char UpperCAmelCase : Any = set(_snake_case ) return pairs class A_ ( __UpperCAmelCase ): '''simple docstring''' UpperCAmelCase_ : int = VOCAB_FILES_NAMES UpperCAmelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : int , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Optional[int]="__start__" , lowercase_ : List[str]="__end__" , lowercase_ : List[Any]="__unk__" , lowercase_ : Optional[Any]="__null__" , **lowercase_ : List[Any] , ) -> str: super().__init__(unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , **UpperCAmelCase_ ) with open(UpperCAmelCase_ , encoding='utf-8' ) as vocab_handle: UpperCAmelCase : str = json.load(UpperCAmelCase_ ) UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8' ) as merges_handle: UpperCAmelCase : Optional[int] = merges_handle.read().split('\n' )[1:-1] UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in merges] UpperCAmelCase : int = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) UpperCAmelCase : List[str] = {} @property def UpperCAmelCase_ ( self : Tuple ) -> Tuple: return len(self.encoder ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : List[str] ) -> List[Any]: if token in self.cache: return self.cache[token] UpperCAmelCase : Dict = re.sub('([.,!?()])' , R' \1' , UpperCAmelCase_ ) UpperCAmelCase : Dict = re.sub('(\')' , R' \1 ' , UpperCAmelCase_ ) UpperCAmelCase : str = re.sub(R'\s{2,}' , ' ' , UpperCAmelCase_ ) if "\n" in token: UpperCAmelCase : Tuple = token.replace('\n' , ' __newln__' ) UpperCAmelCase : int = token.split(' ' ) UpperCAmelCase : Optional[int] = [] for token in tokens: if not len(UpperCAmelCase_ ): continue UpperCAmelCase : int = token.lower() UpperCAmelCase : List[Any] = tuple(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) UpperCAmelCase : Union[str, Any] = get_pairs(UpperCAmelCase_ ) if not pairs: words.append(UpperCAmelCase_ ) continue while True: UpperCAmelCase : List[str] = min(UpperCAmelCase_ , key=lambda lowercase_ : self.bpe_ranks.get(UpperCAmelCase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase : Optional[int] = bigram UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = 0 while i < len(UpperCAmelCase_ ): try: UpperCAmelCase : Optional[Any] = word.index(UpperCAmelCase_ , UpperCAmelCase_ ) new_word.extend(word[i:j] ) UpperCAmelCase : List[Any] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(UpperCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase : Dict = tuple(UpperCAmelCase_ ) UpperCAmelCase : Dict = new_word if len(UpperCAmelCase_ ) == 1: break else: UpperCAmelCase : int = get_pairs(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = '@@ '.join(UpperCAmelCase_ ) UpperCAmelCase : str = word[:-4] UpperCAmelCase : Optional[Any] = word words.append(UpperCAmelCase_ ) return " ".join(UpperCAmelCase_ ) def UpperCAmelCase_ ( self : int , lowercase_ : List[Any] ) -> Tuple: UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : List[Any] = re.findall(R'\S+\n?' , UpperCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(UpperCAmelCase_ ).split(' ' ) ) ) return split_tokens def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : List[str] ) -> Optional[int]: UpperCAmelCase : str = token.lower() return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : Dict , lowercase_ : Any ) -> List[str]: return self.decoder.get(UpperCAmelCase_ , self.unk_token ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : List[Any] = ' '.join(UpperCAmelCase_ ).replace('@@ ' , '' ).strip() return out_string def UpperCAmelCase_ ( self : List[Any] , lowercase_ : List[str] , lowercase_ : Optional[Any] = None ) -> Optional[Any]: if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Optional[int] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase : Any = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_ ) + '\n' ) UpperCAmelCase : Union[str, Any] = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) UpperCAmelCase : Tuple = token_index writer.write(' '.join(UpperCAmelCase_ ) + '\n' ) index += 1 return vocab_file, merge_file
711
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
0
'''simple docstring''' from __future__ import annotations from typing import Any class A_ : '''simple docstring''' def __init__( self : Any , lowercase_ : int ) -> List[str]: UpperCAmelCase : Dict = num_of_nodes UpperCAmelCase : list[list[int]] = [] UpperCAmelCase : dict[int, int] = {} def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int , lowercase_ : int ) -> Any: self.m_edges.append([u_node, v_node, weight] ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> Tuple: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> Dict: if self.m_component[u_node] != u_node: for k in self.m_component: UpperCAmelCase : Optional[int] = self.find_component(UpperCamelCase__ ) def UpperCAmelCase_ ( self : str , lowercase_ : list[int] , lowercase_ : int , lowercase_ : int ) -> Tuple: if component_size[u_node] <= component_size[v_node]: UpperCAmelCase : int = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCamelCase__ ) elif component_size[u_node] >= component_size[v_node]: UpperCAmelCase : Optional[int] = self.find_component(UpperCamelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCamelCase__ ) def UpperCAmelCase_ ( self : int ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : int = 0 UpperCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) UpperCAmelCase : List[str] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: UpperCAmelCase : int = edge UpperCAmelCase : Union[str, Any] = self.m_component[u] UpperCAmelCase : List[str] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): UpperCAmelCase : Union[str, Any] = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase : str = edge UpperCAmelCase : List[str] = self.m_component[u] UpperCAmelCase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 UpperCAmelCase : Union[str, Any] = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def UpperCamelCase( ): pass if __name__ == "__main__": import doctest doctest.testmod()
712
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
0
'''simple docstring''' import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Any = """naver-clova-ix/donut-base-finetuned-docvqa""" UpperCAmelCase_ : List[Any] = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) UpperCAmelCase_ : Dict = """document_qa""" UpperCAmelCase_ : Optional[Any] = AutoProcessor UpperCAmelCase_ : str = VisionEncoderDecoderModel UpperCAmelCase_ : int = ["""image""", """text"""] UpperCAmelCase_ : Tuple = ["""text"""] def __init__( self : str , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Dict: if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] ) -> str: UpperCAmelCase : Dict = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' UpperCAmelCase : Optional[int] = task_prompt.replace('{user_input}' , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = self.pre_processor.tokenizer( _SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).input_ids UpperCAmelCase : Union[str, Any] = self.pre_processor(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCAmelCase_ ( self : Dict , lowercase_ : Optional[Any] ) -> List[str]: return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_SCREAMING_SNAKE_CASE , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_SCREAMING_SNAKE_CASE , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_SCREAMING_SNAKE_CASE , ).sequences def UpperCAmelCase_ ( self : str , lowercase_ : List[str] ) -> Union[str, Any]: UpperCAmelCase : List[Any] = self.pre_processor.batch_decode(_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase : Union[str, Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) UpperCAmelCase : Any = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) UpperCAmelCase : int = re.sub(R'<.*?>' , '' , _SCREAMING_SNAKE_CASE , count=1 ).strip() # remove first task start token UpperCAmelCase : int = self.pre_processor.tokenajson(_SCREAMING_SNAKE_CASE ) return sequence["answer"]
713
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=False ) -> Optional[Any]: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = len(set_a.intersection(UpperCAmelCase_ ) ) if alternative_union: UpperCAmelCase : int = len(UpperCAmelCase_ ) + len(UpperCAmelCase_ ) else: UpperCAmelCase : Optional[int] = len(set_a.union(UpperCAmelCase_ ) ) return intersection / union if isinstance(UpperCAmelCase_ , (list, tuple) ) and isinstance(UpperCAmelCase_ , (list, tuple) ): UpperCAmelCase : Optional[Any] = [element for element in set_a if element in set_b] if alternative_union: UpperCAmelCase : Dict = len(UpperCAmelCase_ ) + len(UpperCAmelCase_ ) return len(UpperCAmelCase_ ) / union else: UpperCAmelCase : Union[str, Any] = set_a + [element for element in set_b if element not in set_a] return len(UpperCAmelCase_ ) / len(UpperCAmelCase_ ) return len(UpperCAmelCase_ ) / len(UpperCAmelCase_ ) return None if __name__ == "__main__": lowercase__ = {"a", "b", "c", "d", "e"} lowercase__ = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
714
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase__ = logging.getLogger(__name__) def UpperCamelCase( UpperCAmelCase_=2 , UpperCAmelCase_=3 , UpperCAmelCase_=16 , UpperCAmelCase_ = 10 , UpperCAmelCase_ = 2 ): def get_dataset(UpperCAmelCase_ ): UpperCAmelCase : Dict = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(SCREAMING_SNAKE_CASE_ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCAmelCase : Tuple = get_dataset(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : Any = get_dataset(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : Optional[int] = DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , num_workers=4 ) UpperCAmelCase : int = DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , num_workers=4 ) return (train_dataloader, valid_dataloader) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ): UpperCAmelCase : Optional[int] = [] for epoch in range(SCREAMING_SNAKE_CASE_ ): # Train quickly model.train() for batch in dataloader: UpperCAmelCase , UpperCAmelCase : Optional[Any] = batch UpperCAmelCase : str = model(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : Any = torch.nn.functional.mse_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.backward(SCREAMING_SNAKE_CASE_ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class A_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ) -> Tuple: super().__init__() UpperCAmelCase : List[str] = nn.Parameter(torch.randn(1 ) ) UpperCAmelCase : List[str] = nn.Parameter(torch.randn(1 ) ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> Optional[Any]: return x * self.a + self.b class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Any ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase : Optional[int] = DummyModel() UpperCAmelCase : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase , UpperCAmelCase : int = dummy_dataloaders() UpperCAmelCase : Tuple = ProjectConfiguration(total_limit=1 , project_dir=__lowercase , automatic_checkpoint_naming=__lowercase ) # Train baseline UpperCAmelCase : List[Any] = Accelerator(project_config=__lowercase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase : str = DummyModel() UpperCAmelCase : Tuple = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase , UpperCAmelCase : Tuple = dummy_dataloaders() # Train baseline UpperCAmelCase : Any = Accelerator() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase ) # Save initial UpperCAmelCase : str = os.path.join(__lowercase , 'initial' ) accelerator.save_state(__lowercase ) ((UpperCAmelCase) , (UpperCAmelCase)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase : Tuple = optimizer.state_dict() UpperCAmelCase : int = train(3 , __lowercase , __lowercase , __lowercase , __lowercase ) ((UpperCAmelCase) , (UpperCAmelCase)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase : Dict = optimizer.state_dict() # Train partially set_seed(42 ) UpperCAmelCase : Any = DummyModel() UpperCAmelCase : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = dummy_dataloaders() UpperCAmelCase : Union[str, Any] = Accelerator() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase ) accelerator.load_state(__lowercase ) ((UpperCAmelCase) , (UpperCAmelCase)) : int = model.a.item(), model.b.item() UpperCAmelCase : List[Any] = optimizer.state_dict() self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) UpperCAmelCase : List[str] = train(2 , __lowercase , __lowercase , __lowercase , __lowercase ) # Save everything UpperCAmelCase : str = os.path.join(__lowercase , 'checkpoint' ) accelerator.save_state(__lowercase ) # Load everything back in and make sure all states work accelerator.load_state(__lowercase ) test_rands += train(1 , __lowercase , __lowercase , __lowercase , __lowercase ) ((UpperCAmelCase) , (UpperCAmelCase)) : List[str] = model.a.item(), model.b.item() UpperCAmelCase : Optional[Any] = optimizer.state_dict() self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase : Tuple = DummyModel() UpperCAmelCase : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase , UpperCAmelCase : Optional[int] = dummy_dataloaders() UpperCAmelCase : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=__lowercase ) # Train baseline UpperCAmelCase : str = Accelerator(project_dir=__lowercase , project_config=__lowercase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase ) # Save initial accelerator.save_state() ((UpperCAmelCase) , (UpperCAmelCase)) : List[str] = model.a.item(), model.b.item() UpperCAmelCase : Union[str, Any] = optimizer.state_dict() UpperCAmelCase : Optional[Any] = train(3 , __lowercase , __lowercase , __lowercase , __lowercase ) ((UpperCAmelCase) , (UpperCAmelCase)) : Optional[Any] = model.a.item(), model.b.item() UpperCAmelCase : Tuple = optimizer.state_dict() # Train partially set_seed(42 ) UpperCAmelCase : Dict = DummyModel() UpperCAmelCase : int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = dummy_dataloaders() UpperCAmelCase : int = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=__lowercase ) UpperCAmelCase : str = Accelerator(project_dir=__lowercase , project_config=__lowercase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase ) accelerator.load_state(os.path.join(__lowercase , 'checkpoints' , 'checkpoint_0' ) ) ((UpperCAmelCase) , (UpperCAmelCase)) : str = model.a.item(), model.b.item() UpperCAmelCase : Optional[Any] = optimizer.state_dict() self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) UpperCAmelCase : str = train(2 , __lowercase , __lowercase , __lowercase , __lowercase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__lowercase , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , __lowercase , __lowercase , __lowercase , __lowercase ) ((UpperCAmelCase) , (UpperCAmelCase)) : Tuple = model.a.item(), model.b.item() UpperCAmelCase : Tuple = optimizer.state_dict() self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: UpperCAmelCase : str = torch.tensor([1, 2, 3] ) UpperCAmelCase : str = torch.tensor([2, 3, 4] ) UpperCAmelCase : Any = DummyModel() UpperCAmelCase : Optional[int] = torch.optim.Adam(net.parameters() ) UpperCAmelCase : int = Accelerator() with self.assertRaises(__lowercase ) as ve: accelerator.register_for_checkpointing(__lowercase , __lowercase , __lowercase , __lowercase ) UpperCAmelCase : Optional[int] = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase : Tuple = DummyModel() UpperCAmelCase : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase : Any = torch.optim.lr_scheduler.StepLR(__lowercase , step_size=1 , gamma=0.99 ) UpperCAmelCase , UpperCAmelCase : Optional[int] = dummy_dataloaders() UpperCAmelCase : int = ProjectConfiguration(automatic_checkpoint_naming=__lowercase ) # Train baseline UpperCAmelCase : Dict = Accelerator(project_dir=__lowercase , project_config=__lowercase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # Save initial accelerator.save_state() UpperCAmelCase : Dict = scheduler.state_dict() train(3 , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) self.assertNotEqual(__lowercase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__lowercase , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(__lowercase , scheduler.state_dict() ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase : Optional[Any] = DummyModel() UpperCAmelCase : str = ProjectConfiguration(automatic_checkpoint_naming=__lowercase , total_limit=2 ) # Train baseline UpperCAmelCase : str = Accelerator(project_dir=__lowercase , project_config=__lowercase ) UpperCAmelCase : Dict = accelerator.prepare(__lowercase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(__lowercase , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__lowercase , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(__lowercase , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Any = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(__lowercase , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ = "/tmp/accelerate/state_checkpointing" lowercase__ = DummyModel() lowercase__ = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowercase__ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase__ , lowercase__ = dummy_dataloaders() lowercase__ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase__ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase__ , lowercase__ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase__ = group["params"][0].device break assert param_device.type == accelerator.device.type lowercase__ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: lowercase__ = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: lowercase__ = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
715
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
0
'''simple docstring''' from __future__ import annotations lowercase__ = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class A_ : '''simple docstring''' def __init__( self : Optional[int] , lowercase_ : str , lowercase_ : List[Any] ) -> Dict: UpperCAmelCase : List[str] = graph # mapping node to its parent in resulting breadth first tree UpperCAmelCase : dict[str, str | None] = {} UpperCAmelCase : Dict = source_vertex def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: UpperCAmelCase : Dict = {self.source_vertex} UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : List[Any] = [self.source_vertex] # first in first out queue while queue: UpperCAmelCase : List[str] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(A_ ) UpperCAmelCase : Dict = vertex queue.append(A_ ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Dict ) -> List[Any]: if target_vertex == self.source_vertex: return self.source_vertex UpperCAmelCase : Any = self.parent.get(A_ ) if target_vertex_parent is None: UpperCAmelCase : List[str] = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(A_ ) return self.shortest_path(A_ ) + f"""->{target_vertex}""" if __name__ == "__main__": lowercase__ = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
716
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): if length <= 0 or not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(UpperCAmelCase_ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
717
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
0
def UpperCamelCase( ): UpperCAmelCase : str = 0 for i in range(1 , 10_01 ): total += i**i return str(__lowerCAmelCase )[-10:] if __name__ == "__main__": print(solution())
718
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A_ : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Optional[Any] , ) -> int: UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : int = 13 UpperCAmelCase : Dict = 7 UpperCAmelCase : Optional[Any] = True UpperCAmelCase : Tuple = True UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : Dict = True UpperCAmelCase : List[Any] = 99 UpperCAmelCase : Dict = 32 UpperCAmelCase : str = 2 UpperCAmelCase : List[str] = 4 UpperCAmelCase : int = 37 UpperCAmelCase : Optional[Any] = 'gelu' UpperCAmelCase : List[str] = 0.1 UpperCAmelCase : str = 0.1 UpperCAmelCase : List[str] = 512 UpperCAmelCase : Any = 16 UpperCAmelCase : str = 2 UpperCAmelCase : Optional[Any] = 0.02 UpperCAmelCase : List[str] = 3 UpperCAmelCase : Tuple = 4 UpperCAmelCase : Any = None def UpperCAmelCase_ ( self : Dict ) -> List[str]: UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : List[Any] = None if self.use_input_mask: UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Any = None UpperCAmelCase : Optional[Any] = None UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : List[str] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : str , lowercase_ : List[str] , lowercase_ : List[Any] ) -> List[Any]: UpperCAmelCase : List[str] = TFDistilBertModel(config=lowerCAmelCase_ ) UpperCAmelCase : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} UpperCAmelCase : List[Any] = model(lowerCAmelCase_ ) UpperCAmelCase : Optional[int] = [input_ids, input_mask] UpperCAmelCase : Optional[int] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Dict , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Any ) -> Optional[Any]: UpperCAmelCase : List[str] = TFDistilBertForMaskedLM(config=lowerCAmelCase_ ) UpperCAmelCase : int = {'input_ids': input_ids, 'attention_mask': input_mask} UpperCAmelCase : Any = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Optional[int] ) -> Optional[int]: UpperCAmelCase : Dict = TFDistilBertForQuestionAnswering(config=lowerCAmelCase_ ) UpperCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, } UpperCAmelCase : Dict = model(lowerCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : str , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : List[Any] ) -> str: UpperCAmelCase : Union[str, Any] = self.num_labels UpperCAmelCase : Union[str, Any] = TFDistilBertForSequenceClassification(lowerCAmelCase_ ) UpperCAmelCase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} UpperCAmelCase : List[Any] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : str , lowercase_ : str , lowercase_ : int , lowercase_ : Optional[int] ) -> Dict: UpperCAmelCase : Any = self.num_choices UpperCAmelCase : List[Any] = TFDistilBertForMultipleChoice(lowerCAmelCase_ ) UpperCAmelCase : Optional[int] = tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase : int = tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase : Optional[Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } UpperCAmelCase : Optional[Any] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : Dict , lowercase_ : Any , lowercase_ : str ) -> Tuple: UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : int = TFDistilBertForTokenClassification(lowerCAmelCase_ ) UpperCAmelCase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} UpperCAmelCase : Any = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : int ) -> List[Any]: UpperCAmelCase : int = self.prepare_config_and_inputs() ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Tuple = config_and_inputs UpperCAmelCase : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A_ ( __a , __a , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCAmelCase_ : int = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : str = False def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: UpperCAmelCase : Union[str, Any] = TFDistilBertModelTester(self ) UpperCAmelCase : str = ConfigTester(self , config_class=lowerCAmelCase_ , dim=37 ) def UpperCAmelCase_ ( self : str ) -> int: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Any ) -> List[Any]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase_ ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase_ ) def UpperCAmelCase_ ( self : Any ) -> int: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase_ ) def UpperCAmelCase_ ( self : Dict ) -> Any: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase_ ) def UpperCAmelCase_ ( self : Any ) -> List[Any]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase_ ) @slow def UpperCAmelCase_ ( self : int ) -> Any: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): UpperCAmelCase : str = TFDistilBertModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_tf class A_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self : int ) -> Optional[int]: UpperCAmelCase : Optional[Any] = TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) UpperCAmelCase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase : Tuple = model(lowerCAmelCase_ )[0] UpperCAmelCase : Optional[Any] = [1, 6, 768] self.assertEqual(output.shape , lowerCAmelCase_ ) UpperCAmelCase : Tuple = tf.constant( [ [ [0.1926_1885, -0.1373_2955, 0.411_9799], [0.2215_0156, -0.0742_2661, 0.3903_7204], [0.2275_6018, -0.089_6414, 0.370_1467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase_ , atol=1E-4 )
719
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
0
'''simple docstring''' lowercase__ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} lowercase__ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = True UpperCAmelCase : Any = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) order.append(UpperCamelCase__ ) return order def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[Any] = True UpperCAmelCase : int = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return component def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : int = len(UpperCamelCase__ ) * [False] UpperCAmelCase : dict[int, list[int]] = {vert: [] for vert in range(len(UpperCamelCase__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(UpperCamelCase__ ) UpperCAmelCase : int = [] for i, was_visited in enumerate(UpperCamelCase__ ): if not was_visited: order += topology_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase : Tuple = [] UpperCAmelCase : str = len(UpperCamelCase__ ) * [False] for i in range(len(UpperCamelCase__ ) ): UpperCAmelCase : Any = order[len(UpperCamelCase__ ) - i - 1] if not visited[vert]: UpperCAmelCase : List[str] = find_components(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) components_list.append(UpperCamelCase__ ) return components_list
720
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
0
'''simple docstring''' import re def UpperCamelCase( UpperCAmelCase_ ): return [char.split() for char in re.split(R'[^ a-z A-Z 0-9 \s]' , str_ )] def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): try: UpperCAmelCase : List[str] = split_input(_UpperCamelCase ) if upper: UpperCAmelCase : int = ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: UpperCAmelCase : Union[str, Any] = ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def UpperCamelCase( UpperCAmelCase_ ): return to_simple_case(_UpperCamelCase ) def UpperCamelCase( UpperCAmelCase_ ): try: UpperCAmelCase : Any = to_simple_case(_UpperCamelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return to_complex_case(_UpperCamelCase , _UpperCamelCase , '_' ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return to_complex_case(_UpperCamelCase , _UpperCamelCase , '-' ) if __name__ == "__main__": __import__("doctest").testmod()
721
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": lowercase__ : str = pd.read_csv("sample_data.csv", header=None) lowercase__ : Optional[int] = df.shape[:1][0] # If you're using some other dataset input the target column lowercase__ : Optional[int] = df.iloc[:, 1:2] lowercase__ : Tuple = actual_data.values.reshape(len_data, 1) lowercase__ : List[str] = MinMaxScaler().fit_transform(actual_data) lowercase__ : Union[str, Any] = 10 lowercase__ : Optional[int] = 5 lowercase__ : int = 20 lowercase__ : Dict = len_data - periods * look_back lowercase__ : int = actual_data[:division] lowercase__ : Dict = actual_data[division - look_back :] lowercase__ , lowercase__ : List[str] = [], [] lowercase__ , lowercase__ : str = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) lowercase__ : Any = np.array(train_x) lowercase__ : str = np.array(test_x) lowercase__ : Dict = np.array([list(i.ravel()) for i in train_y]) lowercase__ : Tuple = np.array([list(i.ravel()) for i in test_y]) lowercase__ : Dict = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") lowercase__ : Optional[int] = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) lowercase__ : Any = model.predict(x_test)
700
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.txt"} lowercase__ = { "vocab_file": { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt", } } lowercase__ = { "YituTech/conv-bert-base": 512, "YituTech/conv-bert-medium-small": 512, "YituTech/conv-bert-small": 512, } lowercase__ = { "YituTech/conv-bert-base": {"do_lower_case": True}, "YituTech/conv-bert-medium-small": {"do_lower_case": True}, "YituTech/conv-bert-small": {"do_lower_case": True}, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Any = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Any = ConvBertTokenizer def __init__( self : Any , lowercase_ : int=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=True , lowercase_ : Optional[Any]="[UNK]" , lowercase_ : Optional[Any]="[SEP]" , lowercase_ : int="[PAD]" , lowercase_ : Any="[CLS]" , lowercase_ : List[str]="[MASK]" , lowercase_ : Optional[Any]=True , lowercase_ : Optional[int]=None , **lowercase_ : Optional[Any] , ) -> Dict: super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , ) UpperCAmelCase : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowercase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowercase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowercase_ ) != tokenize_chinese_chars ): UpperCAmelCase : List[Any] = getattr(lowercase_ , normalizer_state.pop('type' ) ) UpperCAmelCase : Any = do_lower_case UpperCAmelCase : str = strip_accents UpperCAmelCase : Optional[Any] = tokenize_chinese_chars UpperCAmelCase : List[str] = normalizer_class(**lowercase_ ) UpperCAmelCase : Dict = do_lower_case def UpperCAmelCase_ ( self : List[str] , lowercase_ : Any , lowercase_ : List[str]=None ) -> str: UpperCAmelCase : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : Tuple , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : List[str] = [self.sep_token_id] UpperCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Dict = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ )
701
