code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' def _A ( snake_case__ : Any = 1_00 ): snake_case__ : Any = (n * (n + 1) // 2) ** 2 snake_case__ : Dict = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
711
'''simple docstring''' def _A ( snake_case__ : float ): return 10 - x * x def _A ( snake_case__ : float , snake_case__ : float ): # Bolzano theory in order to find if there is a root between a and b if equation(snake_case__ ) * equation(snake_case__ ) >= 0: raise ValueError('''Wrong space!''' ) snake_case__ : List[str] = a while (b - a) >= 0.01: # Find middle point snake_case__ : Optional[int] = (a + b) / 2 # Check if middle point is root if equation(snake_case__ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case__ ) * equation(snake_case__ ) < 0: snake_case__ : Dict = c else: snake_case__ : List[str] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
694
0
'''simple docstring''' import pprint import requests _lowerCAmelCase : int = 'https://zenquotes.io/api' def _A ( ): return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def _A ( ): return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = random_quotes() pprint.pprint(response)
712
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : list[float] , snake_case__ : list[float] ): snake_case__ : Dict = sorted(numsa + numsa ) snake_case__ ,snake_case__ : Tuple = divmod(len(snake_case__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Tuple = [float(x) for x in input("Enter the elements of first array: ").split()] _lowerCAmelCase : List[str] = [float(x) for x in input("Enter the elements of second array: ").split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
694
0
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : Optional[int] ): if len(__UpperCamelCase ) == 0: return array snake_case__ ,snake_case__ : str = min(__UpperCamelCase ), max(__UpperCamelCase ) # Compute the variables snake_case__ : Any = _max - _min + 1 snake_case__ ,snake_case__ : int = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: snake_case__ : int = i - _min snake_case__ : str = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. snake_case__ : Optional[Any] = 0 for i in range(__UpperCamelCase ): while holes_repeat[i] > 0: snake_case__ : str = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[str] = input("Enter numbers separated by comma:\n") _lowerCAmelCase : Optional[int] = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
713
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Any = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
694
0
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def _A ( snake_case__ : Optional[Any] ): snake_case__ : Optional[Any] = [] snake_case__ : List[str] = [] snake_case__ : Any = [] for rt in rc.restypes: snake_case__ : Optional[int] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) snake_case__ : Any = {name: i for i, name in enumerate(snake_case__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) snake_case__ : Union[str, Any] = torch.tensor( snake_case__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) snake_case__ : Optional[Any] = torch.tensor( snake_case__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) snake_case__ : List[str] = torch.tensor( snake_case__ , dtype=torch.floataa , device=protein['''aatype'''].device , ) snake_case__ : Optional[Any] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein snake_case__ : List[str] = restype_atomaa_to_atomaa[protein_aatype] snake_case__ : Any = restype_atomaa_mask[protein_aatype] snake_case__ : Tuple = residx_atomaa_mask snake_case__ : Dict = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back snake_case__ : Dict = restype_atomaa_to_atomaa[protein_aatype] snake_case__ : Optional[int] = residx_atomaa_to_atomaa.long() # create the corresponding mask snake_case__ : Optional[int] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): snake_case__ : int = rc.restype_atoa[restype_letter] snake_case__ : Any = rc.residue_atoms[restype_name] for atom_name in atom_names: snake_case__ : Optional[int] = rc.atom_order[atom_name] snake_case__ : Dict = 1 snake_case__ : List[str] = restype_atomaa_mask[protein_aatype] snake_case__ : List[Any] = residx_atomaa_mask return protein def _A ( snake_case__ : Optional[int] ): snake_case__ : Any = tree_map(lambda snake_case__ : torch.tensor(snake_case__ , device=batch['''aatype'''].device ) , snake_case__ , np.ndarray ) snake_case__ : int = tensor_tree_map(lambda snake_case__ : np.array(snake_case__ ) , make_atomaa_masks(snake_case__ ) ) return out
714
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'encoder-decoder' _lowerCAmelCase = True def __init__( self , **lowerCamelCase ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" snake_case__ : List[str] = kwargs.pop('''encoder''' ) snake_case__ : Any = encoder_config.pop('''model_type''' ) snake_case__ : List[str] = kwargs.pop('''decoder''' ) snake_case__ : str = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig snake_case__ : Tuple = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) snake_case__ : Optional[Any] = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) snake_case__ : str = True @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> PretrainedConfig: """simple docstring""" logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) snake_case__ : Optional[int] = True snake_case__ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[Any] = copy.deepcopy(self.__dict__ ) snake_case__ : List[Any] = self.encoder.to_dict() snake_case__ : str = self.decoder.to_dict() snake_case__ : Any = self.__class__.model_type return output
694
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : List[Any] = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } _lowerCAmelCase : Tuple = { "google/realm-cc-news-pretrained-embedder": 5_1_2, "google/realm-cc-news-pretrained-encoder": 5_1_2, "google/realm-cc-news-pretrained-scorer": 5_1_2, "google/realm-cc-news-pretrained-openqa": 5_1_2, "google/realm-orqa-nq-openqa": 5_1_2, "google/realm-orqa-nq-reader": 5_1_2, "google/realm-orqa-wq-openqa": 5_1_2, "google/realm-orqa-wq-reader": 5_1_2, } _lowerCAmelCase : List[Any] = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class snake_case ( lowercase__ ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = RealmTokenizer def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase="[UNK]" , lowerCamelCase="[SEP]" , lowerCamelCase="[PAD]" , lowerCamelCase="[CLS]" , lowerCamelCase="[MASK]" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> List[Any]: """simple docstring""" super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) snake_case__ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __lowercase ) != tokenize_chinese_chars ): snake_case__ : List[str] = getattr(__lowercase , normalizer_state.pop('''type''' ) ) snake_case__ : Union[str, Any] = do_lower_case snake_case__ : List[str] = strip_accents snake_case__ : Optional[Any] = tokenize_chinese_chars snake_case__ : Tuple = normalizer_class(**__lowercase ) snake_case__ : Dict = do_lower_case def lowercase__ ( self , lowerCamelCase , **lowerCamelCase ) -> Any: """simple docstring""" snake_case__ : int = PaddingStrategy.MAX_LENGTH snake_case__ : Tuple = text snake_case__ : Any = kwargs.pop('''text_pair''' , __lowercase ) snake_case__ : int = kwargs.pop('''return_tensors''' , __lowercase ) snake_case__ : Dict = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(__lowercase ): if batch_text_pair is not None: snake_case__ : Union[str, Any] = batch_text_pair[idx] else: snake_case__ : Any = None snake_case__ : Tuple = super().__call__(__lowercase , __lowercase , return_tensors=__lowercase , **__lowercase ) snake_case__ : Union[str, Any] = encoded_candidates.get('''input_ids''' ) snake_case__ : Union[str, Any] = encoded_candidates.get('''attention_mask''' ) snake_case__ : int = encoded_candidates.get('''token_type_ids''' ) if encoded_input_ids is not None: output_data["input_ids"].append(__lowercase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(__lowercase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__lowercase ) snake_case__ : Union[str, Any] = {key: item for key, item in output_data.items() if len(__lowercase ) != 0} return BatchEncoding(__lowercase , tensor_type=__lowercase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase=None ) -> int: """simple docstring""" snake_case__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Optional[int]: """simple docstring""" snake_case__ : Union[str, Any] = [self.sep_token_id] snake_case__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Optional[Any]: """simple docstring""" snake_case__ : List[Any] = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase )
715
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = "▁" _lowerCAmelCase : Dict = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} _lowerCAmelCase : Dict = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } _lowerCAmelCase : str = {"vinai/bartpho-syllable": 1_0_2_4} class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase = None , **lowerCamelCase , ) -> None: """simple docstring""" snake_case__ : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token snake_case__ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , ) snake_case__ : int = vocab_file snake_case__ : Optional[Any] = monolingual_vocab_file snake_case__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility snake_case__ : Dict = {} snake_case__ : Union[str, Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : List[str] = cnt cnt += 1 with open(lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): snake_case__ : Optional[int] = line.strip().split()[0] snake_case__ : List[Any] = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : Any = len(self.fairseq_tokens_to_ids ) snake_case__ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: """simple docstring""" snake_case__ : int = self.__dict__.copy() snake_case__ : Any = None snake_case__ : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case__ : Dict = {} snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : str = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" snake_case__ : List[str] = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self ) -> Optional[int]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : int = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCamelCase , out_type=lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowercase__ ( self , lowerCamelCase ) -> str: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : List[Any] = ''''''.join(lowerCamelCase ).replace(lowerCamelCase , ''' ''' ).strip() return out_string def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case__ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase , '''wb''' ) as fi: snake_case__ : Dict = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(lowerCamelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
694
0
