code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowercase__ = sys.version_info >= (3, 10) def UpperCamelCase( UpperCAmelCase_=None , UpperCAmelCase_=None ): return field(default_factory=lambda: default , metadata=UpperCAmelCase_ ) @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : int UpperCAmelCase_ : float UpperCAmelCase_ : str UpperCAmelCase_ : bool @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : int = 42 UpperCAmelCase_ : str = field(default="""toto""" , metadata={"""help""": """help message"""} ) @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = True UpperCAmelCase_ : Optional[bool] = None class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """titi""" UpperCAmelCase_ : int = """toto""" class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """titi""" UpperCAmelCase_ : Dict = """toto""" UpperCAmelCase_ : Dict = 42 @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : BasicEnum = "toto" def UpperCAmelCase_ ( self : List[Any] ) -> Dict: UpperCAmelCase : Tuple = BasicEnum(self.foo ) @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : MixedTypeEnum = "toto" def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: UpperCAmelCase : Union[str, Any] = MixedTypeEnum(self.foo ) @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Optional[float] = field(default=_snake_case , metadata={"""help""": """help message"""} ) UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[List[str]] = list_field(default=[] ) UpperCAmelCase_ : Optional[List[int]] = list_field(default=[] ) @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] = list_field(default=[] ) UpperCAmelCase_ : List[int] = list_field(default=[1, 2, 3] ) UpperCAmelCase_ : List[str] = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) UpperCAmelCase_ : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] = field() UpperCAmelCase_ : str = field() UpperCAmelCase_ : BasicEnum = field() def UpperCAmelCase_ ( self : str ) -> Dict: UpperCAmelCase : Tuple = BasicEnum(self.required_enum ) @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : int UpperCAmelCase_ : "BasicEnum" = field() UpperCAmelCase_ : "Optional[bool]" = None UpperCAmelCase_ : "str" = field(default="""toto""" , metadata={"""help""": """help message"""} ) UpperCAmelCase_ : "List[str]" = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = True UpperCAmelCase_ : bool | None = None @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : int | None = None UpperCAmelCase_ : float | None = field(default=_snake_case , metadata={"""help""": """help message"""} ) UpperCAmelCase_ : str | None = None UpperCAmelCase_ : list[str] | None = list_field(default=[] ) UpperCAmelCase_ : list[int] | None = list_field(default=[] ) class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : argparse.ArgumentParser , lowercase_ : argparse.ArgumentParser ) -> int: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): UpperCAmelCase : Optional[Any] = {k: v for k, v in vars(lowercase_ ).items() if k != 'container'} UpperCAmelCase : List[Any] = {k: v for k, v in vars(lowercase_ ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , lowercase_ ) and yy.get('choices' , lowercase_ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](lowercase_ ) , yy['type'](lowercase_ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: UpperCAmelCase : Dict = HfArgumentParser(lowercase_ ) UpperCAmelCase : List[Any] = argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_ ) expected.add_argument('--bar' , type=lowercase_ , required=lowercase_ ) expected.add_argument('--baz' , type=lowercase_ , required=lowercase_ ) expected.add_argument('--flag' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?' ) self.argparsersEqual(lowercase_ , lowercase_ ) UpperCAmelCase : Dict = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((UpperCAmelCase) , ) : Union[str, Any] = parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_ ) self.assertFalse(example.flag ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : List[str] = HfArgumentParser(lowercase_ ) UpperCAmelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=lowercase_ ) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message' ) self.argparsersEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Tuple: UpperCAmelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?' ) expected.add_argument('--baz' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=lowercase_ , dest='baz' ) expected.add_argument('--opt' , type=lowercase_ , default=lowercase_ ) UpperCAmelCase : List[Any] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_ ) for dataclass_type in dataclass_types: UpperCAmelCase : str = HfArgumentParser(lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = parser.parse_args([] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) UpperCAmelCase : Optional[Any] = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) UpperCAmelCase : Union[str, Any] = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) UpperCAmelCase : Tuple = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) UpperCAmelCase : List[Any] = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) def UpperCAmelCase_ ( self : Any ) -> Any: UpperCAmelCase : Optional[Any] = HfArgumentParser(lowercase_ ) UpperCAmelCase : List[str] = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(lowercase_ , lowercase_ ) UpperCAmelCase : List[str] = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) UpperCAmelCase : Any = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) UpperCAmelCase : Optional[Any] = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) UpperCAmelCase : Dict = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) UpperCAmelCase : List[Any] = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) UpperCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def UpperCAmelCase_ ( self : List[str] ) -> int: @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : Literal["titi", "toto", 42] = "toto" UpperCAmelCase : Dict = HfArgumentParser(lowercase_ ) UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(lowercase_ , lowercase_ ) UpperCAmelCase : Any = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) UpperCAmelCase : List[Any] = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) UpperCAmelCase : Union[str, Any] = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: UpperCAmelCase : List[str] = HfArgumentParser(lowercase_ ) UpperCAmelCase : Dict = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=lowercase_ ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=lowercase_ ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_ ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) UpperCAmelCase : int = parser.parse_args([] ) self.assertEqual( lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) UpperCAmelCase : Optional[Any] = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument('--foo' , default=lowercase_ , type=lowercase_ ) expected.add_argument('--bar' , default=lowercase_ , type=lowercase_ , help='help message' ) expected.add_argument('--baz' , default=lowercase_ , type=lowercase_ ) expected.add_argument('--ces' , nargs='+' , default=[] , type=lowercase_ ) expected.add_argument('--des' , nargs='+' , default=[] , type=lowercase_ ) UpperCAmelCase : str = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_ ) for dataclass_type in dataclass_types: UpperCAmelCase : Union[str, Any] = HfArgumentParser(lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) UpperCAmelCase : Optional[Any] = parser.parse_args([] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[] ) ) UpperCAmelCase : List[Any] = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: UpperCAmelCase : Tuple = HfArgumentParser(lowercase_ ) UpperCAmelCase : Tuple = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=lowercase_ , required=lowercase_ ) expected.add_argument('--required_str' , type=lowercase_ , required=lowercase_ ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=lowercase_ , ) self.argparsersEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: UpperCAmelCase : Union[str, Any] = HfArgumentParser(lowercase_ ) UpperCAmelCase : int = argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_ ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=lowercase_ , ) expected.add_argument('--opt' , type=lowercase_ , default=lowercase_ ) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : str = HfArgumentParser(lowercase_ ) UpperCAmelCase : str = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } UpperCAmelCase : str = parser.parse_dict(lowercase_ )[0] UpperCAmelCase : Union[str, Any] = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: UpperCAmelCase : Tuple = HfArgumentParser(lowercase_ ) UpperCAmelCase : List[str] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = HfArgumentParser(lowercase_ ) UpperCAmelCase : Optional[int] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Union[str, Any] = os.path.join(lowercase_ , 'temp_json' ) os.mkdir(lowercase_ ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(lowercase_ , lowercase_ ) UpperCAmelCase : str = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] UpperCAmelCase : Tuple = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: UpperCAmelCase : Dict = HfArgumentParser(lowercase_ ) UpperCAmelCase : List[Any] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Dict = os.path.join(lowercase_ , 'temp_yaml' ) os.mkdir(lowercase_ ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(lowercase_ , lowercase_ ) UpperCAmelCase : List[str] = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] UpperCAmelCase : Any = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: UpperCAmelCase : Dict = HfArgumentParser(lowercase_ ) self.assertIsNotNone(lowercase_ )
695
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
1
'''simple docstring''' from scipy.stats import pearsonr import datasets lowercase__ = "\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n" lowercase__ = "\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results['pearsonr'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n ['p-value', 'pearsonr']\n >>> print(round(results['pearsonr'], 2))\n -0.74\n >>> print(round(results['p-value'], 2))\n 0.15\n" lowercase__ = "\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def UpperCAmelCase_ ( self : str , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[str]=False ) -> Optional[int]: if return_pvalue: UpperCAmelCase : List[str] = pearsonr(lowercase_ , lowercase_ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowercase_ , lowercase_ )[0] )}
695
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
1
'''simple docstring''' from math import factorial class A_ : '''simple docstring''' def __init__( self : int , lowercase_ : Union[str, Any] , lowercase_ : Any ) -> List[str]: UpperCAmelCase : Dict = real if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Dict = [1] * rank else: UpperCAmelCase : Tuple = rank def __repr__( self : Optional[int] ) -> List[Any]: return ( f"""{self.real}+""" f"""{"+".join(str(lowercase_ )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self : Optional[int] , lowercase_ : Tuple ) -> int: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) UpperCAmelCase : Optional[Any] = self.duals.copy() UpperCAmelCase : str = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) UpperCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) UpperCAmelCase_ : int = __add__ def __sub__( self : List[str] , lowercase_ : Union[str, Any] ) -> Tuple: return self + other * -1 def __mul__( self : str , lowercase_ : Tuple ) -> Dict: if not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) UpperCAmelCase : Dict = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) UpperCAmelCase_ : str = __mul__ def __truediv__( self : int , lowercase_ : Dict ) -> int: if not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Any = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self : Any , lowercase_ : List[str] ) -> List[Any]: if not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self : int , lowercase_ : Tuple ) -> Dict: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self UpperCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if not callable(UpperCAmelCase_ ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(UpperCAmelCase_ , (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('differentiate() requires an int as input for order' ) UpperCAmelCase : List[Any] = Dual(UpperCAmelCase_ , 1 ) UpperCAmelCase : Dict = func(UpperCAmelCase_ ) if order == 0: return result.real return result.duals[order - 1] * factorial(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() def UpperCamelCase( UpperCAmelCase_ ): return y**2 * y**4 print(differentiate(f, 9, 2))
695
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_snake_case ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) UpperCAmelCase_ : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) UpperCAmelCase_ : ClassVar[Features] = Features({} ) UpperCAmelCase_ : str = "text" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict[str, str]: return {self.text_column: "text"}
695
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
1
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
1
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[str] , lowercase_ : UNetaDModel , lowercase_ : UNetaDModel , lowercase_ : DDPMScheduler , lowercase_ : Optional[int] , ) -> str: super().__init__() UpperCAmelCase : str = value_function UpperCAmelCase : Union[str, Any] = unet UpperCAmelCase : str = scheduler UpperCAmelCase : str = env UpperCAmelCase : Tuple = env.get_dataset() UpperCAmelCase : Dict = {} for key in self.data.keys(): try: UpperCAmelCase : Any = self.data[key].mean() except: # noqa: E722 pass UpperCAmelCase : List[str] = {} for key in self.data.keys(): try: UpperCAmelCase : Optional[int] = self.data[key].std() except: # noqa: E722 pass UpperCAmelCase : List[str] = env.observation_space.shape[0] UpperCAmelCase : Union[str, Any] = env.action_space.shape[0] def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Dict , lowercase_ : Any ) -> Dict: return (x_in - self.means[key]) / self.stds[key] def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : int , lowercase_ : Optional[Any] ) -> List[Any]: return x_in * self.stds[key] + self.means[key] def UpperCAmelCase_ ( self : Tuple , lowercase_ : List[str] ) -> Any: if type(lowercase_ ) is dict: return {k: self.to_torch(lowercase_ ) for k, v in x_in.items()} elif torch.is_tensor(lowercase_ ): return x_in.to(self.unet.device ) return torch.tensor(lowercase_ , device=self.unet.device ) def UpperCAmelCase_ ( self : int , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] ) -> Tuple: for key, val in cond.items(): UpperCAmelCase : Optional[int] = val.clone() return x_in def UpperCAmelCase_ ( self : str , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : Union[str, Any] ) -> Dict: UpperCAmelCase : Dict = x.shape[0] UpperCAmelCase : Optional[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCAmelCase : Dict = torch.full((batch_size,) , lowercase_ , device=self.unet.device , dtype=torch.long ) for _ in range(lowercase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCAmelCase : Union[str, Any] = self.value_function(x.permute(0 , 2 , 1 ) , lowercase_ ).sample UpperCAmelCase : Tuple = torch.autograd.grad([y.sum()] , [x] )[0] UpperCAmelCase : Optional[Any] = self.scheduler._get_variance(lowercase_ ) UpperCAmelCase : Dict = torch.exp(0.5 * posterior_variance ) UpperCAmelCase : List[Any] = model_std * grad UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = x.detach() UpperCAmelCase : List[Any] = x + scale * grad UpperCAmelCase : Optional[int] = self.reset_xa(lowercase_ , lowercase_ , self.action_dim ) UpperCAmelCase : Dict = self.unet(x.permute(0 , 2 , 1 ) , lowercase_ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCAmelCase : int = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , predict_epsilon=lowercase_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) UpperCAmelCase : Tuple = self.reset_xa(lowercase_ , lowercase_ , self.action_dim ) UpperCAmelCase : Optional[int] = self.to_torch(lowercase_ ) return x, y def __call__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Dict=64 , lowercase_ : Dict=32 , lowercase_ : Any=2 , lowercase_ : Tuple=0.1 ) -> int: # normalize the observations and create batch dimension UpperCAmelCase : Optional[int] = self.normalize(lowercase_ , 'observations' ) UpperCAmelCase : str = obs[None].repeat(lowercase_ , axis=0 ) UpperCAmelCase : Optional[int] = {0: self.to_torch(lowercase_ )} UpperCAmelCase : int = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCAmelCase : Tuple = randn_tensor(lowercase_ , device=self.unet.device ) UpperCAmelCase : Any = self.reset_xa(lowercase_ , lowercase_ , self.action_dim ) UpperCAmelCase : Optional[Any] = self.to_torch(lowercase_ ) # run the diffusion process UpperCAmelCase , UpperCAmelCase : Optional[int] = self.run_diffusion(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # sort output trajectories by value UpperCAmelCase : List[Any] = y.argsort(0 , descending=lowercase_ ).squeeze() UpperCAmelCase : Any = x[sorted_idx] UpperCAmelCase : List[str] = sorted_values[:, :, : self.action_dim] UpperCAmelCase : Union[str, Any] = actions.detach().cpu().numpy() UpperCAmelCase : Optional[int] = self.de_normalize(lowercase_ , key='actions' ) # select the action with the highest value if y is not None: UpperCAmelCase : Tuple = 0 else: # if we didn't run value guiding, select a random action UpperCAmelCase : Tuple = np.random.randint(0 , lowercase_ ) UpperCAmelCase : List[str] = denorm_actions[selected_index, 0] return denorm_actions
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = 0 UpperCAmelCase_ : bool = False UpperCAmelCase_ : float = 3.0 class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : int ) -> List[str]: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=lowercase_ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCAmelCase : Optional[int] = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() UpperCAmelCase : Union[str, Any] = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCAmelCase : Union[str, Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , lowercase_ ) @require_multi_gpu def UpperCAmelCase_ ( self : Any ) -> List[str]: UpperCAmelCase : Optional[Any] = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(lowercase_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowercase__ = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase__ = torch.nn.Linear(100, 200) lowercase__ = accelerator.prepare(model) # Check the values changed in kwargs lowercase__ = "" lowercase__ = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
695
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or number < 0: raise ValueError('Input must be a non-negative integer' ) UpperCAmelCase : str = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
695
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10 , UpperCAmelCase_ = 10_00 , UpperCAmelCase_ = True ): assert ( isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' ) return min_val if option else max_val def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return int((number_a + number_a) / 2 ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): assert ( isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)' ) if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value' ) def answer(UpperCAmelCase_ ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...' ) UpperCAmelCase : Dict = lower UpperCAmelCase : List[Any] = higher UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Dict = get_avg(UpperCAmelCase_ , UpperCAmelCase_ ) last_numbers.append(UpperCAmelCase_ ) if answer(UpperCAmelCase_ ) == "low": UpperCAmelCase : str = number elif answer(UpperCAmelCase_ ) == "high": UpperCAmelCase : int = number else: break print(F"""guess the number : {last_numbers[-1]}""" ) print(F"""details : {last_numbers!s}""" ) def UpperCamelCase( ): UpperCAmelCase : List[str] = int(input('Enter lower value : ' ).strip() ) UpperCAmelCase : Any = int(input('Enter high value : ' ).strip() ) UpperCAmelCase : Dict = int(input('Enter value to guess : ' ).strip() ) guess_the_number(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
695
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
1
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class A_ : '''simple docstring''' def __init__( self : Optional[int] , lowercase_ : str = "cpu" , lowercase_ : str = "openai/clip-vit-large-patch14" ) -> None: UpperCAmelCase : Union[str, Any] = device UpperCAmelCase : int = CLIPTokenizerFast.from_pretrained(lowercase_ ) UpperCAmelCase : int = [0.4814_5466, 0.457_8275, 0.4082_1073] UpperCAmelCase : Optional[Any] = [0.2686_2954, 0.2613_0258, 0.2757_7711] UpperCAmelCase : List[Any] = torchvision.transforms.Normalize(self.image_mean , self.image_std ) UpperCAmelCase : List[Any] = torchvision.transforms.Resize(224 ) UpperCAmelCase : Optional[Any] = torchvision.transforms.CenterCrop(224 ) def UpperCAmelCase_ ( self : int , lowercase_ : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.resize(lowercase_ ) UpperCAmelCase : Optional[int] = self.center_crop(lowercase_ ) UpperCAmelCase : str = self.normalize(lowercase_ ) return images def __call__( self : str , lowercase_ : List[Any]=None , lowercase_ : Any=None , **lowercase_ : Optional[Any] ) -> int: UpperCAmelCase : Optional[int] = self.tokenizer(text=lowercase_ , **lowercase_ ) UpperCAmelCase : int = self.preprocess_img(lowercase_ ) UpperCAmelCase : Optional[int] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class A_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : Union[str, Any]=10 , lowercase_ : Tuple=0.01 , lowercase_ : List[Any]=None , lowercase_ : Tuple=None , lowercase_ : List[str]=None , lowercase_ : Optional[Any]=None , lowercase_ : Optional[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Tuple=False , lowercase_ : Union[str, Any]=True , lowercase_ : List[str]="image" , lowercase_ : Union[str, Any]=True , lowercase_ : Optional[int]=False , lowercase_ : str=False , lowercase_ : Optional[Any]=False , ) -> None: super().__init__() UpperCAmelCase : List[str] = None UpperCAmelCase : Any = device if device else get_device() if vqgan: UpperCAmelCase : Any = vqgan else: UpperCAmelCase : Tuple = load_vqgan(self.device , conf_path=lowercase_ , ckpt_path=lowercase_ ) self.vqgan.eval() if clip: UpperCAmelCase : List[str] = clip else: UpperCAmelCase : Tuple = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) UpperCAmelCase : List[str] = ProcessorGradientFlow(device=self.device ) UpperCAmelCase : str = iterations UpperCAmelCase : List[Any] = lr UpperCAmelCase : Optional[int] = log UpperCAmelCase : Dict = make_grid UpperCAmelCase : List[str] = return_val UpperCAmelCase : List[Any] = quantize UpperCAmelCase : Union[str, Any] = self.vqgan.decoder.z_shape def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : int=None , lowercase_ : Tuple=None , lowercase_ : Union[str, Any]=5 , lowercase_ : int=True ) -> Dict: UpperCAmelCase : Any = [] if output_path is None: UpperCAmelCase : Dict = './animation.gif' if input_path is None: UpperCAmelCase : List[str] = self.save_path UpperCAmelCase : str = sorted(glob(input_path + '/*' ) ) if not len(lowercase_ ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(lowercase_ ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) UpperCAmelCase : Union[str, Any] = total_duration / len(lowercase_ ) UpperCAmelCase : Any = [frame_duration] * len(lowercase_ ) if extend_frames: UpperCAmelCase : Optional[int] = 1.5 UpperCAmelCase : Optional[Any] = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(lowercase_ ) ) imageio.mimsave(lowercase_ , lowercase_ , duration=lowercase_ ) print(f"""gif saved to {output_path}""" ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : int=None , lowercase_ : str=None ) -> Any: if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError UpperCAmelCase : Optional[Any] = preprocess(Image.open(lowercase_ ) , target_image_size=256 ).to(self.device ) UpperCAmelCase : Optional[int] = preprocess_vqgan(lowercase_ ) UpperCAmelCase , *UpperCAmelCase : Any = self.vqgan.encode(lowercase_ ) return z def UpperCAmelCase_ ( self : Dict , lowercase_ : Union[str, Any] ) -> Tuple: UpperCAmelCase : int = self.latent.detach().requires_grad_() UpperCAmelCase : str = base_latent + transform_vector if self.quantize: UpperCAmelCase , *UpperCAmelCase : List[Any] = self.vqgan.quantize(lowercase_ ) else: UpperCAmelCase : List[str] = trans_latent return self.vqgan.decode(lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Any=None ) -> Tuple: UpperCAmelCase : str = self.clip_preprocessor(text=lowercase_ , images=lowercase_ , return_tensors='pt' , padding=lowercase_ ) UpperCAmelCase : str = self.clip(**lowercase_ ) UpperCAmelCase : List[Any] = clip_outputs.logits_per_image if weights is not None: UpperCAmelCase : Optional[Any] = similarity_logits * weights return similarity_logits.sum() def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Tuple ) -> Tuple: UpperCAmelCase : List[Any] = self._get_clip_similarity(pos_prompts['prompts'] , lowercase_ , weights=(1 / pos_prompts['weights']) ) if neg_prompts: UpperCAmelCase : Dict = self._get_clip_similarity(neg_prompts['prompts'] , lowercase_ , weights=neg_prompts['weights'] ) else: UpperCAmelCase : Optional[Any] = torch.tensor([1] , device=self.device ) UpperCAmelCase : Optional[int] = -torch.log(lowercase_ ) + torch.log(lowercase_ ) return loss def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[Any] ) -> int: UpperCAmelCase : Any = torch.randn_like(self.latent , requires_grad=lowercase_ , device=self.device ) UpperCAmelCase : Optional[Any] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() UpperCAmelCase : List[Any] = self._add_vector(lowercase_ ) UpperCAmelCase : int = loop_post_process(lowercase_ ) UpperCAmelCase : List[str] = self._get_CLIP_loss(lowercase_ , lowercase_ , lowercase_ ) print('CLIP loss' , lowercase_ ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=lowercase_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ) -> Optional[Any]: wandb.init(reinit=lowercase_ , project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: UpperCAmelCase : Dict = Image.open(lowercase_ ) UpperCAmelCase : List[Any] = image.resize((256, 256) ) wandb.log('Original Image' , wandb.Image(lowercase_ ) ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : Union[str, Any] ) -> Optional[Any]: if not prompts: return [] UpperCAmelCase : str = [] UpperCAmelCase : int = [] if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : int = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(lowercase_ , (tuple, list) ): UpperCAmelCase : Tuple = prompt[0] UpperCAmelCase : List[Any] = float(prompt[1] ) elif ":" in prompt: UpperCAmelCase , UpperCAmelCase : Optional[Any] = prompt.split(':' ) UpperCAmelCase : Optional[int] = float(lowercase_ ) else: UpperCAmelCase : Optional[Any] = prompt UpperCAmelCase : int = 1.0 processed_prompts.append(lowercase_ ) weights.append(lowercase_ ) return { "prompts": processed_prompts, "weights": torch.tensor(lowercase_ , device=self.device ), } def UpperCAmelCase_ ( self : int , lowercase_ : Any , lowercase_ : str=None , lowercase_ : Any=None , lowercase_ : Union[str, Any]=True , lowercase_ : int=False , lowercase_ : Tuple=True , lowercase_ : int=True , lowercase_ : Union[str, Any]=None , ) -> Any: if image_path: UpperCAmelCase : Dict = self._get_latent(lowercase_ ) else: UpperCAmelCase : Optional[int] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(lowercase_ , lowercase_ , lowercase_ ) assert pos_prompts, "You must provide at least one positive prompt." UpperCAmelCase : Union[str, Any] = self.process_prompts(lowercase_ ) UpperCAmelCase : List[str] = self.process_prompts(lowercase_ ) if save_final and save_path is None: UpperCAmelCase : Tuple = os.path.join('./outputs/' , '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(lowercase_ ): os.makedirs(lowercase_ ) else: UpperCAmelCase : List[str] = save_path + '_' + get_timestamp() os.makedirs(lowercase_ ) UpperCAmelCase : Union[str, Any] = save_path UpperCAmelCase : Dict = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(lowercase_ ) ) UpperCAmelCase : Union[str, Any] = loop_post_process(lowercase_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(lowercase_ , lowercase_ , lowercase_ ) ): if show_intermediate: show_pil(lowercase_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}.png""" ) ) if self.log: wandb.log({'Image': wandb.Image(lowercase_ )} ) if show_final: show_pil(lowercase_ ) if save_final: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}_final.png""" ) )
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = """ctrl""" UpperCAmelCase_ : int = ["""past_key_values"""] UpperCAmelCase_ : int = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Tuple , lowercase_ : Optional[Any]=246_534 , lowercase_ : List[str]=256 , lowercase_ : Dict=1_280 , lowercase_ : Any=8_192 , lowercase_ : Union[str, Any]=48 , lowercase_ : Optional[Any]=16 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : Union[str, Any]=1E-6 , lowercase_ : str=0.02 , lowercase_ : Dict=True , **lowercase_ : Dict , ) -> Any: UpperCAmelCase : Any = vocab_size UpperCAmelCase : List[str] = n_positions UpperCAmelCase : Any = n_embd UpperCAmelCase : Union[str, Any] = n_layer UpperCAmelCase : Union[str, Any] = n_head UpperCAmelCase : Union[str, Any] = dff UpperCAmelCase : int = resid_pdrop UpperCAmelCase : Optional[int] = embd_pdrop UpperCAmelCase : Any = layer_norm_epsilon UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : List[Any] = use_cache super().__init__(**lowercase_ )
695
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
1
'''simple docstring''' lowercase__ = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
695
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
1