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase__ = None lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase__ = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } lowercase__ = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off lowercase__ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class A_ ( __snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] UpperCAmelCase_ : Any = MBartTokenizer UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Tuple = [] def __init__( self : List[str] , lowercase_ : Tuple=None , lowercase_ : Optional[int]=None , lowercase_ : List[Any]="<s>" , lowercase_ : Union[str, Any]="</s>" , lowercase_ : Dict="</s>" , lowercase_ : Tuple="<s>" , lowercase_ : Union[str, Any]="<unk>" , lowercase_ : Union[str, Any]="<pad>" , lowercase_ : Any="<mask>" , lowercase_ : Any=None , lowercase_ : List[str]=None , lowercase_ : Optional[int]=None , **lowercase_ : List[str] , ) -> int: UpperCAmelCase : Optional[Any] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token super().__init__( vocab_file=__UpperCamelCase , tokenizer_file=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , src_lang=__UpperCamelCase , tgt_lang=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , **__UpperCamelCase , ) UpperCAmelCase : Tuple = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True UpperCAmelCase : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) UpperCAmelCase : List[str] = { lang_code: self.convert_tokens_to_ids(__UpperCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCAmelCase : Optional[int] = src_lang if src_lang is not None else 'en_XX' UpperCAmelCase : Tuple = self.convert_tokens_to_ids(self._src_lang ) UpperCAmelCase : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCAmelCase_ ( self : List[Any] ) -> str: return self._src_lang @src_lang.setter def UpperCAmelCase_ ( self : str , lowercase_ : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase_ ( self : str , lowercase_ : int , lowercase_ : Tuple = None ) -> Tuple: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase_ ( self : str , lowercase_ : str , lowercase_ : Any = None ) -> Tuple: UpperCAmelCase : Dict = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : str , lowercase_ : str , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : Tuple , **lowercase_ : Union[str, Any] ) -> Union[str, Any]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) UpperCAmelCase : Dict = src_lang UpperCAmelCase : Union[str, Any] = self(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) UpperCAmelCase : Optional[int] = self.convert_tokens_to_ids(__UpperCamelCase ) UpperCAmelCase : Tuple = tgt_lang_id return inputs def UpperCAmelCase_ ( self : str , lowercase_ : List[str] , lowercase_ : List[str] = "en_XX" , lowercase_ : Optional[Any] = None , lowercase_ : List[Any] = "ro_RO" , **lowercase_ : Optional[Any] , ) -> int: UpperCAmelCase : List[Any] = src_lang UpperCAmelCase : Union[str, Any] = tgt_lang return super().prepare_seqaseq_batch(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase_ ( self : str ) -> List[str]: return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase_ ( self : int , lowercase_ : Tuple ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.convert_tokens_to_ids(__UpperCamelCase ) UpperCAmelCase : Dict = [] UpperCAmelCase : Optional[int] = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase : Any = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase : int = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Dict ) -> int: UpperCAmelCase : List[Any] = self.convert_tokens_to_ids(__UpperCamelCase ) UpperCAmelCase : Any = [] UpperCAmelCase : Optional[int] = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase : List[str] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] = None ) -> Optional[Any]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__UpperCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCAmelCase : Optional[Any] = os.path.join( __UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file , __UpperCamelCase ) return (out_vocab_file,)
702
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
0
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowercase__ = 3 def UpperCamelCase( UpperCAmelCase_ ): print('Generating primitive root of p' ) while True: UpperCAmelCase : Tuple = random.randrange(3 , lowerCAmelCase_ ) if pow(lowerCAmelCase_ , 2 , lowerCAmelCase_ ) == 1: continue if pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) == 1: continue return g def UpperCamelCase( UpperCAmelCase_ ): print('Generating prime p...' ) UpperCAmelCase : str = rabin_miller.generate_large_prime(lowerCAmelCase_ ) # select large prime number. UpperCAmelCase : int = primitive_root(lowerCAmelCase_ ) # one primitive root on modulo p. UpperCAmelCase : Tuple = random.randrange(3 , lowerCAmelCase_ ) # private_key -> have to be greater than 2 for safety. UpperCAmelCase : Any = cryptomath.find_mod_inverse(pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) UpperCAmelCase : Optional[Any] = (key_size, e_a, e_a, p) UpperCAmelCase : Optional[int] = (key_size, d) return public_key, private_key def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() UpperCAmelCase : Tuple = generate_key(lowerCAmelCase_ ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , 'w' ) as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , 'w' ) as fo: fo.write(F"""{private_key[0]},{private_key[1]}""" ) def UpperCamelCase( ): print('Making key files...' ) make_key_files('elgamal' , 20_48 ) print('Key files generation successful' ) if __name__ == "__main__": main()
703
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
0
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
704
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): # noqa: E741 UpperCAmelCase : List[Any] = len(a_ ) UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = [0] * n UpperCAmelCase : Optional[int] = [False] * n UpperCAmelCase : Optional[int] = [False] * n def dfs(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if parent == root: out_edge_count += 1 UpperCAmelCase : List[Any] = True UpperCAmelCase : Optional[Any] = at for to in l[at]: if to == parent: pass elif not visited[to]: UpperCAmelCase : str = dfs(a_ , a_ , a_ , a_ ) UpperCAmelCase : List[Any] = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: UpperCAmelCase : Optional[int] = True # AP found via cycle if at == low[to]: UpperCAmelCase : str = True else: UpperCAmelCase : Any = min(low[at] , a_ ) return out_edge_count for i in range(a_ ): if not visited[i]: UpperCAmelCase : Any = 0 UpperCAmelCase : Dict = dfs(a_ , a_ , -1 , a_ ) UpperCAmelCase : List[str] = out_edge_count > 1 for x in range(len(a_ ) ): if is_art[x] is True: print(a_ ) # Adjacency list of graph lowercase__ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
705
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
0
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase__ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): inspect_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : List[Any] = path + '.py' assert script_name in os.listdir(UpperCAmelCase_ ) assert "__pycache__" not in os.listdir(UpperCAmelCase_ ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): inspect_metric(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = path + '.py' assert script_name in os.listdir(UpperCAmelCase_ ) assert "__pycache__" not in os.listdir(UpperCAmelCase_ ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = get_dataset_config_info(UpperCAmelCase_ , config_name=UpperCAmelCase_ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): with pytest.raises(UpperCAmelCase_ ): get_dataset_config_info(UpperCAmelCase_ , config_name=UpperCAmelCase_ ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = get_dataset_config_names(UpperCAmelCase_ ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = get_dataset_infos(UpperCAmelCase_ ) assert list(infos.keys() ) == expected_configs UpperCAmelCase : Optional[int] = expected_configs[0] assert expected_config in infos UpperCAmelCase : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[str] = get_dataset_infos(UpperCAmelCase_ ) assert expected_config in infos UpperCAmelCase : Dict = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): with pytest.raises(UpperCAmelCase_ ): get_dataset_split_names(UpperCAmelCase_ , config_name=UpperCAmelCase_ )
706
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = 0.00 UpperCAmelCase : int = 0 for resistor in resistors: if resistor <= 0: UpperCAmelCase : str = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowercase_ ) first_sum += 1 / float(lowercase_ ) index += 1 return 1 / first_sum def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = 0.00 UpperCAmelCase : Union[str, Any] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCAmelCase : int = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowercase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): if isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" UpperCAmelCase : List[str] = False if num < 0: UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Any = -num UpperCAmelCase : Dict = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__UpperCamelCase ) for e in binary ) return "0b" + "".join(str(__UpperCamelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
708
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
0
'''simple docstring''' lowercase__ = { "km/h": 1.0, "m/s": 3.6, "mph": 1.609344, "knot": 1.852, } lowercase__ = { "km/h": 1.0, "m/s": 0.277777778, "mph": 0.621371192, "knot": 0.539956803, } def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' if unit_to not in speed_chart or unit_from not in speed_chart_inverse: UpperCAmelCase : str = ( F"""Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n""" F"""Valid values are: {", ".join(UpperCAmelCase_ )}""" ) raise ValueError(UpperCAmelCase_ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : Any = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class A_ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' UpperCAmelCase_ : Any = """dinat""" UpperCAmelCase_ : List[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Dict , lowercase_ : Any=4 , lowercase_ : Dict=3 , lowercase_ : List[Any]=64 , lowercase_ : Tuple=[3, 4, 6, 5] , lowercase_ : int=[2, 4, 8, 16] , lowercase_ : List[Any]=7 , lowercase_ : Optional[Any]=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowercase_ : Optional[Any]=3.0 , lowercase_ : str=True , lowercase_ : Any=0.0 , lowercase_ : Dict=0.0 , lowercase_ : Dict=0.1 , lowercase_ : Optional[Any]="gelu" , lowercase_ : List[str]=0.02 , lowercase_ : Optional[Any]=1E-5 , lowercase_ : List[str]=0.0 , lowercase_ : Any=None , lowercase_ : List[Any]=None , **lowercase_ : Dict , ) -> Optional[Any]: super().__init__(**_a ) UpperCAmelCase : Union[str, Any] = patch_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : List[str] = embed_dim UpperCAmelCase : Dict = depths UpperCAmelCase : str = len(_a ) UpperCAmelCase : int = num_heads UpperCAmelCase : Any = kernel_size UpperCAmelCase : Tuple = dilations UpperCAmelCase : int = mlp_ratio UpperCAmelCase : str = qkv_bias UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : List[str] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = drop_path_rate UpperCAmelCase : Dict = hidden_act UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Any = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase : Any = int(embed_dim * 2 ** (len(_a ) - 1) ) UpperCAmelCase : List[Any] = layer_scale_init_value UpperCAmelCase : int = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(_a ) + 1 )] UpperCAmelCase : Dict = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names )
710
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
0
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore lowercase__ = namedtuple("covid_data", "cases deaths recovered") def UpperCamelCase( UpperCAmelCase_ = "https://www.worldometers.info/coronavirus/" ) -> covid_data: UpperCAmelCase : str = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__UpperCamelCase ).content ).xpath(__UpperCamelCase ) ) lowercase__ = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
711
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
0
'''simple docstring''' from __future__ import annotations lowercase__ = list[tuple[int, int]] lowercase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase__ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class A_ : '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : str , lowercase_ : str , lowercase_ : List[Any] , ) -> Optional[Any]: UpperCAmelCase : List[Any] = pos_x UpperCAmelCase : str = pos_y UpperCAmelCase : Any = (pos_y, pos_x) UpperCAmelCase : Optional[int] = goal_x UpperCAmelCase : List[str] = goal_y UpperCAmelCase : Tuple = g_cost UpperCAmelCase : Dict = parent UpperCAmelCase : Optional[Any] = self.calculate_heuristic() def UpperCAmelCase_ ( self : Dict ) -> float: UpperCAmelCase : Any = abs(self.pos_x - self.goal_x ) UpperCAmelCase : int = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Any , lowercase_ : Tuple ) -> bool: return self.f_cost < other.f_cost class A_ : '''simple docstring''' def __init__( self : Any , lowercase_ : Union[str, Any] , lowercase_ : int ) -> str: UpperCAmelCase : str = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _lowerCamelCase ) UpperCAmelCase : Optional[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _lowerCamelCase ) UpperCAmelCase : Any = [self.start] UpperCAmelCase : List[Any] = [] UpperCAmelCase : Any = False def UpperCAmelCase_ ( self : int ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: UpperCAmelCase : Dict = True return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) UpperCAmelCase : Any = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path UpperCAmelCase : Dict = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Optional[int] ) -> list[Node]: UpperCAmelCase : List[Any] = [] for action in delta: UpperCAmelCase : Dict = parent.pos_x + action[1] UpperCAmelCase : Optional[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase , _lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _lowerCamelCase , ) ) return successors def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : str ) -> Path: UpperCAmelCase : Optional[Any] = node UpperCAmelCase : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase : Any = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase__ = (0, 0) lowercase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") lowercase__ = GreedyBestFirst(init, goal) lowercase__ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase__ = 2 for elem in grid: print(elem)
712
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
0
'''simple docstring''' # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def UpperCamelCase( *UpperCAmelCase_ ): with open(__snake_case , 'r' ) as fh: fcntl.flock(__snake_case , fcntl.LOCK_EX ) try: print(*__snake_case ) finally: fcntl.flock(__snake_case , fcntl.LOCK_UN ) lowercase__ = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) lowercase__ = torch.device("cuda", local_rank) lowercase__ = socket.gethostname() lowercase__ = f'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank lowercase__ = dist.get_rank() lowercase__ = dist.get_world_size() printflock(f'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(f'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(f'''{gpu} is broken''') raise