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : List[Any] = """ Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\") >>> pipe.to(\"cuda\") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save(\"cat.png\") ``` """ def _A ( snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any]=8 ): snake_case__ : Union[str, Any] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 snake_case__ : Any = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class snake_case ( __snake_case ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules( text_encoder=A_ , tokenizer=A_ , unet=A_ , scheduler=A_ , movq=A_ , ) snake_case__ : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: """simple docstring""" if latents is None: snake_case__ : int = randn_tensor(A_ , generator=A_ , device=A_ , dtype=A_ ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) snake_case__ : Optional[Any] = latents.to(A_ ) snake_case__ : Dict = latents * scheduler.init_noise_sigma return latents def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , ) -> str: """simple docstring""" snake_case__ : int = len(A_ ) if isinstance(A_ , A_ ) else 1 # get prompt text embeddings snake_case__ : Any = self.tokenizer( A_ , padding='''max_length''' , truncation=A_ , max_length=77 , return_attention_mask=A_ , add_special_tokens=A_ , return_tensors='''pt''' , ) snake_case__ : List[Any] = text_inputs.input_ids snake_case__ : List[Any] = self.tokenizer(A_ , padding='''longest''' , return_tensors='''pt''' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(A_ , A_ ): snake_case__ : Union[str, Any] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) snake_case__ : str = text_input_ids.to(A_ ) snake_case__ : int = text_inputs.attention_mask.to(A_ ) snake_case__ : Optional[int] = self.text_encoder( input_ids=A_ , attention_mask=A_ ) snake_case__ : Optional[Any] = prompt_embeds.repeat_interleave(A_ , dim=0 ) snake_case__ : Any = text_encoder_hidden_states.repeat_interleave(A_ , dim=0 ) snake_case__ : int = text_mask.repeat_interleave(A_ , dim=0 ) if do_classifier_free_guidance: snake_case__ : List[str] if negative_prompt is None: snake_case__ : Optional[Any] = [""] * batch_size elif type(A_ ) is not type(A_ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(A_ )} !=''' f''' {type(A_ )}.''' ) elif isinstance(A_ , A_ ): snake_case__ : Union[str, Any] = [negative_prompt] elif batch_size != len(A_ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(A_ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ''' the batch size of `prompt`.''' ) else: snake_case__ : Optional[int] = negative_prompt snake_case__ : Tuple = self.tokenizer( A_ , padding='''max_length''' , max_length=77 , truncation=A_ , return_attention_mask=A_ , add_special_tokens=A_ , return_tensors='''pt''' , ) snake_case__ : Optional[Any] = uncond_input.input_ids.to(A_ ) snake_case__ : Tuple = uncond_input.attention_mask.to(A_ ) snake_case__ : Optional[int] = self.text_encoder( input_ids=A_ , attention_mask=A_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case__ : int = negative_prompt_embeds.shape[1] snake_case__ : Any = negative_prompt_embeds.repeat(1 , A_ ) snake_case__ : List[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ ) snake_case__ : List[Any] = uncond_text_encoder_hidden_states.shape[1] snake_case__ : int = uncond_text_encoder_hidden_states.repeat(1 , A_ , 1 ) snake_case__ : Union[str, Any] = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , A_ , -1 ) snake_case__ : Optional[int] = uncond_text_mask.repeat_interleave(A_ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case__ : List[Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) snake_case__ : Optional[int] = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) snake_case__ : Tuple = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def lowercase__ ( self , lowerCamelCase=0 ) -> List[Any]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) snake_case__ : Dict = torch.device(f'''cuda:{gpu_id}''' ) snake_case__ : Optional[int] = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A_ , A_ ) def lowercase__ ( self , lowerCamelCase=0 ) -> str: """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) snake_case__ : Union[str, Any] = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=A_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case__ : Tuple = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: snake_case__ : Optional[int] = cpu_offload_with_hook(A_ , A_ , prev_module_hook=A_ ) if self.safety_checker is not None: snake_case__ : Any = cpu_offload_with_hook(self.safety_checker , A_ , prev_module_hook=A_ ) # We'll offload the last model manually. snake_case__ : str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(A_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A_ ) def __call__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = 512 , lowerCamelCase = 512 , lowerCamelCase = 100 , lowerCamelCase = 4.0 , lowerCamelCase = 1 , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = "pil" , lowerCamelCase = True , ) -> List[str]: """simple docstring""" if isinstance(A_ , A_ ): snake_case__ : Optional[Any] = 1 elif isinstance(A_ , A_ ): snake_case__ : List[Any] = len(A_ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' ) snake_case__ : str = self._execution_device snake_case__ : Dict = batch_size * num_images_per_prompt snake_case__ : Optional[int] = guidance_scale > 1.0 snake_case__ : Union[str, Any] = self._encode_prompt( A_ , A_ , A_ , A_ , A_ ) if isinstance(A_ , A_ ): snake_case__ : Any = torch.cat(A_ , dim=0 ) if isinstance(A_ , A_ ): snake_case__ : int = torch.cat(A_ , dim=0 ) if do_classifier_free_guidance: snake_case__ : int = image_embeds.repeat_interleave(A_ , dim=0 ) snake_case__ : Optional[Any] = negative_image_embeds.repeat_interleave(A_ , dim=0 ) snake_case__ : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=A_ ) self.scheduler.set_timesteps(A_ , device=A_ ) snake_case__ : Any = self.scheduler.timesteps snake_case__ : Tuple = self.unet.config.in_channels snake_case__ : Union[str, Any] = get_new_h_w(A_ , A_ , self.movq_scale_factor ) # create initial latent snake_case__ : Tuple = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , A_ , A_ , A_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A_ ) ): # expand the latents if we are doing classifier free guidance snake_case__ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case__ : Dict = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} snake_case__ : int = self.unet( sample=A_ , timestep=A_ , encoder_hidden_states=A_ , added_cond_kwargs=A_ , return_dict=A_ , )[0] if do_classifier_free_guidance: snake_case__ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) snake_case__ : str = noise_pred.chunk(2 ) snake_case__ : Optional[int] = variance_pred.chunk(2 ) snake_case__ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case__ : Any = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case__ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case__ : Optional[int] = self.scheduler.step( A_ , A_ , A_ , generator=A_ , ).prev_sample # post-processing snake_case__ : Tuple = self.movq.decode(A_ , force_not_quantize=A_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: snake_case__ : Tuple = image * 0.5 + 0.5 snake_case__ : Union[str, Any] = image.clamp(0 , 1 ) snake_case__ : str = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case__ : Tuple = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
716
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _lowerCAmelCase : str = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") _lowerCAmelCase : Optional[int] = parser.parse_args() _lowerCAmelCase : Union[str, Any] = "cpu" _lowerCAmelCase : List[str] = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" _lowerCAmelCase : Union[str, Any] = "path-to-your-trained-model" _lowerCAmelCase : Tuple = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _lowerCAmelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _lowerCAmelCase : Optional[Any] = pipe.to(device) # to channels last _lowerCAmelCase : Optional[int] = pipe.unet.to(memory_format=torch.channels_last) _lowerCAmelCase : str = pipe.vae.to(memory_format=torch.channels_last) _lowerCAmelCase : List[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _lowerCAmelCase : List[Any] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _lowerCAmelCase : Optional[int] = torch.randn(2, 4, 6_4, 6_4) _lowerCAmelCase : List[str] = torch.rand(1) * 9_9_9 _lowerCAmelCase : Optional[int] = torch.randn(2, 7_7, 7_6_8) _lowerCAmelCase : List[Any] = (sample, timestep, encoder_hidden_status) try: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _lowerCAmelCase : List[str] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _lowerCAmelCase : Tuple = 6_6_6 _lowerCAmelCase : str = torch.Generator(device).manual_seed(seed) _lowerCAmelCase : Dict = {"generator": generator} if args.steps is not None: _lowerCAmelCase : Tuple = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _lowerCAmelCase : Any = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
694
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase : Dict = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
717
'''simple docstring''' import socket def _A ( ): snake_case__ : Any = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) snake_case__ : str = socket.gethostname() snake_case__ : Union[str, Any] = 1_23_12 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: snake_case__ : int = sock.recv(10_24 ) if not data: break out_file.write(snake_case__ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
694
0
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=32 , lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=16 , lowerCamelCase=[32, 64, 128] , lowerCamelCase=[1, 2, 1] , lowerCamelCase=[2, 2, 4] , lowerCamelCase=2 , lowerCamelCase=2.0 , lowerCamelCase=True , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase="gelu" , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=0.02 , lowerCamelCase=1E-5 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=10 , lowerCamelCase=8 , lowerCamelCase=["stage1", "stage2"] , lowerCamelCase=[1, 2] , ) -> Any: """simple docstring""" snake_case__ : str = parent snake_case__ : int = batch_size snake_case__ : int = image_size snake_case__ : Dict = patch_size snake_case__ : Any = num_channels snake_case__ : Optional[Any] = embed_dim snake_case__ : Dict = hidden_sizes snake_case__ : Dict = depths snake_case__ : Optional[Any] = num_heads snake_case__ : Optional[Any] = window_size snake_case__ : List[Any] = mlp_ratio snake_case__ : int = qkv_bias snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : Tuple = drop_path_rate snake_case__ : int = hidden_act snake_case__ : Optional[Any] = use_absolute_embeddings snake_case__ : Union[str, Any] = patch_norm snake_case__ : int = layer_norm_eps snake_case__ : Optional[int] = initializer_range snake_case__ : Any = is_training snake_case__ : Optional[Any] = scope snake_case__ : str = use_labels snake_case__ : Dict = type_sequence_label_size snake_case__ : str = encoder_stride snake_case__ : Tuple = out_features snake_case__ : int = out_indices def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Optional[int] = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Optional[int] = self.get_config() return config, pixel_values, labels def lowercase__ ( self ) -> Any: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: """simple docstring""" snake_case__ : Tuple = FocalNetModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() snake_case__ : List[Any] = model(lowerCamelCase__ ) snake_case__ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case__ : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" snake_case__ : Optional[int] = FocalNetBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() snake_case__ : List[str] = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None snake_case__ : Any = None snake_case__ : Union[str, Any] = FocalNetBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() snake_case__ : List[Any] = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: """simple docstring""" snake_case__ : Dict = FocalNetForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() snake_case__ : Union[str, Any] = model(lowerCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case__ : Optional[int] = 1 snake_case__ : Tuple = FocalNetForMaskedImageModeling(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() snake_case__ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: """simple docstring""" snake_case__ : int = self.type_sequence_label_size snake_case__ : Any = FocalNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() snake_case__ : Optional[int] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ : int = 1 snake_case__ : Dict = FocalNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() snake_case__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : int = self.prepare_config_and_inputs() snake_case__ : str = config_and_inputs snake_case__ : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) _lowerCAmelCase = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Tuple = FocalNetModelTester(self ) snake_case__ : Tuple = ConfigTester(self , config_class=lowerCamelCase__ , embed_dim=37 , has_text_modality=lowerCamelCase__ ) def lowercase__ ( self ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ) -> Any: """simple docstring""" return def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase__ ) def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason='''FocalNet does not use inputs_embeds''' ) def lowercase__ ( self ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='''FocalNet does not use feedforward chunking''' ) def lowercase__ ( self ) -> int: """simple docstring""" pass def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: snake_case__ : Union[str, Any] = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: snake_case__ : Dict = model_class(lowerCamelCase__ ) snake_case__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : int = [*signature.parameters.keys()] snake_case__ : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : int = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): snake_case__ : List[Any] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) snake_case__ : Union[str, Any] = outputs.hidden_states snake_case__ : Union[str, Any] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # FocalNet has a different seq_length snake_case__ : int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) snake_case__ : Optional[Any] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) snake_case__ : Optional[Any] = reshaped_hidden_states[0].shape