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = GPTSanJapaneseTokenizer UpperCAmelCase_ : int = False UpperCAmelCase_ : Union[str, Any] = {"""do_clean_text""": False, """add_prefix_space""": False} def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: super().setUp() # fmt: off UpperCAmelCase : Any = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on UpperCAmelCase : Dict = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 UpperCAmelCase : Tuple = {'unk_token': '<unk>'} UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(lowercase_ ) ) def UpperCAmelCase_ ( self : Optional[Any] , **lowercase_ : Any ) -> List[str]: kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : List[str] ) -> Union[str, Any]: UpperCAmelCase : str = 'こんにちは、世界。 \nこんばんは、㔺界。😀' UpperCAmelCase : Dict = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def UpperCAmelCase_ ( self : int , lowercase_ : int ) -> Any: UpperCAmelCase , UpperCAmelCase : Tuple = self.get_input_output_texts(lowercase_ ) UpperCAmelCase : str = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase : Optional[Any] = tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ ) return text, ids def UpperCAmelCase_ ( self : Dict ) -> str: pass # TODO add if relevant def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: pass # TODO add if relevant def UpperCAmelCase_ ( self : List[str] ) -> Any: pass # TODO add if relevant def UpperCAmelCase_ ( self : Dict ) -> Tuple: UpperCAmelCase : List[str] = self.get_tokenizer() # Testing tokenization UpperCAmelCase : Any = 'こんにちは、世界。 こんばんは、㔺界。' UpperCAmelCase : Any = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] UpperCAmelCase : Tuple = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Testing conversion to ids without special tokens UpperCAmelCase : List[Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Testing conversion to ids with special tokens UpperCAmelCase : Union[str, Any] = tokens + [tokenizer.unk_token] UpperCAmelCase : int = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Any = self.get_tokenizer() # Testing tokenization UpperCAmelCase : Union[str, Any] = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' UpperCAmelCase : str = 'こんにちは、、、、世界。こんばんは、、、、世界。' UpperCAmelCase : Any = tokenizer.encode(lowercase_ ) UpperCAmelCase : str = tokenizer.decode(lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) @slow def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization UpperCAmelCase : Any = 'こんにちは、世界。' UpperCAmelCase : str = 'こんばんは、㔺界。😀' UpperCAmelCase : Optional[Any] = 'こんにちは、世界。こんばんは、世界。😀' UpperCAmelCase : Union[str, Any] = tokenizer.encode(prefix_text + input_text ) UpperCAmelCase : List[str] = tokenizer.encode('' , prefix_text=prefix_text + input_text ) UpperCAmelCase : str = tokenizer.encode(lowercase_ , prefix_text=lowercase_ ) UpperCAmelCase : Dict = tokenizer.decode(lowercase_ ) UpperCAmelCase : int = tokenizer.decode(lowercase_ ) UpperCAmelCase : Tuple = tokenizer.decode(lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) @slow def UpperCAmelCase_ ( self : int ) -> Any: UpperCAmelCase : int = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization UpperCAmelCase : List[str] = 'こんにちは、世界。' UpperCAmelCase : Dict = 'こんばんは、㔺界。😀' UpperCAmelCase : Any = len(tokenizer.encode(lowercase_ ) ) - 2 UpperCAmelCase : str = len(tokenizer.encode(lowercase_ ) ) - 2 UpperCAmelCase : Optional[int] = [1] + [0] * (len_prefix + len_text + 1) UpperCAmelCase : Union[str, Any] = [1] * (len_prefix + len_text + 1) + [0] UpperCAmelCase : Union[str, Any] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCAmelCase : List[Any] = tokenizer(prefix_text + input_text ).token_type_ids UpperCAmelCase : Dict = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids UpperCAmelCase : Any = tokenizer(lowercase_ , prefix_text=lowercase_ ).token_type_ids self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) @slow def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) UpperCAmelCase : Tuple = tokenizer.encode('あンいワ' ) UpperCAmelCase : Union[str, Any] = tokenizer.encode('' , prefix_text='あンいワ' ) UpperCAmelCase : Tuple = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(lowercase_ ) , tokenizer.decode(lowercase_ ) ) self.assertEqual(tokenizer.decode(lowercase_ ) , tokenizer.decode(lowercase_ ) ) self.assertNotEqual(lowercase_ , lowercase_ ) self.assertNotEqual(lowercase_ , lowercase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCAmelCase_ ( self : List[Any] ) -> str: UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) UpperCAmelCase : List[Any] = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] UpperCAmelCase : str = tokenizer(lowercase_ , padding=lowercase_ ) UpperCAmelCase : Tuple = tokenizer.batch_encode_plus(lowercase_ , padding=lowercase_ ) # fmt: off UpperCAmelCase : Tuple = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] UpperCAmelCase : List[Any] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCAmelCase : Optional[Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowercase_ ) self.assertListEqual(x_token.token_type_ids , lowercase_ ) self.assertListEqual(x_token.attention_mask , lowercase_ ) self.assertListEqual(x_token_a.input_ids , lowercase_ ) self.assertListEqual(x_token_a.token_type_ids , lowercase_ ) self.assertListEqual(x_token_a.attention_mask , lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def UpperCAmelCase_ ( self : Any ) -> Any: # tokenizer has no padding token pass
695
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): def update_area_of_max_square(UpperCAmelCase_ , UpperCAmelCase_ ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 UpperCAmelCase : Union[str, Any] = update_area_of_max_square(UpperCAmelCase_ , col + 1 ) UpperCAmelCase : Union[str, Any] = update_area_of_max_square(row + 1 , col + 1 ) UpperCAmelCase : List[Any] = update_area_of_max_square(row + 1 , UpperCAmelCase_ ) if mat[row][col]: UpperCAmelCase : Any = 1 + min([right, diagonal, down] ) UpperCAmelCase : Dict = max(largest_square_area[0] , UpperCAmelCase_ ) return sub_problem_sol else: return 0 UpperCAmelCase : str = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): def update_area_of_max_square_using_dp_array( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] UpperCAmelCase : Union[str, Any] = update_area_of_max_square_using_dp_array(UpperCAmelCase_ , col + 1 , UpperCAmelCase_ ) UpperCAmelCase : List[str] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = update_area_of_max_square_using_dp_array(row + 1 , UpperCAmelCase_ , UpperCAmelCase_ ) if mat[row][col]: UpperCAmelCase : str = 1 + min([right, diagonal, down] ) UpperCAmelCase : Optional[int] = max(largest_square_area[0] , UpperCAmelCase_ ) UpperCAmelCase : List[str] = sub_problem_sol return sub_problem_sol else: return 0 UpperCAmelCase : Dict = [0] UpperCAmelCase : Optional[Any] = [[-1] * cols for _ in range(UpperCAmelCase_ )] update_area_of_max_square_using_dp_array(0 , 0 , UpperCAmelCase_ ) return largest_square_area[0] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = [[0] * (cols + 1) for _ in range(rows + 1 )] UpperCAmelCase : Optional[int] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): UpperCAmelCase : Dict = dp_array[row][col + 1] UpperCAmelCase : Optional[Any] = dp_array[row + 1][col + 1] UpperCAmelCase : Tuple = dp_array[row + 1][col] if mat[row][col] == 1: UpperCAmelCase : Tuple = 1 + min(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : List[str] = max(dp_array[row][col] , UpperCAmelCase_ ) else: UpperCAmelCase : List[Any] = 0 return largest_square_area def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : str = [0] * (cols + 1) UpperCAmelCase : List[str] = [0] * (cols + 1) UpperCAmelCase : Optional[int] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): UpperCAmelCase : List[Any] = current_row[col + 1] UpperCAmelCase : List[Any] = next_row[col + 1] UpperCAmelCase : Union[str, Any] = next_row[col] if mat[row][col] == 1: UpperCAmelCase : Any = 1 + min(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : List[str] = max(current_row[col] , UpperCAmelCase_ ) else: UpperCAmelCase : List[str] = 0 UpperCAmelCase : Any = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
695
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """data2vec-vision""" def __init__( self : int , lowercase_ : List[str]=768 , lowercase_ : Dict=12 , lowercase_ : int=12 , lowercase_ : str=3_072 , lowercase_ : Optional[int]="gelu" , lowercase_ : Any=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.02 , lowercase_ : int=1E-12 , lowercase_ : int=224 , lowercase_ : Dict=16 , lowercase_ : List[Any]=3 , lowercase_ : Union[str, Any]=False , lowercase_ : Dict=False , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : int=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : Tuple=True , lowercase_ : Optional[int]=[3, 5, 7, 11] , lowercase_ : str=[1, 2, 3, 6] , lowercase_ : Any=True , lowercase_ : List[str]=0.4 , lowercase_ : List[str]=256 , lowercase_ : int=1 , lowercase_ : str=False , lowercase_ : str=255 , **lowercase_ : Dict , ) -> Optional[Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Tuple = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : str = image_size UpperCAmelCase : Tuple = patch_size UpperCAmelCase : Union[str, Any] = num_channels UpperCAmelCase : Dict = use_mask_token UpperCAmelCase : int = use_absolute_position_embeddings UpperCAmelCase : Optional[int] = use_relative_position_bias UpperCAmelCase : Optional[Any] = use_shared_relative_position_bias UpperCAmelCase : Union[str, Any] = layer_scale_init_value UpperCAmelCase : Optional[int] = drop_path_rate UpperCAmelCase : Dict = use_mean_pooling # decode head attributes (semantic segmentation) UpperCAmelCase : Optional[Any] = out_indices UpperCAmelCase : List[Any] = pool_scales # auxiliary head attributes (semantic segmentation) UpperCAmelCase : Optional[int] = use_auxiliary_head UpperCAmelCase : Optional[Any] = auxiliary_loss_weight UpperCAmelCase : str = auxiliary_channels UpperCAmelCase : Any = auxiliary_num_convs UpperCAmelCase : int = auxiliary_concat_input UpperCAmelCase : Union[str, Any] = semantic_loss_ignore_index class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = version.parse("""1.11""" ) @property def UpperCAmelCase_ ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCAmelCase_ ( self : int ) -> float: return 1E-4
695
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
1
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = XLMTokenizer UpperCAmelCase_ : int = False def UpperCAmelCase_ ( self : Dict ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCAmelCase : Dict = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase : Any = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(lowercase_ ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(lowercase_ ) ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : Optional[int] ) -> str: UpperCAmelCase : List[Any] = 'lower newer' UpperCAmelCase : Optional[int] = 'lower newer' return input_text, output_text def UpperCAmelCase_ ( self : Any ) -> Optional[int]: UpperCAmelCase : Tuple = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase : Tuple = 'lower' UpperCAmelCase : Tuple = ['low', 'er</w>'] UpperCAmelCase : Tuple = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase : Any = tokens + ['<unk>'] UpperCAmelCase : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) @slow def UpperCAmelCase_ ( self : Any ) -> List[str]: UpperCAmelCase : Optional[Any] = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' ) UpperCAmelCase : Any = tokenizer.encode('sequence builders' , add_special_tokens=lowercase_ ) UpperCAmelCase : List[str] = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase_ ) UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(lowercase_ ) UpperCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
695
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def UpperCamelCase( UpperCAmelCase_ = 1_00 ): UpperCAmelCase : Optional[Any] = 1 UpperCAmelCase : int = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Dict = pre_numerator UpperCAmelCase : Dict = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Optional[int] = cur_numerator UpperCAmelCase : str = e_cont * pre_numerator + temp return sum_digits(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
1
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def UpperCamelCase( UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_tf class A_ : '''simple docstring''' def UpperCAmelCase_ ( self : Any , lowercase_ : Tuple , lowercase_ : Dict ) -> int: pass def UpperCAmelCase_ ( self : Dict ) -> List[Any]: pass def UpperCAmelCase_ ( self : List[str] ) -> Dict: pass def UpperCAmelCase_ ( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : List[Any]=None , **lowercase_ : List[str] ) -> Optional[Any]: UpperCAmelCase : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) UpperCAmelCase : str = TFVisionTextDualEncoderModel(lowercase_ ) UpperCAmelCase : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Tuple=None , **lowercase_ : Optional[int] ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ ) UpperCAmelCase : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=lowercase_ , text_model=lowercase_ ) UpperCAmelCase : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : List[Any]=None , **lowercase_ : Union[str, Any] ) -> Dict: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = {'vision_model': vision_model, 'text_model': text_model} UpperCAmelCase : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) UpperCAmelCase : Dict = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Union[str, Any]=None , **lowercase_ : List[str] ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.get_vision_text_model(lowercase_ , lowercase_ ) UpperCAmelCase : str = TFVisionTextDualEncoderModel(vision_model=lowercase_ , text_model=lowercase_ ) UpperCAmelCase : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) UpperCAmelCase : Tuple = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) UpperCAmelCase : List[Any] = TFVisionTextDualEncoderModel.from_pretrained(lowercase_ ) UpperCAmelCase : Tuple = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) UpperCAmelCase : str = after_output[0].numpy() UpperCAmelCase : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-5 ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : int=None , **lowercase_ : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ ) UpperCAmelCase : List[Any] = TFVisionTextDualEncoderModel(vision_model=lowercase_ , text_model=lowercase_ ) UpperCAmelCase : List[str] = model( input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ ) UpperCAmelCase : Any = output.vision_model_output.attentions self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase : Optional[int] = to_atuple(vision_model.config.image_size ) UpperCAmelCase : str = to_atuple(vision_model.config.patch_size ) UpperCAmelCase : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCAmelCase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCAmelCase : Any = output.text_model_output.attentions self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float ) -> Tuple: UpperCAmelCase : str = np.abs((a - b) ).max() self.assertLessEqual(lowercase_ , lowercase_ , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def UpperCAmelCase_ ( self : int ) -> Optional[int]: UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase_ ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: UpperCAmelCase : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: UpperCAmelCase : int = self.prepare_config_and_inputs() self.check_save_load(**lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase_ ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase : Tuple = self.get_pretrained_model_and_inputs() UpperCAmelCase : Optional[int] = model_a(**lowercase_ ) UpperCAmelCase : str = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = TFVisionTextDualEncoderModel.from_pretrained(lowercase_ ) UpperCAmelCase : Dict = model_a(**lowercase_ ) UpperCAmelCase : int = after_outputs[0].numpy() UpperCAmelCase : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-5 ) @require_tf class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: UpperCAmelCase : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) UpperCAmelCase : Any = 13 UpperCAmelCase : int = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) UpperCAmelCase : List[str] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) UpperCAmelCase : Optional[int] = random_attention_mask([batch_size, 4] ) UpperCAmelCase : List[str] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Tuple ) -> Any: UpperCAmelCase : Optional[Any] = TFViTModel(lowercase_ , name='vision_model' ) UpperCAmelCase : List[str] = TFBertModel(lowercase_ , name='text_model' ) return vision_model, text_model def UpperCAmelCase_ ( self : List[Any] ) -> str: UpperCAmelCase : int = TFViTModelTester(self ) UpperCAmelCase : Optional[int] = TFBertModelTester(self ) UpperCAmelCase : List[Any] = vit_model_tester.prepare_config_and_inputs() UpperCAmelCase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = vision_config_and_inputs ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. UpperCAmelCase : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) UpperCAmelCase : Optional[Any] = 13 UpperCAmelCase : Tuple = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) UpperCAmelCase : Optional[int] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) UpperCAmelCase : Optional[int] = random_attention_mask([batch_size, 4] ) UpperCAmelCase : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCAmelCase_ ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=None , **lowercase_ : Dict ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[str] = self.get_vision_text_model(lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = TFVisionTextDualEncoderModel(vision_model=lowercase_ , text_model=lowercase_ ) UpperCAmelCase : str = model( input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ ) UpperCAmelCase : Dict = output.vision_model_output.attentions self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase : str = to_atuple(vision_model.config.image_size ) UpperCAmelCase : Optional[int] = to_atuple(vision_model.config.patch_size ) UpperCAmelCase : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCAmelCase : Union[str, Any] = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCAmelCase : Any = output.text_model_output.attentions self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCAmelCase_ ( self : int , lowercase_ : Tuple , lowercase_ : Optional[int] ) -> Dict: UpperCAmelCase : Any = TFDeiTModel(lowercase_ , name='vision_model' ) UpperCAmelCase : List[Any] = TFRobertaModel(lowercase_ , name='text_model' ) return vision_model, text_model def UpperCAmelCase_ ( self : Any ) -> Dict: UpperCAmelCase : Dict = TFDeiTModelTester(self ) UpperCAmelCase : Optional[Any] = TFRobertaModelTester(self ) UpperCAmelCase : int = vit_model_tester.prepare_config_and_inputs() UpperCAmelCase : Optional[int] = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = vision_config_and_inputs ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : int ) -> Optional[Any]: UpperCAmelCase : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) UpperCAmelCase : List[Any] = 13 UpperCAmelCase : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) UpperCAmelCase : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) UpperCAmelCase : str = random_attention_mask([batch_size, 4] ) UpperCAmelCase : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCAmelCase_ ( self : int , lowercase_ : List[Any] , lowercase_ : List[Any] ) -> Optional[Any]: UpperCAmelCase : List[Any] = TFCLIPVisionModel(lowercase_ , name='vision_model' ) UpperCAmelCase : List[Any] = TFBertModel(lowercase_ , name='text_model' ) return vision_model, text_model def UpperCAmelCase_ ( self : str ) -> int: UpperCAmelCase : str = TFCLIPVisionModelTester(self ) UpperCAmelCase : int = TFBertModelTester(self ) UpperCAmelCase : Optional[int] = clip_model_tester.prepare_config_and_inputs() UpperCAmelCase : Tuple = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase : Tuple = vision_config_and_inputs ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self : Any ) -> Any: UpperCAmelCase : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=lowercase_ ) UpperCAmelCase : List[Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) UpperCAmelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCAmelCase : Union[str, Any] = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=lowercase_ , padding=lowercase_ , return_tensors='np' ) UpperCAmelCase : int = model(**lowercase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) UpperCAmelCase : List[Any] = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , lowercase_ , atol=1E-3 ) )
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
1
'''simple docstring''' import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class A_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING UpperCAmelCase_ : Dict = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def UpperCAmelCase_ ( self : Dict , lowercase_ : List[str] , lowercase_ : str , lowercase_ : str ) -> List[Any]: UpperCAmelCase : Dict = AudioClassificationPipeline(model=lowercase_ , feature_extractor=lowercase_ ) # test with a raw waveform UpperCAmelCase : str = np.zeros((34_000,) ) UpperCAmelCase : List[Any] = np.zeros((14_000,) ) return audio_classifier, [audioa, audio] def UpperCAmelCase_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Any ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Optional[Any] = examples UpperCAmelCase : Optional[Any] = audio_classifier(lowercase_ ) # by default a model is initialized with num_labels=2 self.assertEqual( lowercase_ , [ {'score': ANY(lowercase_ ), 'label': ANY(lowercase_ )}, {'score': ANY(lowercase_ ), 'label': ANY(lowercase_ )}, ] , ) UpperCAmelCase : Any = audio_classifier(lowercase_ , top_k=1 ) self.assertEqual( lowercase_ , [ {'score': ANY(lowercase_ ), 'label': ANY(lowercase_ )}, ] , ) self.run_torchaudio(lowercase_ ) @require_torchaudio def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : str ) -> Any: import datasets # test with a local file UpperCAmelCase : List[str] = datasets.load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) UpperCAmelCase : List[str] = dataset[0]['audio']['array'] UpperCAmelCase : List[str] = audio_classifier(lowercase_ ) self.assertEqual( lowercase_ , [ {'score': ANY(lowercase_ ), 'label': ANY(lowercase_ )}, {'score': ANY(lowercase_ ), 'label': ANY(lowercase_ )}, ] , ) @require_torch def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: UpperCAmelCase : int = 'anton-l/wav2vec2-random-tiny-classifier' UpperCAmelCase : Tuple = pipeline('audio-classification' , model=lowercase_ ) UpperCAmelCase : Optional[Any] = np.ones((8_000,) ) UpperCAmelCase : str = audio_classifier(lowercase_ , top_k=4 ) UpperCAmelCase : List[str] = [ {'score': 0.0842, 'label': 'no'}, {'score': 0.0838, 'label': 'up'}, {'score': 0.0837, 'label': 'go'}, {'score': 0.0834, 'label': 'right'}, ] UpperCAmelCase : Union[str, Any] = [ {'score': 0.0845, 'label': 'stop'}, {'score': 0.0844, 'label': 'on'}, {'score': 0.0841, 'label': 'right'}, {'score': 0.0834, 'label': 'left'}, ] self.assertIn(nested_simplify(lowercase_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) UpperCAmelCase : Any = {'array': np.ones((8_000,) ), 'sampling_rate': audio_classifier.feature_extractor.sampling_rate} UpperCAmelCase : str = audio_classifier(lowercase_ , top_k=4 ) self.assertIn(nested_simplify(lowercase_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: import datasets UpperCAmelCase : Tuple = 'superb/wav2vec2-base-superb-ks' UpperCAmelCase : Any = pipeline('audio-classification' , model=lowercase_ ) UpperCAmelCase : List[Any] = datasets.load_dataset('anton-l/superb_dummy' , 'ks' , split='test' ) UpperCAmelCase : int = np.array(dataset[3]['speech'] , dtype=np.floataa ) UpperCAmelCase : List[str] = audio_classifier(lowercase_ , top_k=4 ) self.assertEqual( nested_simplify(lowercase_ , decimals=3 ) , [ {'score': 0.981, 'label': 'go'}, {'score': 0.007, 'label': 'up'}, {'score': 0.006, 'label': '_unknown_'}, {'score': 0.001, 'label': 'down'}, ] , ) @require_tf @unittest.skip('Audio classification is not implemented for TF' ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: pass
695
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): if len(UpperCAmelCase_ ) <= 1: return lst UpperCAmelCase : List[str] = 1 while i < len(UpperCAmelCase_ ): if lst[i - 1] <= lst[i]: i += 1 else: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = lst[i], lst[i - 1] i -= 1 if i == 0: UpperCAmelCase : List[str] = 1 return lst if __name__ == "__main__": lowercase__ = input("Enter numbers separated by a comma:\n").strip() lowercase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
695
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
1
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase__ = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=8 ): UpperCAmelCase : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase : int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ ( _snake_case ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : UNetaDConditionModel , lowercase_ : DDPMScheduler , lowercase_ : VQModel , ) -> str: super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase_ ( self : Tuple , lowercase_ : int , lowercase_ : Any , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Tuple ) -> int: if latents is None: UpperCAmelCase : Union[str, Any] = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase : Optional[int] = latents.to(lowercase_ ) UpperCAmelCase : List[Any] = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : int=0 ) -> Optional[int]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase : Optional[int] = torch.device(f"""cuda:{gpu_id}""" ) UpperCAmelCase : Tuple = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : List[Any]=0 ) -> Optional[int]: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) UpperCAmelCase : Optional[int] = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase , UpperCAmelCase : Optional[Any] = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self : Union[str, Any] , lowercase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ : int = 512 , lowercase_ : int = 512 , lowercase_ : int = 100 , lowercase_ : float = 4.0 , lowercase_ : int = 1 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ) -> int: UpperCAmelCase : List[str] = self._execution_device UpperCAmelCase : int = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Dict = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Tuple = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase : str = self.scheduler.timesteps UpperCAmelCase : Tuple = self.unet.config.in_channels UpperCAmelCase , UpperCAmelCase : Tuple = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : str = {'image_embeds': image_embeds} UpperCAmelCase : str = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase , UpperCAmelCase : Any = noise_pred.chunk(2 ) UpperCAmelCase , UpperCAmelCase : str = variance_pred.chunk(2 ) UpperCAmelCase : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase , UpperCAmelCase : str = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Any = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase : int = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase : Optional[Any] = image * 0.5 + 0.5 UpperCAmelCase : str = image.clamp(0 , 1 ) UpperCAmelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase : Union[str, Any] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
695
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: UpperCAmelCase : int = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained('google/mt5-small' ) UpperCAmelCase : Optional[Any] = tokenizer('Hello there' , return_tensors='tf' ).input_ids UpperCAmelCase : List[Any] = tokenizer('Hi I am' , return_tensors='tf' ).input_ids UpperCAmelCase : Optional[Any] = model(lowercase_ , labels=lowercase_ ).loss UpperCAmelCase : Dict = -tf.math.reduce_mean(lowercase_ ).numpy() UpperCAmelCase : Any = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
695
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 50 ): UpperCAmelCase : Optional[int] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
695
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
1
'''simple docstring''' import re import string import numpy as np import datasets lowercase__ = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" lowercase__ = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" lowercase__ = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self : Any ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self : int , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , lowercase_ : Any=False , lowercase_ : Union[str, Any]=False , lowercase_ : str=False , ) -> int: if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCAmelCase : Optional[int] = np.array([re.sub(lowercase_ , '' , lowercase_ ) for x in predictions] ) UpperCAmelCase : Tuple = np.array([re.sub(lowercase_ , '' , lowercase_ ) for x in references] ) else: UpperCAmelCase : str = np.asarray(lowercase_ ) UpperCAmelCase : List[str] = np.asarray(lowercase_ ) if ignore_case: UpperCAmelCase : Dict = np.char.lower(lowercase_ ) UpperCAmelCase : str = np.char.lower(lowercase_ ) if ignore_punctuation: UpperCAmelCase : Tuple = string.punctuation.maketrans('' , '' , string.punctuation ) UpperCAmelCase : Union[str, Any] = np.char.translate(lowercase_ , table=lowercase_ ) UpperCAmelCase : Optional[int] = np.char.translate(lowercase_ , table=lowercase_ ) if ignore_numbers: UpperCAmelCase : Union[str, Any] = string.digits.maketrans('' , '' , string.digits ) UpperCAmelCase : Tuple = np.char.translate(lowercase_ , table=lowercase_ ) UpperCAmelCase : Any = np.char.translate(lowercase_ , table=lowercase_ ) UpperCAmelCase : Union[str, Any] = predictions == references return {"exact_match": np.mean(lowercase_ ) * 100}
695
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase : Tuple = tempfile.mkdtemp() UpperCAmelCase : List[Any] = BlipImageProcessor() UpperCAmelCase : str = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel' ) UpperCAmelCase : Optional[Any] = BlipProcessor(lowercase_ , lowercase_ ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self : List[Any] , **lowercase_ : int ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).tokenizer def UpperCAmelCase_ ( self : int , **lowercase_ : Union[str, Any] ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: UpperCAmelCase : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase : str = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: UpperCAmelCase : List[Any] = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCAmelCase : str = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) UpperCAmelCase : List[str] = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Any: UpperCAmelCase : List[Any] = self.get_image_processor() UpperCAmelCase : List[str] = self.get_tokenizer() UpperCAmelCase : int = BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) UpperCAmelCase : str = self.prepare_image_inputs() UpperCAmelCase : Dict = image_processor(lowercase_ , return_tensors='np' ) UpperCAmelCase : Optional[Any] = processor(images=lowercase_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: UpperCAmelCase : Optional[Any] = self.get_image_processor() UpperCAmelCase : List[Any] = self.get_tokenizer() UpperCAmelCase : Optional[int] = BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) UpperCAmelCase : Tuple = 'lower newer' UpperCAmelCase : Tuple = processor(text=lowercase_ ) UpperCAmelCase : List[Any] = tokenizer(lowercase_ , return_token_type_ids=lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase_ ( self : int ) -> List[Any]: UpperCAmelCase : Union[str, Any] = self.get_image_processor() UpperCAmelCase : Optional[int] = self.get_tokenizer() UpperCAmelCase : str = BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) UpperCAmelCase : List[str] = 'lower newer' UpperCAmelCase : Any = self.prepare_image_inputs() UpperCAmelCase : List[Any] = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : str = self.get_image_processor() UpperCAmelCase : Any = self.get_tokenizer() UpperCAmelCase : Optional[Any] = BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) UpperCAmelCase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase : List[str] = processor.batch_decode(lowercase_ ) UpperCAmelCase : str = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = self.get_image_processor() UpperCAmelCase : Union[str, Any] = self.get_tokenizer() UpperCAmelCase : Dict = BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) UpperCAmelCase : Optional[int] = 'lower newer' UpperCAmelCase : List[str] = self.prepare_image_inputs() UpperCAmelCase : Optional[Any] = processor(text=lowercase_ , images=lowercase_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