713
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
0
'''simple docstring''' from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata lowercase__ = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class A_ ( tr.AbstractTransform ): '''simple docstring''' def __init__( self : str , lowercase_ : int = " " ) -> str: UpperCAmelCase : Any = sentence_delimiter def UpperCAmelCase_ ( self : Any , lowercase_ : List[str] ) -> Optional[Any]: return list(__A ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Tuple ) -> Any: UpperCAmelCase : Optional[int] = [] for sent_idx, sentence in enumerate(__A ): chars.extend(self.process_string(__A ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__A ) - 1: chars.append(self.sentence_delimiter ) return chars lowercase__ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowercase__ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowercase__ = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" lowercase__ = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" lowercase__ = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', 'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates', ] , ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : List[str]=False ) -> str: if concatenate_texts: return jiwer.compute_measures( __A , __A , truth_transform=__A , hypothesis_transform=__A , )["wer"] UpperCAmelCase : Dict = 0 UpperCAmelCase : str = 0 for prediction, reference in zip(__A , __A ): UpperCAmelCase : Any = jiwer.compute_measures( __A , __A , truth_transform=__A , hypothesis_transform=__A , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
714
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
0
from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = len(UpperCamelCase__ ) # We need to create solution object to save path. UpperCAmelCase : int = [[0 for _ in range(UpperCamelCase__ )] for _ in range(UpperCamelCase__ )] UpperCAmelCase : int = run_maze(UpperCamelCase__ , 0 , 0 , UpperCamelCase__ ) if solved: print('\n'.join(str(UpperCamelCase__ ) for row in solutions ) ) else: print('No solution exists!' ) return solved def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = len(UpperCamelCase__ ) # Final check point. if i == j == (size - 1): UpperCAmelCase : Tuple = 1 return True UpperCAmelCase : int = (not i < 0) and (not j < 0) # Check lower bounds UpperCAmelCase : Tuple = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCAmelCase : Optional[Any] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCAmelCase : List[str] = 1 # check for directions if ( run_maze(UpperCamelCase__ , i + 1 , UpperCamelCase__ , UpperCamelCase__ ) or run_maze(UpperCamelCase__ , UpperCamelCase__ , j + 1 , UpperCamelCase__ ) or run_maze(UpperCamelCase__ , i - 1 , UpperCamelCase__ , UpperCamelCase__ ) or run_maze(UpperCamelCase__ , UpperCamelCase__ , j - 1 , UpperCamelCase__ ) ): return True UpperCAmelCase : str = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
715
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
0
'''simple docstring''' from __future__ import annotations import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = F"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(_UpperCAmelCase ).json() def UpperCamelCase( UpperCAmelCase_ = 10 ): UpperCAmelCase : Optional[int] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' UpperCAmelCase : Any = requests.get(_UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids] def UpperCamelCase( UpperCAmelCase_ = 10 ): UpperCAmelCase : int = hackernews_top_stories(_UpperCAmelCase ) return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
716
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "sayakpaul/vit-msn-base": "https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class A_ ( UpperCamelCase_ ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """vit_msn""" def __init__( self : Tuple , lowercase_ : str=768 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=12 , lowercase_ : Tuple=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[str]=0.02 , lowercase_ : Optional[int]=1E-06 , lowercase_ : Dict=224 , lowercase_ : str=16 , lowercase_ : int=3 , lowercase_ : Tuple=True , **lowercase_ : List[Any] , ) -> Any: super().__init__(**__a ) UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : str = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : List[Any] = hidden_dropout_prob UpperCAmelCase : Tuple = attention_probs_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : Optional[int] = layer_norm_eps UpperCAmelCase : Dict = image_size UpperCAmelCase : int = patch_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : Tuple = qkv_bias
717
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/informer-tourism-monthly": ( "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" ), # See all Informer models at https://huggingface.co/models?filter=informer } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[str] = """informer""" UpperCAmelCase_ : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Union[str, Any] , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = None , lowercase_ : Optional[Union[str, bool]] = "mean" , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : bool = True , lowercase_ : str = "gelu" , lowercase_ : float = 0.05 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : List[str]=True , lowercase_ : str = "prob" , lowercase_ : int = 5 , lowercase_ : bool = True , **lowercase_ : Optional[Any] , ) -> List[Any]: # time series specific configuration UpperCAmelCase : List[Any] = prediction_length UpperCAmelCase : Union[str, Any] = context_length or prediction_length UpperCAmelCase : int = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Optional[int] = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Dict = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] UpperCAmelCase : int = scaling UpperCAmelCase : Tuple = num_dynamic_real_features UpperCAmelCase : Optional[Any] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(__A ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : str = cardinality else: UpperCAmelCase : int = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(__A ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : List[str] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Optional[int] = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : List[str] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : Optional[int] = d_model UpperCAmelCase : Optional[int] = encoder_attention_heads UpperCAmelCase : Dict = decoder_attention_heads UpperCAmelCase : List[Any] = encoder_ffn_dim UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Tuple = encoder_layers UpperCAmelCase : List[Any] = decoder_layers UpperCAmelCase : Dict = dropout UpperCAmelCase : Dict = attention_dropout UpperCAmelCase : Optional[int] = activation_dropout UpperCAmelCase : Optional[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : str = init_std UpperCAmelCase : Optional[int] = use_cache # Informer UpperCAmelCase : List[str] = attention_type UpperCAmelCase : Optional[Any] = sampling_factor UpperCAmelCase : Dict = distil super().__init__(is_encoder_decoder=__A , **__A ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
718
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) lowercase__ = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def UpperCamelCase( UpperCAmelCase_ ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: UpperCAmelCase : Optional[int] = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith('encoder' ): UpperCAmelCase : List[str] = k.replace('.attn' , '.self_attn' ) UpperCAmelCase : Optional[Any] = k.replace('norm1' , 'self_attn_layer_norm' ) UpperCAmelCase : Dict = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): UpperCAmelCase : List[str] = k.replace('norm1' , 'self_attn_layer_norm' ) UpperCAmelCase : Optional[Any] = k.replace('norm2' , 'encoder_attn_layer_norm' ) UpperCAmelCase : Optional[Any] = k.replace('norm3' , 'final_layer_norm' ) return k def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: UpperCAmelCase : Union[str, Any] = sd.pop(_lowerCamelCase ) UpperCAmelCase : List[Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd UpperCAmelCase : Union[str, Any] = v lowercase__ = ["START"] @torch.no_grad() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[str] = torch.load(_lowerCamelCase , map_location='cpu' ) UpperCAmelCase : int = model["""model"""] UpperCAmelCase : Tuple = BlenderbotConfig.from_json_file(_lowerCamelCase ) UpperCAmelCase : Dict = BlenderbotForConditionalGeneration(_lowerCamelCase ) UpperCAmelCase : List[Any] = m.model.state_dict().keys() UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue UpperCAmelCase : List[str] = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: UpperCAmelCase : List[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) lowercase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
719
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if height >= 1: move_tower(height - 1 , lowercase_ , lowercase_ , lowercase_ ) move_disk(lowercase_ , lowercase_ ) move_tower(height - 1 , lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): print('moving disk from' , lowercase_ , 'to' , lowercase_ ) def UpperCamelCase( ): UpperCAmelCase : Union[str, Any] = int(input('Height of hanoi: ' ).strip() ) move_tower(lowercase_ , 'A' , 'B' , 'C' ) if __name__ == "__main__": main()
720
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
0
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase__ = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowercase__ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowercase__ = re.compile(r"\[(.+?)\]\((https://huggingface\.co/.+?)\)") lowercase__ = { "DecisionTransformerConfig", "EncoderDecoderConfig", "MusicgenConfig", "RagConfig", "SpeechEncoderDecoderConfig", "TimmBackboneConfig", "VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig", "LlamaConfig", } def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = None # source code of `config_class` UpperCAmelCase : List[Any] = inspect.getsource(lowerCAmelCase__ ) UpperCAmelCase : Union[str, Any] = _re_checkpoint.findall(lowerCAmelCase__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): UpperCAmelCase : Optional[int] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link UpperCAmelCase : Dict = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: UpperCAmelCase : List[Any] = ckpt_name break return checkpoint def UpperCamelCase( ): UpperCAmelCase : int = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue UpperCAmelCase : Any = get_checkpoint_from_config_class(lowerCAmelCase__ ) UpperCAmelCase : int = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: UpperCAmelCase : Tuple = '\n'.join(sorted(lowerCAmelCase__ ) ) raise ValueError(F"""The following configurations don\'t contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
721
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
0
'''simple docstring''' import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , lowercase_ : Any , lowercase_ : Any=13 , lowercase_ : Any=7 , lowercase_ : Any=True , lowercase_ : List[Any]=True , lowercase_ : int=True , lowercase_ : str=True , lowercase_ : Any=99 , lowercase_ : Union[str, Any]=32 , lowercase_ : int=5 , lowercase_ : Dict=4 , lowercase_ : List[str]=37 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Optional[Any]=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : str=512 , lowercase_ : str=16 , lowercase_ : List[Any]=2 , lowercase_ : Optional[int]=0.02 , lowercase_ : Any=4 , ) -> Any: UpperCAmelCase : Tuple = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : List[Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_attention_mask UpperCAmelCase : List[Any] = use_token_type_ids UpperCAmelCase : Tuple = use_labels UpperCAmelCase : Dict = vocab_size UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : Any = attention_probs_dropout_prob UpperCAmelCase : Any = max_position_embeddings UpperCAmelCase : str = type_vocab_size UpperCAmelCase : int = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[str] = num_choices def UpperCAmelCase_ ( self : Any ) -> int: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Any = None if self.use_attention_mask: UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Tuple = None if self.use_token_type_ids: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase_ ( self : Any ) -> Optional[int]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs UpperCAmelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase_ ( self : str ) -> Tuple: UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = config_and_inputs UpperCAmelCase : int = True UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Any = True UpperCAmelCase_ : List[str] = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase_ ( self : Dict ) -> str: UpperCAmelCase : str = FlaxBertModelTester(self ) @slow def UpperCAmelCase_ ( self : List[str] ) -> Any: UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained('bert-base-cased' ) UpperCAmelCase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase__ )
700
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
0