snake_case__ : Optional[int] = ( reshaped_hidden_states[0].view(lowerCamelCase__ , lowerCamelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: snake_case__ : Union[str, Any] = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : Any = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : int = 3 snake_case__ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case__ : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case__ : Optional[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case__ : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: snake_case__ : int = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : str = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) @slow def lowercase__ ( self ) -> List[str]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Optional[Any] = FocalNetModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase__ ( self ) -> Dict: """simple docstring""" snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Tuple = _config_zero_init(lowerCamelCase__ ) for model_class in self.all_model_classes: snake_case__ : List[str] = model_class(config=lowerCamelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ) -> Tuple: """simple docstring""" return AutoImageProcessor.from_pretrained('''microsoft/focalnet-tiny''' ) if is_vision_available() else None @slow def lowercase__ ( self ) -> Tuple: """simple docstring""" snake_case__ : int = FocalNetForImageClassification.from_pretrained('''microsoft/focalnet-tiny''' ).to(lowerCamelCase__ ) snake_case__ : Tuple = self.default_image_processor snake_case__ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) snake_case__ : List[Any] = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): snake_case__ : Dict = model(**lowerCamelCase__ ) # verify the logits snake_case__ : List[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) snake_case__ : Optional[Any] = torch.tensor([0.2_166, -0.4_368, 0.2_191] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class snake_case ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (FocalNetBackbone,) if is_torch_available() else () _lowerCAmelCase = FocalNetConfig _lowerCAmelCase = False def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : List[str] = FocalNetModelTester(self )
718
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float , ): if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float , ): if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( snake_case__ , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
694
0
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Tuple = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) _lowerCAmelCase : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _A ( snake_case__ : List[Any] ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: snake_case__ : Optional[Any] = model_type_to_module_name(lowercase__ ) snake_case__ : str = importlib.import_module(f'''.{module_name}''' , '''transformers.models''' ) try: return getattr(lowercase__ , lowercase__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowercase__ , '''__name__''' , lowercase__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. snake_case__ : Optional[int] = importlib.import_module('''transformers''' ) if hasattr(lowercase__ , lowercase__ ): return getattr(lowercase__ , lowercase__ ) return None def _A ( snake_case__ : str , snake_case__ : List[str] = None , snake_case__ : Tuple = False , snake_case__ : List[Any] = False , snake_case__ : Dict = None , snake_case__ : Tuple = None , snake_case__ : Optional[Any] = None , snake_case__ : Any = False , **snake_case__ : List[str] , ): snake_case__ : Optional[Any] = get_file_from_repo( lowercase__ , lowercase__ , cache_dir=lowercase__ , force_download=lowercase__ , resume_download=lowercase__ , proxies=lowercase__ , use_auth_token=lowercase__ , revision=lowercase__ , local_files_only=lowercase__ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(lowercase__ , encoding='''utf-8''' ) as reader: return json.load(lowercase__ ) class snake_case : """simple docstring""" def __init__( self ) -> Tuple: """simple docstring""" raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(lowerCAmelCase_ ) def lowercase__ ( cls , lowerCamelCase , **lowerCamelCase ) -> Optional[Any]: """simple docstring""" snake_case__ : Optional[int] = kwargs.pop('''config''' , lowerCAmelCase_ ) snake_case__ : str = kwargs.pop('''trust_remote_code''' , lowerCAmelCase_ ) snake_case__ : List[Any] = True snake_case__ ,snake_case__ : Dict = ImageProcessingMixin.get_image_processor_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) snake_case__ : int = config_dict.get('''image_processor_type''' , lowerCAmelCase_ ) snake_case__ : List[str] = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): snake_case__ : Union[str, Any] = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: snake_case__ : Optional[Any] = config_dict.pop('''feature_extractor_type''' , lowerCAmelCase_ ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) snake_case__ : int = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): snake_case__ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] snake_case__ : Tuple = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): snake_case__ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) # It could be in `config.image_processor_type`` snake_case__ : str = getattr(lowerCAmelCase_ , '''image_processor_type''' , lowerCAmelCase_ ) if hasattr(lowerCAmelCase_ , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: snake_case__ : List[str] = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: snake_case__ : List[Any] = image_processor_class_from_name(lowerCAmelCase_ ) snake_case__ : Union[str, Any] = image_processor_auto_map is not None snake_case__ : Tuple = image_processor_class is not None or type(lowerCAmelCase_ ) in IMAGE_PROCESSOR_MAPPING snake_case__ : List[str] = resolve_trust_remote_code( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if has_remote_code and trust_remote_code: snake_case__ : Optional[int] = get_class_from_dynamic_module( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) snake_case__ : List[Any] = kwargs.pop('''code_revision''' , lowerCAmelCase_ ) if os.path.isdir(lowerCAmelCase_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) elif image_processor_class is not None: return image_processor_class.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(lowerCAmelCase_ ) in IMAGE_PROCESSOR_MAPPING: snake_case__ : Dict = IMAGE_PROCESSOR_MAPPING[type(lowerCAmelCase_ )] return image_processor_class.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowercase__ ( lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(lowerCAmelCase_ , lowerCAmelCase_ )
719
'''simple docstring''' from math import isqrt def _A ( snake_case__ : int ): return all(number % divisor != 0 for divisor in range(2 , isqrt(snake_case__ ) + 1 ) ) def _A ( snake_case__ : int = 10**6 ): snake_case__ : str = 0 snake_case__ : List[str] = 1 snake_case__ : str = 7 while prime_candidate < max_prime: primes_count += is_prime(snake_case__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
694
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _A ( snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case__ : Tuple = ksize + 1 snake_case__ : Optional[Any] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(UpperCamelCase__ ): for x in range(UpperCamelCase__ ): # distance from center snake_case__ : int = x - ksize // 2 snake_case__ : Optional[Any] = y - ksize // 2 # degree to radiant snake_case__ : Dict = theta / 1_80 * np.pi snake_case__ : Dict = np.cos(_theta ) snake_case__ : str = np.sin(_theta ) # get kernel x snake_case__ : List[str] = cos_theta * px + sin_theta * py # get kernel y snake_case__ : Tuple = -sin_theta * px + cos_theta * py # fill kernel snake_case__ : int = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _lowerCAmelCase : int = imread("../image_data/lena.jpg") # turn image in gray scale value _lowerCAmelCase : int = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _lowerCAmelCase : str = np.zeros(gray.shape[:2]) for theta in [0, 3_0, 6_0, 9_0, 1_2_0, 1_5_0]: _lowerCAmelCase : int = gabor_filter_kernel(1_0, 8, theta, 1_0, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _lowerCAmelCase : int = out / out.max() * 2_5_5 _lowerCAmelCase : Tuple = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
720
'''simple docstring''' from sklearn.metrics import fa_score import datasets _lowerCAmelCase : List[Any] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" _lowerCAmelCase : Tuple = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" _lowerCAmelCase : List[str] = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=1 , lowerCamelCase="binary" , lowerCamelCase=None ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = fa_score( lowerCamelCase , lowerCamelCase , labels=lowerCamelCase , pos_label=lowerCamelCase , average=lowerCamelCase , sample_weight=lowerCamelCase ) return {"f1": float(lowerCamelCase ) if score.size == 1 else score}
694
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _lowerCAmelCase : Dict = logging.get_logger(__name__) def _A ( snake_case__ : int ): if isinstance(_UpperCamelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_UpperCamelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_UpperCamelCase ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = ['pixel_values'] def __init__( self , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = 1 / 255 , lowerCamelCase = True , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ) -> None: """simple docstring""" super().__init__(**UpperCAmelCase__ ) snake_case__ : List[Any] = size if size is not None else {'''shortest_edge''': 256} snake_case__ : Optional[Any] = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) snake_case__ : List[str] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} snake_case__ : Optional[int] = get_size_dict(UpperCAmelCase__ , param_name='''crop_size''' ) snake_case__ : Dict = do_resize snake_case__ : List[str] = size snake_case__ : Dict = do_center_crop snake_case__ : Dict = crop_size snake_case__ : str = resample snake_case__ : Optional[Any] = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : Optional[Any] = offset snake_case__ : int = do_normalize snake_case__ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = None , **lowerCamelCase , ) -> np.ndarray: """simple docstring""" snake_case__ : Dict = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "shortest_edge" in size: snake_case__ : Any = get_resize_output_image_size(UpperCAmelCase__ , size['''shortest_edge'''] , default_to_square=UpperCAmelCase__ ) elif "height" in size and "width" in size: snake_case__ : Optional[int] = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ) -> np.ndarray: """simple docstring""" snake_case__ : Tuple = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(UpperCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = True , lowerCamelCase = None , **lowerCamelCase , ) -> Optional[int]: """simple docstring""" snake_case__ : Optional[int] = image.astype(np.floataa ) if offset: snake_case__ : Any = image - (scale / 2) return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ) -> np.ndarray: """simple docstring""" return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. snake_case__ : List[Any] = to_numpy_array(UpperCAmelCase__ ) if do_resize: snake_case__ : Optional[int] = self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) if do_center_crop: snake_case__ : Tuple = self.center_crop(UpperCAmelCase__ , size=UpperCAmelCase__ ) if do_rescale: snake_case__ : Optional[int] = self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , offset=UpperCAmelCase__ ) if do_normalize: snake_case__ : Tuple = self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) snake_case__ : Any = to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) return image def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) -> PIL.Image.Image: """simple docstring""" snake_case__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize snake_case__ : str = resample if resample is not None else self.resample snake_case__ : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ : int = offset if offset is not None else self.offset snake_case__ : Any = do_normalize if do_normalize is not None else self.do_normalize snake_case__ : Any = image_mean if image_mean is not None else self.image_mean snake_case__ : Optional[int] = image_std if image_std is not None else self.image_std snake_case__ : Optional[int] = size if size is not None else self.size snake_case__ : Optional[int] = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) snake_case__ : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case__ : Any = get_size_dict(UpperCAmelCase__ , param_name='''crop_size''' ) if not valid_images(UpperCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) snake_case__ : Optional[int] = make_batched(UpperCAmelCase__ ) snake_case__ : int = [ [ self._preprocess_image( image=UpperCAmelCase__ , do_resize=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , do_center_crop=UpperCAmelCase__ , crop_size=UpperCAmelCase__ , do_rescale=UpperCAmelCase__ , rescale_factor=UpperCAmelCase__ , offset=UpperCAmelCase__ , do_normalize=UpperCAmelCase__ , image_mean=UpperCAmelCase__ , image_std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , ) for img in video ] for video in videos ] snake_case__ : Optional[Any] = {'''pixel_values''': videos} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