695
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
1
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan lowercase__ = 6378137.0 lowercase__ = 6356752.314245 lowercase__ = 6378137 def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = (AXIS_A - AXIS_B) / AXIS_A UpperCAmelCase : int = atan((1 - flattening) * tan(radians(UpperCAmelCase_ ) ) ) UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(UpperCAmelCase_ ) ) ) UpperCAmelCase : Dict = radians(UpperCAmelCase_ ) UpperCAmelCase : Any = radians(UpperCAmelCase_ ) # Equation UpperCAmelCase : int = sin((phi_a - phi_a) / 2 ) UpperCAmelCase : Optional[Any] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda UpperCAmelCase : Dict = sqrt(sin_sq_phi + (cos(UpperCAmelCase_ ) * cos(UpperCAmelCase_ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "spiece.model"} lowercase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } lowercase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) lowercase__ = 0 lowercase__ = 1 lowercase__ = 2 lowercase__ = 3 lowercase__ = 4 class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : int = """left""" def __init__( self : Optional[int] , lowercase_ : List[str] , lowercase_ : str=False , lowercase_ : Dict=True , lowercase_ : Any=False , lowercase_ : List[Any]="<s>" , lowercase_ : str="</s>" , lowercase_ : Union[str, Any]="<unk>" , lowercase_ : Optional[int]="<sep>" , lowercase_ : Dict="<pad>" , lowercase_ : Any="<cls>" , lowercase_ : Tuple="<mask>" , lowercase_ : Dict=["<eop>", "<eod>"] , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token UpperCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase : List[str] = 3 UpperCAmelCase : Any = do_lower_case UpperCAmelCase : Optional[Any] = remove_space UpperCAmelCase : Optional[Any] = keep_accents UpperCAmelCase : str = vocab_file UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: return len(self.sp_model ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : Dict = self.__dict__.copy() UpperCAmelCase : Dict = None return state def __setstate__( self : List[str] , lowercase_ : Tuple ) -> List[str]: UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase : int = {} UpperCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self : Any , lowercase_ : Dict ) -> Optional[Any]: if self.remove_space: UpperCAmelCase : int = ' '.join(inputs.strip().split() ) else: UpperCAmelCase : Any = inputs UpperCAmelCase : Union[str, Any] = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: UpperCAmelCase : Any = unicodedata.normalize('NFKD' , lowercase_ ) UpperCAmelCase : Optional[Any] = ''.join([c for c in outputs if not unicodedata.combining(lowercase_ )] ) if self.do_lower_case: UpperCAmelCase : Tuple = outputs.lower() return outputs def UpperCAmelCase_ ( self : List[Any] , lowercase_ : str ) -> List[str]: UpperCAmelCase : Optional[Any] = self.preprocess_text(lowercase_ ) UpperCAmelCase : Any = self.sp_model.encode(lowercase_ , out_type=lowercase_ ) UpperCAmelCase : int = [] for piece in pieces: if len(lowercase_ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): UpperCAmelCase : int = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowercase_ , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCAmelCase : List[str] = cur_pieces[1:] else: UpperCAmelCase : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowercase_ ) else: new_pieces.append(lowercase_ ) return new_pieces def UpperCAmelCase_ ( self : Dict , lowercase_ : Optional[Any] ) -> Dict: return self.sp_model.PieceToId(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Any ) -> Optional[int]: return self.sp_model.IdToPiece(lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] ) -> int: UpperCAmelCase : Optional[int] = ''.join(lowercase_ ).replace(lowercase_ , ' ' ).strip() return out_string def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : List[int] , lowercase_ : bool = False , lowercase_ : bool = None , lowercase_ : bool = True , **lowercase_ : Any , ) -> str: UpperCAmelCase : List[Any] = kwargs.pop('use_source_tokenizer' , lowercase_ ) UpperCAmelCase : Optional[int] = self.convert_ids_to_tokens(lowercase_ , skip_special_tokens=lowercase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase : Optional[int] = [] UpperCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase_ ) ) UpperCAmelCase : Optional[int] = [] sub_texts.append(lowercase_ ) else: current_sub_text.append(lowercase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCAmelCase : List[str] = ''.join(lowercase_ ) UpperCAmelCase : Dict = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase : List[Any] = self.clean_up_tokenization(lowercase_ ) return clean_text else: return text def UpperCAmelCase_ ( self : List[str] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Dict = [self.sep_token_id] UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase_ ( self : List[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is not None: return ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1, 1] return ([0] * len(lowercase_ )) + [1, 1] def UpperCAmelCase_ ( self : List[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : str = [self.sep_token_id] UpperCAmelCase : Optional[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Optional[Any] = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
695
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) UpperCAmelCase : List[Any] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 UpperCAmelCase : Optional[int] = 1 if upper_limit > 0: UpperCAmelCase : int = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(UpperCAmelCase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("\n********* Catalan Numbers Using Dynamic Programming ************\n") print("\n*** Enter -1 at any time to quit ***") print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="") try: while True: lowercase__ = int(input().strip()) if N < 0: print("\n********* Goodbye!! ************") break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("Try another upper limit for the sequence: ", end="") except (NameError, ValueError): print("\n********* Invalid input, goodbye! ************\n") import doctest doctest.testmod()
695
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
1
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowercase__ = logging.get_logger(__name__) enable_full_determinism() class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = UNetaDModel UpperCAmelCase_ : List[str] = """sample""" @property def UpperCAmelCase_ ( self : str ) -> str: UpperCAmelCase : Optional[Any] = 4 UpperCAmelCase : List[Any] = 3 UpperCAmelCase : Optional[int] = (32, 32) UpperCAmelCase : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase_ ) UpperCAmelCase : Dict = torch.tensor([10] ).to(lowercase_ ) return {"sample": noise, "timestep": time_step} @property def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: return (3, 32, 32) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: return (3, 32, 32) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: UpperCAmelCase : Tuple = { 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } UpperCAmelCase : Union[str, Any] = self.dummy_input return init_dict, inputs_dict class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Dict = UNetaDModel UpperCAmelCase_ : List[Any] = """sample""" @property def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: UpperCAmelCase : Dict = 4 UpperCAmelCase : int = 4 UpperCAmelCase : Any = (32, 32) UpperCAmelCase : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase_ ) UpperCAmelCase : Optional[Any] = torch.tensor([10] ).to(lowercase_ ) return {"sample": noise, "timestep": time_step} @property def UpperCAmelCase_ ( self : str ) -> Optional[Any]: return (4, 32, 32) @property def UpperCAmelCase_ ( self : Optional[Any] ) -> str: return (4, 32, 32) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase : Tuple = { 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } UpperCAmelCase : List[Any] = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Tuple = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(lowercase_ ) UpperCAmelCase : Any = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=lowercase_ ) model.to(lowercase_ ) UpperCAmelCase : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` UpperCAmelCase , UpperCAmelCase : str = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=lowercase_ ) model_accelerate.to(lowercase_ ) model_accelerate.eval() UpperCAmelCase : Any = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase : List[str] = noise.to(lowercase_ ) UpperCAmelCase : Optional[Any] = torch.tensor([10] * noise.shape[0] ).to(lowercase_ ) UpperCAmelCase : int = model_accelerate(lowercase_ , lowercase_ )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCAmelCase , UpperCAmelCase : Dict = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=lowercase_ , low_cpu_mem_usage=lowercase_ ) model_normal_load.to(lowercase_ ) model_normal_load.eval() UpperCAmelCase : str = model_normal_load(lowercase_ , lowercase_ )['sample'] assert torch_all_close(lowercase_ , lowercase_ , rtol=1E-3 ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : int = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(lowercase_ ) UpperCAmelCase : int = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase : List[str] = noise.to(lowercase_ ) UpperCAmelCase : str = torch.tensor([10] * noise.shape[0] ).to(lowercase_ ) with torch.no_grad(): UpperCAmelCase : Tuple = model(lowercase_ , lowercase_ ).sample UpperCAmelCase : Any = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase : Any = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(lowercase_ , lowercase_ , rtol=1E-3 ) ) class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = UNetaDModel UpperCAmelCase_ : Tuple = """sample""" @property def UpperCAmelCase_ ( self : Tuple , lowercase_ : str=(32, 32) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = 4 UpperCAmelCase : Optional[int] = 3 UpperCAmelCase : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase_ ) UpperCAmelCase : Any = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=lowercase_ ) return {"sample": noise, "timestep": time_step} @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: return (3, 32, 32) @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: return (3, 32, 32) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: UpperCAmelCase : str = { 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } UpperCAmelCase : Dict = self.dummy_input return init_dict, inputs_dict @slow def UpperCAmelCase_ ( self : Tuple ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[Any] = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(lowercase_ ) UpperCAmelCase : Tuple = self.dummy_input UpperCAmelCase : Tuple = floats_tensor((4, 3) + (256, 256) ).to(lowercase_ ) UpperCAmelCase : Dict = noise UpperCAmelCase : Any = model(**lowercase_ ) assert image is not None, "Make sure output is not None" @slow def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: UpperCAmelCase : List[Any] = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(lowercase_ ) UpperCAmelCase : int = 4 UpperCAmelCase : str = 3 UpperCAmelCase : Any = (256, 256) UpperCAmelCase : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(lowercase_ ) UpperCAmelCase : str = torch.tensor(batch_size * [1E-4] ).to(lowercase_ ) with torch.no_grad(): UpperCAmelCase : str = model(lowercase_ , lowercase_ ).sample UpperCAmelCase : Dict = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase : Any = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(lowercase_ , lowercase_ , rtol=1E-2 ) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: UpperCAmelCase : List[Any] = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(lowercase_ ) UpperCAmelCase : List[Any] = 4 UpperCAmelCase : List[str] = 3 UpperCAmelCase : List[str] = (32, 32) UpperCAmelCase : Union[str, Any] = torch.ones((batch_size, num_channels) + sizes ).to(lowercase_ ) UpperCAmelCase : Optional[int] = torch.tensor(batch_size * [1E-4] ).to(lowercase_ ) with torch.no_grad(): UpperCAmelCase : Optional[int] = model(lowercase_ , lowercase_ ).sample UpperCAmelCase : Tuple = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase : Dict = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(lowercase_ , lowercase_ , rtol=1E-2 ) ) def UpperCAmelCase_ ( self : Dict ) -> Any: # not required for this model pass
695
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = StableDiffusionPanoramaPipeline UpperCAmelCase_ : Optional[int] = TEXT_TO_IMAGE_PARAMS UpperCAmelCase_ : Any = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase_ : int = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase_ : str = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCAmelCase : Any = DDIMScheduler() torch.manual_seed(0 ) UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCAmelCase : Union[str, Any] = CLIPTextModel(lowercase_ ) UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCAmelCase : Dict = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase_ ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : List[str]=0 ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = torch.manual_seed(lowercase_ ) UpperCAmelCase : Any = { 'prompt': 'a photo of the dolomites', 'generator': generator, # Setting height and width to None to prevent OOMs on CPU. 'height': None, 'width': None, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCAmelCase_ ( self : List[Any] ) -> int: UpperCAmelCase : str = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : str = StableDiffusionPanoramaPipeline(**lowercase_ ) UpperCAmelCase : Optional[Any] = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase : str = sd_pipe(**lowercase_ ).images UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Optional[int] = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : List[str] ) -> Tuple: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: UpperCAmelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : Any = StableDiffusionPanoramaPipeline(**lowercase_ ) UpperCAmelCase : Tuple = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : int = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase : str = 'french fries' UpperCAmelCase : Optional[int] = sd_pipe(**lowercase_ , negative_prompt=lowercase_ ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Optional[int] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : List[Any] ) -> str: UpperCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Dict = self.get_dummy_components() UpperCAmelCase : Optional[int] = StableDiffusionPanoramaPipeline(**lowercase_ ) UpperCAmelCase : List[Any] = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase : Dict = sd_pipe(**lowercase_ , view_batch_size=2 ) UpperCAmelCase : Union[str, Any] = output.images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Union[str, Any] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : str = self.get_dummy_components() UpperCAmelCase : Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' ) UpperCAmelCase : Any = StableDiffusionPanoramaPipeline(**lowercase_ ) UpperCAmelCase : Tuple = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase : Any = sd_pipe(**lowercase_ ).images UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[Any] = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Tuple = self.get_dummy_components() UpperCAmelCase : Union[str, Any] = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , skip_prk_steps=lowercase_ ) UpperCAmelCase : int = StableDiffusionPanoramaPipeline(**lowercase_ ) UpperCAmelCase : Optional[int] = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Dict = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase : Any = sd_pipe(**lowercase_ ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Any = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Any=0 ) -> Tuple: UpperCAmelCase : Dict = torch.manual_seed(lowercase_ ) UpperCAmelCase : Union[str, Any] = { 'prompt': 'a photo of the dolomites', 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCAmelCase_ ( self : Any ) -> Dict: UpperCAmelCase : Dict = 'stabilityai/stable-diffusion-2-base' UpperCAmelCase : Dict = DDIMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' ) UpperCAmelCase : Any = StableDiffusionPanoramaPipeline.from_pretrained(lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() UpperCAmelCase : Dict = self.get_inputs() UpperCAmelCase : Optional[int] = pipe(**lowercase_ ).images UpperCAmelCase : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2_048, 3) UpperCAmelCase : Dict = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : List[str] = StableDiffusionPanoramaPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-base' , safety_checker=lowercase_ ) UpperCAmelCase : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() UpperCAmelCase : Dict = self.get_inputs() UpperCAmelCase : str = pipe(**lowercase_ ).images UpperCAmelCase : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2_048, 3) UpperCAmelCase : List[str] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : Any = 0 def callback_fn(lowercase_ : int , lowercase_ : int , lowercase_ : torch.FloatTensor ) -> None: UpperCAmelCase : Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCAmelCase : Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) UpperCAmelCase : Dict = latents[0, -3:, -3:, -1] UpperCAmelCase : int = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: UpperCAmelCase : Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) UpperCAmelCase : Dict = latents[0, -3:, -3:, -1] UpperCAmelCase : List[Any] = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 UpperCAmelCase : List[Any] = False UpperCAmelCase : int = 'stabilityai/stable-diffusion-2-base' UpperCAmelCase : Optional[Any] = DDIMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' ) UpperCAmelCase : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ ) UpperCAmelCase : Optional[int] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() UpperCAmelCase : Tuple = self.get_inputs() pipe(**lowercase_ , callback=lowercase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase : List[str] = 'stabilityai/stable-diffusion-2-base' UpperCAmelCase : Dict = DDIMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' ) UpperCAmelCase : Any = StableDiffusionPanoramaPipeline.from_pretrained(lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ ) UpperCAmelCase : Dict = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase : Optional[int] = self.get_inputs() UpperCAmelCase : List[Any] = pipe(**lowercase_ ) UpperCAmelCase : Any = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase__ = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
1
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class A_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : List[str]=0.0 , lowercase_ : Optional[int] = None , lowercase_ : str = "geglu" , lowercase_ : Optional[int] = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = True , lowercase_ : str = "layer_norm" , lowercase_ : bool = False , ) -> int: super().__init__() UpperCAmelCase : List[str] = only_cross_attention UpperCAmelCase : str = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' UpperCAmelCase : str = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" f""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: UpperCAmelCase : List[Any] = AdaLayerNorm(lowercase_ , lowercase_ ) elif self.use_ada_layer_norm_zero: UpperCAmelCase : int = AdaLayerNormZero(lowercase_ , lowercase_ ) else: UpperCAmelCase : str = nn.LayerNorm(lowercase_ , elementwise_affine=lowercase_ ) UpperCAmelCase : int = Attention( query_dim=lowercase_ , heads=lowercase_ , dim_head=lowercase_ , dropout=lowercase_ , bias=lowercase_ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=lowercase_ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. UpperCAmelCase : str = ( AdaLayerNorm(lowercase_ , lowercase_ ) if self.use_ada_layer_norm else nn.LayerNorm(lowercase_ , elementwise_affine=lowercase_ ) ) UpperCAmelCase : Tuple = Attention( query_dim=lowercase_ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=lowercase_ , dim_head=lowercase_ , dropout=lowercase_ , bias=lowercase_ , upcast_attention=lowercase_ , ) # is self-attn if encoder_hidden_states is none else: UpperCAmelCase : str = None UpperCAmelCase : str = None # 3. Feed-forward UpperCAmelCase : List[str] = nn.LayerNorm(lowercase_ , elementwise_affine=lowercase_ ) UpperCAmelCase : List[str] = FeedForward(lowercase_ , dropout=lowercase_ , activation_fn=lowercase_ , final_dropout=lowercase_ ) # let chunk size default to None UpperCAmelCase : List[Any] = None UpperCAmelCase : Dict = 0 def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : int ) -> str: # Sets chunk feed-forward UpperCAmelCase : Dict = chunk_size UpperCAmelCase : Union[str, Any] = dim def UpperCAmelCase_ ( self : List[str] , lowercase_ : torch.FloatTensor , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[torch.LongTensor] = None , lowercase_ : Dict[str, Any] = None , lowercase_ : Optional[torch.LongTensor] = None , ) -> List[Any]: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: UpperCAmelCase : Tuple = self.norma(lowercase_ , lowercase_ ) elif self.use_ada_layer_norm_zero: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = self.norma( lowercase_ , lowercase_ , lowercase_ , hidden_dtype=hidden_states.dtype ) else: UpperCAmelCase : str = self.norma(lowercase_ ) UpperCAmelCase : List[str] = cross_attention_kwargs if cross_attention_kwargs is not None else {} UpperCAmelCase : Dict = self.attna( lowercase_ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=lowercase_ , **lowercase_ , ) if self.use_ada_layer_norm_zero: UpperCAmelCase : Optional[Any] = gate_msa.unsqueeze(1 ) * attn_output UpperCAmelCase : str = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: UpperCAmelCase : str = ( self.norma(lowercase_ , lowercase_ ) if self.use_ada_layer_norm else self.norma(lowercase_ ) ) UpperCAmelCase : Optional[Any] = self.attna( lowercase_ , encoder_hidden_states=lowercase_ , attention_mask=lowercase_ , **lowercase_ , ) UpperCAmelCase : List[Any] = attn_output + hidden_states # 3. Feed-forward UpperCAmelCase : Dict = self.norma(lowercase_ ) if self.use_ada_layer_norm_zero: UpperCAmelCase : Dict = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) UpperCAmelCase : List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size UpperCAmelCase : str = torch.cat( [self.ff(lowercase_ ) for hid_slice in norm_hidden_states.chunk(lowercase_ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: UpperCAmelCase : List[Any] = self.ff(lowercase_ ) if self.use_ada_layer_norm_zero: UpperCAmelCase : Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output UpperCAmelCase : Tuple = ff_output + hidden_states return hidden_states class A_ ( nn.Module ): '''simple docstring''' def __init__( self : Any , lowercase_ : int , lowercase_ : Optional[int] = None , lowercase_ : int = 4 , lowercase_ : float = 0.0 , lowercase_ : str = "geglu" , lowercase_ : bool = False , ) -> Optional[Any]: super().__init__() UpperCAmelCase : List[str] = int(dim * mult ) UpperCAmelCase : List[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": UpperCAmelCase : List[str] = GELU(lowercase_ , lowercase_ ) if activation_fn == "gelu-approximate": UpperCAmelCase : Tuple = GELU(lowercase_ , lowercase_ , approximate='tanh' ) elif activation_fn == "geglu": UpperCAmelCase : Any = GEGLU(lowercase_ , lowercase_ ) elif activation_fn == "geglu-approximate": UpperCAmelCase : Any = ApproximateGELU(lowercase_ , lowercase_ ) UpperCAmelCase : int = nn.ModuleList([] ) # project in self.net.append(lowercase_ ) # project dropout self.net.append(nn.Dropout(lowercase_ ) ) # project out self.net.append(nn.Linear(lowercase_ , lowercase_ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(lowercase_ ) ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : List[Any] ) -> Optional[int]: for module in self.net: UpperCAmelCase : Any = module(lowercase_ ) return hidden_states class A_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : str = "none" ) -> List[Any]: super().__init__() UpperCAmelCase : List[Any] = nn.Linear(lowercase_ , lowercase_ ) UpperCAmelCase : str = approximate def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Optional[int] ) -> List[Any]: if gate.device.type != "mps": return F.gelu(lowercase_ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : Tuple ) -> Dict: UpperCAmelCase : int = self.proj(lowercase_ ) UpperCAmelCase : Any = self.gelu(lowercase_ ) return hidden_states class A_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , lowercase_ : int , lowercase_ : int ) -> Any: super().__init__() UpperCAmelCase : Dict = nn.Linear(lowercase_ , dim_out * 2 ) def UpperCAmelCase_ ( self : Any , lowercase_ : List[Any] ) -> List[str]: if gate.device.type != "mps": return F.gelu(lowercase_ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCAmelCase_ ( self : Dict , lowercase_ : Any ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : List[str] = self.proj(lowercase_ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(lowercase_ ) class A_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : int , lowercase_ : int ) -> int: super().__init__() UpperCAmelCase : Tuple = nn.Linear(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : int ) -> List[Any]: UpperCAmelCase : Union[str, Any] = self.proj(lowercase_ ) return x * torch.sigmoid(1.702 * x ) class A_ ( nn.Module ): '''simple docstring''' def __init__( self : Any , lowercase_ : Tuple , lowercase_ : List[str] ) -> List[str]: super().__init__() UpperCAmelCase : int = nn.Embedding(lowercase_ , lowercase_ ) UpperCAmelCase : List[Any] = nn.SiLU() UpperCAmelCase : Dict = nn.Linear(lowercase_ , embedding_dim * 2 ) UpperCAmelCase : List[str] = nn.LayerNorm(lowercase_ , elementwise_affine=lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] ) -> Tuple: UpperCAmelCase : List[Any] = self.linear(self.silu(self.emb(lowercase_ ) ) ) UpperCAmelCase , UpperCAmelCase : List[Any] = torch.chunk(lowercase_ , 2 ) UpperCAmelCase : Dict = self.norm(lowercase_ ) * (1 + scale) + shift return x class A_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : Any , lowercase_ : Tuple ) -> Optional[int]: super().__init__() UpperCAmelCase : Any = CombinedTimestepLabelEmbeddings(lowercase_ , lowercase_ ) UpperCAmelCase : Dict = nn.SiLU() UpperCAmelCase : List[Any] = nn.Linear(lowercase_ , 6 * embedding_dim , bias=lowercase_ ) UpperCAmelCase : Any = nn.LayerNorm(lowercase_ , elementwise_affine=lowercase_ , eps=1E-6 ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : Any , lowercase_ : Dict=None ) -> Dict: UpperCAmelCase : Tuple = self.linear(self.silu(self.emb(lowercase_ , lowercase_ , hidden_dtype=lowercase_ ) ) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = emb.chunk(6 , dim=1 ) UpperCAmelCase : List[str] = self.norm(lowercase_ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class A_ ( nn.Module ): '''simple docstring''' def __init__( self : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : Optional[str] = None , lowercase_ : float = 1E-5 ) -> Optional[Any]: super().__init__() UpperCAmelCase : str = num_groups UpperCAmelCase : Dict = eps if act_fn is None: UpperCAmelCase : Optional[int] = None else: UpperCAmelCase : Dict = get_activation(lowercase_ ) UpperCAmelCase : Any = nn.Linear(lowercase_ , out_dim * 2 ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Dict ) -> Tuple: if self.act: UpperCAmelCase : Tuple = self.act(lowercase_ ) UpperCAmelCase : Any = self.linear(lowercase_ ) UpperCAmelCase : Tuple = emb[:, :, None, None] UpperCAmelCase , UpperCAmelCase : int = emb.chunk(2 , dim=1 ) UpperCAmelCase : int = F.group_norm(lowercase_ , self.num_groups , eps=self.eps ) UpperCAmelCase : int = x * (1 + scale) + shift return x
695
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): # Return True if there is node that has not iterated. UpperCAmelCase : Dict = [False] * len(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = [] queue.append(UpperCAmelCase_ ) UpperCAmelCase : int = True while queue: UpperCAmelCase : Any = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = True UpperCAmelCase : List[Any] = u return visited[t] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): # This array is filled by BFS and to store path UpperCAmelCase : str = [-1] * (len(UpperCAmelCase_ )) UpperCAmelCase : Optional[int] = 0 while bfs(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = float('Inf' ) UpperCAmelCase : Optional[int] = sink while s != source: # Find the minimum value in select path UpperCAmelCase : Optional[int] = min(UpperCAmelCase_ , graph[parent[s]][s] ) UpperCAmelCase : Dict = parent[s] max_flow += path_flow UpperCAmelCase : Optional[int] = sink while v != source: UpperCAmelCase : Any = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase : Dict = parent[v] return max_flow lowercase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowercase__ , lowercase__ = 0, 5 print(ford_fulkerson(graph, source, sink))
695