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : '''simple docstring''' def __init__( self : Optional[int] , lowercase_ : Any , lowercase_ : str=13 , lowercase_ : str=30 , lowercase_ : Optional[int]=2 , lowercase_ : Dict=3 , lowercase_ : Union[str, Any]=True , lowercase_ : Optional[int]=True , lowercase_ : str=32 , lowercase_ : int=5 , lowercase_ : Optional[int]=4 , lowercase_ : Union[str, Any]=37 , lowercase_ : List[str]="gelu" , lowercase_ : int=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : List[str]=10 , lowercase_ : str=0.02 , lowercase_ : Optional[Any]=None , lowercase_ : Optional[Any]=2 , ) -> int: UpperCAmelCase : int = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : Optional[Any] = image_size UpperCAmelCase : Union[str, Any] = patch_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Dict = is_training UpperCAmelCase : Any = use_labels UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : Optional[int] = num_attention_heads UpperCAmelCase : int = intermediate_size UpperCAmelCase : Tuple = hidden_act UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = scope UpperCAmelCase : int = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase : Union[str, Any] = (image_size // patch_size) ** 2 UpperCAmelCase : Optional[Any] = num_patches + 1 def UpperCAmelCase_ ( self : int ) -> int: UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[str] = None if self.use_labels: UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : Tuple ) -> int: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase_ ( self : Dict , lowercase_ : Any , lowercase_ : Dict , lowercase_ : Union[str, Any] ) -> List[Any]: UpperCAmelCase : Any = ViTModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : Optional[Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Any , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Tuple ) -> Optional[int]: UpperCAmelCase : Tuple = ViTForMaskedImageModeling(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : List[Any] = model(lowercase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase : List[str] = 1 UpperCAmelCase : Tuple = ViTForMaskedImageModeling(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : List[str] = model(lowercase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = self.type_sequence_label_size UpperCAmelCase : Optional[int] = ViTForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : Tuple = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase : Tuple = 1 UpperCAmelCase : Tuple = ViTForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : Tuple = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self : List[Any] ) -> int: UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[Any] = config_and_inputs UpperCAmelCase : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Any = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCAmelCase_ : List[Any] = ( {"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification} if is_torch_available() else {} ) UpperCAmelCase_ : int = True UpperCAmelCase_ : int = False UpperCAmelCase_ : str = False UpperCAmelCase_ : Optional[Any] = False def UpperCAmelCase_ ( self : List[str] ) -> str: UpperCAmelCase : Any = ViTModelTester(self ) UpperCAmelCase : str = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def UpperCAmelCase_ ( self : Tuple ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: pass def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Union[str, Any] = model_class(lowercase_ ) UpperCAmelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> List[Any]: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self : int ) -> List[Any]: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Any: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def UpperCAmelCase_ ( self : Any ) -> List[Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Dict = ViTModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCamelCase( ): UpperCAmelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : List[str] = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(lowercase_ ) UpperCAmelCase : Tuple = self.default_image_processor UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : Optional[Any] = image_processor(images=lowercase_ , return_tensors='pt' ).to(lowercase_ ) # forward pass with torch.no_grad(): UpperCAmelCase : str = model(**lowercase_ ) # verify the logits UpperCAmelCase : Any = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCAmelCase : Any = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. UpperCAmelCase : Any = ViTModel.from_pretrained('facebook/dino-vits8' ).to(lowercase_ ) UpperCAmelCase : Tuple = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=480 ) UpperCAmelCase : Optional[int] = prepare_img() UpperCAmelCase : List[str] = image_processor(images=lowercase_ , return_tensors='pt' ) UpperCAmelCase : Optional[Any] = inputs.pixel_values.to(lowercase_ ) # forward pass with torch.no_grad(): UpperCAmelCase : str = model(lowercase_ , interpolate_pos_encoding=lowercase_ ) # verify the logits UpperCAmelCase : Union[str, Any] = torch.Size((1, 3_601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , lowercase_ ) UpperCAmelCase : List[Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase_ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase_ ( self : List[Any] ) -> str: UpperCAmelCase : Tuple = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto' ) UpperCAmelCase : Union[str, Any] = self.default_image_processor UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Tuple = image_processor(images=lowercase_ , return_tensors='pt' ) UpperCAmelCase : List[str] = inputs.pixel_values.to(lowercase_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCAmelCase : Dict = model(lowercase_ )
701
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowercase__ = logging.get_logger(__name__) class A_ ( _UpperCAmelCase ): '''simple docstring''' UpperCAmelCase_ : Dict = ["""pixel_values"""] def __init__( self : List[Any] , lowercase_ : Dict = True , lowercase_ : Dict = None , lowercase_ : Tuple = PILImageResampling.BILINEAR , lowercase_ : int = True , lowercase_ : List[Any] = 1 / 255 , lowercase_ : Optional[int] = True , lowercase_ : List[Any] = None , lowercase_ : Optional[int] = True , **lowercase_ : List[str] , ) -> Dict: super().__init__(**lowercase__ ) UpperCAmelCase : Union[str, Any] = size if size is not None else {"shortest_edge": 224} UpperCAmelCase : Optional[int] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"height": 256, "width": 256} UpperCAmelCase : Dict = get_size_dict(lowercase__ , param_name='crop_size' ) UpperCAmelCase : Union[str, Any] = do_resize UpperCAmelCase : Union[str, Any] = size UpperCAmelCase : List[str] = resample UpperCAmelCase : Dict = do_rescale UpperCAmelCase : List[Any] = rescale_factor UpperCAmelCase : Optional[Any] = do_center_crop UpperCAmelCase : Dict = crop_size UpperCAmelCase : str = do_flip_channel_order def UpperCAmelCase_ ( self : Any , lowercase_ : int , lowercase_ : int , lowercase_ : List[Any] = PIL.Image.BILINEAR , lowercase_ : Union[str, Any] = None , **lowercase_ : Optional[Any] , ) -> List[str]: UpperCAmelCase : str = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase : List[Any] = get_resize_output_image_size(lowercase__ , size=size['shortest_edge'] , default_to_square=lowercase__ ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self : Dict , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Union[str, Any] = None , **lowercase_ : Dict , ) -> Tuple: UpperCAmelCase : List[Any] = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowercase__ , size=(size['height'], size['width']) , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : Any = None , **lowercase_ : List[Any] , ) -> Union[str, Any]: return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self : Dict , lowercase_ : List[str] , lowercase_ : Optional[int] = None ) -> Union[str, Any]: return flip_channel_order(lowercase__ , data_format=lowercase__ ) def UpperCAmelCase_ ( self : Any , lowercase_ : List[str] , lowercase_ : str = None , lowercase_ : str = None , lowercase_ : Any = None , lowercase_ : Optional[Any] = None , lowercase_ : List[str] = None , lowercase_ : Any = None , lowercase_ : int = None , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : List[Any] = ChannelDimension.FIRST , **lowercase_ : str , ) -> List[Any]: UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : str = resample if resample is not None else self.resample UpperCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase : Union[str, Any] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCAmelCase : Tuple = size if size is not None else self.size UpperCAmelCase : List[str] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) UpperCAmelCase : str = crop_size if crop_size is not None else self.crop_size UpperCAmelCase : Tuple = get_size_dict(lowercase__ , param_name='crop_size' ) UpperCAmelCase : Optional[Any] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) # All transformations expect numpy arrays. UpperCAmelCase : Any = [to_numpy_array(lowercase__ ) for image in images] if do_resize: UpperCAmelCase : Optional[Any] = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: UpperCAmelCase : int = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: UpperCAmelCase : str = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCAmelCase : Optional[Any] = [self.flip_channel_order(image=lowercase__ ) for image in images] UpperCAmelCase : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] UpperCAmelCase : int = {"pixel_values": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int] = None ) -> int: UpperCAmelCase : List[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase__ ) != len(lowercase__ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowercase__ ): UpperCAmelCase : int = target_sizes.numpy() UpperCAmelCase : List[Any] = [] for idx in range(len(lowercase__ ) ): UpperCAmelCase : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase__ ) UpperCAmelCase : Tuple = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase__ ) else: UpperCAmelCase : Any = logits.argmax(dim=1 ) UpperCAmelCase : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
702
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
0
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Dict = mock.Mock() UpperCAmelCase : List[str] = 500 UpperCAmelCase : List[str] = {} UpperCAmelCase : Union[str, Any] = HTTPError UpperCAmelCase : Any = {} # Download this model to make sure it's in the cache. UpperCAmelCase : int = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=lowercase_ ) as mock_head: UpperCAmelCase : Any = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: UpperCAmelCase : Any = mock.Mock() UpperCAmelCase : Dict = 500 UpperCAmelCase : str = {} UpperCAmelCase : Tuple = HTTPError UpperCAmelCase : Optional[int] = {} # Download this model to make sure it's in the cache. UpperCAmelCase : int = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=lowercase_ ) as mock_head: UpperCAmelCase : Union[str, Any] = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: try: UpperCAmelCase : Dict = tempfile.mktemp() with open(lowercase_ , 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , lowercase_ ) UpperCAmelCase : Any = AlbertTokenizer.from_pretrained(lowercase_ ) finally: os.remove(lowercase_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , lowercase_ ) UpperCAmelCase : int = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def UpperCAmelCase_ ( self : int ) -> str: UpperCAmelCase : Optional[int] = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class A_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def UpperCAmelCase_ ( cls : str ) -> List[Any]: UpperCAmelCase : str = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def UpperCAmelCase_ ( cls : List[str] ) -> Dict: try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def UpperCAmelCase_ ( self : List[Any] ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : str = os.path.join(lowercase_ , 'vocab.txt' ) with open(lowercase_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCAmelCase : List[Any] = BertTokenizer(lowercase_ ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) UpperCAmelCase : Optional[Any] = BertTokenizer.from_pretrained(f"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ , repo_id='test-tokenizer' , push_to_hub=lowercase_ , use_auth_token=self._token ) UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained(f"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def UpperCAmelCase_ ( self : int ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Union[str, Any] = os.path.join(lowercase_ , 'vocab.txt' ) with open(lowercase_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCAmelCase : Optional[Any] = BertTokenizer(lowercase_ ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) UpperCAmelCase : Union[str, Any] = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowercase_ , repo_id='valid_org/test-tokenizer-org' , push_to_hub=lowercase_ , use_auth_token=self._token ) UpperCAmelCase : Dict = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Dict = os.path.join(lowercase_ , 'vocab.txt' ) with open(lowercase_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCAmelCase : List[str] = CustomTokenizer(lowercase_ ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCAmelCase : Any = AutoTokenizer.from_pretrained(f"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : int = os.path.join(lowercase_ , 'vocab.txt' ) with open(lowercase_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCAmelCase : str = BertTokenizerFast.from_pretrained(lowercase_ ) bert_tokenizer.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = CustomTokenizerFast.from_pretrained(lowercase_ ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(f"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained( f"""{USER}/test-dynamic-tokenizer""" , use_fast=lowercase_ , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict ) -> List[Any]: UpperCAmelCase : Union[str, Any] = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: UpperCAmelCase : Optional[Any] = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: UpperCAmelCase : int = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase : Any = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: UpperCAmelCase : str = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Any = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: UpperCAmelCase : Any = Trie() UpperCAmelCase : str = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(lowercase_ , ['AB', 'C'] )
703
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 10**-10 ): UpperCAmelCase : str = a while True: UpperCAmelCase : Optional[Any] = Decimal(__lowercase ) - ( Decimal(eval(__lowercase ) ) / Decimal(eval(str(diff(__lowercase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__lowercase ) ) < precision: # noqa: S307 return float(__lowercase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(f'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(f'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
704
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
0
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class A_ ( __lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """t5""" UpperCAmelCase_ : List[str] = ["""past_key_values"""] UpperCAmelCase_ : Tuple = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : str , lowercase_ : List[str]=32_128 , lowercase_ : Tuple=512 , lowercase_ : List[Any]=64 , lowercase_ : Tuple=2_048 , lowercase_ : List[Any]=6 , lowercase_ : int=None , lowercase_ : List[str]=8 , lowercase_ : Optional[Any]=32 , lowercase_ : Tuple=128 , lowercase_ : Optional[int]=0.1 , lowercase_ : Dict=1E-6 , lowercase_ : List[Any]=1.0 , lowercase_ : Tuple="relu" , lowercase_ : Dict=True , lowercase_ : int=True , lowercase_ : Tuple=0 , lowercase_ : Optional[int]=1 , **lowercase_ : Tuple , ) -> str: UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : Dict = d_model UpperCAmelCase : Any = d_kv UpperCAmelCase : str = d_ff UpperCAmelCase : Optional[int] = num_layers UpperCAmelCase : List[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCAmelCase : int = num_heads UpperCAmelCase : Dict = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : Tuple = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : Dict = initializer_factor UpperCAmelCase : List[str] = feed_forward_proj UpperCAmelCase : Dict = use_cache UpperCAmelCase : str = self.feed_forward_proj.split('-' ) UpperCAmelCase : str = act_info[-1] UpperCAmelCase : Optional[int] = act_info[0] == 'gated' if len(_A ) > 1 and act_info[0] != "gated" or len(_A ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": UpperCAmelCase : Tuple = 'gelu_new' super().__init__( pad_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , **_A , ) class A_ ( __lowercase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Dict: UpperCAmelCase : Any = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: UpperCAmelCase : Dict = 'past_encoder_sequence + sequence' UpperCAmelCase : Union[str, Any] = {0: 'batch'} UpperCAmelCase : List[Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: UpperCAmelCase : str = {0: 'batch', 1: 'decoder_sequence'} UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_A , direction='inputs' ) return common_inputs @property def UpperCAmelCase_ ( self : Any ) -> Optional[int]: return 13