721
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 42 class snake_case ( __lowerCamelCase , __lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase = 65536 , lowerCamelCase = None , lowerCamelCase = 2 , lowerCamelCase = 2 , lowerCamelCase = 0 , lowerCamelCase = "fourier" , lowerCamelCase = True , lowerCamelCase = False , lowerCamelCase = 0.0 , lowerCamelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCamelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCamelCase = "UNetMidBlock1D" , lowerCamelCase = None , lowerCamelCase = (32, 32, 64) , lowerCamelCase = None , lowerCamelCase = 8 , lowerCamelCase = 1 , lowerCamelCase = False , ) -> Union[str, Any]: """simple docstring""" super().__init__() snake_case__ : Optional[Any] = sample_size # time if time_embedding_type == "fourier": snake_case__ : Optional[int] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCamelCase , log=lowerCamelCase , flip_sin_to_cos=lowerCamelCase ) snake_case__ : List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": snake_case__ : Dict = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCamelCase , downscale_freq_shift=lowerCamelCase ) snake_case__ : Dict = block_out_channels[0] if use_timestep_embedding: snake_case__ : Any = block_out_channels[0] * 4 snake_case__ : Optional[Any] = TimestepEmbedding( in_channels=lowerCamelCase , time_embed_dim=lowerCamelCase , act_fn=lowerCamelCase , out_dim=block_out_channels[0] , ) snake_case__ : Dict = nn.ModuleList([] ) snake_case__ : List[Any] = None snake_case__ : Union[str, Any] = nn.ModuleList([] ) snake_case__ : List[str] = None # down snake_case__ : Tuple = in_channels for i, down_block_type in enumerate(lowerCamelCase ): snake_case__ : Tuple = output_channel snake_case__ : List[str] = block_out_channels[i] if i == 0: input_channel += extra_in_channels snake_case__ : List[Any] = i == len(lowerCamelCase ) - 1 snake_case__ : Dict = get_down_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCamelCase ) # mid snake_case__ : Optional[int] = get_mid_block( lowerCamelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCamelCase , add_downsample=lowerCamelCase , ) # up snake_case__ : Union[str, Any] = list(reversed(lowerCamelCase ) ) snake_case__ : Any = reversed_block_out_channels[0] if out_block_type is None: snake_case__ : List[Any] = out_channels else: snake_case__ : Dict = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase ): snake_case__ : List[str] = output_channel snake_case__ : List[str] = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase ) - 1 else final_upsample_channels ) snake_case__ : List[str] = i == len(lowerCamelCase ) - 1 snake_case__ : str = get_up_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCamelCase ) snake_case__ : Optional[Any] = output_channel # out snake_case__ : List[Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) snake_case__ : Union[str, Any] = get_out_block( out_block_type=lowerCamelCase , num_groups_out=lowerCamelCase , embed_dim=block_out_channels[0] , out_channels=lowerCamelCase , act_fn=lowerCamelCase , fc_dim=block_out_channels[-1] // 4 , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" snake_case__ : str = timestep if not torch.is_tensor(lowerCamelCase ): snake_case__ : Dict = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCamelCase ) and len(timesteps.shape ) == 0: snake_case__ : Optional[Any] = timesteps[None].to(sample.device ) snake_case__ : Any = self.time_proj(lowerCamelCase ) if self.config.use_timestep_embedding: snake_case__ : Tuple = self.time_mlp(lowerCamelCase ) else: snake_case__ : Union[str, Any] = timestep_embed[..., None] snake_case__ : Dict = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) snake_case__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down snake_case__ : List[Any] = () for downsample_block in self.down_blocks: snake_case__ ,snake_case__ : Optional[int] = downsample_block(hidden_states=lowerCamelCase , temb=lowerCamelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: snake_case__ : Any = self.mid_block(lowerCamelCase , lowerCamelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): snake_case__ : str = down_block_res_samples[-1:] snake_case__ : int = down_block_res_samples[:-1] snake_case__ : Optional[Any] = upsample_block(lowerCamelCase , res_hidden_states_tuple=lowerCamelCase , temb=lowerCamelCase ) # 5. post-process if self.out_block: snake_case__ : Dict = self.out_block(lowerCamelCase , lowerCamelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase )
694
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class snake_case ( metaclass=__a ): """simple docstring""" _lowerCAmelCase = ['transformers', 'torch', 'note_seq'] def __init__( self , *lowerCamelCase , **lowerCamelCase ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def lowercase__ ( cls , *lowerCamelCase , **lowerCamelCase ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def lowercase__ ( cls , *lowerCamelCase , **lowerCamelCase ) -> Any: """simple docstring""" requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
700
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = "The Nymphenburg Palace is a beautiful palace in Munich!" def _A ( snake_case__ : str , snake_case__ : str ): snake_case__ : Tuple = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 10_24, '''hidden_size''': 7_68, '''max_length''': 5_12, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 10_24, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } snake_case__ : List[str] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py snake_case__ : str = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=snake_case__ , output_all_encodings=snake_case__ , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , snake_case__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later snake_case__ : Any = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab snake_case__ : Any = os.path.join(get_home_dir() , '''models''' ) snake_case__ : List[Any] = _load_vocab(snake_case__ , snake_case__ , snake_case__ , cls=snake_case__ ) snake_case__ : Optional[int] = nlp.model.BERTModel( snake_case__ , len(snake_case__ ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=snake_case__ , use_token_type_embed=snake_case__ , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=snake_case__ , use_decoder=snake_case__ , ) original_bort.load_parameters(snake_case__ , cast_dtype=snake_case__ , ignore_extra=snake_case__ ) snake_case__ : Any = original_bort._collect_params_with_prefix() # Build our config 🤗 snake_case__ : Union[str, Any] = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(snake_case__ ), } snake_case__ : Dict = BertConfig.from_dict(snake_case__ ) snake_case__ : Dict = BertForMaskedLM(snake_case__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(snake_case__ : str ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(snake_case__ : List[Any] , snake_case__ : Any ): snake_case__ : Union[str, Any] = hf_param.shape snake_case__ : Any = to_torch(params[gluon_param] ) snake_case__ : Dict = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param snake_case__ : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) snake_case__ : int = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) snake_case__ : str = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) snake_case__ : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) snake_case__ : str = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): snake_case__ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention snake_case__ : BertSelfAttention = layer.attention.self snake_case__ : Optional[Any] = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) snake_case__ : Dict = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) snake_case__ : List[str] = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) snake_case__ : int = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) snake_case__ : List[Any] = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) snake_case__ : List[Any] = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output snake_case__ : BertSelfOutput = layer.attention.output snake_case__ : Optional[Any] = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) snake_case__ : List[str] = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) snake_case__ : Optional[Any] = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) snake_case__ : Any = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate snake_case__ : BertIntermediate = layer.intermediate snake_case__ : int = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) snake_case__ : Optional[int] = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output snake_case__ : BertOutput = layer.output snake_case__ : Any = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) snake_case__ : Tuple = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) snake_case__ : Tuple = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) snake_case__ : Union[str, Any] = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models snake_case__ : Dict = RobertaTokenizer.from_pretrained('''roberta-base''' ) snake_case__ : str = tokenizer.encode_plus(snake_case__ )['''input_ids'''] # Get gluon output snake_case__ : List[str] = mx.nd.array([input_ids] ) snake_case__ : Optional[int] = original_bort(inputs=snake_case__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(snake_case__ ) snake_case__ : Optional[Any] = BertModel.from_pretrained(snake_case__ ) hf_bort_model.eval() snake_case__ : Optional[Any] = tokenizer.encode_plus(snake_case__ , return_tensors='''pt''' ) snake_case__ : str = hf_bort_model(**snake_case__ )[0] snake_case__ : str = output_gluon[0].asnumpy() snake_case__ : str = output_hf[0].detach().numpy() snake_case__ : Tuple = np.max(np.abs(hf_layer - gluon_layer ) ).item() snake_case__ : Optional[Any] = np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , snake_case__ ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
694
0
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _lowerCAmelCase : str = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(4_2) _lowerCAmelCase : Optional[int] = "sshleifer/student_marian_en_ro_6_1" _lowerCAmelCase : str = "sshleifer/tiny-mbart" @require_torch class snake_case ( __lowerCamelCase ): """simple docstring""" def lowercase__ ( self , lowerCamelCase=False , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , ) -> Optional[Any]: """simple docstring""" snake_case__ : str = self.run_trainer( eval_steps=1 , max_len=12 , model_name=lowerCamelCase , num_train_epochs=1 , distributed=lowerCamelCase , extra_args_str=lowerCamelCase , predict_with_generate=lowerCamelCase , do_train=lowerCamelCase , do_eval=lowerCamelCase , do_predict=lowerCamelCase , ) snake_case__ : str = TrainerState.load_from_json(os.path.join(lowerCamelCase , '''trainer_state.json''' ) ).log_history if not do_eval: return snake_case__ : str = [log for log in logs if '''eval_loss''' in log.keys()] snake_case__ : Tuple = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats snake_case__ : Tuple = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , lowerCamelCase ) assert not math.isnan(float(last_step_stats['''eval_loss'''] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowercase__ ( self ) -> Any: """simple docstring""" self.run_seqaseq_quick() @require_torch_multi_gpu def lowercase__ ( self ) -> int: """simple docstring""" self.run_seqaseq_quick(distributed=lowerCamelCase ) @require_torch_multi_gpu def lowercase__ ( self ) -> Dict: """simple docstring""" self.run_seqaseq_quick(distributed=lowerCamelCase ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowercase__ ( self ) -> int: """simple docstring""" self.run_seqaseq_quick(distributed=lowerCamelCase , extra_args_str='''--sharded_ddp simple''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowercase__ ( self ) -> List[Any]: """simple docstring""" self.run_seqaseq_quick(distributed=lowerCamelCase , extra_args_str='''--sharded_ddp simple --fp16''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowercase__ ( self ) -> List[Any]: """simple