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Any = """deberta-v2""" def __init__( self : Any , lowercase_ : List[str]=128_100 , lowercase_ : Optional[Any]=1_536 , lowercase_ : Tuple=24 , lowercase_ : Optional[int]=24 , lowercase_ : List[str]=6_144 , lowercase_ : List[Any]="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : Optional[Any]=0 , lowercase_ : Optional[int]=0.02 , lowercase_ : List[str]=1E-7 , lowercase_ : List[Any]=False , lowercase_ : List[str]=-1 , lowercase_ : Dict=0 , lowercase_ : List[str]=True , lowercase_ : Optional[int]=None , lowercase_ : List[str]=0 , lowercase_ : Optional[int]="gelu" , **lowercase_ : Optional[Any] , ) -> Dict: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = intermediate_size UpperCAmelCase : Dict = hidden_act UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : Tuple = type_vocab_size UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : Optional[int] = relative_attention UpperCAmelCase : Union[str, Any] = max_relative_positions UpperCAmelCase : Tuple = pad_token_id UpperCAmelCase : Optional[int] = position_biased_input # Backwards compatibility if type(lowercase_ ) == str: UpperCAmelCase : Optional[Any] = [x.strip() for x in pos_att_type.lower().split('|' )] UpperCAmelCase : Union[str, Any] = pos_att_type UpperCAmelCase : int = vocab_size UpperCAmelCase : List[Any] = layer_norm_eps UpperCAmelCase : int = kwargs.get('pooler_hidden_size' , lowercase_ ) UpperCAmelCase : str = pooler_dropout UpperCAmelCase : Any = pooler_hidden_act class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def UpperCAmelCase_ ( self : Optional[Any] ) -> int: return 12 def UpperCAmelCase_ ( self : str , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 3 , lowercase_ : int = 40 , lowercase_ : int = 40 , lowercase_ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: UpperCAmelCase : Any = super().generate_dummy_inputs(preprocessor=lowercase_ , framework=lowercase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
695
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
1
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = tmp_path / 'cache' UpperCAmelCase : List[str] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : str = ParquetDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_parquet_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = tmp_path / 'cache' UpperCAmelCase : Optional[int] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : Dict = features.copy() if features else default_expected_features UpperCAmelCase : Dict = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Optional[int] = ParquetDatasetReader(UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_parquet_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : str = tmp_path / 'cache' UpperCAmelCase : Optional[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : Dict = ParquetDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , split=UpperCAmelCase_ ).read() _check_parquet_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[str] = parquet_path elif issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = [parquet_path] UpperCAmelCase : List[Any] = tmp_path / 'cache' UpperCAmelCase : List[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : Dict = ParquetDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_parquet_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=("train",) ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for split in splits: UpperCAmelCase : Union[str, Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = tmp_path / 'cache' UpperCAmelCase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Optional[Any] = ParquetDatasetReader( {'train': parquet_path} , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_parquet_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[str] = tmp_path / 'cache' UpperCAmelCase : Optional[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : int = features.copy() if features else default_expected_features UpperCAmelCase : str = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = ParquetDatasetReader({'train': parquet_path} , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_parquet_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if split: UpperCAmelCase : Tuple = {split: parquet_path} else: UpperCAmelCase : Union[str, Any] = 'train' UpperCAmelCase : List[Any] = {'train': parquet_path, 'test': parquet_path} UpperCAmelCase : int = tmp_path / 'cache' UpperCAmelCase : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : int = ParquetDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_parquet_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Dict = ParquetDatasetWriter(UpperCAmelCase_ , tmp_path / 'foo.parquet' ) assert writer.write() > 0 UpperCAmelCase : List[Any] = pq.ParquetFile(tmp_path / 'foo.parquet' ) UpperCAmelCase : Union[str, Any] = pf.read() assert dataset.data.table == output_table def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : str = str(shared_datadir / 'test_image_rgb.jpg' ) UpperCAmelCase : Any = {'image': [image_path]} UpperCAmelCase : Union[str, Any] = Features({'image': Image()} ) UpperCAmelCase : Optional[Any] = Dataset.from_dict(UpperCAmelCase_ , features=UpperCAmelCase_ ) UpperCAmelCase : str = ParquetDatasetWriter(UpperCAmelCase_ , tmp_path / 'foo.parquet' ) assert writer.write() > 0 UpperCAmelCase : int = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) ) assert dataset.features == reloaded_dataset.features UpperCAmelCase : Any = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=UpperCAmelCase_ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected' , [ (Features({'foo': Value('int32' )} ), None), (Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): assert get_writer_batch_size(UpperCAmelCase_ ) == expected
695
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
1
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1_00 , ): UpperCAmelCase : int = x_start UpperCAmelCase : str = fnc(UpperCAmelCase_ ) UpperCAmelCase : Tuple = 0.0 for _ in range(UpperCAmelCase_ ): # Approximates curve as a sequence of linear lines and sums their length UpperCAmelCase : List[str] = (x_end - x_start) / steps + xa UpperCAmelCase : Union[str, Any] = fnc(UpperCAmelCase_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step UpperCAmelCase : int = xa UpperCAmelCase : List[str] = fxa return length if __name__ == "__main__": def UpperCamelCase( UpperCAmelCase_ ): return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") lowercase__ = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
695
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
1
'''simple docstring''' lowercase__ = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
695
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase__ = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' from __future__ import annotations lowercase__ = list[tuple[int, int]] lowercase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase__ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class A_ : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : float , lowercase_ : Node | None , ) -> Dict: UpperCAmelCase : List[Any] = pos_x UpperCAmelCase : List[str] = pos_y UpperCAmelCase : List[str] = (pos_y, pos_x) UpperCAmelCase : str = goal_x UpperCAmelCase : List[str] = goal_y UpperCAmelCase : Union[str, Any] = g_cost UpperCAmelCase : Optional[Any] = parent UpperCAmelCase : Optional[int] = self.calculate_heuristic() def UpperCAmelCase_ ( self : Union[str, Any] ) -> float: UpperCAmelCase : List[Any] = abs(self.pos_x - self.goal_x ) UpperCAmelCase : List[str] = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Optional[Any] , lowercase_ : Dict ) -> bool: return self.f_cost < other.f_cost class A_ : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : tuple[int, int] , lowercase_ : tuple[int, int] ) -> Union[str, Any]: UpperCAmelCase : int = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ ) UpperCAmelCase : int = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , lowercase_ ) UpperCAmelCase : str = [self.start] UpperCAmelCase : list[Node] = [] UpperCAmelCase : Dict = False def UpperCAmelCase_ ( self : List[str] ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: UpperCAmelCase : Optional[Any] = True return self.retrace_path(lowercase_ ) self.closed_nodes.append(lowercase_ ) UpperCAmelCase : str = self.get_successors(lowercase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase : str = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase_ ) else: self.open_nodes.append(lowercase_ ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Node ) -> list[Node]: UpperCAmelCase : str = [] for action in delta: UpperCAmelCase : Union[str, Any] = parent.pos_x + action[1] UpperCAmelCase : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) ) return successors def UpperCAmelCase_ ( self : str , lowercase_ : Node | None ) -> Path: UpperCAmelCase : Union[str, Any] = node UpperCAmelCase : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase : List[Any] = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase__ = (0, 0) lowercase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") lowercase__ = GreedyBestFirst(init, goal) lowercase__ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase__ = 2 for elem in grid: print(elem)
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = ["""pixel_values"""] def __init__( self : int , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : float = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , **lowercase_ : str , ) -> None: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = size if size is not None else {'shortest_edge': 384} UpperCAmelCase : Optional[int] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) UpperCAmelCase : str = do_resize UpperCAmelCase : str = size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase : Optional[int] = crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase : Union[str, Any] = resample UpperCAmelCase : Optional[int] = do_rescale UpperCAmelCase : Dict = rescale_factor UpperCAmelCase : str = do_normalize UpperCAmelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : float , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Tuple , ) -> np.ndarray: UpperCAmelCase : List[str] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(f"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) UpperCAmelCase : Optional[int] = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase : List[Any] = int(shortest_edge / crop_pct ) UpperCAmelCase : Optional[int] = get_resize_output_image_size(lowercase_ , size=lowercase_ , default_to_square=lowercase_ ) UpperCAmelCase : List[str] = resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowercase_ , size=(shortest_edge, shortest_edge) , data_format=lowercase_ , **lowercase_ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowercase_ , size=(shortest_edge, shortest_edge) , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : str , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : float = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : Union[str, Any] , ) -> PIL.Image.Image: UpperCAmelCase : Dict = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : int = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase : Optional[Any] = resample if resample is not None else self.resample UpperCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : List[Any] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase : Optional[int] = image_std if image_std is not None else self.image_std UpperCAmelCase : Union[str, Any] = size if size is not None else self.size UpperCAmelCase : Optional[Any] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) UpperCAmelCase : str = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCAmelCase : int = [to_numpy_array(lowercase_ ) for image in images] if do_resize: UpperCAmelCase : str = [self.resize(image=lowercase_ , size=lowercase_ , crop_pct=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: UpperCAmelCase : List[Any] = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: UpperCAmelCase : str = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] UpperCAmelCase : Optional[Any] = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] UpperCAmelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
695
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
1
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase__ = 16 lowercase__ = 32 def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ = 16 , UpperCAmelCase_ = "bert-base-cased" ): UpperCAmelCase : Any = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : Tuple = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase : Optional[int] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase : Optional[Any] = datasets.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=UpperCAmelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase : Optional[int] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase_ , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(UpperCAmelCase_ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. UpperCAmelCase : Any = DataLoader( tokenized_datasets['train'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) return train_dataloader, eval_dataloader def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): # Initialize accelerator UpperCAmelCase : List[str] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase : Any = config['lr'] UpperCAmelCase : Tuple = int(config['num_epochs'] ) UpperCAmelCase : List[Any] = int(config['seed'] ) UpperCAmelCase : Tuple = int(config['batch_size'] ) UpperCAmelCase : str = args.model_name_or_path set_seed(UpperCAmelCase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = get_dataloaders(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) # Instantiate optimizer UpperCAmelCase : Optional[int] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase : List[str] = optimizer_cls(params=model.parameters() , lr=UpperCAmelCase_ ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase : int = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: UpperCAmelCase : str = 1 UpperCAmelCase : List[str] = (len(UpperCAmelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase : Optional[int] = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase_ , num_warmup_steps=0 , num_training_steps=UpperCAmelCase_ , ) else: UpperCAmelCase : List[Any] = DummyScheduler(UpperCAmelCase_ , total_num_steps=UpperCAmelCase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = accelerator.prepare( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase : Optional[Any] = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase : Optional[int] = 0 # Now we train the model UpperCAmelCase : Union[str, Any] = evaluate.load('glue' , 'mrpc' ) UpperCAmelCase : str = 0 UpperCAmelCase : int = {} for epoch in range(UpperCAmelCase_ , UpperCAmelCase_ ): model.train() for step, batch in enumerate(UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = model(**UpperCAmelCase_ ) UpperCAmelCase : List[Any] = outputs.loss UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCAmelCase : str = 0 for step, batch in enumerate(UpperCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase : Any = model(**UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase , UpperCAmelCase : Dict = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCAmelCase_ ) - 1: UpperCAmelCase : List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCAmelCase_ , references=UpperCAmelCase_ , ) UpperCAmelCase : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCAmelCase_ ) UpperCAmelCase : Any = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: UpperCAmelCase : Optional[int] = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase( ): UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=UpperCAmelCase_ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCAmelCase_ , ) parser.add_argument( '--output_dir' , type=UpperCAmelCase_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=UpperCAmelCase_ , default=3 , help='Number of train epochs.' , ) UpperCAmelCase : str = parser.parse_args() UpperCAmelCase : str = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
695
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
1
'''simple docstring''' import operator as op lowercase__ = "scaler.pt" lowercase__ = "pytorch_model" lowercase__ = "random_states" lowercase__ = "optimizer" lowercase__ = "scheduler" lowercase__ = "pytorch_model.bin" lowercase__ = "pytorch_model.bin.index.json" lowercase__ = "model.safetensors" lowercase__ = "model.safetensors.index.json" lowercase__ = "1.10.2" lowercase__ = "py38" lowercase__ = "4.17.0" lowercase__ = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] lowercase__ = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] lowercase__ = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] lowercase__ = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] lowercase__ = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] lowercase__ = "2.0.1" lowercase__ = ["pdsh", "standard", "openmpi", "mvapich"] lowercase__ = ["default", "reduce-overhead", "max-autotune"] lowercase__ = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 lowercase__ = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] lowercase__ = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] lowercase__ = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
695
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : Optional[int] ) -> None: warnings.warn( 'The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DeiTImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
1
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
695
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
1
'''simple docstring''' import os import sys import unittest lowercase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowercase__ = os.path.join(git_repo_path, "src", "transformers") lowercase__ = "\n{0} = None\n" lowercase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" lowercase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: UpperCAmelCase : Dict = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(lowercase_ ) UpperCAmelCase : Dict = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(lowercase_ , 'tokenizers' ) UpperCAmelCase : str = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(lowercase_ , 'tensorflow_text' ) UpperCAmelCase : Union[str, Any] = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(lowercase_ , 'sentencepiece_and_tokenizers' ) UpperCAmelCase : List[str] = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(lowercase_ , 'sentencepiece_and_tensorflow_text' ) UpperCAmelCase : List[str] = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(lowercase_ , 'sentencepiece_and_tokenizers_and_vision' ) def UpperCAmelCase_ ( self : Any ) -> Dict: UpperCAmelCase : Any = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , lowercase_ ) self.assertIn('tensorflow_text' , lowercase_ ) self.assertIn('sentencepiece_and_tokenizers' , lowercase_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : int = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(lowercase_ , '\nCONSTANT = None\n' ) UpperCAmelCase : Union[str, Any] = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( lowercase_ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) UpperCAmelCase : Union[str, Any] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' UpperCAmelCase : List[Any] = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: UpperCAmelCase : Optional[int] = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' UpperCAmelCase : int = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , lowercase_ )
695
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """deformable_detr""" UpperCAmelCase_ : str = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Union[str, Any] , lowercase_ : List[Any]=True , lowercase_ : str=None , lowercase_ : int=3 , lowercase_ : List[Any]=300 , lowercase_ : List[str]=1_024 , lowercase_ : Tuple=6 , lowercase_ : Union[str, Any]=1_024 , lowercase_ : Optional[Any]=8 , lowercase_ : List[Any]=6 , lowercase_ : Any=1_024 , lowercase_ : List[Any]=8 , lowercase_ : Tuple=0.0 , lowercase_ : int=True , lowercase_ : int="relu" , lowercase_ : Union[str, Any]=256 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.0 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Tuple=0.02 , lowercase_ : Optional[Any]=1.0 , lowercase_ : Optional[int]=True , lowercase_ : List[str]=False , lowercase_ : Any="sine" , lowercase_ : Dict="resnet50" , lowercase_ : List[str]=True , lowercase_ : Dict=False , lowercase_ : List[Any]=4 , lowercase_ : List[Any]=4 , lowercase_ : Union[str, Any]=4 , lowercase_ : Optional[Any]=False , lowercase_ : Tuple=300 , lowercase_ : Tuple=False , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=5 , lowercase_ : Union[str, Any]=2 , lowercase_ : List[Any]=1 , lowercase_ : Dict=1 , lowercase_ : Dict=5 , lowercase_ : str=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : List[str]=0.25 , lowercase_ : Union[str, Any]=False , **lowercase_ : List[str] , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) UpperCAmelCase : List[Any] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Optional[int] = backbone_config.get('model_type' ) UpperCAmelCase : Any = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[str] = config_class.from_dict(lowercase_ ) UpperCAmelCase : Any = use_timm_backbone UpperCAmelCase : int = backbone_config UpperCAmelCase : Any = num_channels UpperCAmelCase : Optional[int] = num_queries UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : Optional[Any] = d_model UpperCAmelCase : Any = encoder_ffn_dim UpperCAmelCase : int = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = decoder_layers UpperCAmelCase : List[Any] = decoder_attention_heads UpperCAmelCase : Any = dropout UpperCAmelCase : Dict = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : List[Any] = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : Union[str, Any] = init_xavier_std UpperCAmelCase : Optional[Any] = encoder_layerdrop UpperCAmelCase : Tuple = auxiliary_loss UpperCAmelCase : Tuple = position_embedding_type UpperCAmelCase : Tuple = backbone UpperCAmelCase : Optional[int] = use_pretrained_backbone UpperCAmelCase : Tuple = dilation # deformable attributes UpperCAmelCase : Union[str, Any] = num_feature_levels UpperCAmelCase : Optional[int] = encoder_n_points UpperCAmelCase : str = decoder_n_points UpperCAmelCase : str = two_stage UpperCAmelCase : int = two_stage_num_proposals UpperCAmelCase : Tuple = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher UpperCAmelCase : List[str] = class_cost UpperCAmelCase : List[str] = bbox_cost UpperCAmelCase : str = giou_cost # Loss coefficients UpperCAmelCase : List[str] = mask_loss_coefficient UpperCAmelCase : Union[str, Any] = dice_loss_coefficient UpperCAmelCase : List[str] = bbox_loss_coefficient UpperCAmelCase : List[str] = giou_loss_coefficient UpperCAmelCase : Union[str, Any] = eos_coefficient UpperCAmelCase : Optional[int] = focal_alpha UpperCAmelCase : Union[str, Any] = disable_custom_kernels super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: return self.encoder_attention_heads @property def UpperCAmelCase_ ( self : int ) -> int: return self.d_model def UpperCAmelCase_ ( self : int ) -> List[Any]: UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCAmelCase : Optional[Any] = self.backbone_config.to_dict() UpperCAmelCase : List[Any] = self.__class__.model_type return output
695
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
1
'''simple docstring''' import math import unittest def UpperCamelCase( UpperCAmelCase_ ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def UpperCAmelCase_ ( self : Dict ) -> List[Any]: with self.assertRaises(lowercase_ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def UpperCamelCase( UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) UpperCAmelCase : Optional[int] = precision UpperCAmelCase : Optional[int] = ceil(precision / 14 ) UpperCAmelCase : List[str] = 42_68_80 * Decimal(1_00_05 ).sqrt() UpperCAmelCase : Any = 1 UpperCAmelCase : str = 13_59_14_09 UpperCAmelCase : List[str] = Decimal(UpperCAmelCase_ ) for k in range(1 , UpperCAmelCase_ ): UpperCAmelCase : int = factorial(6 * k ) // (factorial(3 * k ) * factorial(UpperCAmelCase_ ) ** 3) linear_term += 5_45_14_01_34 exponential_term *= -26_25_37_41_26_40_76_80_00 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowercase__ = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
695
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = SwinConfig(image_size=1_92 ) if "base" in model_name: UpperCAmelCase : Optional[int] = 6 UpperCAmelCase : str = 1_28 UpperCAmelCase : Union[str, Any] = (2, 2, 18, 2) UpperCAmelCase : Union[str, Any] = (4, 8, 16, 32) elif "large" in model_name: UpperCAmelCase : List[str] = 12 UpperCAmelCase : Tuple = 1_92 UpperCAmelCase : Dict = (2, 2, 18, 2) UpperCAmelCase : List[Any] = (6, 12, 24, 48) else: raise ValueError('Model not supported, only supports base and large variants' ) UpperCAmelCase : List[Any] = window_size UpperCAmelCase : Dict = embed_dim UpperCAmelCase : int = depths UpperCAmelCase : Union[str, Any] = num_heads return config def UpperCamelCase( UpperCAmelCase_ ): if "encoder.mask_token" in name: UpperCAmelCase : List[Any] = name.replace('encoder.mask_token' , 'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: UpperCAmelCase : str = name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: UpperCAmelCase : Any = name.replace('encoder.patch_embed.norm' , 'embeddings.norm' ) if "attn.proj" in name: UpperCAmelCase : Any = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCAmelCase : int = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCAmelCase : Any = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCAmelCase : str = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCAmelCase : List[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCAmelCase : Optional[Any] = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": UpperCAmelCase : List[Any] = 'layernorm.weight' if name == "encoder.norm.bias": UpperCAmelCase : List[Any] = 'layernorm.bias' if "decoder" in name: pass else: UpperCAmelCase : Optional[Any] = 'swin.' + name return name def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): for key in orig_state_dict.copy().keys(): UpperCAmelCase : List[Any] = orig_state_dict.pop(UpperCAmelCase_ ) if "attn_mask" in key: pass elif "qkv" in key: UpperCAmelCase : Optional[int] = key.split('.' ) UpperCAmelCase : List[Any] = int(key_split[2] ) UpperCAmelCase : Any = int(key_split[4] ) UpperCAmelCase : int = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase : Any = val[:dim, :] UpperCAmelCase : Optional[Any] = val[ dim : dim * 2, : ] UpperCAmelCase : Optional[int] = val[-dim:, :] else: UpperCAmelCase : List[Any] = val[ :dim ] UpperCAmelCase : Optional[Any] = val[ dim : dim * 2 ] UpperCAmelCase : List[Any] = val[ -dim: ] else: UpperCAmelCase : Optional[int] = val return orig_state_dict def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' )['model'] UpperCAmelCase : List[str] = get_swin_config(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = SwinForMaskedImageModeling(UpperCAmelCase_ ) model.eval() UpperCAmelCase : List[str] = convert_state_dict(UpperCAmelCase_ , UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) UpperCAmelCase : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCAmelCase : Tuple = ViTImageProcessor(size={'height': 1_92, 'width': 1_92} ) UpperCAmelCase : Dict = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) UpperCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ) with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**UpperCAmelCase_ ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(UpperCAmelCase_ ) if push_to_hub: print(F"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(F"""microsoft/{model_name}""" ) image_processor.push_to_hub(F"""microsoft/{model_name}""" ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowercase__ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
695
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_snake_case ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = field(default="""image-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) UpperCAmelCase_ : ClassVar[Features] = Features({"""image""": Image()} ) UpperCAmelCase_ : ClassVar[Features] = Features({"""labels""": ClassLabel} ) UpperCAmelCase_ : str = "image" UpperCAmelCase_ : str = "labels" def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Dict ) -> Optional[Any]: if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) UpperCAmelCase : int = copy.deepcopy(self ) UpperCAmelCase : str = self.label_schema.copy() UpperCAmelCase : Optional[int] = features[self.label_column] UpperCAmelCase : int = label_schema return task_template @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
1
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ = "cpu" , UpperCAmelCase_ = None ): UpperCAmelCase : Dict = torch.load(UpperCAmelCase_ , map_location=UpperCAmelCase_ ) for k, v in tqdm(state_dict.items() ): if not isinstance(UpperCAmelCase_ , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) UpperCAmelCase : str = v.half() if save_path is None: # overwrite src_path UpperCAmelCase : str = src_path torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": fire.Fire(convert)
695
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
1
'''simple docstring''' lowercase__ = { "joule": 1.0, "kilojoule": 1000, "megajoule": 1000000, "gigajoule": 1000000000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 3600000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 4186800.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 1055.05585, "footpound": 1.355818, } def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCAmelCase : Union[str, Any] = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {", ".join(UpperCAmelCase_ )}""" ) raise ValueError(UpperCAmelCase_ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
695
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
1
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = LxmertTokenizer UpperCAmelCase_ : Any = LxmertTokenizerFast UpperCAmelCase_ : int = True UpperCAmelCase_ : int = True def UpperCAmelCase_ ( self : Tuple ) -> List[str]: super().setUp() UpperCAmelCase : List[str] = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCAmelCase_ ( self : Any , lowercase_ : List[str] ) -> Tuple: UpperCAmelCase : Union[str, Any] = 'UNwant\u00E9d,running' UpperCAmelCase : Any = 'unwanted, running' return input_text, output_text def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: UpperCAmelCase : Any = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : Tuple = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowercase_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , [7, 4, 5, 10, 8, 9] ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: if not self.test_rust_tokenizer: return UpperCAmelCase : Any = self.get_tokenizer() UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() UpperCAmelCase : Union[str, Any] = 'I was born in 92000, and this is falsé.' UpperCAmelCase : Dict = tokenizer.tokenize(lowercase_ ) UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase : str = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase : Optional[Any] = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase : str = self.get_rust_tokenizer() UpperCAmelCase : int = tokenizer.encode(lowercase_ ) UpperCAmelCase : int = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ )
695
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
1