705
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
0
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = tmp_path / 'cache' UpperCAmelCase : Optional[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Dict = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = tmp_path / 'cache' UpperCAmelCase : str = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : List[Any] = features.copy() if features else default_expected_features UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Dict = JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = tmp_path / 'cache' UpperCAmelCase : str = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} UpperCAmelCase : Optional[Any] = features.copy() if features else default_expected_features UpperCAmelCase : List[Any] = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Optional[Any] = JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} UpperCAmelCase : Optional[int] = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} UpperCAmelCase : int = features.copy() UpperCAmelCase : Tuple = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Optional[Any] = tmp_path / 'cache' UpperCAmelCase : Optional[Any] = JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[str] = tmp_path / 'cache' UpperCAmelCase : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : str = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , split=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase : Dict = jsonl_path elif issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase : str = [jsonl_path] UpperCAmelCase : Tuple = tmp_path / 'cache' UpperCAmelCase : Optional[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : Optional[Any] = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=("train",) ): assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for split in splits: UpperCAmelCase : Optional[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[Any] = tmp_path / 'cache' UpperCAmelCase : Dict = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : int = JsonDatasetReader({'train': jsonl_path} , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = tmp_path / 'cache' UpperCAmelCase : List[str] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : List[str] = features.copy() if features else default_expected_features UpperCAmelCase : List[Any] = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Optional[Any] = JsonDatasetReader({'train': jsonl_path} , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if split: UpperCAmelCase : Tuple = {split: jsonl_path} else: UpperCAmelCase : List[Any] = 'train' UpperCAmelCase : Optional[Any] = {'train': jsonl_path, 'test': jsonl_path} UpperCAmelCase : Dict = tmp_path / 'cache' UpperCAmelCase : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : Dict = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCamelCase( UpperCAmelCase_ ): return json.load(lowerCAmelCase__ ) def UpperCamelCase( UpperCAmelCase_ ): return [json.loads(lowerCAmelCase__ ) for line in buffer] class A_ : @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : str ) -> Union[str, Any]: with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , lines=snake_case__ ).write() buffer.seek(0 ) UpperCAmelCase : Optional[Any] = load_json_function(snake_case__ ) assert isinstance(snake_case__ , snake_case__ ) assert isinstance(exported_content[0] , snake_case__ ) assert len(snake_case__ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : List[str] ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , lines=snake_case__ , orient=snake_case__ ).write() buffer.seek(0 ) UpperCAmelCase : str = load_json(snake_case__ ) assert isinstance(snake_case__ , snake_case__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(snake_case__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(snake_case__ ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase_ ( self : Dict , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Optional[int] ) -> int: with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , lines=snake_case__ , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase : List[str] = load_json_function(snake_case__ ) assert isinstance(snake_case__ , snake_case__ ) assert isinstance(exported_content[0] , snake_case__ ) assert len(snake_case__ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def UpperCAmelCase_ ( self : str , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : List[Any] ) -> List[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , lines=snake_case__ , orient=snake_case__ , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase : Union[str, Any] = load_json(snake_case__ ) assert isinstance(snake_case__ , snake_case__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(snake_case__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(snake_case__ ) == 10 def UpperCAmelCase_ ( self : Any , lowercase_ : str ) -> str: with pytest.raises(snake_case__ ): with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Dict , lowercase_ : str , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : Union[str, Any] ) -> Tuple: UpperCAmelCase : Dict = tmp_path_factory.mktemp('data' ) / f"""test.json.{extension}""" UpperCAmelCase : Union[str, Any] = str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(snake_case__ , snake_case__ , compression=snake_case__ ).write() with fsspec.open(snake_case__ , 'rb' , compression='infer' ) as f: UpperCAmelCase : str = f.read() with fsspec.open(snake_case__ , 'rb' , compression='infer' ) as f: UpperCAmelCase : Dict = f.read() assert exported_content == original_content
706
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if digit_amount > 0: return round(number - int(lowerCAmelCase_ ) , lowerCAmelCase_ ) return number - int(lowerCAmelCase_ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
707
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
0
'''simple docstring''' from math import sqrt def UpperCamelCase( UpperCAmelCase_ = 1_00_00_00 ): UpperCAmelCase : int = 0 UpperCAmelCase : Dict = 0 UpperCAmelCase : int = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_snake_case , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
708
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
0
'''simple docstring''' from scipy.stats import spearmanr import datasets lowercase__ = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' lowercase__ = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' lowercase__ = R'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Optional[int]=False ) -> List[Any]: UpperCAmelCase : Tuple = spearmanr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
709
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = checkpoints.load_tax_checkpoint(A_ ) UpperCAmelCase : Optional[Any] = flatten_dict(A_ ) return flax_params def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = {} UpperCAmelCase : int = { 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } UpperCAmelCase : Optional[Any] = { 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key UpperCAmelCase : Optional[int] = '.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): UpperCAmelCase : List[Any] = new_key.replace(A_ , A_ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): UpperCAmelCase : Dict = new_key.replace(A_ , A_ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number UpperCAmelCase : Tuple = re.sub(R'layers_(\d+)' , R'layer.\1' , A_ ) UpperCAmelCase : Any = new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number UpperCAmelCase : List[Any] = re.sub(R'layers_(\d+)' , R'layer.\1' , A_ ) UpperCAmelCase : str = flax_dict[key] UpperCAmelCase : Union[str, Any] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): UpperCAmelCase : int = torch.from_numpy(converted_dict[key].T ) else: UpperCAmelCase : int = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=False , UpperCAmelCase_=False ): UpperCAmelCase : Union[str, Any] = get_flax_param(A_ ) if not use_large: UpperCAmelCase : Tuple = PixaStructVisionConfig() UpperCAmelCase : Tuple = PixaStructTextConfig() else: UpperCAmelCase : Optional[int] = PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) UpperCAmelCase : Tuple = PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) UpperCAmelCase : List[str] = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=A_ ) UpperCAmelCase : List[str] = PixaStructForConditionalGeneration(A_ ) UpperCAmelCase : Union[str, Any] = rename_and_convert_flax_params(A_ ) model.load_state_dict(A_ ) UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) UpperCAmelCase : List[str] = PixaStructImageProcessor() UpperCAmelCase : Optional[Any] = PixaStructProcessor(image_processor=A_ , tokenizer=A_ ) if use_large: UpperCAmelCase : Dict = 40_96 UpperCAmelCase : Dict = True # mkdir if needed os.makedirs(A_ , exist_ok=A_ ) model.save_pretrained(A_ ) processor.save_pretrained(A_ ) print('Model saved in {}'.format(A_ ) ) if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") lowercase__ : Optional[int] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
710
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
0
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) lowercase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Tuple: for attribute in key.split('.' ): UpperCAmelCase : List[str] = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) if weight_type is not None: UpperCAmelCase : Dict = getattr(UpperCAmelCase_ , UpperCAmelCase_ ).shape else: UpperCAmelCase : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : Dict = value elif weight_type == "weight_g": UpperCAmelCase : List[Any] = value elif weight_type == "weight_v": UpperCAmelCase : Any = value elif weight_type == "bias": UpperCAmelCase : int = value else: UpperCAmelCase : int = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ) -> List[Any]: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[int] = fairseq_model.state_dict() UpperCAmelCase : Optional[int] = hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : List[str] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCAmelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCAmelCase : List[Any] = True if "*" in mapped_key: UpperCAmelCase : str = name.split(UpperCAmelCase_ )[0].split('.' )[-2] UpperCAmelCase : Any = mapped_key.replace('*' , UpperCAmelCase_ ) if "weight_g" in name: UpperCAmelCase : Dict = 'weight_g' elif "weight_v" in name: UpperCAmelCase : Optional[int] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: UpperCAmelCase : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : Union[str, Any] = 'weight' else: UpperCAmelCase : List[Any] = None set_recursively(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) continue if not is_used: unused_weights.append(UpperCAmelCase_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = full_name.split('conv_layers.' )[-1] UpperCAmelCase : int = name.split('.' ) UpperCAmelCase : Tuple = int(items[0] ) UpperCAmelCase : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase : Tuple = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase : Tuple = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase : int = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCAmelCase_ ) @torch.no_grad() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ) -> Dict: # load the pre-trained checkpoints UpperCAmelCase : Optional[int] = torch.load(UpperCAmelCase_ ) UpperCAmelCase : str = WavLMConfigOrig(checkpoint['cfg'] ) UpperCAmelCase : Optional[int] = WavLMOrig(UpperCAmelCase_ ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: UpperCAmelCase : Tuple = WavLMConfig.from_pretrained(UpperCAmelCase_ ) else: UpperCAmelCase : Any = WavLMConfig() UpperCAmelCase : Optional[int] = WavLMModel(UpperCAmelCase_ ) recursively_load_weights(UpperCAmelCase_ , UpperCAmelCase_ ) hf_wavlm.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") lowercase__ = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
711
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): assert isinstance(__snake_case , __snake_case ), F"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: UpperCAmelCase : Any = F"""The input value of [n={number}] has to be > 0""" raise ValueError(__snake_case ) else: UpperCAmelCase : Any = sylvester(number - 1 ) UpperCAmelCase : List[str] = num - 1 UpperCAmelCase : Union[str, Any] = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
712
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
0
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) lowercase__ = ["model.decoder.embed_positions.weights"] def UpperCamelCase( UpperCAmelCase_ ): if "emb" in name: UpperCAmelCase : Any = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: UpperCAmelCase : Optional[int] = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: UpperCAmelCase : Any = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: UpperCAmelCase : Union[str, Any] = name.replace('linear1' , 'fc1' ) if "linear2" in name: UpperCAmelCase : Optional[int] = name.replace('linear2' , 'fc2' ) if "norm1" in name: UpperCAmelCase : Union[str, Any] = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: UpperCAmelCase : List[Any] = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: UpperCAmelCase : List[str] = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: UpperCAmelCase : Any = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: UpperCAmelCase : List[str] = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: UpperCAmelCase : Tuple = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = list(state_dict.keys() ) UpperCAmelCase : int = {} for key in keys: UpperCAmelCase : str = state_dict.pop(lowerCamelCase_ ) UpperCAmelCase : Union[str, Any] = rename_keys(lowerCamelCase_ ) if "in_proj_weight" in key: # split fused qkv proj UpperCAmelCase : List[Any] = val[:hidden_size, :] UpperCAmelCase : Union[str, Any] = val[hidden_size : 2 * hidden_size, :] UpperCAmelCase : Dict = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCAmelCase : str = val else: UpperCAmelCase : Union[str, Any] = val return state_dict, enc_dec_proj_state_dict def UpperCamelCase( UpperCAmelCase_ ): if checkpoint == "small": # default config values UpperCAmelCase : Optional[int] = 10_24 UpperCAmelCase : Tuple = 24 UpperCAmelCase : Dict = 16 elif checkpoint == "medium": UpperCAmelCase : int = 15_36 UpperCAmelCase : int = 48 UpperCAmelCase : int = 24 elif checkpoint == "large": UpperCAmelCase : Optional[Any] = 20_48 UpperCAmelCase : Any = 48 UpperCAmelCase : Any = 32 else: raise ValueError(F"""Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.""" ) UpperCAmelCase : Dict = MusicgenDecoderConfig( hidden_size=lowerCamelCase_ , ffn_dim=hidden_size * 4 , num_hidden_layers=lowerCamelCase_ , num_attention_heads=lowerCamelCase_ , ) return config @torch.no_grad() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_="cpu" ): UpperCAmelCase : Union[str, Any] = MusicGen.get_pretrained(lowerCamelCase_ , device=lowerCamelCase_ ) UpperCAmelCase : List[Any] = decoder_config_from_checkpoint(lowerCamelCase_ ) UpperCAmelCase : Any = fairseq_model.lm.state_dict() UpperCAmelCase : Dict = rename_state_dict( lowerCamelCase_ , hidden_size=decoder_config.hidden_size ) UpperCAmelCase : int = TaEncoderModel.from_pretrained('t5-base' ) UpperCAmelCase : Any = EncodecModel.from_pretrained('facebook/encodec_32khz' ) UpperCAmelCase : Dict = MusicgenForCausalLM(lowerCamelCase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCAmelCase : int = decoder.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(lowerCamelCase_ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model UpperCAmelCase : Optional[Any] = MusicgenForConditionalGeneration(text_encoder=lowerCamelCase_ , audio_encoder=lowerCamelCase_ , decoder=lowerCamelCase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowerCamelCase_ ) # check we can do a forward pass UpperCAmelCase : str = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) UpperCAmelCase : Tuple = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(input_ids=lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ ).logits if logits.shape != (8, 1, 20_48): raise ValueError('Incorrect shape for logits' ) # now construct the processor UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained('t5-base' ) UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) UpperCAmelCase : str = MusicgenProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_ ) # set the appropriate bos/pad token ids UpperCAmelCase : int = 20_48 UpperCAmelCase : Optional[int] = 20_48 # set other default generation config params UpperCAmelCase : Optional[int] = int(30 * audio_encoder.config.frame_rate ) UpperCAmelCase : List[str] = True UpperCAmelCase : str = 3.0 if pytorch_dump_folder is not None: Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(lowerCamelCase_ ) processor.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowercase__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