docstring""" self.run_seqaseq_quick(distributed=lowerCamelCase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=lowerCamelCase ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowercase__ ( self ) -> int: """simple docstring""" self.run_seqaseq_quick( distributed=lowerCamelCase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=lowerCamelCase ) @require_apex @require_torch_gpu def lowercase__ ( self ) -> Dict: """simple docstring""" self.run_seqaseq_quick(distributed=lowerCamelCase , extra_args_str='''--fp16 --fp16_backend=apex''' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=lowerCamelCase , extra_args_str='''--fp16 --fp16_backend=apex''' ) @parameterized.expand(['''base''', '''low''', '''high''', '''mixed'''] ) @require_torch_multi_gpu def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" snake_case__ : str = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } snake_case__ : int = experiments[experiment_id] snake_case__ : int = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} snake_case__ : Optional[int] = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**lowerCamelCase , extra_args_str=data['''extra_args_str'''] ) snake_case__ : List[Any] = len(re.findall(lowerCamelCase , cl.err ) ) self.assertEqual(lowerCamelCase , data['''n_matches'''] ) @slow def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ : List[str] = self.run_trainer( eval_steps=2 , max_len=128 , model_name=lowerCamelCase , learning_rate=3E-4 , num_train_epochs=10 , distributed=lowerCamelCase , ) # Check metrics snake_case__ : Optional[Any] = TrainerState.load_from_json(os.path.join(lowerCamelCase , '''trainer_state.json''' ) ).log_history snake_case__ : Dict = [log for log in logs if '''eval_loss''' in log.keys()] snake_case__ : int = eval_metrics[0] snake_case__ : List[Any] = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , lowerCamelCase ) # test if do_predict saves generations and metrics snake_case__ : List[Any] = os.listdir(lowerCamelCase ) snake_case__ : int = {os.path.basename(lowerCamelCase ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowercase__ ( self ) -> Dict: """simple docstring""" from transformers.training_args import OptimizerNames def train_and_return_metrics(lowerCamelCase ) -> Tuple[int, float]: snake_case__ : Optional[int] = '''--skip_memory_metrics 0''' snake_case__ : Optional[int] = self.run_trainer( max_len=128 , model_name=lowerCamelCase , learning_rate=3E-4 , num_train_epochs=1 , optim=lowerCamelCase , distributed=lowerCamelCase , extra_args_str=lowerCamelCase , do_eval=lowerCamelCase , do_predict=lowerCamelCase , n_gpus_to_use=1 , ) # Check metrics snake_case__ : Optional[int] = TrainerState.load_from_json(Path(lowerCamelCase , '''trainer_state.json''' ) ).log_history snake_case__ : Optional[Any] = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20 ) snake_case__ : Optional[int] = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20 ) snake_case__ : List[str] = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss snake_case__ ,snake_case__ ,snake_case__ : int = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) snake_case__ ,snake_case__ ,snake_case__ : str = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) snake_case__ : str = gpu_alloc_mem_orig - gpu_alloc_mem_bnb snake_case__ : Optional[Any] = gpu_peak_mem_orig + gpu_alloc_mem_orig snake_case__ : List[Any] = gpu_peak_mem_bnb + gpu_alloc_mem_bnb snake_case__ : Any = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings snake_case__ : List[str] = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( lowerCamelCase , lowerCamelCase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( lowerCamelCase , lowerCamelCase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( lowerCamelCase , lowerCamelCase , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 3E-3 , lowerCamelCase = "adafactor" , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = 0 , lowerCamelCase = True , lowerCamelCase = True , lowerCamelCase = True , lowerCamelCase = True , lowerCamelCase = None , ) -> Dict: """simple docstring""" snake_case__ : List[str] = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' snake_case__ : Tuple = self.get_auto_remove_tmp_dir() snake_case__ : List[str] = f''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(lowerCamelCase )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(lowerCamelCase )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() snake_case__ : str = f''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(lowerCamelCase )} '''.split() snake_case__ : Dict = '''\n --do_predict\n '''.split() snake_case__ : int = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: snake_case__ : Tuple = get_gpu_count() snake_case__ : Tuple = get_torch_dist_unique_port() snake_case__ : Dict = f''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() snake_case__ : Tuple = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowerCamelCase , env=self.get_env() ) else: snake_case__ : Union[str, Any] = ['''run_translation.py'''] + args with patch.object(lowerCamelCase , '''argv''' , lowerCamelCase ): main() return output_dir
701
'''simple docstring''' def _A ( snake_case__ : int = 4_00_00_00 ): snake_case__ : int = [] snake_case__ ,snake_case__ : Union[str, Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(snake_case__ ) snake_case__ ,snake_case__ : Any = b, a + b return sum(snake_case__ ) if __name__ == "__main__": print(F'''{solution() = }''')
694
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : Any = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
702
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: _lowerCAmelCase : Any = None _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = "▁" _lowerCAmelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : int = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } _lowerCAmelCase : Optional[int] = { "google/pegasus-xsum": 5_1_2, } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PegasusTokenizer _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<pad>" , lowerCamelCase="</s>" , lowerCamelCase="<unk>" , lowerCamelCase="<mask_2>" , lowerCamelCase="<mask_1>" , lowerCamelCase=None , lowerCamelCase=103 , **lowerCamelCase , ) -> Optional[int]: """simple docstring""" snake_case__ : Tuple = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(lowerCamelCase )}, but is''' f''' {type(lowerCamelCase )}''' ) snake_case__ : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(lowerCamelCase ) , self.offset - 1 ) ] if len(set(lowerCamelCase ) ) != len(lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) snake_case__ : List[Any] = additional_special_tokens_extended else: snake_case__ : Union[str, Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , pad_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , mask_token=lowerCamelCase , mask_token_sent=lowerCamelCase , offset=lowerCamelCase , additional_special_tokens=lowerCamelCase , **lowerCamelCase , ) snake_case__ : Union[str, Any] = vocab_file snake_case__ : List[Any] = False if not self.vocab_file else True def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : Tuple = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : int = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
694
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class snake_case ( a__ ): """simple docstring""" def __init__( self , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = None , **lowerCamelCase , ) -> Any: """simple docstring""" snake_case__ : List[Any] = path_or_paths snake_case__ : Union[str, Any] = split if split or isinstance(lowercase__ , lowercase__ ) else '''train''' snake_case__ : Any = features snake_case__ : Union[str, Any] = cache_dir snake_case__ : int = keep_in_memory snake_case__ : int = streaming snake_case__ : Dict = num_proc snake_case__ : str = kwargs @abstractmethod def lowercase__ ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: """simple docstring""" pass class snake_case ( a__ ): """simple docstring""" def __init__( self , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = None , **lowerCamelCase , ) -> List[Any]: """simple docstring""" snake_case__ : Any = features snake_case__ : int = cache_dir snake_case__ : Any = keep_in_memory snake_case__ : str = streaming snake_case__ : List[Any] = num_proc snake_case__ : Dict = kwargs @abstractmethod def lowercase__ ( self ) -> Union[Dataset, IterableDataset]: """simple docstring""" pass
703
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=0 ) -> Tuple: """simple docstring""" snake_case__ : Optional[Any] = 1.0 if scale is None else scale snake_case__ : Dict = 0.0 if loc is None else loc super().__init__(lowerCamelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase )] ) @property def lowercase__ ( self ) -> Dict: """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" return self.base_dist.variance * self.scale**2 @property def lowercase__ ( self ) -> List[str]: """simple docstring""" return self.variance.sqrt() class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> None: """simple docstring""" super().__init__(**lowerCamelCase ) snake_case__ : Tuple = args_dim snake_case__ : str = nn.ModuleList([nn.Linear(lowerCamelCase , lowerCamelCase ) for dim in args_dim.values()] ) snake_case__ : Optional[int] = domain_map def lowercase__ ( self , lowerCamelCase ) -> Tuple[torch.Tensor]: """simple docstring""" snake_case__ : Any = [proj(lowerCamelCase ) for proj in self.proj] return self.domain_map(*lowerCamelCase ) class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" super().__init__() snake_case__ : Tuple = function def lowercase__ ( self , lowerCamelCase , *lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return self.function(lowerCamelCase , *lowerCamelCase ) class snake_case : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 def __init__( self , lowerCamelCase = 1 ) -> None: """simple docstring""" snake_case__ : Optional[Any] = dim snake_case__ : Tuple = {k: dim * self.args_dim[k] for k in self.args_dim} def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" if self.dim == 1: return self.distribution_class(*lowerCamelCase ) else: return Independent(self.distribution_class(*lowerCamelCase ) , 1 ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , ) -> Distribution: """simple docstring""" snake_case__ : List[Any] = self._base_distribution(lowerCamelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase , loc=lowerCamelCase , scale=lowerCamelCase , event_dim=self.event_dim ) @property def lowercase__ ( self ) -> Tuple: """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def lowercase__ ( self ) -> int: """simple docstring""" return len(self.event_shape ) @property def lowercase__ ( self ) -> float: """simple docstring""" return 0.0 def lowercase__ ( self , lowerCamelCase ) -> nn.Module: """simple docstring""" return ParameterProjection( in_features=lowerCamelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def lowercase__ ( self , *lowerCamelCase ) -> Any: """simple docstring""" raise NotImplementedError() @staticmethod def lowercase__ ( lowerCamelCase ) -> torch.Tensor: """simple docstring""" return (x + torch.sqrt(torch.square(lowerCamelCase ) + 4.0 )) / 2.0 class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"df": 1, "loc": 1, "scale": 1} _lowerCAmelCase = StudentT @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: """simple docstring""" snake_case__ : Tuple = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) snake_case__ : Optional[int] = 2.0 + cls.squareplus(lowerCamelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"loc": 1, "scale": 1} _lowerCAmelCase = Normal @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase ) -> Optional[int]: """simple docstring""" snake_case__ : List[str] = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"total_count": 1, "logits": 1} _lowerCAmelCase = NegativeBinomial @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" snake_case__ : List[str] = cls.squareplus(lowerCamelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def lowercase__ ( self , lowerCamelCase ) -> Distribution: """simple docstring""" snake_case__ ,snake_case__ : str = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase ) else: return Independent(self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase ) , 1 ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None ) -> Distribution: """simple docstring""" snake_case__ ,snake_case__ : Optional[Any] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
694