'''simple docstring''' from __future__ import annotations lowercase__ = 1.6_0_2_1e-1_9 # units = C def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif conductivity < 0: raise ValueError('Conductivity cannot be negative' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative' ) elif mobility < 0: raise ValueError('mobility cannot be negative' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
695
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
1
'''simple docstring''' import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowercase__ = ["bart.large", "bart.large.mnli", "bart.large.cnn", "bart_xsum/model.pt"] lowercase__ = {"bart.large": BartModel, "bart.large.mnli": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("0.9.0"): raise Exception("requires fairseq >= 0.9.0") logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) lowercase__ = " Hello world! cécé herlolip" lowercase__ = [ ("model.classification_heads.mnli.dense.weight", "classification_head.dense.weight"), ("model.classification_heads.mnli.dense.bias", "classification_head.dense.bias"), ("model.classification_heads.mnli.out_proj.weight", "classification_head.out_proj.weight"), ("model.classification_heads.mnli.out_proj.bias", "classification_head.out_proj.bias"), ] def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = dct.pop(UpperCAmelCase_ ) UpperCAmelCase : List[str] = val def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Dict = torch.load(UpperCAmelCase_ , map_location='cpu' ) UpperCAmelCase : List[str] = torch.hub.load('pytorch/fairseq' , 'bart.large.cnn' ).eval() hub_interface.model.load_state_dict(sd['model'] ) return hub_interface def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = emb.weight.shape UpperCAmelCase : Optional[int] = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ , bias=UpperCAmelCase_ ) UpperCAmelCase : Tuple = emb.weight.data return lin_layer @torch.no_grad() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ): if not os.path.exists(UpperCAmelCase_ ): UpperCAmelCase : str = torch.hub.load('pytorch/fairseq' , UpperCAmelCase_ ).eval() else: UpperCAmelCase : Union[str, Any] = load_xsum_checkpoint(UpperCAmelCase_ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: UpperCAmelCase : Tuple = checkpoint_path.replace('.' , '-' ) UpperCAmelCase : Tuple = BartConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : Any = bart.encode(UpperCAmelCase_ ).unsqueeze(0 ) UpperCAmelCase : Tuple = BartTokenizer.from_pretrained(UpperCAmelCase_ ).encode(UpperCAmelCase_ , return_tensors='pt' ).unsqueeze(0 ) if not torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ).all(): raise ValueError( F"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": UpperCAmelCase : str = bart.state_dict() remove_ignore_keys_(UpperCAmelCase_ ) UpperCAmelCase : Any = state_dict['model.decoder.embed_tokens.weight'] for src, dest in mnli_rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : int = BartForSequenceClassification(UpperCAmelCase_ ).eval() model.load_state_dict(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = bart.predict('mnli' , UpperCAmelCase_ , return_logits=UpperCAmelCase_ ) UpperCAmelCase : Tuple = model(UpperCAmelCase_ )[0] # logits else: # no classification heads to worry about UpperCAmelCase : Tuple = bart.model.state_dict() remove_ignore_keys_(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = state_dict['decoder.embed_tokens.weight'] UpperCAmelCase : str = bart.extract_features(UpperCAmelCase_ ) if hf_checkpoint_name == "facebook/bart-large": UpperCAmelCase : List[str] = BartModel(UpperCAmelCase_ ).eval() model.load_state_dict(UpperCAmelCase_ ) UpperCAmelCase : str = model(UpperCAmelCase_ ).model[0] else: UpperCAmelCase : Dict = BartForConditionalGeneration(UpperCAmelCase_ ).eval() # an existing summarization ckpt model.model.load_state_dict(UpperCAmelCase_ ) if hasattr(UpperCAmelCase_ , 'lm_head' ): UpperCAmelCase : List[str] = make_linear_from_emb(model.model.shared ) UpperCAmelCase : Any = model.model(UpperCAmelCase_ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('Some values in `fairseq_output` are different from `new_model_outputs`' ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default=None, type=str, help="Which huggingface architecture to use: bart-large-xsum" ) lowercase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
695
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
1
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
1
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) lowercase__ = logging.getLogger(__name__) lowercase__ = {"facebook/bart-base": BartForConditionalGeneration} lowercase__ = {"facebook/bart-base": BartTokenizer} def UpperCamelCase( ): UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=UpperCAmelCase_ , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=UpperCAmelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCAmelCase_ , ) parser.add_argument( '--config_name' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=UpperCAmelCase_ , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='Where to store the final ONNX file.' ) UpperCAmelCase : Tuple = parser.parse_args() return args def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_="cpu" ): UpperCAmelCase : List[Any] = model_dict[model_name].from_pretrained(UpperCAmelCase_ ).to(UpperCAmelCase_ ) UpperCAmelCase : str = tokenizer_dict[model_name].from_pretrained(UpperCAmelCase_ ) if model_name in ["facebook/bart-base"]: UpperCAmelCase : Tuple = 0 UpperCAmelCase : Tuple = None UpperCAmelCase : Dict = 0 return huggingface_model, tokenizer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): model.eval() UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = torch.jit.script(BARTBeamSearchGenerator(UpperCAmelCase_ ) ) with torch.no_grad(): UpperCAmelCase : Optional[Any] = 'My friends are cool but they eat too many carbs.' UpperCAmelCase : Any = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors='pt' ).to(model.device ) UpperCAmelCase : Optional[Any] = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=UpperCAmelCase_ , max_length=UpperCAmelCase_ , early_stopping=UpperCAmelCase_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( UpperCAmelCase_ , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , UpperCAmelCase_ , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=UpperCAmelCase_ , ) logger.info('Model exported to {}'.format(UpperCAmelCase_ ) ) UpperCAmelCase : List[str] = remove_dup_initializers(os.path.abspath(UpperCAmelCase_ ) ) logger.info('Deduplicated and optimized model written to {}'.format(UpperCAmelCase_ ) ) UpperCAmelCase : List[Any] = onnxruntime.InferenceSession(UpperCAmelCase_ ) UpperCAmelCase : Any = ort_sess.run( UpperCAmelCase_ , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(UpperCAmelCase_ ), 'max_length': np.array(UpperCAmelCase_ ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def UpperCamelCase( ): UpperCAmelCase : Optional[Any] = parse_args() UpperCAmelCase : Union[str, Any] = 5 UpperCAmelCase : Dict = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() UpperCAmelCase : Union[str, Any] = torch.device(args.device ) UpperCAmelCase , UpperCAmelCase : Tuple = load_model_tokenizer(args.model_name_or_path , UpperCAmelCase_ ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(UpperCAmelCase_ ) if args.max_length: UpperCAmelCase : Dict = args.max_length if args.num_beams: UpperCAmelCase : Tuple = args.num_beams if args.output_file_path: UpperCAmelCase : Tuple = args.output_file_path else: UpperCAmelCase : int = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
695
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
1
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance lowercase__ = 6378137.0 lowercase__ = 6356752.314245 lowercase__ = 6378137 def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[str] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude UpperCAmelCase : str = atan((1 - flattening) * tan(radians(UpperCAmelCase_ ) ) ) UpperCAmelCase : Union[str, Any] = atan((1 - flattening) * tan(radians(UpperCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius UpperCAmelCase : Tuple = haversine_distance(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values UpperCAmelCase : Optional[Any] = (b_lata + b_lata) / 2 UpperCAmelCase : Optional[int] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) UpperCAmelCase : int = (sin(UpperCAmelCase_ ) ** 2) * (cos(UpperCAmelCase_ ) ** 2) UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 UpperCAmelCase : Optional[int] = (sigma - sin(UpperCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) UpperCAmelCase : Any = (cos(UpperCAmelCase_ ) ** 2) * (sin(UpperCAmelCase_ ) ** 2) UpperCAmelCase : Tuple = sin(sigma / 2 ) ** 2 UpperCAmelCase : Union[str, Any] = (sigma + sin(UpperCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
695
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
1
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Dict = test_results.split(' ' ) UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : Tuple = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase : Union[str, Any] = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(UpperCAmelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = {} UpperCAmelCase : Any = None UpperCAmelCase : Dict = False for line in failures_short_lines.split('\n' ): if re.search(R'_ \[doctest\]' , UpperCAmelCase_ ): UpperCAmelCase : Tuple = True UpperCAmelCase : List[Any] = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): UpperCAmelCase : Dict = line UpperCAmelCase : Optional[Any] = False return failures class A_ : '''simple docstring''' def __init__( self : List[Any] , lowercase_ : str , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Tuple = title UpperCAmelCase : Union[str, Any] = doc_test_results['time_spent'].split(',' )[0] UpperCAmelCase : str = doc_test_results['success'] UpperCAmelCase : Any = doc_test_results['failures'] UpperCAmelCase : int = self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase : int = doc_test_results @property def UpperCAmelCase_ ( self : int ) -> str: UpperCAmelCase : int = [self._time_spent] UpperCAmelCase : Optional[int] = 0 for time in time_spent: UpperCAmelCase : Optional[Any] = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(lowercase_ ) == 1: UpperCAmelCase : str = [0, 0, time_parts[0]] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_600 + minutes * 60 + seconds UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = total_secs // 3_600, (total_secs % 3_600) // 60, total_secs % 60 return f"""{int(lowercase_ )}h{int(lowercase_ )}m{int(lowercase_ )}s""" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": f"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( f"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" f""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def UpperCAmelCase_ ( self : str ) -> Dict: UpperCAmelCase : int = 40 UpperCAmelCase : Union[str, Any] = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(lowercase_ , lowercase_ )} UpperCAmelCase : Union[str, Any] = '' for category, failures in category_failures.items(): if len(lowercase_ ) == 0: continue if report != "": report += "\n\n" report += f"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(lowercase_ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"""The following examples had failures:\n\n\n{report}\n""", }, } @property def UpperCAmelCase_ ( self : List[str] ) -> str: UpperCAmelCase : Optional[int] = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(lowercase_ ) @staticmethod def UpperCAmelCase_ ( ) -> Dict: UpperCAmelCase : Optional[int] = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(lowercase_ )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=lowercase_ , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) UpperCAmelCase : Dict = f"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else 'All tests passed.' UpperCAmelCase : int = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=lowercase_ , ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : int ) -> str: UpperCAmelCase : Tuple = '' for key, value in failures.items(): UpperCAmelCase : int = value[:200] + ' [Truncated]' if len(lowercase_ ) > 250 else value failures_text += f"""*{key}*\n_{value}_\n\n""" UpperCAmelCase : Any = job_name UpperCAmelCase : Any = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: UpperCAmelCase : Optional[Any] = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) UpperCAmelCase : Union[str, Any] = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) UpperCAmelCase : Optional[Any] = sorted(self.doc_test_results.items() , key=lambda lowercase_ : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): UpperCAmelCase : Dict = f"""*Num failures* :{len(job_result["failed"] )} \n""" UpperCAmelCase : Optional[Any] = job_result['failures'] UpperCAmelCase : Any = self.get_reply_blocks(lowercase_ , lowercase_ , lowercase_ , text=lowercase_ ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f"""Results for {job}""" , blocks=lowercase_ , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def UpperCamelCase( ): UpperCAmelCase : int = os.environ['GITHUB_RUN_ID'] UpperCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" UpperCAmelCase : Dict = requests.get(UpperCAmelCase_ ).json() UpperCAmelCase : Dict = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) UpperCAmelCase : Union[str, Any] = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = requests.get(url + F"""&page={i + 2}""" ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , UpperCAmelCase_ ) return {} def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = {} if os.path.exists(UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = os.listdir(UpperCAmelCase_ ) for file in files: try: with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , encoding='utf-8' ) as f: UpperCAmelCase : Optional[Any] = f.read() except UnicodeDecodeError as e: raise ValueError(F"""Could not open {os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )}.""" ) from e return _artifact def UpperCamelCase( ): class A_ : '''simple docstring''' def __init__( self : List[str] , lowercase_ : str ) -> Dict: UpperCAmelCase : List[Any] = name UpperCAmelCase : Tuple = [] def __str__( self : Any ) -> Dict: return self.name def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : str ) -> List[Any]: self.paths.append({'name': self.name, 'path': path} ) UpperCAmelCase : Dict[str, Artifact] = {} UpperCAmelCase : Union[str, Any] = filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase : Tuple = directory if artifact_name not in _available_artifacts: UpperCAmelCase : Optional[int] = Artifact(UpperCAmelCase_ ) _available_artifacts[artifact_name].add_path(UpperCAmelCase_ ) return _available_artifacts if __name__ == "__main__": lowercase__ = get_job_links() lowercase__ = retrieve_available_artifacts() lowercase__ = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' lowercase__ = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job lowercase__ = github_actions_job_links.get("run_doctests") lowercase__ = available_artifacts["doc_tests_gpu_test_reports"].paths[0] lowercase__ = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: lowercase__ , lowercase__ , lowercase__ = handle_test_results(artifact["stats"]) lowercase__ = failed lowercase__ = success lowercase__ = time_spent[1:-1] + ", " lowercase__ = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): lowercase__ = line.replace("FAILED ", "") lowercase__ = line.split()[0].replace("\n", "") if "::" in line: lowercase__ , lowercase__ = line.split("::") else: lowercase__ , lowercase__ = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): lowercase__ = docs[file_regex] doc_test_results[category]["failed"].append(test) lowercase__ = all_failures[test] if test in all_failures else "N/A" lowercase__ = failure break lowercase__ = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : jnp.ndarray UpperCAmelCase_ : jnp.ndarray class A_ ( nn.Module ): '''simple docstring''' UpperCAmelCase_ : int UpperCAmelCase_ : Tuple[int] = (16, 32, 96, 256) UpperCAmelCase_ : jnp.dtype = jnp.floataa def UpperCAmelCase_ ( self : Optional[Any] ) -> int: UpperCAmelCase : Any = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCAmelCase : Optional[Any] = [] for i in range(len(self.block_out_channels ) - 1 ): UpperCAmelCase : Optional[int] = self.block_out_channels[i] UpperCAmelCase : Dict = self.block_out_channels[i + 1] UpperCAmelCase : Tuple = nn.Conv( lowercase_ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowercase_ ) UpperCAmelCase : Optional[int] = nn.Conv( lowercase_ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowercase_ ) UpperCAmelCase : Tuple = blocks UpperCAmelCase : Optional[Any] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : str , lowercase_ : List[Any] ) -> Dict: UpperCAmelCase : Optional[Any] = self.conv_in(lowercase_ ) UpperCAmelCase : str = nn.silu(lowercase_ ) for block in self.blocks: UpperCAmelCase : int = block(lowercase_ ) UpperCAmelCase : Tuple = nn.silu(lowercase_ ) UpperCAmelCase : Tuple = self.conv_out(lowercase_ ) return embedding @flax_register_to_config class A_ ( nn.Module , _snake_case , _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = 32 UpperCAmelCase_ : int = 4 UpperCAmelCase_ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase_ : Union[bool, Tuple[bool]] = False UpperCAmelCase_ : Tuple[int] = (320, 640, 1_280, 1_280) UpperCAmelCase_ : int = 2 UpperCAmelCase_ : Union[int, Tuple[int]] = 8 UpperCAmelCase_ : Optional[Union[int, Tuple[int]]] = None UpperCAmelCase_ : int = 1_280 UpperCAmelCase_ : float = 0.0 UpperCAmelCase_ : bool = False UpperCAmelCase_ : jnp.dtype = jnp.floataa UpperCAmelCase_ : bool = True UpperCAmelCase_ : int = 0 UpperCAmelCase_ : str = "rgb" UpperCAmelCase_ : Tuple[int] = (16, 32, 96, 256) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : jax.random.KeyArray ) -> FrozenDict: # init input tensors UpperCAmelCase : Tuple = (1, self.in_channels, self.sample_size, self.sample_size) UpperCAmelCase : Tuple = jnp.zeros(lowercase_ , dtype=jnp.floataa ) UpperCAmelCase : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) UpperCAmelCase : Union[str, Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) UpperCAmelCase : Optional[int] = (1, 3, self.sample_size * 8, self.sample_size * 8) UpperCAmelCase : str = jnp.zeros(lowercase_ , dtype=jnp.floataa ) UpperCAmelCase , UpperCAmelCase : Tuple = jax.random.split(lowercase_ ) UpperCAmelCase : Dict = {'params': params_rng, 'dropout': dropout_rng} return self.init(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )["params"] def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : Any = self.block_out_channels UpperCAmelCase : Tuple = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCAmelCase : List[Any] = self.num_attention_heads or self.attention_head_dim # input UpperCAmelCase : Optional[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCAmelCase : List[Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) UpperCAmelCase : Optional[int] = FlaxTimestepEmbedding(lowercase_ , dtype=self.dtype ) UpperCAmelCase : int = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) UpperCAmelCase : List[Any] = self.only_cross_attention if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Optional[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : List[Any] = (num_attention_heads,) * len(self.down_block_types ) # down UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[int] = block_out_channels[0] UpperCAmelCase : str = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_ ) for i, down_block_type in enumerate(self.down_block_types ): UpperCAmelCase : Union[str, Any] = output_channel UpperCAmelCase : Union[str, Any] = block_out_channels[i] UpperCAmelCase : Dict = i == len(lowercase_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCAmelCase : str = FlaxCrossAttnDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: UpperCAmelCase : Tuple = FlaxDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowercase_ ) for _ in range(self.layers_per_block ): UpperCAmelCase : Any = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_ ) if not is_final_block: UpperCAmelCase : Any = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_ ) UpperCAmelCase : int = down_blocks UpperCAmelCase : Dict = controlnet_down_blocks # mid UpperCAmelCase : Union[str, Any] = block_out_channels[-1] UpperCAmelCase : Any = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase_ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) UpperCAmelCase : Optional[Any] = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Union[str, Any] , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : float = 1.0 , lowercase_ : bool = True , lowercase_ : bool = False , ) -> Union[FlaxControlNetOutput, Tuple]: UpperCAmelCase : str = self.controlnet_conditioning_channel_order if channel_order == "bgr": UpperCAmelCase : Any = jnp.flip(lowercase_ , axis=1 ) # 1. time if not isinstance(lowercase_ , jnp.ndarray ): UpperCAmelCase : Any = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowercase_ , jnp.ndarray ) and len(timesteps.shape ) == 0: UpperCAmelCase : Optional[Any] = timesteps.astype(dtype=jnp.floataa ) UpperCAmelCase : Any = jnp.expand_dims(lowercase_ , 0 ) UpperCAmelCase : Any = self.time_proj(lowercase_ ) UpperCAmelCase : List[Any] = self.time_embedding(lowercase_ ) # 2. pre-process UpperCAmelCase : Dict = jnp.transpose(lowercase_ , (0, 2, 3, 1) ) UpperCAmelCase : Optional[int] = self.conv_in(lowercase_ ) UpperCAmelCase : Optional[int] = jnp.transpose(lowercase_ , (0, 2, 3, 1) ) UpperCAmelCase : Any = self.controlnet_cond_embedding(lowercase_ ) sample += controlnet_cond # 3. down UpperCAmelCase : List[str] = (sample,) for down_block in self.down_blocks: if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase , UpperCAmelCase : int = down_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train ) else: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = down_block(lowercase_ , lowercase_ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid UpperCAmelCase : Tuple = self.mid_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train ) # 5. contronet blocks UpperCAmelCase : Optional[int] = () for down_block_res_sample, controlnet_block in zip(lowercase_ , self.controlnet_down_blocks ): UpperCAmelCase : Tuple = controlnet_block(lowercase_ ) controlnet_down_block_res_samples += (down_block_res_sample,) UpperCAmelCase : Union[str, Any] = controlnet_down_block_res_samples UpperCAmelCase : List[str] = self.controlnet_mid_block(lowercase_ ) # 6. scaling UpperCAmelCase : Dict = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase_ , mid_block_res_sample=lowercase_ )
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
1
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class A_ ( _snake_case , _snake_case ): '''simple docstring''' @register_to_config def __init__( self : int , lowercase_ : int = 128 , lowercase_ : int = 256 , lowercase_ : float = 2000.0 , lowercase_ : int = 768 , lowercase_ : int = 12 , lowercase_ : int = 12 , lowercase_ : int = 64 , lowercase_ : int = 2_048 , lowercase_ : float = 0.1 , ) -> Any: super().__init__() UpperCAmelCase : Optional[int] = nn.Sequential( nn.Linear(lowercase_ , d_model * 4 , bias=lowercase_ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowercase_ ) , nn.SiLU() , ) UpperCAmelCase : Tuple = nn.Embedding(lowercase_ , lowercase_ ) UpperCAmelCase : int = False UpperCAmelCase : Optional[Any] = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_ ) UpperCAmelCase : str = nn.Dropout(p=lowercase_ ) UpperCAmelCase : Optional[int] = nn.ModuleList() for lyr_num in range(lowercase_ ): # FiLM conditional T5 decoder UpperCAmelCase : List[Any] = DecoderLayer(d_model=lowercase_ , d_kv=lowercase_ , num_heads=lowercase_ , d_ff=lowercase_ , dropout_rate=lowercase_ ) self.decoders.append(lowercase_ ) UpperCAmelCase : Tuple = TaLayerNorm(lowercase_ ) UpperCAmelCase : Union[str, Any] = nn.Dropout(p=lowercase_ ) UpperCAmelCase : Optional[int] = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : int , lowercase_ : Tuple ) -> Union[str, Any]: UpperCAmelCase : Any = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCAmelCase_ ( self : str , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Tuple ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCAmelCase : str = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) UpperCAmelCase : str = self.conditioning_emb(lowercase_ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCAmelCase : Optional[int] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCAmelCase : List[str] = torch.broadcast_to( torch.arange(lowercase_ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) UpperCAmelCase : str = self.position_encoding(lowercase_ ) UpperCAmelCase : Optional[Any] = self.continuous_inputs_projection(lowercase_ ) inputs += position_encodings UpperCAmelCase : Optional[Any] = self.dropout(lowercase_ ) # decoder: No padding present. UpperCAmelCase : Tuple = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. UpperCAmelCase : List[Any] = [(x, self.encoder_decoder_mask(lowercase_ , lowercase_ )) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) UpperCAmelCase : Any = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: UpperCAmelCase : Optional[int] = lyr( lowercase_ , conditioning_emb=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , )[0] UpperCAmelCase : int = self.decoder_norm(lowercase_ ) UpperCAmelCase : int = self.post_dropout(lowercase_ ) UpperCAmelCase : Union[str, Any] = self.spec_out(lowercase_ ) return spec_out class A_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : List[str]=1E-6 ) -> str: super().__init__() UpperCAmelCase : List[str] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowercase_ , d_kv=lowercase_ , num_heads=lowercase_ , dropout_rate=lowercase_ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowercase_ , d_kv=lowercase_ , num_heads=lowercase_ , dropout_rate=lowercase_ , layer_norm_epsilon=lowercase_ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowercase_ , d_ff=lowercase_ , dropout_rate=lowercase_ , layer_norm_epsilon=lowercase_ ) ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Optional[Any]=None , lowercase_ : Dict=None , lowercase_ : List[Any]=None , lowercase_ : Optional[int]=None , lowercase_ : Tuple=None , ) -> str: UpperCAmelCase : int = self.layer[0]( lowercase_ , conditioning_emb=lowercase_ , attention_mask=lowercase_ , ) if encoder_hidden_states is not None: UpperCAmelCase : Optional[Any] = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) UpperCAmelCase : str = self.layer[1]( lowercase_ , key_value_states=lowercase_ , attention_mask=lowercase_ , ) # Apply Film Conditional Feed Forward layer UpperCAmelCase : List[str] = self.layer[-1](lowercase_ , lowercase_ ) return (hidden_states,) class A_ ( nn.Module ): '''simple docstring''' def __init__( self : str , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : Optional[int] ) -> List[str]: super().__init__() UpperCAmelCase : Optional[Any] = TaLayerNorm(lowercase_ ) UpperCAmelCase : Optional[int] = TaFiLMLayer(in_features=d_model * 4 , out_features=lowercase_ ) UpperCAmelCase : Optional[int] = Attention(query_dim=lowercase_ , heads=lowercase_ , dim_head=lowercase_ , out_bias=lowercase_ , scale_qk=lowercase_ ) UpperCAmelCase : int = nn.Dropout(lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : Any , lowercase_ : List[str]=None , lowercase_ : Dict=None , ) -> List[Any]: # pre_self_attention_layer_norm UpperCAmelCase : List[Any] = self.layer_norm(lowercase_ ) if conditioning_emb is not None: UpperCAmelCase : Optional[int] = self.FiLMLayer(lowercase_ , lowercase_ ) # Self-attention block UpperCAmelCase : Any = self.attention(lowercase_ ) UpperCAmelCase : Optional[Any] = hidden_states + self.dropout(lowercase_ ) return hidden_states class A_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : str ) -> Optional[Any]: super().__init__() UpperCAmelCase : int = Attention(query_dim=lowercase_ , heads=lowercase_ , dim_head=lowercase_ , out_bias=lowercase_ , scale_qk=lowercase_ ) UpperCAmelCase : Dict = TaLayerNorm(lowercase_ , eps=lowercase_ ) UpperCAmelCase : int = nn.Dropout(lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : List[str]=None , lowercase_ : str=None , ) -> Union[str, Any]: UpperCAmelCase : int = self.layer_norm(lowercase_ ) UpperCAmelCase : str = self.attention( lowercase_ , encoder_hidden_states=lowercase_ , attention_mask=attention_mask.squeeze(1 ) , ) UpperCAmelCase : List[str] = hidden_states + self.dropout(lowercase_ ) return layer_output class A_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : Optional[Any] ) -> List[str]: super().__init__() UpperCAmelCase : str = TaDenseGatedActDense(d_model=lowercase_ , d_ff=lowercase_ , dropout_rate=lowercase_ ) UpperCAmelCase : List[str] = TaFiLMLayer(in_features=d_model * 4 , out_features=lowercase_ ) UpperCAmelCase : Union[str, Any] = TaLayerNorm(lowercase_ , eps=lowercase_ ) UpperCAmelCase : int = nn.Dropout(lowercase_ ) def UpperCAmelCase_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Any=None ) -> Any: UpperCAmelCase : int = self.layer_norm(lowercase_ ) if conditioning_emb is not None: UpperCAmelCase : Optional[int] = self.film(lowercase_ , lowercase_ ) UpperCAmelCase : List[Any] = self.DenseReluDense(lowercase_ ) UpperCAmelCase : List[str] = hidden_states + self.dropout(lowercase_ ) return hidden_states class A_ ( nn.Module ): '''simple docstring''' def __init__( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : str ) -> List[Any]: super().__init__() UpperCAmelCase : Union[str, Any] = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_ ) UpperCAmelCase : str = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_ ) UpperCAmelCase : Tuple = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_ ) UpperCAmelCase : Tuple = nn.Dropout(lowercase_ ) UpperCAmelCase : Dict = NewGELUActivation() def UpperCAmelCase_ ( self : int , lowercase_ : str ) -> Optional[Any]: UpperCAmelCase : str = self.act(self.wi_a(lowercase_ ) ) UpperCAmelCase : Tuple = self.wi_a(lowercase_ ) UpperCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear UpperCAmelCase : List[Any] = self.dropout(lowercase_ ) UpperCAmelCase : Union[str, Any] = self.wo(lowercase_ ) return hidden_states class A_ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase_ : int , lowercase_ : Optional[int]=1E-6 ) -> Optional[int]: super().__init__() UpperCAmelCase : int = nn.Parameter(torch.ones(lowercase_ ) ) UpperCAmelCase : Dict = eps def UpperCAmelCase_ ( self : Dict , lowercase_ : List[Any] ) -> List[str]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 UpperCAmelCase : Optional[Any] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowercase_ ) UpperCAmelCase : Union[str, Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCAmelCase : Optional[Any] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class A_ ( nn.Module ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : torch.Tensor ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(lowercase_ , 3.0 )) )) class A_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] ) -> Optional[int]: super().__init__() UpperCAmelCase : List[str] = nn.Linear(lowercase_ , out_features * 2 , bias=lowercase_ ) def UpperCAmelCase_ ( self : int , lowercase_ : List[Any] , lowercase_ : List[Any] ) -> Any: UpperCAmelCase : int = self.scale_bias(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = torch.chunk(lowercase_ , 2 , -1 ) UpperCAmelCase : Optional[Any] = x * (1 + scale) + shift return x