713
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Any = StableDiffusionInstructPixaPixPipeline UpperCAmelCase_ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} UpperCAmelCase_ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase_ : int = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase_ : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self : int ) -> Dict: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCAmelCase : Union[str, Any] = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) UpperCAmelCase : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCAmelCase : Optional[int] = CLIPTextModel(UpperCamelCase_ ) UpperCAmelCase : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCAmelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase_ ( self : List[Any] , lowercase_ : List[Any] , lowercase_ : List[str]=0 ) -> Dict: UpperCAmelCase : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) UpperCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase : Optional[int] = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ) if str(UpperCamelCase_ ).startswith('mps' ): UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ ) else: UpperCAmelCase : Dict = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCAmelCase : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: UpperCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : List[Any] = self.get_dummy_components() UpperCAmelCase : Optional[int] = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase_ ) UpperCAmelCase : str = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase : str = self.get_dummy_inputs(UpperCamelCase_ ) UpperCAmelCase : str = sd_pipe(**UpperCamelCase_ ).images UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Tuple = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Optional[Any] = self.get_dummy_components() UpperCAmelCase : List[Any] = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase_ ) UpperCAmelCase : List[str] = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ ) UpperCAmelCase : Tuple = 'french fries' UpperCAmelCase : List[str] = sd_pipe(**UpperCamelCase_ , negative_prompt=UpperCamelCase_ ) UpperCAmelCase : int = output.images UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Union[str, Any] = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : str = self.get_dummy_components() UpperCAmelCase : Any = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase_ ) UpperCAmelCase : List[Any] = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(UpperCamelCase_ ) UpperCAmelCase : List[str] = [inputs['prompt']] * 2 UpperCAmelCase : Optional[Any] = np.array(inputs['image'] ).astype(np.floataa ) / 255.0 UpperCAmelCase : Optional[int] = torch.from_numpy(UpperCamelCase_ ).unsqueeze(0 ).to(UpperCamelCase_ ) UpperCAmelCase : Any = image / 2 + 0.5 UpperCAmelCase : Optional[Any] = image.permute(0 , 3 , 1 , 2 ) UpperCAmelCase : Any = image.repeat(2 , 1 , 1 , 1 ) UpperCAmelCase : Dict = sd_pipe(**UpperCamelCase_ ).images UpperCAmelCase : int = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) UpperCAmelCase : int = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : str = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : List[str] = self.get_dummy_components() UpperCAmelCase : int = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' ) UpperCAmelCase : str = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase_ ) UpperCAmelCase : Union[str, Any] = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase : List[str] = self.get_dummy_inputs(UpperCamelCase_ ) UpperCAmelCase : Dict = sd_pipe(**UpperCamelCase_ ).images UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] UpperCAmelCase : Dict = [round(UpperCamelCase_ , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(UpperCamelCase_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Optional[int] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: UpperCAmelCase : List[str] = self.get_dummy_components() UpperCAmelCase : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase_ ) UpperCAmelCase : Any = VaeImageProcessor(do_resize=UpperCamelCase_ , do_normalize=UpperCamelCase_ ) UpperCAmelCase : Dict = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs_by_type(UpperCamelCase_ , input_image_type='pt' ) )[0] UpperCAmelCase : Any = components['vae'] UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs_by_type(UpperCamelCase_ , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): UpperCAmelCase : List[str] = vae.encode(inputs[image_param] ).latent_dist.mode() UpperCAmelCase : Any = pipe(**UpperCamelCase_ )[0] UpperCAmelCase : int = np.abs(out - out_latents_inputs ).max() self.assertLess(UpperCamelCase_ , 1E-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : List[Any] , lowercase_ : str=0 ) -> int: UpperCAmelCase : List[Any] = torch.manual_seed(UpperCamelCase_ ) UpperCAmelCase : Dict = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) UpperCAmelCase : Optional[int] = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def UpperCAmelCase_ ( self : str ) -> Optional[int]: UpperCAmelCase : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() UpperCAmelCase : Tuple = self.get_inputs() UpperCAmelCase : Dict = pipe(**UpperCamelCase_ ).images UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Optional[int] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def UpperCAmelCase_ ( self : Optional[Any] ) -> str: UpperCAmelCase : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=UpperCamelCase_ ) UpperCAmelCase : int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() UpperCAmelCase : Optional[int] = self.get_inputs() UpperCAmelCase : Union[str, Any] = pipe(**UpperCamelCase_ ).images UpperCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase : str = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=UpperCamelCase_ ) UpperCAmelCase : Optional[int] = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() UpperCAmelCase : Optional[Any] = self.get_inputs() UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ ).images UpperCAmelCase : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Union[str, Any] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def UpperCAmelCase_ ( self : List[str] ) -> str: UpperCAmelCase : Tuple = 0 def callback_fn(lowercase_ : int , lowercase_ : int , lowercase_ : torch.FloatTensor ) -> None: UpperCAmelCase : Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCAmelCase : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCAmelCase : Any = latents[0, -3:, -3:, -1] UpperCAmelCase : str = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: UpperCAmelCase : List[str] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCAmelCase : Optional[int] = latents[0, -3:, -3:, -1] UpperCAmelCase : int = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 UpperCAmelCase : int = False UpperCAmelCase : Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa ) UpperCAmelCase : List[str] = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() UpperCAmelCase : Tuple = self.get_inputs() pipe(**UpperCamelCase_ , callback=UpperCamelCase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa ) UpperCAmelCase : Any = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase : Tuple = self.get_inputs() UpperCAmelCase : str = pipe(**UpperCamelCase_ ) UpperCAmelCase : int = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def UpperCAmelCase_ ( self : str ) -> Tuple: UpperCAmelCase : Optional[int] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 UpperCAmelCase : Tuple = inputs['image'].resize((504, 504) ) UpperCAmelCase : Optional[int] = 'timbrooks/instruct-pix2pix' UpperCAmelCase : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( UpperCamelCase_ , safety_checker=UpperCamelCase_ , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() UpperCAmelCase : List[str] = pipe(**UpperCamelCase_ ) UpperCAmelCase : Any = output.images[0] UpperCAmelCase : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) UpperCAmelCase : List[Any] = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
714
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _UpperCamelCase ): '''simple docstring''' def __init__( self : str , *lowercase_ : Tuple , **lowercase_ : int ) -> Tuple: warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
715
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": lowercase__ = pd.read_csv("sample_data.csv", header=None) lowercase__ = df.shape[:1][0] # If you're using some other dataset input the target column lowercase__ = df.iloc[:, 1:2] lowercase__ = actual_data.values.reshape(len_data, 1) lowercase__ = MinMaxScaler().fit_transform(actual_data) lowercase__ = 10 lowercase__ = 5 lowercase__ = 20 lowercase__ = len_data - periods * look_back lowercase__ = actual_data[:division] lowercase__ = actual_data[division - look_back :] lowercase__ , lowercase__ = [], [] lowercase__ , lowercase__ = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) lowercase__ = np.array(train_x) lowercase__ = np.array(test_x) lowercase__ = np.array([list(i.ravel()) for i in train_y]) lowercase__ = np.array([list(i.ravel()) for i in test_y]) lowercase__ = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") lowercase__ = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) lowercase__ = model.predict(x_test)
716
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
0
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase__ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class A_ ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCAmelCase_ ( cls : int ) -> int: UpperCAmelCase : Optional[Any] = TOKEN HfFolder.save_token(lowerCAmelCase_ ) @classmethod def UpperCAmelCase_ ( cls : List[str] ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id='test-model-flax' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-model-flax-org' ) except HTTPError: pass def UpperCAmelCase_ ( self : str ) -> Any: UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Any = FlaxBertModel(lowerCAmelCase_ ) model.push_to_hub('test-model-flax' , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) UpperCAmelCase : Tuple = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase_ , 1E-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='test-model-flax' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCAmelCase_ , repo_id='test-model-flax' , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token ) UpperCAmelCase : Optional[int] = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) UpperCAmelCase : Optional[int] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase_ , 1E-3 , msg=f"""{key} not identical""" ) def UpperCAmelCase_ ( self : Any ) -> List[str]: UpperCAmelCase : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Optional[Any] = FlaxBertModel(lowerCAmelCase_ ) model.push_to_hub('valid_org/test-model-flax-org' , use_auth_token=self._token ) UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) UpperCAmelCase : str = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Dict = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase_ , 1E-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-model-flax-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCAmelCase_ , repo_id='valid_org/test-model-flax-org' , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token ) UpperCAmelCase : Any = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase_ , 1E-3 , msg=f"""{key} not identical""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[str] = True UpperCAmelCase : Optional[int] = flatten_dict(modela.params ) UpperCAmelCase : int = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: UpperCAmelCase : Union[str, Any] = False return models_are_equal @require_flax class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[int] ) -> int: UpperCAmelCase : int = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) UpperCAmelCase : int = FlaxBertModel(lowerCAmelCase_ ) UpperCAmelCase : Union[str, Any] = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) with self.assertRaises(lowerCAmelCase_ ): UpperCAmelCase : Any = FlaxBertModel.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ ) self.assertTrue(check_models_equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) def UpperCAmelCase_ ( self : Dict ) -> Any: UpperCAmelCase : str = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) UpperCAmelCase : Dict = FlaxBertModel(lowerCAmelCase_ ) UpperCAmelCase : List[str] = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , max_shard_size='10KB' ) with self.assertRaises(lowerCAmelCase_ ): UpperCAmelCase : Any = FlaxBertModel.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase : int = FlaxBertModel.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ ) self.assertTrue(check_models_equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) def UpperCAmelCase_ ( self : List[str] ) -> int: UpperCAmelCase : int = 'bert' UpperCAmelCase : Tuple = 'hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(lowerCAmelCase_ ): UpperCAmelCase : str = FlaxBertModel.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase : List[Any] = FlaxBertModel.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def UpperCAmelCase_ ( self : str ) -> Dict: UpperCAmelCase : str = 'bert' UpperCAmelCase : Tuple = 'hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(lowerCAmelCase_ ): UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ )
717
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
0
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class A_ : '''simple docstring''' def __init__( self : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any]=13 , lowercase_ : Dict=7 , lowercase_ : Any=True , lowercase_ : Tuple=True , lowercase_ : str=True , lowercase_ : Union[str, Any]=True , lowercase_ : str=99 , lowercase_ : Optional[Any]=32 , lowercase_ : Optional[Any]=2 , lowercase_ : Tuple=4 , lowercase_ : Optional[Any]=37 , lowercase_ : Tuple="gelu" , lowercase_ : Any=0.1 , lowercase_ : str=0.1 , lowercase_ : Dict=512 , lowercase_ : int=16 , lowercase_ : Tuple=2 , lowercase_ : int=0.02 , lowercase_ : Union[str, Any]=3 , lowercase_ : str=4 , lowercase_ : Dict=None , lowercase_ : Dict=1_000 , ) -> Dict: UpperCAmelCase : List[Any] = parent UpperCAmelCase : Optional[int] = batch_size UpperCAmelCase : Any = seq_length UpperCAmelCase : Dict = is_training UpperCAmelCase : Optional[int] = use_input_mask UpperCAmelCase : Tuple = use_token_type_ids UpperCAmelCase : Any = use_labels UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : str = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Any = max_position_embeddings UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : Union[str, Any] = num_choices UpperCAmelCase : str = scope UpperCAmelCase : str = range_bbox def UpperCAmelCase_ ( self : Optional[int] ) -> int: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase : List[Any] = bbox[i, j, 3] UpperCAmelCase : Tuple = bbox[i, j, 1] UpperCAmelCase : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase : int = bbox[i, j, 2] UpperCAmelCase : List[Any] = bbox[i, j, 0] UpperCAmelCase : List[Any] = t UpperCAmelCase : List[Any] = tf.convert_to_tensor(UpperCAmelCase__ ) UpperCAmelCase : List[Any] = None if self.use_input_mask: UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Optional[int] = None UpperCAmelCase : Dict = None UpperCAmelCase : Tuple = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : str = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self : int , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : int ) -> Optional[Any]: UpperCAmelCase : Optional[int] = TFLayoutLMModel(config=UpperCAmelCase__ ) UpperCAmelCase : Union[str, Any] = model(UpperCAmelCase__ , UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) UpperCAmelCase : Tuple = model(UpperCAmelCase__ , UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) UpperCAmelCase : Dict = model(UpperCAmelCase__ , UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] ) -> List[str]: UpperCAmelCase : Union[str, Any] = TFLayoutLMForMaskedLM(config=UpperCAmelCase__ ) UpperCAmelCase : Optional[int] = model(UpperCAmelCase__ , UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : Dict , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : int , lowercase_ : Any , lowercase_ : Any , lowercase_ : Optional[Any] ) -> List[str]: UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : List[Any] = TFLayoutLMForSequenceClassification(config=UpperCAmelCase__ ) UpperCAmelCase : Any = model(UpperCAmelCase__ , UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : List[str] ) -> Union[str, Any]: UpperCAmelCase : Any = self.num_labels UpperCAmelCase : int = TFLayoutLMForTokenClassification(config=UpperCAmelCase__ ) UpperCAmelCase : Optional[int] = model(UpperCAmelCase__ , UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Any , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = TFLayoutLMForQuestionAnswering(config=UpperCAmelCase__ ) UpperCAmelCase : Dict = model(UpperCAmelCase__ , UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ( UpperCAmelCase ) : Any = config_and_inputs UpperCAmelCase : Union[str, Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Any = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) UpperCAmelCase_ : Dict = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase_ : int = False UpperCAmelCase_ : str = True UpperCAmelCase_ : List[str] = 10 def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Any = TFLayoutLMModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : str ) -> str: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Any ) -> int: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Any: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Any = TFLayoutLMModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: pass def UpperCamelCase( ): UpperCAmelCase : Dict = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231 UpperCAmelCase : Optional[int] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 UpperCAmelCase : int = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231 UpperCAmelCase : str = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class A_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: UpperCAmelCase : List[Any] = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) UpperCAmelCase : int = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase : Dict = model(input_ids=UpperCAmelCase__ , bbox=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) # test the sequence output on [0, :3, :3] UpperCAmelCase : Tuple = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-3 ) ) # test the pooled output on [1, :3] UpperCAmelCase : Dict = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , UpperCAmelCase__ , atol=1E-3 ) ) @slow def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Optional[int] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) UpperCAmelCase : int = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase : Tuple = model( input_ids=UpperCAmelCase__ , bbox=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar UpperCAmelCase : Optional[Any] = outputs.loss UpperCAmelCase : Optional[int] = (2,) self.assertEqual(loss.shape , UpperCAmelCase__ ) # test the shape of the logits UpperCAmelCase : Union[str, Any] = outputs.logits UpperCAmelCase : Optional[int] = (2, 2) self.assertEqual(logits.shape , UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: UpperCAmelCase : List[str] = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) UpperCAmelCase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase : Tuple = model( input_ids=UpperCAmelCase__ , bbox=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) # test the shape of the logits UpperCAmelCase : str = outputs.logits UpperCAmelCase : List[str] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : str ) -> str: UpperCAmelCase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) UpperCAmelCase : str = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase : Union[str, Any] = model(input_ids=UpperCAmelCase__ , bbox=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) # test the shape of the logits UpperCAmelCase : Optional[int] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , UpperCAmelCase__ ) self.assertEqual(outputs.end_logits.shape , UpperCAmelCase__ )
718
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self : str ) -> int: UpperCAmelCase : List[Any] = TFXLMRobertaModel.from_pretrained('jplu/tf-xlm-roberta-base' ) UpperCAmelCase : str = { "input_ids": tf.convert_to_tensor([[0, 2_646, 10_269, 83, 99_942, 2]] , dtype=tf.intaa ), # "My dog is cute" "attention_mask": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } UpperCAmelCase : Union[str, Any] = model(snake_case__ )["last_hidden_state"] UpperCAmelCase : Optional[int] = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice. UpperCAmelCase : Tuple = tf.convert_to_tensor( [ [ [0.068_1762, 0.1089_4451, 0.0677_2504], [-0.0642_3668, 0.0236_6615, 0.0432_9344], [-0.0605_7295, 0.0997_4135, -0.0007_0584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
719
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
0
'''simple docstring''' import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def UpperCamelCase( *UpperCAmelCase_ ): if not isinstance(__a , __a ): UpperCAmelCase : List[Any] = list(__a ) for i in range(len(__a ) ): UpperCAmelCase : List[str] = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = [ 'CUDA out of memory.', # CUDA OOM 'cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.', # CUDNN SNAFU 'DefaultCPUAllocator: can\'t allocate memory', # CPU OOM ] if isinstance(__a , __a ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def UpperCamelCase( UpperCAmelCase_ = None , UpperCAmelCase_ = 1_28 ): if function is None: return functools.partial(__a , starting_batch_size=__a ) UpperCAmelCase : Dict = starting_batch_size def decorator(*UpperCAmelCase_ , **UpperCAmelCase_ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() UpperCAmelCase : Union[str, Any] = list(inspect.signature(__a ).parameters.keys() ) # Guard against user error if len(__a ) < (len(__a ) + 1): UpperCAmelCase : Optional[int] = ', '.join([F"""{arg}={value}""" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F"""Batch size was passed into `{function.__name__}` as the first argument when called.""" F"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" ) while True: if batch_size == 0: raise RuntimeError('No executable batch size found, reached zero.' ) try: return function(__a , *__a , **__a ) except Exception as e: if should_reduce_batch_size(__a ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
720
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
0
'''simple docstring''' import re from filelock import FileLock try: import nltk lowercase__ = True except (ImportError, ModuleNotFoundError): lowercase__ = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def UpperCamelCase( UpperCAmelCase_ ): re.sub('<n>' , '' , UpperCAmelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCAmelCase_ ) )
721
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
0
'''simple docstring''' class A_ : # Public class to implement a graph '''simple docstring''' def __init__( self : str , lowercase_ : int , lowercase_ : int , lowercase_ : list[list[bool]] ) -> List[str]: UpperCAmelCase : Dict = row UpperCAmelCase : Union[str, Any] = col UpperCAmelCase : int = graph def UpperCAmelCase_ ( self : List[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : list[list[bool]] ) -> List[Any]: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCAmelCase_ ( self : int , lowercase_ : int , lowercase_ : int , lowercase_ : list[list[bool]] ) -> int: UpperCAmelCase : Optional[Any] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase : Optional[Any] = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase : Optional[int] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCAmelCase__ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : int ) -> Any: # And finally, count all islands. UpperCAmelCase : Tuple = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase : Optional[Any] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) count += 1 return count
700
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: UpperCAmelCase : Optional[int] = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) UpperCAmelCase : Dict = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) sd_pipe.set_scheduler('sample_euler' ) UpperCAmelCase : List[str] = 'A painting of a squirrel eating a burger' UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase : Tuple = sd_pipe([prompt] , generator=_lowerCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) UpperCAmelCase : Optional[Any] = output.images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: UpperCAmelCase : str = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCAmelCase : List[str] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) sd_pipe.set_scheduler('sample_euler' ) UpperCAmelCase : Tuple = 'A painting of a squirrel eating a burger' UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = sd_pipe([prompt] , generator=_lowerCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) UpperCAmelCase : int = output.images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Union[str, Any] = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : List[Any] = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCAmelCase : Optional[int] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) UpperCAmelCase : Dict = 'A painting of a squirrel eating a burger' UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : List[str] = sd_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=_lowerCamelCase , ) UpperCAmelCase : Union[str, Any] = output.images UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Dict = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
701
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
0
'''simple docstring''' from __future__ import annotations import requests lowercase__ = set( "approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split() ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ = 1 , UpperCAmelCase_ = "new" , UpperCAmelCase_ = None ): UpperCAmelCase : Union[str, Any] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowerCamelCase_ ) - valid_terms ) ): UpperCAmelCase : Tuple = F"""Invalid search term: {invalid_search_terms}""" raise ValueError(lowerCamelCase_ ) UpperCAmelCase : Optional[Any] = requests.get( F"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={'User-agent': 'A random string'} , ) if response.status_code == 4_29: raise requests.HTTPError UpperCAmelCase : Any = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowerCamelCase_ )} UpperCAmelCase : int = {} for id_ in range(lowerCamelCase_ ): UpperCAmelCase : Any = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
702
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Dict = len(UpperCamelCase__ ) + 1 UpperCAmelCase : int = len(UpperCamelCase__ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : Union[str, Any] = [[0 for i in range(UpperCamelCase__ )] for j in range(UpperCamelCase__ )] # since string of zero length match pattern of zero length UpperCAmelCase : List[str] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , UpperCamelCase__ ): UpperCAmelCase : Dict = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , UpperCamelCase__ ): UpperCAmelCase : int = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , UpperCamelCase__ ): for j in range(1 , UpperCamelCase__ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : List[Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : str = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Tuple = dp[i - 1][j] else: UpperCAmelCase : int = 0 else: UpperCAmelCase : Tuple = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") lowercase__ = "aab" lowercase__ = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
703
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 60_08_51_47_51_43 ): try: UpperCAmelCase : int = int(__SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) UpperCAmelCase : str = 2 UpperCAmelCase : Optional[int] = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 UpperCAmelCase : Union[str, Any] = i while n % i == 0: UpperCAmelCase : Optional[int] = n // i i += 1 return int(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f'''{solution() = }''')
704
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
0