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : Any = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : str = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } _lowerCAmelCase : Dict = { "facebook/nllb-large-en-ro": 1_0_2_4, "facebook/nllb-200-distilled-600M": 1_0_2_4, } # fmt: off _lowerCAmelCase : int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class snake_case ( _UpperCAmelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = ["""input_ids""", """attention_mask"""] _lowerCAmelCase = NllbTokenizer _lowerCAmelCase = [] _lowerCAmelCase = [] def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=False , **lowerCamelCase , ) -> Any: """simple docstring""" snake_case__ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token snake_case__ : str = legacy_behaviour super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , legacy_behaviour=lowercase__ , **lowercase__ , ) snake_case__ : str = vocab_file snake_case__ : str = False if not self.vocab_file else True snake_case__ : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) snake_case__ : List[Any] = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case__ : Optional[Any] = src_lang if src_lang is not None else """eng_Latn""" snake_case__ : Dict = self.convert_tokens_to_ids(self._src_lang ) snake_case__ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowercase__ ( self ) -> Optional[int]: """simple docstring""" return self._src_lang @src_lang.setter def lowercase__ ( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" snake_case__ : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[Any]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> str: """simple docstring""" snake_case__ : int = [self.sep_token_id] snake_case__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> Optional[int]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) snake_case__ : List[Any] = src_lang snake_case__ : str = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case__ : str = self.convert_tokens_to_ids(lowercase__ ) snake_case__ : List[str] = tgt_lang_id return inputs def lowercase__ ( self , lowerCamelCase , lowerCamelCase = "eng_Latn" , lowerCamelCase = None , lowerCamelCase = "fra_Latn" , **lowerCamelCase , ) -> List[str]: """simple docstring""" snake_case__ : List[Any] = src_lang snake_case__ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def lowercase__ ( self ) -> Optional[int]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowercase__ ( self ) -> List[str]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase__ ( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" snake_case__ : int = self.convert_tokens_to_ids(lowercase__ ) if self.legacy_behaviour: snake_case__ : Dict = [] snake_case__ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] else: snake_case__ : Optional[int] = [self.cur_lang_code] snake_case__ : List[str] = [self.eos_token_id] snake_case__ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case__ : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case__ : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowercase__ ( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" snake_case__ : str = self.convert_tokens_to_ids(lowercase__ ) if self.legacy_behaviour: snake_case__ : Tuple = [] snake_case__ : List[Any] = [self.eos_token_id, self.cur_lang_code] else: snake_case__ : Any = [self.cur_lang_code] snake_case__ : Union[str, Any] = [self.eos_token_id] snake_case__ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case__ : Any = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowercase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return snake_case__ : str = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
704
'''simple docstring''' from math import factorial def _A ( snake_case__ : int = 20 ): snake_case__ : int = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case__ : Union[str, Any] = n // 2 return int(factorial(snake_case__ ) / (factorial(snake_case__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: _lowerCAmelCase : Any = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
694
0
def _A ( snake_case__ : List[str]=2_81_23 ): snake_case__ : Tuple = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i snake_case__ : Any = set() snake_case__ : Union[str, Any] = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(a_ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
705
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = (EulerDiscreteScheduler,) _lowerCAmelCase = 1_0 def lowercase__ ( self , **lowerCamelCase ) -> Tuple: """simple docstring""" snake_case__ : Any = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCamelCase ) return config def lowercase__ ( self ) -> List[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase , beta_end=lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def lowercase__ ( self ) -> str: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Any = self.get_scheduler_config() snake_case__ : int = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ : Dict = torch.manual_seed(0 ) snake_case__ : Any = self.dummy_model() snake_case__ : str = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ : List[Any] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case__ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : int = model(lowerCamelCase , lowerCamelCase ) snake_case__ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Optional[int] = output.prev_sample snake_case__ : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : Tuple = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def lowercase__ ( self ) -> Dict: """simple docstring""" snake_case__ : Tuple = self.scheduler_classes[0] snake_case__ : Optional[Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case__ : int = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ : Optional[Any] = torch.manual_seed(0 ) snake_case__ : Optional[int] = self.dummy_model() snake_case__ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ : Optional[int] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case__ : List[str] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : List[str] = model(lowerCamelCase , lowerCamelCase ) snake_case__ : Union[str, Any] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Union[str, Any] = output.prev_sample snake_case__ : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : List[str] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 0.0_002 ) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6 ) < 1E-3 def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Optional[int] = self.get_scheduler_config() snake_case__ : List[str] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Optional[int] = self.dummy_model() snake_case__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case__ : Tuple = sample.to(lowerCamelCase ) for t in scheduler.timesteps: snake_case__ : List[str] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : str = model(lowerCamelCase , lowerCamelCase ) snake_case__ : int = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : int = output.prev_sample snake_case__ : Union[str, Any] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : int = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Dict = self.scheduler_classes[0] snake_case__ : str = self.get_scheduler_config() snake_case__ : List[Any] = scheduler_class(**lowerCamelCase , use_karras_sigmas=lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Dict = self.dummy_model() snake_case__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case__ : Optional[Any] = sample.to(lowerCamelCase ) for t in scheduler.timesteps: snake_case__ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : Optional[Any] = model(lowerCamelCase , lowerCamelCase ) snake_case__ : str = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Optional[int] = output.prev_sample snake_case__ : Dict = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : Optional[int] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1E-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1E-3
694
0
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _lowerCAmelCase : Dict = get_logger(__name__) def _A ( snake_case__ : List[Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : int , snake_case__ : List[Any]=0 ): os.makedirs(snake_case__ , exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case__ : int = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case__ : str = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' snake_case__ : Dict = os.path.join(snake_case__ , snake_case__ ) if accelerator.process_index == 0: logger.info(f'''Saving model to {output_model_file}''' ) torch.save(snake_case__ , snake_case__ ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case__ : Tuple = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) snake_case__ : Tuple = os.path.join(snake_case__ , snake_case__ ) logger.info(f'''Saving model to {output_model_file}''' ) torch.save(snake_case__ , snake_case__ ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case__ : List[str] = os.path.join(snake_case__ , f'''{MODEL_NAME}_{model_index}''' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) logger.info(f'''Saving model to {ckpt_dir}''' ) snake_case__ : Optional[Any] = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=snake_case__ , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , ) logger.info(f'''Model saved to {ckpt_dir}''' ) def _A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : List[Any]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(snake_case__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return snake_case__ : Union[str, Any] = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' snake_case__ : Tuple = os.path.join(snake_case__ , snake_case__ ) logger.info(f'''Loading model from {input_model_file}''' ) snake_case__ : List[str] = torch.load(snake_case__ ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case__ : Optional[int] = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) snake_case__ : List[Any] = os.path.join(snake_case__ , snake_case__ ) logger.info(f'''Loading model from {input_model_file}''' ) snake_case__ : List[str] = torch.load(snake_case__ ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case__ : Tuple = ( os.path.join(snake_case__ , f'''{MODEL_NAME}_{model_index}''' ) if f'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading model from {ckpt_dir}''' ) snake_case__ : Union[str, Any] = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=snake_case__ , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , planner=DefaultLoadPlanner() , ) snake_case__ : str = state_dict['''model'''] logger.info(f'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(snake_case__ ) def _A ( snake_case__ : str , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Optional[Any]=0 ): os.makedirs(snake_case__ , exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case__ : List[Any] = FSDP.optim_state_dict(snake_case__ , snake_case__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case__ : Union[str, Any] = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) snake_case__ : List[str] = os.path.join(snake_case__ , snake_case__ ) logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(snake_case__ , snake_case__ ) logger.info(f'''Optimizer state saved in {output_optimizer_file}''' ) else: snake_case__ : Optional[int] = os.path.join(snake_case__ , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) logger.info(f'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , ) logger.info(f'''Optimizer state saved in {ckpt_dir}''' ) def _A ( snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : int=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case__ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case__ : Tuple = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) snake_case__ : Dict = os.path.join(snake_case__ , snake_case__ ) logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' ) snake_case__ : Optional[int] = torch.load(snake_case__ ) logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' ) else: snake_case__ : List[Any] = ( os.path.join(snake_case__ , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if f'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading Optimizer from {ckpt_dir}''' ) snake_case__ : Optional[int] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , ) snake_case__ : Union[str, Any] = optim_state['''optimizer'''] logger.info(f'''Optimizer loaded from {ckpt_dir}''' ) snake_case__ : str = FSDP.optim_state_dict_to_load(snake_case__ , snake_case__ , snake_case__ ) optimizer.load_state_dict(snake_case__ )
706