695
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
1
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): # Initialise PyTorch model UpperCAmelCase : str = FunnelConfig.from_json_file(UpperCAmelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase : int = FunnelBaseModel(UpperCAmelCase_ ) if base_model else FunnelModel(UpperCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) lowercase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
695
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
1
'''simple docstring''' import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = CLIPConfig UpperCAmelCase_ : int = ["""CLIPEncoderLayer"""] def __init__( self : Optional[int] , lowercase_ : CLIPConfig ) -> Tuple: super().__init__(lowercase_ ) UpperCAmelCase : List[str] = CLIPVisionModelWithProjection(config.vision_config ) UpperCAmelCase : str = nn.Linear(config.vision_config.projection_dim , 1 ) UpperCAmelCase : int = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def UpperCAmelCase_ ( self : str , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : int=0.5 , lowercase_ : Union[str, Any]=0.5 ) -> str: UpperCAmelCase : int = self.vision_model(lowercase_ )[0] UpperCAmelCase : List[str] = self.p_head(lowercase_ ) UpperCAmelCase : Any = nsfw_detected.flatten() UpperCAmelCase : Union[str, Any] = nsfw_detected > p_threshold UpperCAmelCase : int = nsfw_detected.tolist() if any(lowercase_ ): logger.warning( 'Potential NSFW content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, nsfw_detected_ in enumerate(lowercase_ ): if nsfw_detected_: UpperCAmelCase : List[str] = np.zeros(images[idx].shape ) UpperCAmelCase : Tuple = self.w_head(lowercase_ ) UpperCAmelCase : Union[str, Any] = watermark_detected.flatten() UpperCAmelCase : Any = watermark_detected > w_threshold UpperCAmelCase : str = watermark_detected.tolist() if any(lowercase_ ): logger.warning( 'Potential watermarked content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, watermark_detected_ in enumerate(lowercase_ ): if watermark_detected_: UpperCAmelCase : Dict = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
695
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
1
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """MCTCTFeatureExtractor""" UpperCAmelCase_ : Optional[Any] = """AutoTokenizer""" def __init__( self : int , lowercase_ : str , lowercase_ : str ) -> Any: super().__init__(lowercase_ , lowercase_ ) UpperCAmelCase : Union[str, Any] = self.feature_extractor UpperCAmelCase : Optional[Any] = False def __call__( self : Optional[int] , *lowercase_ : Dict , **lowercase_ : Tuple ) -> Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowercase_ , **lowercase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) UpperCAmelCase : Union[str, Any] = kwargs.pop('raw_speech' ) else: UpperCAmelCase : Dict = kwargs.pop('audio' , lowercase_ ) UpperCAmelCase : List[str] = kwargs.pop('sampling_rate' , lowercase_ ) UpperCAmelCase : List[Any] = kwargs.pop('text' , lowercase_ ) if len(lowercase_ ) > 0: UpperCAmelCase : Optional[Any] = args[0] UpperCAmelCase : Optional[Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: UpperCAmelCase : Tuple = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_ ) if text is not None: UpperCAmelCase : Tuple = self.tokenizer(lowercase_ , **lowercase_ ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase : Optional[int] = encodings['input_ids'] return inputs def UpperCAmelCase_ ( self : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> int: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : Any , *lowercase_ : Tuple , **lowercase_ : List[Any] ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*lowercase_ , **lowercase_ ) UpperCAmelCase : Dict = kwargs.pop('input_features' , lowercase_ ) UpperCAmelCase : Any = kwargs.pop('labels' , lowercase_ ) if len(lowercase_ ) > 0: UpperCAmelCase : int = args[0] UpperCAmelCase : Union[str, Any] = args[1:] if input_features is not None: UpperCAmelCase : List[Any] = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_ ) if labels is not None: UpperCAmelCase : List[Any] = self.tokenizer.pad(lowercase_ , **lowercase_ ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase : Union[str, Any] = labels['input_ids'] return input_features def UpperCAmelCase_ ( self : Tuple , *lowercase_ : List[str] , **lowercase_ : Optional[int] ) -> List[Any]: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @contextmanager def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) UpperCAmelCase : str = True UpperCAmelCase : str = self.tokenizer yield UpperCAmelCase : List[str] = self.feature_extractor UpperCAmelCase : Any = False
695
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
1
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowercase__ = logging.get_logger("transformers.models.encodec") lowercase__ = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } lowercase__ = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } lowercase__ = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } lowercase__ = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } lowercase__ = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } lowercase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowercase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowercase__ = [] lowercase__ = [] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): for attribute in key.split('.' ): UpperCAmelCase : str = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) if weight_type is not None: UpperCAmelCase : Optional[Any] = getattr(UpperCAmelCase_ , UpperCAmelCase_ ).shape else: UpperCAmelCase : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_g": UpperCAmelCase : List[str] = value elif weight_type == "weight_v": UpperCAmelCase : Optional[Any] = value elif weight_type == "bias": UpperCAmelCase : Optional[Any] = value elif weight_type == "running_mean": UpperCAmelCase : Dict = value elif weight_type == "running_var": UpperCAmelCase : List[str] = value elif weight_type == "num_batches_tracked": UpperCAmelCase : List[Any] = value elif weight_type == "weight_ih_l0": UpperCAmelCase : Any = value elif weight_type == "weight_hh_l0": UpperCAmelCase : Optional[int] = value elif weight_type == "bias_ih_l0": UpperCAmelCase : List[str] = value elif weight_type == "bias_hh_l0": UpperCAmelCase : List[Any] = value elif weight_type == "weight_ih_l1": UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_hh_l1": UpperCAmelCase : int = value elif weight_type == "bias_ih_l1": UpperCAmelCase : Tuple = value elif weight_type == "bias_hh_l1": UpperCAmelCase : str = value else: UpperCAmelCase : Dict = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase , UpperCAmelCase : List[Any] = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Dict = [] if model_name == "encodec_24khz" or "encodec_32khz": UpperCAmelCase : str = MAPPING_24K elif model_name == "encodec_48khz": UpperCAmelCase : List[Any] = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(UpperCAmelCase_ , UpperCAmelCase_ ): logger.info(F"""{name} was ignored""" ) continue UpperCAmelCase : int = False for key, mapped_key in MAPPING.items(): if "*" in key: UpperCAmelCase , UpperCAmelCase : Optional[int] = key.split('.*.' ) if prefix in name and suffix in name: UpperCAmelCase : List[Any] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue UpperCAmelCase : Union[str, Any] = True if "*" in mapped_key: UpperCAmelCase : Optional[int] = name.split(UpperCAmelCase_ )[0].split('.' )[-2] UpperCAmelCase : Optional[int] = mapped_key.replace('*' , UpperCAmelCase_ ) if "weight_g" in name: UpperCAmelCase : List[Any] = 'weight_g' elif "weight_v" in name: UpperCAmelCase : Union[str, Any] = 'weight_v' elif "weight_ih_l0" in name: UpperCAmelCase : Any = 'weight_ih_l0' elif "weight_hh_l0" in name: UpperCAmelCase : Union[str, Any] = 'weight_hh_l0' elif "bias_ih_l0" in name: UpperCAmelCase : Union[str, Any] = 'bias_ih_l0' elif "bias_hh_l0" in name: UpperCAmelCase : List[Any] = 'bias_hh_l0' elif "weight_ih_l1" in name: UpperCAmelCase : Union[str, Any] = 'weight_ih_l1' elif "weight_hh_l1" in name: UpperCAmelCase : List[Any] = 'weight_hh_l1' elif "bias_ih_l1" in name: UpperCAmelCase : List[Any] = 'bias_ih_l1' elif "bias_hh_l1" in name: UpperCAmelCase : Union[str, Any] = 'bias_hh_l1' elif "bias" in name: UpperCAmelCase : Optional[int] = 'bias' elif "weight" in name: UpperCAmelCase : Union[str, Any] = 'weight' elif "running_mean" in name: UpperCAmelCase : Any = 'running_mean' elif "running_var" in name: UpperCAmelCase : Optional[int] = 'running_var' elif "num_batches_tracked" in name: UpperCAmelCase : Dict = 'num_batches_tracked' else: UpperCAmelCase : Tuple = None set_recursively(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) continue if not is_used: unused_weights.append(UpperCAmelCase_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None , ): if config_path is not None: UpperCAmelCase : Dict = EncodecConfig.from_pretrained(UpperCAmelCase_ ) else: UpperCAmelCase : List[Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": UpperCAmelCase : str = [8, 5, 4, 4] UpperCAmelCase : str = [2.2] UpperCAmelCase : List[Any] = 64 UpperCAmelCase : Tuple = 3_20_00 UpperCAmelCase : Tuple = 20_48 UpperCAmelCase : Any = False UpperCAmelCase : List[str] = False UpperCAmelCase : Optional[Any] = False elif model_name == "encodec_48khz": UpperCAmelCase : List[Any] = [8, 5, 4, 2] UpperCAmelCase : Union[str, Any] = [3.0, 6.0, 12.0, 24.0] UpperCAmelCase : Dict = 4_80_00 UpperCAmelCase : str = 2 UpperCAmelCase : Dict = False UpperCAmelCase : List[str] = 'time_group_norm' UpperCAmelCase : Any = True UpperCAmelCase : Any = 1.0 UpperCAmelCase : List[Any] = 0.01 else: raise ValueError(F"""Unknown model name: {model_name}""" ) UpperCAmelCase : Dict = EncodecModel(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(UpperCAmelCase_ ) UpperCAmelCase : str = torch.load(UpperCAmelCase_ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights UpperCAmelCase : Dict = original_checkpoint['best_state'] recursively_load_weights(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(UpperCAmelCase_ ) model.push_to_hub(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) lowercase__ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
695
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
1
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class A_ : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Any , lowercase_ : Union[str, Any]=13 , lowercase_ : int=7 , lowercase_ : Union[str, Any]=False , lowercase_ : Optional[int]=True , lowercase_ : int=False , lowercase_ : List[Any]=True , lowercase_ : List[str]=33 , lowercase_ : Tuple=32 , lowercase_ : Dict=5 , lowercase_ : List[Any]=4 , lowercase_ : Union[str, Any]=37 , lowercase_ : Any="gelu" , lowercase_ : int=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : List[str]=16 , lowercase_ : Union[str, Any]=2 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : Optional[Any]=3 , lowercase_ : Dict=4 , lowercase_ : Optional[int]=None , ) -> Optional[Any]: UpperCAmelCase : Any = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : int = is_training UpperCAmelCase : Optional[Any] = use_input_mask UpperCAmelCase : List[str] = use_token_type_ids UpperCAmelCase : List[Any] = use_labels UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : List[str] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : List[str] = max_position_embeddings UpperCAmelCase : str = type_vocab_size UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : Optional[int] = initializer_range UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : int = num_choices UpperCAmelCase : Any = scope def UpperCAmelCase_ ( self : Tuple ) -> Tuple: UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_input_mask: UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict = None UpperCAmelCase : Optional[Any] = None UpperCAmelCase : List[str] = None if self.use_labels: UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Tuple ) -> Any: UpperCAmelCase : Tuple = EsmModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : Dict = model(lowercase_ , attention_mask=lowercase_ ) UpperCAmelCase : Dict = model(lowercase_ ) UpperCAmelCase : Tuple = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self : int , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : List[str] ) -> Any: UpperCAmelCase : List[Any] = EsmForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Optional[Any] ) -> List[Any]: UpperCAmelCase : Optional[Any] = self.num_labels UpperCAmelCase : Union[str, Any] = EsmForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : List[Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : Dict ) -> Any: UpperCAmelCase : int = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : str = config_and_inputs UpperCAmelCase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : int = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase_ : Tuple = () UpperCAmelCase_ : Any = ( { """feature-extraction""": EsmModel, """fill-mask""": EsmForMaskedLM, """text-classification""": EsmForSequenceClassification, """token-classification""": EsmForTokenClassification, """zero-shot""": EsmForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase_ : List[str] = True def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: UpperCAmelCase : Union[str, Any] = EsmModelTester(self ) UpperCAmelCase : Any = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Optional[int] ) -> int: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> str: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : str = type self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> List[str]: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def UpperCAmelCase_ ( self : int ) -> List[str]: for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[int] = EsmModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] UpperCAmelCase : Union[str, Any] = EsmEmbeddings(config=lowercase_ ) UpperCAmelCase : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) UpperCAmelCase : List[str] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) UpperCAmelCase : Dict = create_position_ids_from_input_ids(lowercase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(lowercase_ , lowercase_ ) ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()[0] UpperCAmelCase : Optional[int] = EsmEmbeddings(config=lowercase_ ) UpperCAmelCase : List[Any] = torch.empty(2 , 4 , 30 ) UpperCAmelCase : Optional[Any] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] UpperCAmelCase : Optional[Any] = torch.as_tensor([expected_single_positions, expected_single_positions] ) UpperCAmelCase : int = embeddings.create_position_ids_from_inputs_embeds(lowercase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(lowercase_ , lowercase_ ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: pass @unittest.skip('Esm does not support embedding resizing' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: pass @require_torch class A_ ( _snake_case ): '''simple docstring''' @slow def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: with torch.no_grad(): UpperCAmelCase : List[str] = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() UpperCAmelCase : Union[str, Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase : List[Any] = model(lowercase_ )[0] UpperCAmelCase : Union[str, Any] = 33 UpperCAmelCase : Optional[Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , lowercase_ ) UpperCAmelCase : List[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) ) @slow def UpperCAmelCase_ ( self : str ) -> Optional[int]: with torch.no_grad(): UpperCAmelCase : List[Any] = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() UpperCAmelCase : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCAmelCase : Tuple = model(lowercase_ )[0] # compare the actual values for a slice. UpperCAmelCase : List[str] = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) )
695
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
1
'''simple docstring''' import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A_ ( _snake_case ): '''simple docstring''' def __init__( self : Dict , *lowercase_ : Optional[int] , lowercase_ : Tuple=None , lowercase_ : List[str]=None , **lowercase_ : Tuple ) -> Dict: super().__init__(*lowercase_ , **lowercase_ ) UpperCAmelCase : Tuple = eval_examples UpperCAmelCase : Dict = post_process_function def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Optional[Dataset] = None , lowercase_ : Any=None , lowercase_ : Optional[List[str]] = None , lowercase_ : str = "eval" , **lowercase_ : int , ) -> Dict[str, float]: UpperCAmelCase : Tuple = gen_kwargs.copy() UpperCAmelCase : int = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length' ) is not None else self.args.generation_max_length ) UpperCAmelCase : Tuple = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams' ) is not None else self.args.generation_num_beams ) UpperCAmelCase : Optional[Any] = gen_kwargs UpperCAmelCase : str = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase : Optional[Any] = self.get_eval_dataloader(lowercase_ ) UpperCAmelCase : Dict = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase : Dict = self.compute_metrics UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Tuple = time.time() UpperCAmelCase : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase : str = eval_loop( lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: UpperCAmelCase : Union[str, Any] = compute_metrics UpperCAmelCase : Optional[int] = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase : int = self.post_process_function(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): UpperCAmelCase : List[Any] = metrics.pop(lowercase_ ) metrics.update(output.metrics ) else: UpperCAmelCase : Union[str, Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase : List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_ ) return metrics def UpperCAmelCase_ ( self : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Optional[int]=None , lowercase_ : str = "test" , **lowercase_ : int ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = gen_kwargs.copy() UpperCAmelCase : List[Any] = self.get_test_dataloader(lowercase_ ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase : List[Any] = self.compute_metrics UpperCAmelCase : Dict = None UpperCAmelCase : str = time.time() UpperCAmelCase : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase : Optional[int] = eval_loop( lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: UpperCAmelCase : Dict = compute_metrics UpperCAmelCase : Optional[int] = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase : List[str] = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict' ) UpperCAmelCase : Tuple = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): UpperCAmelCase : Optional[int] = metrics.pop(lowercase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_ )
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {} class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """llama""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] def __init__( self : Any , lowercase_ : Union[str, Any]=32_000 , lowercase_ : int=4_096 , lowercase_ : Optional[Any]=11_008 , lowercase_ : Optional[int]=32 , lowercase_ : List[Any]=32 , lowercase_ : Tuple=None , lowercase_ : str="silu" , lowercase_ : Optional[int]=2_048 , lowercase_ : Optional[int]=0.02 , lowercase_ : int=1E-6 , lowercase_ : Optional[int]=True , lowercase_ : int=0 , lowercase_ : Any=1 , lowercase_ : Any=2 , lowercase_ : List[Any]=1 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=None , **lowercase_ : Any , ) -> Optional[int]: UpperCAmelCase : Any = vocab_size UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[Any] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Optional[Any] = num_key_value_heads UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : str = initializer_range UpperCAmelCase : Any = rms_norm_eps UpperCAmelCase : Tuple = pretraining_tp UpperCAmelCase : Optional[Any] = use_cache UpperCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def UpperCAmelCase_ ( self : str ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"""got {self.rope_scaling}""" ) UpperCAmelCase : Optional[int] = self.rope_scaling.get('type' , lowercase_ ) UpperCAmelCase : Dict = self.rope_scaling.get('factor' , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
695
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
1
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_="shi-labs/oneformer_demo" ): with open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) , 'r' ) as f: UpperCAmelCase : List[str] = json.load(UpperCAmelCase_ ) UpperCAmelCase : List[str] = {} UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[Any] = [] for key, info in class_info.items(): UpperCAmelCase : Dict = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(UpperCAmelCase_ ) ) UpperCAmelCase : Union[str, Any] = thing_ids UpperCAmelCase : str = class_names return metadata class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : List[str] , lowercase_ : List[Any]=7 , lowercase_ : Optional[Any]=3 , lowercase_ : Dict=30 , lowercase_ : int=400 , lowercase_ : str=None , lowercase_ : Optional[int]=True , lowercase_ : List[str]=True , lowercase_ : Any=[0.5, 0.5, 0.5] , lowercase_ : Dict=[0.5, 0.5, 0.5] , lowercase_ : str=10 , lowercase_ : List[str]=False , lowercase_ : Optional[Any]=255 , lowercase_ : str="shi-labs/oneformer_demo" , lowercase_ : int="ade20k_panoptic.json" , lowercase_ : int=10 , ) -> int: UpperCAmelCase : List[Any] = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : str = num_channels UpperCAmelCase : Optional[int] = min_resolution UpperCAmelCase : List[Any] = max_resolution UpperCAmelCase : Union[str, Any] = do_resize UpperCAmelCase : List[str] = {'shortest_edge': 32, 'longest_edge': 1_333} if size is None else size UpperCAmelCase : Any = do_normalize UpperCAmelCase : Optional[int] = image_mean UpperCAmelCase : Dict = image_std UpperCAmelCase : List[str] = class_info_file UpperCAmelCase : List[Any] = prepare_metadata(lowercase_ , lowercase_ ) UpperCAmelCase : Any = num_text UpperCAmelCase : Union[str, Any] = repo_path # for the post_process_functions UpperCAmelCase : Any = 2 UpperCAmelCase : List[Any] = 10 UpperCAmelCase : Optional[Any] = 10 UpperCAmelCase : Optional[Any] = 3 UpperCAmelCase : Tuple = 4 UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : Optional[Any] = do_reduce_labels UpperCAmelCase : Dict = ignore_index def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : str , lowercase_ : str=False ) -> Dict: if not batched: UpperCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): UpperCAmelCase , UpperCAmelCase : Dict = image.size else: UpperCAmelCase , UpperCAmelCase : List[Any] = image.shape[1], image.shape[2] if w < h: UpperCAmelCase : List[str] = int(self.size['shortest_edge'] * h / w ) UpperCAmelCase : Optional[int] = self.size['shortest_edge'] elif w > h: UpperCAmelCase : List[str] = self.size['shortest_edge'] UpperCAmelCase : Optional[int] = int(self.size['shortest_edge'] * w / h ) else: UpperCAmelCase : Optional[int] = self.size['shortest_edge'] UpperCAmelCase : str = self.size['shortest_edge'] else: UpperCAmelCase : int = [] for image in image_inputs: UpperCAmelCase , UpperCAmelCase : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase : str = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] UpperCAmelCase : int = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width def UpperCAmelCase_ ( self : Tuple ) -> List[str]: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Dict = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string UpperCAmelCase_ : Union[str, Any] = image_processing_class def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: UpperCAmelCase : str = OneFormerImageProcessorTester(self ) @property def UpperCAmelCase_ ( self : int ) -> Any: return self.image_processing_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowercase_ , 'image_std' ) ) self.assertTrue(hasattr(lowercase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase_ , 'do_resize' ) ) self.assertTrue(hasattr(lowercase_ , 'size' ) ) self.assertTrue(hasattr(lowercase_ , 'ignore_index' ) ) self.assertTrue(hasattr(lowercase_ , 'class_info_file' ) ) self.assertTrue(hasattr(lowercase_ , 'num_text' ) ) self.assertTrue(hasattr(lowercase_ , 'repo_path' ) ) self.assertTrue(hasattr(lowercase_ , 'metadata' ) ) self.assertTrue(hasattr(lowercase_ , 'do_reduce_labels' ) ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input UpperCAmelCase : List[str] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.image_processing_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.image_processing_tester.get_expected_values(lowercase_ , batched=lowercase_ ) UpperCAmelCase : Optional[Any] = image_processor( lowercase_ , ['semantic'] * len(lowercase_ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input UpperCAmelCase : Any = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values UpperCAmelCase , UpperCAmelCase : Optional[int] = self.image_processing_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.image_processing_tester.get_expected_values(lowercase_ , batched=lowercase_ ) UpperCAmelCase : Optional[int] = image_processor( lowercase_ , ['semantic'] * len(lowercase_ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: # Initialize image_processor UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input UpperCAmelCase : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values UpperCAmelCase , UpperCAmelCase : int = self.image_processing_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase , UpperCAmelCase : List[Any] = self.image_processing_tester.get_expected_values(lowercase_ , batched=lowercase_ ) UpperCAmelCase : Any = image_processor( lowercase_ , ['semantic'] * len(lowercase_ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : Union[str, Any]=False , lowercase_ : Any=False , lowercase_ : List[Any]="np" ) -> List[str]: UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCAmelCase : Optional[Any] = self.image_processing_tester.num_labels UpperCAmelCase : Any = None UpperCAmelCase : Dict = None UpperCAmelCase : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowercase_ ) if with_segmentation_maps: UpperCAmelCase : Optional[int] = num_labels if is_instance_map: UpperCAmelCase : Dict = list(range(lowercase_ ) ) * 2 UpperCAmelCase : int = dict(enumerate(lowercase_ ) ) UpperCAmelCase : str = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCAmelCase : str = [Image.fromarray(lowercase_ ) for annotation in annotations] UpperCAmelCase : List[str] = image_processor( lowercase_ , ['semantic'] * len(lowercase_ ) , lowercase_ , return_tensors='pt' , instance_id_to_semantic_id=lowercase_ , pad_and_return_pixel_mask=lowercase_ , ) return inputs def UpperCAmelCase_ ( self : List[Any] ) -> str: pass def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: def common(lowercase_ : Optional[int]=False , lowercase_ : List[str]=None ): UpperCAmelCase : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=lowercase_ , is_instance_map=lowercase_ , segmentation_type=lowercase_ ) UpperCAmelCase : int = inputs['mask_labels'] UpperCAmelCase : Optional[Any] = inputs['class_labels'] UpperCAmelCase : Optional[int] = inputs['pixel_values'] UpperCAmelCase : Dict = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(lowercase_ , lowercase_ , lowercase_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(lowercase_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=lowercase_ ) common(is_instance_map=lowercase_ , segmentation_type='pil' ) common(is_instance_map=lowercase_ , segmentation_type='pil' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: UpperCAmelCase : Union[str, Any] = np.zeros((20, 50) ) UpperCAmelCase : List[Any] = 1 UpperCAmelCase : Optional[int] = 1 UpperCAmelCase : List[str] = 1 UpperCAmelCase : List[str] = binary_mask_to_rle(lowercase_ ) self.assertEqual(len(lowercase_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: UpperCAmelCase : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) UpperCAmelCase : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase : Tuple = fature_extractor.post_process_semantic_segmentation(lowercase_ ) self.assertEqual(len(lowercase_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCAmelCase : int = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCAmelCase : int = fature_extractor.post_process_semantic_segmentation(lowercase_ , target_sizes=lowercase_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCAmelCase_ ( self : int ) -> Any: UpperCAmelCase : List[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) UpperCAmelCase : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase : int = image_processor.post_process_instance_segmentation(lowercase_ , threshold=0 ) self.assertTrue(len(lowercase_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , lowercase_ ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: UpperCAmelCase : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) UpperCAmelCase : List[str] = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase : Any = image_processor.post_process_panoptic_segmentation(lowercase_ , threshold=0 ) self.assertTrue(len(lowercase_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , lowercase_ ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
695
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
1