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = ['pixel_values'] def __init__( self , lowerCamelCase = True , lowerCamelCase = 32 , lowerCamelCase=PILImageResampling.BILINEAR , lowerCamelCase = True , **lowerCamelCase , ) -> None: """simple docstring""" snake_case__ : int = do_resize snake_case__ : Dict = do_rescale snake_case__ : Any = size_divisor snake_case__ : str = resample super().__init__(**lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) -> np.ndarray: """simple docstring""" snake_case__ ,snake_case__ : Any = get_image_size(lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor snake_case__ : Any = height // size_divisor * size_divisor snake_case__ : Union[str, Any] = width // size_divisor * size_divisor snake_case__ : Tuple = resize(lowerCamelCase , (new_h, new_w) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) return image def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) -> np.ndarray: """simple docstring""" return rescale(image=lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase=None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) -> BatchFeature: """simple docstring""" snake_case__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize snake_case__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : Any = size_divisor if size_divisor is not None else self.size_divisor snake_case__ : Dict = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) snake_case__ : Optional[Any] = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. snake_case__ : Optional[int] = [to_numpy_array(lowerCamelCase ) for img in images] if do_resize: snake_case__ : Union[str, Any] = [self.resize(lowerCamelCase , size_divisor=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: snake_case__ : str = [self.rescale(lowerCamelCase , scale=1 / 255 ) for image in images] snake_case__ : Tuple = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] snake_case__ : str = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
694
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _lowerCAmelCase = None _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } _lowerCAmelCase = { "camembert-base": 5_1_2, } _lowerCAmelCase = "▁" class snake_case ( _UpperCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] _lowerCAmelCase = CamembertTokenizer def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase=["<s>NOTUSED", "</s>NOTUSED"] , **lowerCamelCase , ) -> str: """simple docstring""" snake_case__ : str = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( __a , tokenizer_file=__a , bos_token=__a , eos_token=__a , sep_token=__a , cls_token=__a , unk_token=__a , pad_token=__a , mask_token=__a , additional_special_tokens=__a , **__a , ) snake_case__ : List[Any] = vocab_file snake_case__ : Tuple = False if not self.vocab_file else True def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Optional[int] = [self.cls_token_id] snake_case__ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" snake_case__ : Union[str, Any] = [self.sep_token_id] snake_case__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
707
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def _A ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : str ): snake_case__ : List[Any] = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}'''
694
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : List[Any] = "▁" _lowerCAmelCase : List[str] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class snake_case ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = BigBirdTokenizer _lowerCAmelCase = BigBirdTokenizerFast _lowerCAmelCase = True _lowerCAmelCase = True def lowercase__ ( self ) -> Optional[int]: """simple docstring""" super().setUp() snake_case__ : Tuple = self.tokenizer_class(_snake_case , keep_accents=_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : str = '''<s>''' snake_case__ : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(_snake_case ) , 1004 ) def lowercase__ ( self ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" if not self.test_rust_tokenizer: return snake_case__ : Any = self.get_tokenizer() snake_case__ : Optional[int] = self.get_rust_tokenizer() snake_case__ : Tuple = '''I was born in 92000, and this is falsé.''' snake_case__ : Any = tokenizer.tokenize(_snake_case ) snake_case__ : Optional[Any] = rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) snake_case__ : List[Any] = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) snake_case__ : List[Any] = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) snake_case__ : Union[str, Any] = self.get_rust_tokenizer() snake_case__ : Dict = tokenizer.encode(_snake_case ) snake_case__ : str = rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : Union[str, Any] = BigBirdTokenizer(_snake_case , keep_accents=_snake_case ) snake_case__ : Any = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case ) , [285, 46, 10, 170, 382] , ) snake_case__ : List[str] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) snake_case__ : Dict = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual( _snake_case , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def lowercase__ ( self ) -> int: """simple docstring""" return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Tuple = '''Hello World!''' snake_case__ : List[str] = [65, 18536, 2260, 101, 66] self.assertListEqual(_snake_case , self.big_tokenizer.encode(_snake_case ) ) @slow def lowercase__ ( self ) -> Dict: """simple docstring""" snake_case__ : int = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off snake_case__ : Optional[Any] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_snake_case , self.big_tokenizer.encode(_snake_case ) ) @require_torch @slow def lowercase__ ( self ) -> Dict: """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence snake_case__ : Tuple = list(self.big_tokenizer.get_vocab().keys() )[:10] snake_case__ : List[str] = ''' '''.join(_snake_case ) snake_case__ : List[str] = self.big_tokenizer.encode_plus(_snake_case , return_tensors='''pt''' , return_token_type_ids=_snake_case ) snake_case__ : Dict = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_snake_case ) snake_case__ : str = BigBirdConfig(attention_type='''original_full''' ) snake_case__ : List[str] = BigBirdModel(_snake_case ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_snake_case ) model(**_snake_case ) @slow def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : Tuple = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) snake_case__ : Optional[Any] = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Optional[Any] = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
708
'''simple docstring''' from __future__ import annotations from collections import namedtuple def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): snake_case__ : Optional[Any] = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
694
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class snake_case ( _lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = 42 class snake_case ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase = 16 , lowerCamelCase = 88 , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = 1 , lowerCamelCase = 0.0 , lowerCamelCase = 32 , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = "geglu" , lowerCamelCase = True , lowerCamelCase = True , ) -> Optional[int]: """simple docstring""" super().__init__() snake_case__ : List[Any] = num_attention_heads snake_case__ : Tuple = attention_head_dim snake_case__ : Union[str, Any] = num_attention_heads * attention_head_dim snake_case__ : Dict = in_channels snake_case__ : str = torch.nn.GroupNorm(num_groups=_lowerCAmelCase , num_channels=_lowerCAmelCase , eps=1E-6 , affine=_lowerCAmelCase ) snake_case__ : Union[str, Any] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase ) # 3. Define transformers blocks snake_case__ : List[str] = nn.ModuleList( [ BasicTransformerBlock( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dropout=_lowerCAmelCase , cross_attention_dim=_lowerCAmelCase , activation_fn=_lowerCAmelCase , attention_bias=_lowerCAmelCase , double_self_attention=_lowerCAmelCase , norm_elementwise_affine=_lowerCAmelCase , ) for d in range(_lowerCAmelCase ) ] ) snake_case__ : List[str] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=1 , lowerCamelCase=None , lowerCamelCase = True , ) -> Tuple: """simple docstring""" snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ : Any = hidden_states.shape snake_case__ : int = batch_frames // num_frames snake_case__ : Union[str, Any] = hidden_states snake_case__ : Union[str, Any] = hidden_states[None, :].reshape(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Dict = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) snake_case__ : List[str] = self.norm(_lowerCAmelCase ) snake_case__ : Dict = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , _lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Any = self.proj_in(_lowerCAmelCase ) # 2. Blocks for block in self.transformer_blocks: snake_case__ : Union[str, Any] = block( _lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , timestep=_lowerCAmelCase , cross_attention_kwargs=_lowerCAmelCase , class_labels=_lowerCAmelCase , ) # 3. Output snake_case__ : List[Any] = self.proj_out(_lowerCAmelCase ) snake_case__ : Tuple = ( hidden_states[None, None, :] .reshape(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) snake_case__ : Tuple = hidden_states.reshape(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Union[str, Any] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=_lowerCAmelCase )
709
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCAmelCase : Union[str, Any] = "\nimport os\n" _lowerCAmelCase : Optional[int] = "\ndef foo():\n import os\n return False\n" _lowerCAmelCase : Union[str, Any] = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" _lowerCAmelCase : str = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" _lowerCAmelCase : str = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" _lowerCAmelCase : Tuple = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" _lowerCAmelCase : List[str] = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" _lowerCAmelCase : Optional[int] = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" _lowerCAmelCase : Optional[int] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" _lowerCAmelCase : List[Any] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" _lowerCAmelCase : Tuple = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , snake_case__ ) def _A ( snake_case__ : List[str] , snake_case__ : Dict ): snake_case__ : str = os.path.join(snake_case__ , '''test_file.py''' ) with open(snake_case__ , '''w''' ) as _tmp_file: _tmp_file.write(snake_case__ ) snake_case__ : int = get_imports(snake_case__ ) assert parsed_imports == ["os"]
694
0
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _A ( snake_case__ : Any ): # A local function to see if a dot lands in the circle. def is_in_circle(snake_case__ : Dict , snake_case__ : str ) -> bool: snake_case__ : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case__ : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(snake_case_ ) ) # The ratio of the area for circle to square is pi/4. snake_case__ : List[str] = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def _A ( snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Union[str, Any] = 0.0 , snake_case__ : List[str] = 1.0 , ): return mean( function_to_integrate(uniform(snake_case_ , snake_case_ ) ) for _ in range(snake_case_ ) ) * (max_value - min_value) def _A ( snake_case__ : List[Any] , snake_case__ : Tuple = 0.0 , snake_case__ : Optional[int] = 1.0 ): def identity_function(snake_case__ : Dict ) -> float: return x snake_case__ : Any = area_under_curve_estimator( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) snake_case__ : Tuple = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print('''******************''' ) def _A ( snake_case__ : Dict ): def function_to_integrate(snake_case__ : Tuple ) -> float: return sqrt(4.0 - x * x ) snake_case__ : Optional[int] = area_under_curve_estimator( snake_case_ , snake_case_ , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Any = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'markuplm' def __init__( self , lowerCamelCase=30522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1E-1_2 , lowerCamelCase=0 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase=256 , lowerCamelCase=1024 , lowerCamelCase=216 , lowerCamelCase=1001 , lowerCamelCase=32 , lowerCamelCase=50 , lowerCamelCase="absolute" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> str: """simple docstring""" super().__init__( pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase , ) snake_case__ : Optional[int] = vocab_size snake_case__ : Tuple = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : List[str] = num_attention_heads snake_case__ : List[Any] = hidden_act snake_case__ : Dict = intermediate_size snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : str = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : List[str] = initializer_range snake_case__ : List[str] = layer_norm_eps snake_case__ : Optional[Any] = position_embedding_type snake_case__ : Dict = use_cache snake_case__ : int = classifier_dropout # additional properties snake_case__ : Union[str, Any] = max_depth snake_case__ : Dict = max_xpath_tag_unit_embeddings snake_case__ : Any = max_xpath_subs_unit_embeddings snake_case__ : int = tag_pad_id snake_case__ : Tuple = subs_pad_id snake_case__ : Dict = xpath_unit_hidden_size