'''simple docstring''' import argparse from collections import defaultdict import yaml lowercase__ = "docs/source/en/_toctree.yml" def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = defaultdict(UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : List[str] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(UpperCAmelCase_ ) UpperCAmelCase : Any = new_doc_list UpperCAmelCase : List[str] = [key for key, value in counts.items() if value > 1] UpperCAmelCase : Dict = [] for duplicate_key in duplicates: UpperCAmelCase : Any = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(UpperCAmelCase_ ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) UpperCAmelCase : int = sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(UpperCAmelCase_ ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(UpperCAmelCase_ ) # Sort return overview_doc def UpperCamelCase( UpperCAmelCase_=False ): with open(UpperCAmelCase_ , encoding='utf-8' ) as f: UpperCAmelCase : Optional[Any] = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase : List[str] = content[api_idx]['sections'] # Then to the model doc UpperCAmelCase : str = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 UpperCAmelCase : int = api_doc[scheduler_idx]['sections'] UpperCAmelCase : Tuple = clean_doc_toc(UpperCAmelCase_ ) UpperCAmelCase : List[str] = False if new_scheduler_doc != scheduler_doc: UpperCAmelCase : int = True if overwrite: UpperCAmelCase : Optional[Any] = new_scheduler_doc if diff: if overwrite: UpperCAmelCase : Optional[int] = api_doc with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(UpperCAmelCase_ , allow_unicode=UpperCAmelCase_ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def UpperCamelCase( UpperCAmelCase_=False ): with open(UpperCAmelCase_ , encoding='utf-8' ) as f: UpperCAmelCase : List[str] = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase : str = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase : int = content[api_idx]['sections'] # Then to the model doc UpperCAmelCase : Union[str, Any] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 UpperCAmelCase : Optional[int] = False UpperCAmelCase : Union[str, Any] = api_doc[pipeline_idx]['sections'] UpperCAmelCase : List[Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: UpperCAmelCase : int = pipeline_doc['section'] UpperCAmelCase : List[str] = clean_doc_toc(UpperCAmelCase_ ) if overwrite: UpperCAmelCase : List[str] = new_sub_pipeline_doc new_pipeline_docs.append(UpperCAmelCase_ ) # sort overall pipeline doc UpperCAmelCase : Optional[Any] = clean_doc_toc(UpperCAmelCase_ ) if new_pipeline_docs != pipeline_docs: UpperCAmelCase : Any = True if overwrite: UpperCAmelCase : str = new_pipeline_docs if diff: if overwrite: UpperCAmelCase : Tuple = api_doc with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(UpperCAmelCase_ , allow_unicode=UpperCAmelCase_ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowercase__ = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
695
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
1
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor lowercase__ = logging.getLogger(__name__) lowercase__ = 50 # max width of layer names lowercase__ = 70 # max width of quantizer names def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[Any] = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=UpperCAmelCase_ , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=UpperCAmelCase_ , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=UpperCAmelCase_ , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=UpperCAmelCase_ , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=UpperCAmelCase_ , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=UpperCAmelCase_ , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def UpperCamelCase( UpperCAmelCase_ ): if args.calibrator == "max": UpperCAmelCase : Tuple = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) UpperCAmelCase : List[str] = 'histogram' elif args.calibrator == "mse": UpperCAmelCase : List[str] = 'histogram' else: raise ValueError(F"""Invalid calibrator {args.calibrator}""" ) UpperCAmelCase : Optional[Any] = QuantDescriptor(num_bits=args.aprec , calib_method=UpperCAmelCase_ ) UpperCAmelCase : List[str] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(UpperCAmelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=False , UpperCAmelCase_=False ): logger.info('Configuring Model for Quantization' ) logger.info(F"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(UpperCAmelCase_ , ['embeddings'] , which='weight' , _disabled=UpperCAmelCase_ ) if args.quant_disable: set_quantizer_by_name(UpperCAmelCase_ , [''] , _disabled=UpperCAmelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(UpperCAmelCase_ , args.quant_disable_keyword , _disabled=UpperCAmelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(UpperCAmelCase_ , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=UpperCAmelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(UpperCAmelCase_ , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=UpperCAmelCase_ ) if args.recalibrate_weights: recalibrate_weights(UpperCAmelCase_ ) if args.fuse_qkv: fuse_qkv(UpperCAmelCase_ , UpperCAmelCase_ ) if args.clip_gelu: clip_gelu(UpperCAmelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ ): logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"""{name:80}: {module}""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): def fusea(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): for mod in [qq, qk, qv]: if not hasattr(UpperCAmelCase_ , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return UpperCAmelCase : Optional[Any] = qq._amax.detach().item() UpperCAmelCase : str = qk._amax.detach().item() UpperCAmelCase : List[str] = qv._amax.detach().item() UpperCAmelCase : Union[str, Any] = max(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) qq._amax.fill_(UpperCAmelCase_ ) qk._amax.fill_(UpperCAmelCase_ ) qv._amax.fill_(UpperCAmelCase_ ) logger.info(F""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): UpperCAmelCase : Dict = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=UpperCAmelCase_ ) UpperCAmelCase : Tuple = mod._input_quantizer._amax.data.detach().item() logger.info(F"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def UpperCamelCase( UpperCAmelCase_ ): for name, mod in model.named_modules(): if hasattr(UpperCAmelCase_ , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: UpperCAmelCase : Optional[int] = mod.weight.shape[0] UpperCAmelCase : Tuple = mod._weight_quantizer._amax.detach() UpperCAmelCase : Any = torch.ones(UpperCAmelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(F"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def UpperCamelCase( UpperCAmelCase_ ): for name, mod in model.named_modules(): if hasattr(UpperCAmelCase_ , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCAmelCase : List[str] = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCAmelCase : List[str] = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCAmelCase : List[str] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=UpperCAmelCase_ , keepdims=UpperCAmelCase_ ).detach() logger.info(F"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) UpperCAmelCase : Any = amax def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_=25 , UpperCAmelCase_=1_80 , UpperCAmelCase_=None ): if ignore is None: UpperCAmelCase : Union[str, Any] = [] elif not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = [ignore] UpperCAmelCase : Tuple = 0 for name, mod in model.named_modules(): if not hasattr(UpperCAmelCase_ , 'weight' ): continue UpperCAmelCase : Dict = max(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) for name, mod in model.named_modules(): UpperCAmelCase : Tuple = getattr(UpperCAmelCase_ , '_input_quantizer' , UpperCAmelCase_ ) UpperCAmelCase : str = getattr(UpperCAmelCase_ , '_weight_quantizer' , UpperCAmelCase_ ) if not hasattr(UpperCAmelCase_ , 'weight' ): continue if type(UpperCAmelCase_ ) in ignore: continue if [True for s in ignore if type(UpperCAmelCase_ ) is str and s in name]: continue UpperCAmelCase : List[str] = F"""Act:{input_q.extra_repr()}""" UpperCAmelCase : Optional[int] = F"""Wgt:{weight_q.extra_repr()}""" UpperCAmelCase : Union[str, Any] = F"""{name:{name_width}} {act_str} {wgt_str}""" if len(UpperCAmelCase_ ) <= line_width: logger.info(UpperCAmelCase_ ) else: logger.info(F"""{name:{name_width}} {act_str}""" ) logger.info(F"""{" ":{name_width}} {wgt_str}""" ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Dict = 0 for name, mod in model.named_modules(): if isinstance(UpperCAmelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(F"""{name:80} {mod}""" ) count += 1 print(F"""{count} TensorQuantizers found in model""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Dict = getattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if quantizer_mod is not None: assert hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: logger.warning(F"""{name} has no {quantizer}""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_="both" , **UpperCAmelCase_ ): UpperCAmelCase : Tuple = F"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += F""" {k}={v}""" if which in ["input", "both"]: set_quantizer(UpperCAmelCase_ , UpperCAmelCase_ , '_input_quantizer' , UpperCAmelCase_ , UpperCAmelCase_ ) if which in ["weight", "both"]: set_quantizer(UpperCAmelCase_ , UpperCAmelCase_ , '_weight_quantizer' , UpperCAmelCase_ , UpperCAmelCase_ ) logger.info(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ): for name, mod in model.named_modules(): if hasattr(UpperCAmelCase_ , '_input_quantizer' ) or hasattr(UpperCAmelCase_ , '_weight_quantizer' ): for n in names: if re.search(UpperCAmelCase_ , UpperCAmelCase_ ): set_quantizers(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) elif name.endswith('_quantizer' ): for n in names: if re.search(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[Any] = F"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += F""" {k}={v}""" setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) logger.info(UpperCAmelCase_ )
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
1
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowercase__ = datasets.utils.logging.get_logger(__name__) class A_ ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' UpperCAmelCase_ : bool = None UpperCAmelCase_ : bool = None class A_ ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' UpperCAmelCase_ : List[str] = datasets.Audio() UpperCAmelCase_ : List[Any] = """audio""" UpperCAmelCase_ : List[Any] = AudioFolderConfig UpperCAmelCase_ : List[str] # definition at the bottom of the script UpperCAmelCase_ : str = AudioClassification(audio_column="""audio""" , label_column="""label""" ) lowercase__ = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] lowercase__ = AUDIO_EXTENSIONS
695
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
1
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = (EulerDiscreteScheduler,) UpperCAmelCase_ : Dict = 10 def UpperCAmelCase_ ( self : Optional[int] , **lowercase_ : int ) -> str: UpperCAmelCase : int = { 'num_train_timesteps': 1_100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**lowercase_ ) return config def UpperCAmelCase_ ( self : Any ) -> str: for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> Any: for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : List[str] = self.scheduler_classes[0] UpperCAmelCase : Tuple = self.get_scheduler_config() UpperCAmelCase : Any = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Any = torch.manual_seed(0 ) UpperCAmelCase : Dict = self.dummy_model() UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : Tuple = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Optional[int] = scheduler.scale_model_input(lowercase_ , lowercase_ ) UpperCAmelCase : List[str] = model(lowercase_ , lowercase_ ) UpperCAmelCase : Union[str, Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ) UpperCAmelCase : List[str] = output.prev_sample UpperCAmelCase : Tuple = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def UpperCAmelCase_ ( self : List[Any] ) -> int: UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase : Union[str, Any] = self.get_scheduler_config(prediction_type='v_prediction' ) UpperCAmelCase : List[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = self.dummy_model() UpperCAmelCase : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : List[str] = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : List[str] = scheduler.scale_model_input(lowercase_ , lowercase_ ) UpperCAmelCase : Any = model(lowercase_ , lowercase_ ) UpperCAmelCase : str = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ) UpperCAmelCase : Dict = output.prev_sample UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 0.0002 ) < 1E-2 assert abs(result_mean.item() - 2.2676E-06 ) < 1E-3 def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : List[Any] = self.scheduler_classes[0] UpperCAmelCase : List[str] = self.get_scheduler_config() UpperCAmelCase : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowercase_ ) UpperCAmelCase : Dict = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = self.dummy_model() UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase : Optional[int] = sample.to(lowercase_ ) for t in scheduler.timesteps: UpperCAmelCase : int = scheduler.scale_model_input(lowercase_ , lowercase_ ) UpperCAmelCase : Optional[Any] = model(lowercase_ , lowercase_ ) UpperCAmelCase : Any = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ) UpperCAmelCase : Tuple = output.prev_sample UpperCAmelCase : Tuple = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase : str = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def UpperCAmelCase_ ( self : Dict ) -> List[str]: UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase : Optional[int] = self.get_scheduler_config() UpperCAmelCase : Optional[int] = scheduler_class(**lowercase_ , use_karras_sigmas=lowercase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : Dict = self.dummy_model() UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase : Optional[int] = sample.to(lowercase_ ) for t in scheduler.timesteps: UpperCAmelCase : int = scheduler.scale_model_input(lowercase_ , lowercase_ ) UpperCAmelCase : Union[str, Any] = model(lowercase_ , lowercase_ ) UpperCAmelCase : List[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ) UpperCAmelCase : Dict = output.prev_sample UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase : List[str] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1E-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1E-3
695
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
1
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = {} UpperCAmelCase : Optional[Any] = tokenizer(example['content'] , truncation=UpperCAmelCase_ )['input_ids'] UpperCAmelCase : Any = len(example['content'] ) / len(output['input_ids'] ) return output lowercase__ = HfArgumentParser(PretokenizationArguments) lowercase__ = parser.parse_args() if args.num_workers is None: lowercase__ = multiprocessing.cpu_count() lowercase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowercase__ = time.time() lowercase__ = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') lowercase__ = time.time() lowercase__ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') lowercase__ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
695
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
1
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json"} lowercase__ = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowercase__ = {"mgp-str": 27} class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : str , lowercase_ : Tuple , lowercase_ : List[Any]="[GO]" , lowercase_ : List[Any]="[GO]" , lowercase_ : str="[s]" , lowercase_ : List[str]="[GO]" , **lowercase_ : int ) -> Optional[int]: super().__init__( unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding='utf-8' ) as vocab_handle: UpperCAmelCase : Any = json.load(lowercase_ ) UpperCAmelCase : Tuple = {v: k for k, v in self.vocab.items()} @property def UpperCAmelCase_ ( self : Any ) -> int: return len(self.vocab ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: return dict(self.vocab , **self.added_tokens_encoder ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[Any]: UpperCAmelCase : str = [] for s in text: char_tokens.extend(lowercase_ ) return char_tokens def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Optional[int] ) -> Optional[Any]: return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) ) def UpperCAmelCase_ ( self : int , lowercase_ : Union[str, Any] ) -> Optional[int]: return self.decoder.get(lowercase_ ) def UpperCAmelCase_ ( self : int , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error('Vocabulary path ({}) should be a directory'.format(lowercase_ ) ) return UpperCAmelCase : Any = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(lowercase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + '\n' ) return (vocab_file,)
695
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = CanineTokenizer UpperCAmelCase_ : List[str] = False def UpperCAmelCase_ ( self : Tuple ) -> str: super().setUp() UpperCAmelCase : str = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: return CanineTokenizer.from_pretrained('google/canine-s' ) def UpperCAmelCase_ ( self : Any , **lowercase_ : Any ) -> CanineTokenizer: UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) UpperCAmelCase : Tuple = 1_024 return tokenizer @require_torch def UpperCAmelCase_ ( self : List[str] ) -> Dict: UpperCAmelCase : Union[str, Any] = self.canine_tokenizer UpperCAmelCase : List[str] = ['Life is like a box of chocolates.', 'You never know what you\'re gonna get.'] # fmt: off UpperCAmelCase : Tuple = [57_344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57_345, 0, 0, 0, 0] # fmt: on UpperCAmelCase : List[Any] = tokenizer(lowercase_ , padding=lowercase_ , return_tensors='pt' ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : Any = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowercase_ , lowercase_ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def UpperCAmelCase_ ( self : List[str] ) -> int: UpperCAmelCase : List[Any] = self.canine_tokenizer UpperCAmelCase : int = ['Once there was a man.', 'He wrote a test in HuggingFace Tranformers.'] UpperCAmelCase : int = tokenizer(lowercase_ , padding=lowercase_ , return_tensors='pt' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('input_ids' , lowercase_ ) self.assertIn('attention_mask' , lowercase_ ) self.assertIn('token_type_ids' , lowercase_ ) @require_torch def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: UpperCAmelCase : List[str] = self.canine_tokenizer UpperCAmelCase : Dict = [ 'What\'s the weater?', 'It\'s about 25 degrees.', ] UpperCAmelCase : Tuple = tokenizer( text_target=lowercase_ , max_length=32 , padding='max_length' , truncation=lowercase_ , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def UpperCAmelCase_ ( self : str ) -> List[str]: # safety check on max_len default value so we are sure the test works UpperCAmelCase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase : int = tempfile.mkdtemp() UpperCAmelCase : Any = ' He is very happy, UNwant\u00E9d,running' UpperCAmelCase : Dict = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) tokenizer.save_pretrained(lowercase_ ) UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(lowercase_ ) UpperCAmelCase : Dict = after_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) shutil.rmtree(lowercase_ ) UpperCAmelCase : Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase : Any = tempfile.mkdtemp() UpperCAmelCase : Tuple = ' He is very happy, UNwant\u00E9d,running' UpperCAmelCase : Union[str, Any] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase : Optional[Any] = chr(0xE007 ) additional_special_tokens.append(lowercase_ ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) UpperCAmelCase : int = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) tokenizer.save_pretrained(lowercase_ ) UpperCAmelCase : List[str] = tokenizer.__class__.from_pretrained(lowercase_ ) UpperCAmelCase : Tuple = after_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) self.assertIn(lowercase_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase : List[Any] = tokenizer.__class__.from_pretrained(lowercase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: UpperCAmelCase : Optional[Any] = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase , UpperCAmelCase : Tuple = self.get_clean_sequence(lowercase_ ) # a special token for Canine can be defined as follows: UpperCAmelCase : List[str] = 0xE005 UpperCAmelCase : Optional[Any] = chr(lowercase_ ) tokenizer.add_special_tokens({'cls_token': special_token} ) UpperCAmelCase : Any = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(len(lowercase_ ) , 1 ) UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Tuple = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase : int = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase : List[Any] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(lowercase_ , input_encoded + special_token_id ) UpperCAmelCase : Any = tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: UpperCAmelCase : int = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase : Union[str, Any] = chr(0xE005 ) UpperCAmelCase : List[Any] = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=lowercase_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'additional_special_tokens': [SPECIAL_TOKEN_2]} ) UpperCAmelCase : List[Any] = tokenizer.tokenize(lowercase_ ) UpperCAmelCase : str = tokenizer.tokenize(lowercase_ ) self.assertEqual(len(lowercase_ ) , 1 ) self.assertEqual(len(lowercase_ ) , 1 ) self.assertEqual(token_a[0] , lowercase_ ) self.assertEqual(token_a[0] , lowercase_ ) @require_tokenizers def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: UpperCAmelCase : Dict = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # a special token for Canine can be defined as follows: UpperCAmelCase : int = 0xE006 UpperCAmelCase : Dict = chr(lowercase_ ) UpperCAmelCase : Union[str, Any] = AddedToken(lowercase_ , lstrip=lowercase_ ) tokenizer.add_special_tokens({'additional_special_tokens': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(lowercase_ ) tokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> int: UpperCAmelCase : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase_ ) with open(os.path.join(lowercase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: UpperCAmelCase : List[str] = json.load(lowercase_ ) with open(os.path.join(lowercase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: UpperCAmelCase : Dict = json.load(lowercase_ ) # a special token for Canine can be defined as follows: UpperCAmelCase : Optional[Any] = 0xE006 UpperCAmelCase : List[Any] = chr(lowercase_ ) UpperCAmelCase : Union[str, Any] = [new_token_a] UpperCAmelCase : List[str] = [new_token_a] with open(os.path.join(lowercase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase_ , lowercase_ ) with open(os.path.join(lowercase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase_ , lowercase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(lowercase_ , extra_ids=0 ) self.assertIn(lowercase_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase : Tuple = 0xE007 UpperCAmelCase : str = chr(lowercase_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase : Union[str, Any] = [AddedToken(lowercase_ , lstrip=lowercase_ )] UpperCAmelCase : Optional[Any] = tokenizer_class.from_pretrained( lowercase_ , additional_special_tokens=lowercase_ , extra_ids=0 ) self.assertIn(lowercase_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def UpperCAmelCase_ ( self : List[str] ) -> Tuple: UpperCAmelCase : Optional[Any] = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase : int = 'hello world' if self.space_between_special_tokens: UpperCAmelCase : Dict = '[CLS] hello world [SEP]' else: UpperCAmelCase : Optional[Any] = input UpperCAmelCase : Union[str, Any] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase : int = tokenizer.decode(lowercase_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(lowercase_ , [output, output.lower()] ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase : List[str] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] UpperCAmelCase : Dict = 'a' UpperCAmelCase : Optional[int] = ord(lowercase_ ) for attr in attributes_list: setattr(lowercase_ , attr + '_id' , lowercase_ ) self.assertEqual(getattr(lowercase_ , lowercase_ ) , lowercase_ ) self.assertEqual(getattr(lowercase_ , attr + '_id' ) , lowercase_ ) setattr(lowercase_ , attr + '_id' , lowercase_ ) self.assertEqual(getattr(lowercase_ , lowercase_ ) , lowercase_ ) self.assertEqual(getattr(lowercase_ , attr + '_id' ) , lowercase_ ) setattr(lowercase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(lowercase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(lowercase_ , 'additional_special_tokens_ids' ) , [] ) UpperCAmelCase : Optional[Any] = 0xE006 UpperCAmelCase : List[Any] = chr(lowercase_ ) setattr(lowercase_ , 'additional_special_tokens_ids' , [additional_special_token_id] ) self.assertListEqual(getattr(lowercase_ , 'additional_special_tokens' ) , [additional_special_token] ) self.assertListEqual(getattr(lowercase_ , 'additional_special_tokens_ids' ) , [additional_special_token_id] ) def UpperCAmelCase_ ( self : List[Any] ) -> str: pass def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: pass def UpperCAmelCase_ ( self : List[Any] ) -> Dict: pass def UpperCAmelCase_ ( self : Dict ) -> Tuple: pass def UpperCAmelCase_ ( self : Dict ) -> int: pass def UpperCAmelCase_ ( self : Dict ) -> str: pass def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: pass
695
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
1
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = LongformerTokenizer UpperCAmelCase_ : Any = True UpperCAmelCase_ : List[Any] = LongformerTokenizerFast UpperCAmelCase_ : int = True def UpperCAmelCase_ ( self : Any ) -> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase : List[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] UpperCAmelCase : Any = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase : Dict = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCAmelCase : Optional[Any] = {'unk_token': '<unk>'} UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase_ ) ) def UpperCAmelCase_ ( self : Any , **lowercase_ : List[str] ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase_ ( self : Tuple , **lowercase_ : Optional[Any] ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : Optional[int] ) -> List[str]: UpperCAmelCase : Dict = 'lower newer' UpperCAmelCase : Any = 'lower newer' return input_text, output_text def UpperCAmelCase_ ( self : Any ) -> int: UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase : Tuple = 'lower newer' UpperCAmelCase : Optional[int] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] UpperCAmelCase : Optional[Any] = tokenizer.tokenize(lowercase_ ) # , add_prefix_space=True) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase : List[Any] = tokens + [tokenizer.unk_token] UpperCAmelCase : List[str] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Dict = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=lowercase_ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=lowercase_ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: UpperCAmelCase : int = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) UpperCAmelCase : Dict = tokenizer.encode('sequence builders' , add_special_tokens=lowercase_ ) UpperCAmelCase : str = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase_ ) UpperCAmelCase : str = tokenizer.encode( 'sequence builders' , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) UpperCAmelCase : Any = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowercase_ ) UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCAmelCase_ ( self : Any ) -> str: UpperCAmelCase : Dict = self.get_tokenizer() UpperCAmelCase : List[Any] = 'Encode this sequence.' UpperCAmelCase : List[Any] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments UpperCAmelCase : Any = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) UpperCAmelCase : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) UpperCAmelCase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase_ , lowercase_ ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) UpperCAmelCase : Optional[Any] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) # Testing spaces after special tokens UpperCAmelCase : Any = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ )} ) # mask token has a left space UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(lowercase_ ) UpperCAmelCase : int = 'Encode <mask> sequence' UpperCAmelCase : Optional[Any] = 'Encode <mask>sequence' UpperCAmelCase : Dict = tokenizer.encode(lowercase_ ) UpperCAmelCase : str = encoded.index(lowercase_ ) UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase_ , lowercase_ ) UpperCAmelCase : List[str] = tokenizer.encode(lowercase_ ) UpperCAmelCase : List[str] = encoded.index(lowercase_ ) UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> int: pass def UpperCAmelCase_ ( self : str ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase : Optional[int] = 'A, <mask> AllenNLP sentence.' UpperCAmelCase : List[Any] = tokenizer_r.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) UpperCAmelCase : List[str] = tokenizer_p.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) UpperCAmelCase : Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) UpperCAmelCase : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowercase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCAmelCase : Any = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCAmelCase : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , lowercase_ ) self.assertEqual(post_processor_state['add_prefix_space'] , lowercase_ ) self.assertEqual(post_processor_state['trim_offsets'] , lowercase_ ) def UpperCAmelCase_ ( self : str ) -> str: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase : int = f"""{text_of_1_token} {text_of_1_token}""" UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCAmelCase : Union[str, Any] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCAmelCase : Any = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCAmelCase : Union[str, Any] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ), len(lowercase_ ) + 1 + len(lowercase_ )) , ) UpperCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCAmelCase : List[str] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ), len(lowercase_ ) + 1 + len(lowercase_ )) , ) UpperCAmelCase : Dict = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCAmelCase : Dict = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ) + 1, 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCAmelCase : Tuple = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ), 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCAmelCase : List[Any] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ), 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , )
695
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
1
'''simple docstring''' from typing import Any def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): _validation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) # Creates data structures and fill initial step UpperCAmelCase : dict = {} UpperCAmelCase : dict = {} for state in states_space: UpperCAmelCase : int = observations_space[0] UpperCAmelCase : str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) UpperCAmelCase : Tuple = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(UpperCAmelCase_ ) ): UpperCAmelCase : List[Any] = observations_space[o] UpperCAmelCase : str = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function UpperCAmelCase : List[Any] = '' UpperCAmelCase : str = -1 for k_state in states_space: UpperCAmelCase : Dict = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: UpperCAmelCase : Dict = probability UpperCAmelCase : List[str] = k_state # Update probabilities and pointers dicts UpperCAmelCase : List[Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) UpperCAmelCase : Dict = arg_max # The final observation UpperCAmelCase : str = observations_space[len(UpperCAmelCase_ ) - 1] # argmax for given final observation UpperCAmelCase : List[Any] = '' UpperCAmelCase : str = -1 for k_state in states_space: UpperCAmelCase : List[Any] = probabilities[(k_state, final_observation)] if probability > max_probability: UpperCAmelCase : Optional[int] = probability UpperCAmelCase : Union[str, Any] = k_state UpperCAmelCase : List[Any] = arg_max # Process pointers backwards UpperCAmelCase : List[str] = last_state UpperCAmelCase : int = [] for o in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): result.append(UpperCAmelCase_ ) UpperCAmelCase : str = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): _validate_not_empty( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) _validate_lists(UpperCAmelCase_ , UpperCAmelCase_ ) _validate_dicts( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): _validate_list(UpperCAmelCase_ , 'observations_space' ) _validate_list(UpperCAmelCase_ , 'states_space' ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if not isinstance(_object , UpperCAmelCase_ ): UpperCAmelCase : List[str] = F"""{var_name} must be a list""" raise ValueError(UpperCAmelCase_ ) else: for x in _object: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = F"""{var_name} must be a list of strings""" raise ValueError(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): _validate_dict(UpperCAmelCase_ , 'initial_probabilities' , UpperCAmelCase_ ) _validate_nested_dict(UpperCAmelCase_ , 'transition_probabilities' ) _validate_nested_dict(UpperCAmelCase_ , 'emission_probabilities' ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): _validate_dict(_object , UpperCAmelCase_ , UpperCAmelCase_ ) for x in _object.values(): _validate_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = False ): if not isinstance(_object , UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = F"""{var_name} must be a dict""" raise ValueError(UpperCAmelCase_ ) if not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for x in _object ): UpperCAmelCase : List[Any] = F"""{var_name} all keys must be strings""" raise ValueError(UpperCAmelCase_ ) if not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for x in _object.values() ): UpperCAmelCase : List[str] = 'nested dictionary ' if nested else '' UpperCAmelCase : Tuple = F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(UpperCAmelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
695
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
1
'''simple docstring''' from maths.prime_factors import prime_factors def UpperCamelCase( UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = F"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCAmelCase_ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(UpperCAmelCase_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
695
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
1
'''simple docstring''' from __future__ import annotations lowercase__ = [True] * 1000001 lowercase__ = 2 while i * i <= 1000000: if seive[i]: for j in range(i * i, 1000001, i): lowercase__ = False i += 1 def UpperCamelCase( UpperCAmelCase_ ): return seive[n] def UpperCamelCase( UpperCAmelCase_ ): return any(digit in '02468' for digit in str(UpperCAmelCase_ ) ) def UpperCamelCase( UpperCAmelCase_ = 1_00_00_00 ): UpperCAmelCase : Any = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(UpperCAmelCase_ ) and not contains_an_even_digit(UpperCAmelCase_ ): UpperCAmelCase : Tuple = str(UpperCAmelCase_ ) UpperCAmelCase : Tuple = [int(str_num[j:] + str_num[:j] ) for j in range(len(UpperCAmelCase_ ) )] if all(is_prime(UpperCAmelCase_ ) for i in list_nums ): result.append(UpperCAmelCase_ ) return result def UpperCamelCase( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'''{len(find_circular_primes()) = }''')
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """open-llama""" def __init__( self : str , lowercase_ : int=100_000 , lowercase_ : Dict=4_096 , lowercase_ : List[Any]=11_008 , lowercase_ : List[Any]=32 , lowercase_ : List[Any]=32 , lowercase_ : List[Any]="silu" , lowercase_ : int=2_048 , lowercase_ : List[str]=0.02 , lowercase_ : Any=1E-6 , lowercase_ : Union[str, Any]=True , lowercase_ : str=0 , lowercase_ : str=1 , lowercase_ : Tuple=2 , lowercase_ : Union[str, Any]=False , lowercase_ : int=True , lowercase_ : Optional[int]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=True , lowercase_ : Dict=True , lowercase_ : str=None , **lowercase_ : Dict , ) -> List[str]: UpperCAmelCase : Dict = vocab_size UpperCAmelCase : Optional[Any] = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Any = rms_norm_eps UpperCAmelCase : int = use_cache UpperCAmelCase : Optional[Any] = kwargs.pop( 'use_memorry_efficient_attention' , lowercase_ ) UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : Tuple = attention_dropout_prob UpperCAmelCase : Optional[int] = use_stable_embedding UpperCAmelCase : Union[str, Any] = shared_input_output_embedding UpperCAmelCase : Optional[int] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"""got {self.rope_scaling}""" ) UpperCAmelCase : List[str] = self.rope_scaling.get('type' , lowercase_ ) UpperCAmelCase : Optional[int] = self.rope_scaling.get('factor' , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
1
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase__ = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = GPTSwaTokenizer UpperCAmelCase_ : int = False UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = False def UpperCAmelCase_ ( self : List[Any] ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : Optional[int] = GPTSwaTokenizer(lowercase_ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self : Any , lowercase_ : Tuple ) -> Optional[int]: UpperCAmelCase : Dict = 'This is a test' UpperCAmelCase : Tuple = 'This is a test' return input_text, output_text def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = '<s>' UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(lowercase_ ) , 2_000 ) def UpperCAmelCase_ ( self : str ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 2_000 ) def UpperCAmelCase_ ( self : Dict ) -> Any: UpperCAmelCase : Optional[int] = GPTSwaTokenizer(lowercase_ ) UpperCAmelCase : Dict = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , [465, 287, 265, 631, 842] ) UpperCAmelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( lowercase_ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on UpperCAmelCase : int = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) UpperCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(lowercase_ ) # fmt: off self.assertListEqual( lowercase_ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def UpperCAmelCase_ ( self : Tuple ) -> str: UpperCAmelCase : Tuple = GPTSwaTokenizer(lowercase_ ) UpperCAmelCase : int = ['This is a test', 'I was born in 92000, and this is falsé.'] UpperCAmelCase : List[str] = [ [465, 287, 265, 631, 842], [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(lowercase_ , lowercase_ ): self.assertListEqual(tokenizer.encode_fast(lowercase_ ) , lowercase_ ) # Test that decode_fast returns the input text for text, token_ids in zip(lowercase_ , lowercase_ ): self.assertEqual(tokenizer.decode_fast(lowercase_ ) , lowercase_ ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : List[Any] = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off UpperCAmelCase : Union[str, Any] = {'input_ids': [[63_423, 5, 6_811, 14_954, 282, 816, 3_821, 63_466, 63_425, 63_462, 18, 63_978, 678, 301, 1_320, 63_423, 63_455, 63_458, 18, 63_982, 4_246, 3_940, 1_901, 47_789, 5_547, 18_994], [19_630, 1_100, 63_446, 1_342, 633, 544, 4_488, 593, 5_102, 2_416, 63_495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_652, 428, 268, 1_936, 515, 268, 58_593, 22_413, 9_106, 546, 268, 33_213, 63_979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55_130, 63_450, 924, 63_449, 2_249, 4_062, 1_558, 318, 63_504, 21_498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2_827, 2_559, 332, 6_575, 63_443, 26_801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=lowercase_ , )
695
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[Any] = PegasusConfig UpperCAmelCase_ : Union[str, Any] = {} UpperCAmelCase_ : Any = """gelu""" def __init__( self : str , lowercase_ : str , lowercase_ : int=13 , lowercase_ : Dict=7 , lowercase_ : Optional[Any]=True , lowercase_ : int=False , lowercase_ : Tuple=99 , lowercase_ : str=32 , lowercase_ : Tuple=2 , lowercase_ : int=4 , lowercase_ : Optional[int]=37 , lowercase_ : Any=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]=40 , lowercase_ : Tuple=2 , lowercase_ : Union[str, Any]=1 , lowercase_ : List[str]=0 , ) -> List[str]: UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : str = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : List[Any] = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : List[str] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : List[str] = attention_probs_dropout_prob UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Any = pad_token_id UpperCAmelCase : Union[str, Any] = bos_token_id def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : Optional[Any] = prepare_pegasus_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Any , lowercase_ : List[Any] ) -> Optional[Any]: UpperCAmelCase : Dict = TFPegasusModel(config=lowercase_ ).get_decoder() UpperCAmelCase : Optional[int] = inputs_dict['input_ids'] UpperCAmelCase : int = input_ids[:1, :] UpperCAmelCase : Dict = inputs_dict['attention_mask'][:1, :] UpperCAmelCase : Optional[Any] = inputs_dict['head_mask'] UpperCAmelCase : Optional[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ , use_cache=lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : str = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : str = model(lowercase_ , attention_mask=lowercase_ )[0] UpperCAmelCase : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1E-3 ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , ): if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(UpperCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : Optional[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () UpperCAmelCase_ : Union[str, Any] = (TFPegasusForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase_ : Tuple = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : Union[str, Any] = False def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Dict = TFPegasusModelTester(self ) UpperCAmelCase : Any = ConfigTester(self , config_class=lowercase_ ) def UpperCAmelCase_ ( self : List[str] ) -> Tuple: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) @require_sentencepiece @require_tokenizers @require_tf class A_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[str] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] UpperCAmelCase_ : Optional[Any] = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers UpperCAmelCase_ : Tuple = """google/pegasus-xsum""" @cached_property def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase_ ( self : Dict ) -> str: UpperCAmelCase : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCAmelCase_ ( self : Any , **lowercase_ : str ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = self.translate_src_text(**lowercase_ ) assert self.expected_text == generated_words def UpperCAmelCase_ ( self : Optional[Any] , **lowercase_ : Optional[int] ) -> str: UpperCAmelCase : Any = self.tokenizer(self.src_text , **lowercase_ , padding=lowercase_ , return_tensors='tf' ) UpperCAmelCase : Dict = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase_ , ) UpperCAmelCase : Dict = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase_ ) return generated_words @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: self._assert_generated_batch_equal_expected()
695
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
1
'''simple docstring''' from __future__ import annotations import math lowercase__ = "2020.9.26" lowercase__ = "xcodz-dot, cclaus, dhruvmanila" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if not all(isinstance(UpperCAmelCase_ , (float, int) ) for val in locals().values() ): UpperCAmelCase : List[Any] = F"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = ((x * distance) / (z + distance)) * scale UpperCAmelCase : Optional[int] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError('Axis must be a str' ) UpperCAmelCase : Dict = locals() del input_variables["axis"] if not all(isinstance(UpperCAmelCase_ , (float, int) ) for val in input_variables.values() ): UpperCAmelCase : int = ( 'Input values except axis must either be float or int: ' F"""{list(input_variables.values() )}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : Dict = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": UpperCAmelCase : Any = x * math.cos(UpperCAmelCase_ ) - y * math.sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = y * math.cos(UpperCAmelCase_ ) + x * math.sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = z elif axis == "x": UpperCAmelCase : List[Any] = y * math.cos(UpperCAmelCase_ ) - z * math.sin(UpperCAmelCase_ ) UpperCAmelCase : str = z * math.cos(UpperCAmelCase_ ) + y * math.sin(UpperCAmelCase_ ) UpperCAmelCase : Tuple = x elif axis == "y": UpperCAmelCase : Union[str, Any] = x * math.cos(UpperCAmelCase_ ) - z * math.sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = z * math.cos(UpperCAmelCase_ ) + x * math.sin(UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f'''{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }''') print(f'''{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }''')
695
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
1
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
1
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A_ ( _snake_case ): '''simple docstring''' def __init__( self : Dict , *lowercase_ : List[str] , lowercase_ : Optional[int]=None , lowercase_ : Optional[Any]=None , **lowercase_ : Any ) -> Optional[int]: super().__init__(*lowercase_ , **lowercase_ ) UpperCAmelCase : Any = eval_examples UpperCAmelCase : Tuple = post_process_function def UpperCAmelCase_ ( self : List[Any] , lowercase_ : List[Any]=None , lowercase_ : Dict=None , lowercase_ : Optional[int]=None , lowercase_ : str = "eval" ) -> Any: UpperCAmelCase : int = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase : List[str] = self.get_eval_dataloader(lowercase_ ) UpperCAmelCase : int = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase : List[str] = self.compute_metrics UpperCAmelCase : List[Any] = None UpperCAmelCase : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase : List[str] = time.time() try: UpperCAmelCase : List[str] = eval_loop( lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: UpperCAmelCase : Any = compute_metrics UpperCAmelCase : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase : Dict = self.post_process_function(lowercase_ , lowercase_ , output.predictions ) UpperCAmelCase : Optional[int] = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): UpperCAmelCase : Tuple = metrics.pop(lowercase_ ) metrics.update(output.metrics ) else: UpperCAmelCase : Optional[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase : Union[str, Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_ ) return metrics def UpperCAmelCase_ ( self : Tuple , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : str=None , lowercase_ : str = "test" ) -> Optional[int]: UpperCAmelCase : Dict = self.get_test_dataloader(lowercase_ ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase : List[Any] = self.compute_metrics UpperCAmelCase : Any = None UpperCAmelCase : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase : Union[str, Any] = time.time() try: UpperCAmelCase : int = eval_loop( lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: UpperCAmelCase : Dict = compute_metrics UpperCAmelCase : Dict = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase : Optional[Any] = self.post_process_function(lowercase_ , lowercase_ , output.predictions , 'predict' ) UpperCAmelCase : Tuple = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): UpperCAmelCase : Optional[Any] = metrics.pop(lowercase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_ )
695
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): stooge(UpperCAmelCase_ , 0 , len(UpperCAmelCase_ ) - 1 ) return arr def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCAmelCase , UpperCAmelCase : str = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCAmelCase : Union[str, Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(UpperCAmelCase_ , UpperCAmelCase_ , (h - t) ) # Recursively sort last 2/3 elements stooge(UpperCAmelCase_ , i + t , (UpperCAmelCase_) ) # Recursively sort first 2/3 elements stooge(UpperCAmelCase_ , UpperCAmelCase_ , (h - t) ) if __name__ == "__main__": lowercase__ = input("Enter numbers separated by a comma:\n").strip() lowercase__ = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' import math def UpperCamelCase( UpperCAmelCase_ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase( UpperCAmelCase_ = 1_00_01 ): try: UpperCAmelCase : str = int(UpperCAmelCase_ ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) UpperCAmelCase : list[int] = [] UpperCAmelCase : Dict = 2 while len(UpperCAmelCase_ ) < nth: if is_prime(UpperCAmelCase_ ): primes.append(UpperCAmelCase_ ) num += 1 else: num += 1 return primes[len(UpperCAmelCase_ ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
695
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
1
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) lowercase__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowercase__ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): for attribute in key.split('.' ): UpperCAmelCase : Tuple = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) if weight_type is not None: UpperCAmelCase : List[str] = getattr(UpperCAmelCase_ , UpperCAmelCase_ ).shape else: UpperCAmelCase : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_g": UpperCAmelCase : Union[str, Any] = value elif weight_type == "weight_v": UpperCAmelCase : str = value elif weight_type == "bias": UpperCAmelCase : str = value else: UpperCAmelCase : str = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = [] UpperCAmelCase : Optional[int] = fairseq_model.state_dict() UpperCAmelCase : List[str] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight UpperCAmelCase : Dict = None for name, value in fairseq_dict.items(): UpperCAmelCase : List[Any] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCAmelCase : Any = True elif name.split('.' )[0] == "proj": UpperCAmelCase : List[Any] = fairseq_model.proj UpperCAmelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: UpperCAmelCase : int = name.split(UpperCAmelCase_ )[0].split('.' )[-2] UpperCAmelCase : Union[str, Any] = mapped_key.replace('*' , UpperCAmelCase_ ) if "weight_g" in name: UpperCAmelCase : Optional[Any] = 'weight_g' elif "weight_v" in name: UpperCAmelCase : Any = 'weight_v' elif "bias" in name: UpperCAmelCase : Dict = 'bias' elif "weight" in name: UpperCAmelCase : Optional[int] = 'weight' else: UpperCAmelCase : Union[str, Any] = None set_recursively(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) continue if not is_used: unused_weights.append(UpperCAmelCase_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : str = full_name.split('conv_layers.' )[-1] UpperCAmelCase : Optional[Any] = name.split('.' ) UpperCAmelCase : List[str] = int(items[0] ) UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = emb.weight.shape UpperCAmelCase : List[str] = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ , bias=UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = emb.weight.data return lin_layer def UpperCamelCase( UpperCAmelCase_ ): with open(UpperCAmelCase_ , 'r' , encoding='utf-8' ) as f: UpperCAmelCase : Dict = f.readlines() UpperCAmelCase : List[str] = [line.split(' ' )[0] for line in lines] UpperCAmelCase : int = len(UpperCAmelCase_ ) UpperCAmelCase : int = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(UpperCAmelCase_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = SpeechaTextaConfig.from_pretrained( UpperCAmelCase_ , vocab_size=UpperCAmelCase_ , decoder_layers=UpperCAmelCase_ , do_stable_layer_norm=UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) UpperCAmelCase : Optional[Any] = model[0].eval() # set weights for wav2vec2 encoder UpperCAmelCase : Any = WavaVecaModel(UpperCAmelCase_ ) UpperCAmelCase : str = recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase_ ) UpperCAmelCase : int = SpeechaTextaForCausalLM(UpperCAmelCase_ ) UpperCAmelCase , UpperCAmelCase : List[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase_ ) # set output linear layer unexpected_keys.remove('embed_out' ) UpperCAmelCase : str = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) UpperCAmelCase : List[str] = SpeechEncoderDecoderModel(encoder=UpperCAmelCase_ , decoder=UpperCAmelCase_ ) UpperCAmelCase : Any = False # add projection layer UpperCAmelCase : Optional[Any] = nn.Parameter(projection_layer.weight ) UpperCAmelCase : List[str] = nn.Parameter(projection_layer.bias ) UpperCAmelCase : Tuple = create_vocab_dict(UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'vocab.json' ) , 'w' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = SpeechaTextaTokenizer(os.path.join(UpperCAmelCase_ , 'vocab.json' ) ) tokenizer.save_pretrained(UpperCAmelCase_ ) UpperCAmelCase : str = hf_wavavec.config.to_dict() UpperCAmelCase : int = tokenizer.pad_token_id UpperCAmelCase : str = tokenizer.bos_token_id UpperCAmelCase : Union[str, Any] = tokenizer.eos_token_id UpperCAmelCase : Any = 'speech_to_text_2' UpperCAmelCase : Any = 'wav2vec2' UpperCAmelCase : str = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase_ ) hf_wavavec.save_pretrained(UpperCAmelCase_ ) feature_extractor.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") lowercase__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
695
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
1
'''simple docstring''' import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase__ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if got_ver is None or want_ver is None: raise ValueError( F"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" F""" reinstalling {pkg}.""" ) if not ops[op](version.parse(UpperCAmelCase_ ) , version.parse(UpperCAmelCase_ ) ): raise ImportError( F"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ = None ): UpperCAmelCase : Any = F"""\n{hint}""" if hint is not None else '' # non-versioned check if re.match(R'^[\w_\-\d]+$' , UpperCAmelCase_ ): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = requirement, None, None else: UpperCAmelCase : List[str] = re.findall(R'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , UpperCAmelCase_ ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' F""" got {requirement}""" ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = match[0] UpperCAmelCase : Optional[int] = want_full.split(',' ) # there could be multiple requirements UpperCAmelCase : int = {} for w in want_range: UpperCAmelCase : Any = re.findall(R'^([\s!=<>]{1,2})(.+)' , UpperCAmelCase_ ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' F""" but got {requirement}""" ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = match[0] UpperCAmelCase : Any = want_ver if op not in ops: raise ValueError(F"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": UpperCAmelCase : int = '.'.join([str(UpperCAmelCase_ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return # check if any version is installed try: UpperCAmelCase : Any = importlib.metadata.version(UpperCAmelCase_ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Any = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(UpperCAmelCase_ , UpperCAmelCase_ )
695
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowercase__ = pytest.mark.integration @require_faiss class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[int] ) -> int: UpperCAmelCase : List[str] = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowercase_ ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: import faiss UpperCAmelCase : Dataset = self._create_dummy_dataset() UpperCAmelCase : str = dset.map( lambda lowercase_ , lowercase_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowercase_ , keep_in_memory=lowercase_ ) UpperCAmelCase : Dict = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCAmelCase , UpperCAmelCase : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCAmelCase_ ( self : str ) -> str: import faiss UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) UpperCAmelCase , UpperCAmelCase : Tuple = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: import faiss UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_ ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) UpperCAmelCase , UpperCAmelCase : int = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(lowercase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCAmelCase_ ( self : int ) -> Any: from elasticsearch import Elasticsearch UpperCAmelCase : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: UpperCAmelCase : Optional[int] = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) UpperCAmelCase : Dict = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} UpperCAmelCase : Union[str, Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : str ) -> List[Any]: import faiss UpperCAmelCase : Dict = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query UpperCAmelCase : List[Any] = np.zeros(5 , dtype=np.floataa ) UpperCAmelCase : int = 1 UpperCAmelCase , UpperCAmelCase : Tuple = index.search(lowercase_ ) self.assertRaises(lowercase_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries UpperCAmelCase : Union[str, Any] = np.eye(5 , dtype=np.floataa )[::-1] UpperCAmelCase , UpperCAmelCase : int = index.search_batch(lowercase_ ) self.assertRaises(lowercase_ , index.search_batch , queries[0] ) UpperCAmelCase : str = [scores[0] for scores in total_scores] UpperCAmelCase : Union[str, Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: import faiss UpperCAmelCase : List[Any] = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) UpperCAmelCase : Optional[Any] = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowercase_ ): UpperCAmelCase : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: import faiss UpperCAmelCase : Optional[int] = faiss.IndexFlat(5 ) UpperCAmelCase : int = FaissIndex(custom_index=lowercase_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCAmelCase_ ( self : Dict ) -> int: import faiss UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_ ) as tmp_file: index.save(tmp_file.name ) UpperCAmelCase : Optional[int] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) UpperCAmelCase : List[str] = np.zeros(5 , dtype=np.floataa ) UpperCAmelCase : int = 1 UpperCAmelCase , UpperCAmelCase : Any = index.search(lowercase_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def UpperCamelCase( UpperCAmelCase_ ): import faiss UpperCAmelCase : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) UpperCAmelCase : str = 'index.faiss' UpperCAmelCase : int = F"""mock://{index_name}""" index.save(UpperCAmelCase_ , storage_options=mockfs.storage_options ) UpperCAmelCase : Tuple = FaissIndex.load(UpperCAmelCase_ , storage_options=mockfs.storage_options ) UpperCAmelCase : int = np.zeros(5 , dtype=np.floataa ) UpperCAmelCase : str = 1 UpperCAmelCase , UpperCAmelCase : Any = index.search(UpperCAmelCase_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: UpperCAmelCase : Dict = Elasticsearch() UpperCAmelCase : str = {'acknowledged': True} UpperCAmelCase : List[Any] = ElasticSearchIndex(es_client=lowercase_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query UpperCAmelCase : Dict = 'foo' UpperCAmelCase : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} UpperCAmelCase , UpperCAmelCase : int = index.search(lowercase_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout UpperCAmelCase : str = 'foo' UpperCAmelCase : int = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} UpperCAmelCase , UpperCAmelCase : Dict = index.search(lowercase_ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries UpperCAmelCase : Optional[Any] = ['foo', 'bar', 'foobar'] UpperCAmelCase : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} UpperCAmelCase , UpperCAmelCase : Tuple = index.search_batch(lowercase_ ) UpperCAmelCase : int = [scores[0] for scores in total_scores] UpperCAmelCase : Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_ ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase_ ) # batched queries with timeout UpperCAmelCase : Dict = ['foo', 'bar', 'foobar'] UpperCAmelCase : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} UpperCAmelCase , UpperCAmelCase : Tuple = index.search_batch(lowercase_ , request_timeout=30 ) UpperCAmelCase : int = [scores[0] for scores in total_scores] UpperCAmelCase : Any = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_ ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase_ )
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = """roberta""" def __init__( self : Union[str, Any] , lowercase_ : str=50_265 , lowercase_ : Any=768 , lowercase_ : List[Any]=12 , lowercase_ : Optional[int]=12 , lowercase_ : Union[str, Any]=3_072 , lowercase_ : Any="gelu" , lowercase_ : int=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=512 , lowercase_ : List[Any]=2 , lowercase_ : List[str]=0.02 , lowercase_ : int=1E-12 , lowercase_ : int=1 , lowercase_ : Optional[int]=0 , lowercase_ : int=2 , lowercase_ : Optional[int]="absolute" , lowercase_ : Optional[int]=True , lowercase_ : Union[str, Any]=None , **lowercase_ : Optional[int] , ) -> Tuple: super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = hidden_act UpperCAmelCase : str = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : int = type_vocab_size UpperCAmelCase : Dict = initializer_range UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : int = position_embedding_type UpperCAmelCase : List[Any] = use_cache UpperCAmelCase : Optional[int] = classifier_dropout class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
695
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
1
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
695
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
1