694
0
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = LayoutLMTokenizer _lowerCAmelCase = LayoutLMTokenizerFast _lowerCAmelCase = True _lowerCAmelCase = True def lowercase__ ( self ) -> Any: """simple docstring""" super().setUp() snake_case__ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] snake_case__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self , **lowerCamelCase ) -> Optional[Any]: """simple docstring""" return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowercase__ ( self , lowerCamelCase ) -> Tuple: """simple docstring""" snake_case__ : List[str] = '''UNwant\u00E9d,running''' snake_case__ : Optional[int] = '''unwanted, running''' return input_text, output_text def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[str] = self.tokenizer_class(self.vocab_file ) snake_case__ : Any = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(UpperCamelCase__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self ) -> str: """simple docstring""" pass
711
'''simple docstring''' def _A ( snake_case__ : float ): return 10 - x * x def _A ( snake_case__ : float , snake_case__ : float ): # Bolzano theory in order to find if there is a root between a and b if equation(snake_case__ ) * equation(snake_case__ ) >= 0: raise ValueError('''Wrong space!''' ) snake_case__ : List[str] = a while (b - a) >= 0.01: # Find middle point snake_case__ : Optional[int] = (a + b) / 2 # Check if middle point is root if equation(snake_case__ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case__ ) * equation(snake_case__ ) < 0: snake_case__ : Dict = c else: snake_case__ : List[str] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
694
0
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def _A ( snake_case__ : Any , snake_case__ : Dict=7 ): snake_case__ : Union[str, Any] = None if token is not None: snake_case__ : Any = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) snake_case__ : str = '''636036''' snake_case__ : Tuple = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' snake_case__ : Tuple = requests.get(lowerCamelCase_ , headers=lowerCamelCase_ ).json() return result["workflow_runs"] def _A ( snake_case__ : Optional[Any] ): snake_case__ : List[Any] = get_daily_ci_runs(lowerCamelCase_ ) snake_case__ : int = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": snake_case__ : Any = workflow_run['''id'''] break return workflow_run_id def _A ( snake_case__ : List[Any] , snake_case__ : int , snake_case__ : List[str] ): snake_case__ : List[Any] = get_last_daily_ci_runs(lowerCamelCase_ ) if workflow_run_id is not None: snake_case__ : Optional[int] = get_artifacts_links(worflow_run_id=lowerCamelCase_ , token=lowerCamelCase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: snake_case__ : int = artifacts_links[artifact_name] download_artifact( artifact_name=lowerCamelCase_ , artifact_url=lowerCamelCase_ , output_dir=lowerCamelCase_ , token=lowerCamelCase_ ) def _A ( snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any ): get_last_daily_ci_artifacts(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) snake_case__ : Dict = {} for artifact_name in artifact_names: snake_case__ : Dict = os.path.join(lowerCamelCase_ , f'''{artifact_name}.zip''' ) if os.path.isfile(lowerCamelCase_ ): snake_case__ : Dict = {} with zipfile.ZipFile(lowerCamelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase_ ): # read the file with z.open(lowerCamelCase_ ) as f: snake_case__ : Union[str, Any] = f.read().decode('''UTF-8''' ) return results
712
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : list[float] , snake_case__ : list[float] ): snake_case__ : Dict = sorted(numsa + numsa ) snake_case__ ,snake_case__ : Tuple = divmod(len(snake_case__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Tuple = [float(x) for x in input("Enter the elements of first array: ").split()] _lowerCAmelCase : List[str] = [float(x) for x in input("Enter the elements of second array: ").split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
694
0
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _lowerCAmelCase : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _lowerCAmelCase : str = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _lowerCAmelCase : Tuple = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _lowerCAmelCase : List[Any] = train_datagen.flow_from_directory( "dataset/training_set", target_size=(6_4, 6_4), batch_size=3_2, class_mode="binary" ) _lowerCAmelCase : Tuple = test_datagen.flow_from_directory( "dataset/test_set", target_size=(6_4, 6_4), batch_size=3_2, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions _lowerCAmelCase : Tuple = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(6_4, 6_4) ) _lowerCAmelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image) _lowerCAmelCase : Tuple = np.expand_dims(test_image, axis=0) _lowerCAmelCase : Optional[Any] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _lowerCAmelCase : Dict = "Normal" if result[0][0] == 1: _lowerCAmelCase : Tuple = "Abnormality detected"
713
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Any = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
694
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class snake_case ( __lowercase ): """simple docstring""" _lowerCAmelCase = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} ) _lowerCAmelCase = Features({'audio': Audio()} ) _lowerCAmelCase = Features({'transcription': Value('string' )} ) _lowerCAmelCase = "audio" _lowerCAmelCase = "transcription" def lowercase__ ( self , lowerCamelCase ) -> Tuple: """simple docstring""" if self.audio_column not in features: raise ValueError(f'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , __A ): raise ValueError(f'''Column {self.audio_column} is not an Audio type.''' ) snake_case__ : str = copy.deepcopy(self ) snake_case__ : Union[str, Any] = self.input_schema.copy() snake_case__ : Dict = features[self.audio_column] snake_case__ : Dict = input_schema return task_template @property def lowercase__ ( self ) -> Dict[str, str]: """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
714
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'encoder-decoder' _lowerCAmelCase = True def __init__( self , **lowerCamelCase ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" snake_case__ : List[str] = kwargs.pop('''encoder''' ) snake_case__ : Any = encoder_config.pop('''model_type''' ) snake_case__ : List[str] = kwargs.pop('''decoder''' ) snake_case__ : str = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig snake_case__ : Tuple = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) snake_case__ : Optional[Any] = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) snake_case__ : str = True @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> PretrainedConfig: """simple docstring""" logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) snake_case__ : Optional[int] = True snake_case__ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[Any] = copy.deepcopy(self.__dict__ ) snake_case__ : List[Any] = self.encoder.to_dict() snake_case__ : str = self.decoder.to_dict() snake_case__ : Any = self.__class__.model_type return output
694
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _lowerCAmelCase : Tuple = 2_5_0_0_0_4 _lowerCAmelCase : List[Any] = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class snake_case ( UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = MBartaaTokenizer _lowerCAmelCase = MBartaaTokenizerFast _lowerCAmelCase = True _lowerCAmelCase = True def lowercase__ ( self ) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing snake_case__ : int = MBartaaTokenizer(__A , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=__A ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : Optional[Any] = '''<s>''' snake_case__ : Any = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__A ) , __A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__A ) , __A ) def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__A ) , 1054 ) def lowercase__ ( self ) -> int: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : Optional[int] = MBartaaTokenizer(__A , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=__A ) snake_case__ : Tuple = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) snake_case__ : Optional[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __A , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) snake_case__ : Optional[Any] = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual( __A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) snake_case__ : List[Any] = tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual( __A , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : Optional[Any] = {'''input_ids''': [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__A , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def lowercase__ ( self ) -> int: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case__ : Dict = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case__ : str = self.rust_tokenizer_class.from_pretrained(__A , **__A ) snake_case__ : List[str] = self.tokenizer_class.from_pretrained(__A , **__A ) snake_case__ : Optional[int] = tempfile.mkdtemp() snake_case__ : Union[str, Any] = tokenizer_r.save_pretrained(__A ) snake_case__ : Optional[int] = tokenizer_p.save_pretrained(__A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) snake_case__ : Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__A , __A ) # Checks everything loads correctly in the same way snake_case__ : Tuple = tokenizer_r.from_pretrained(__A ) snake_case__ : Dict = tokenizer_p.from_pretrained(__A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__A , __A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__A ) # Save tokenizer rust, legacy_format=True snake_case__ : str = tempfile.mkdtemp() snake_case__ : Optional[int] = tokenizer_r.save_pretrained(__A , legacy_format=__A ) snake_case__ : Optional[int] = tokenizer_p.save_pretrained(__A ) # Checks it save with the same files self.assertSequenceEqual(__A , __A ) # Checks everything loads correctly in the same way snake_case__ : Dict = tokenizer_r.from_pretrained(__A ) snake_case__ : Union[str, Any] = tokenizer_p.from_pretrained(__A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__A , __A ) ) shutil.rmtree(__A ) # Save tokenizer rust, legacy_format=False snake_case__ : Union[str, Any] = tempfile.mkdtemp() snake_case__ : List[Any] = tokenizer_r.save_pretrained(__A , legacy_format=__A ) snake_case__ : Optional[int] = tokenizer_p.save_pretrained(__A ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case__ : Union[str, Any] = tokenizer_r.from_pretrained(__A ) snake_case__ : Any = tokenizer_p.from_pretrained(__A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__A , __A ) ) shutil.rmtree(__A ) @require_torch @require_sentencepiece @require_tokenizers class snake_case ( unittest.TestCase ): """simple docstring""" _lowerCAmelCase = 'facebook/mbart-large-50-one-to-many-mmt' _lowerCAmelCase = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] _lowerCAmelCase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] _lowerCAmelCase = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def lowercase__ ( cls ) -> Any: """simple docstring""" snake_case__ : Tuple = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) snake_case__ : int = 1 return cls def lowercase__ ( self ) -> str: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 250038 ) def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __A ) def lowercase__ ( self ) -> Tuple: """simple docstring""" self.assertIn(__A , self.tokenizer.all_special_ids ) snake_case__ : List[str] = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] snake_case__ : int = self.tokenizer.decode(__A , skip_special_tokens=__A ) snake_case__ : Optional[int] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__A ) self.assertEqual(__A , __A ) self.assertNotIn(self.tokenizer.eos_token , __A ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Dict = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , __A ) snake_case__ : int = 10 snake_case__ : Union[str, Any] = self.tokenizer(__A , max_length=__A , truncation=__A ).input_ids[0] self.assertEqual(ids[0] , __A ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__A ) , __A ) def lowercase__ ( self ) -> List[str]: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250053, 250001] ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : str = tempfile.mkdtemp() snake_case__ : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__A ) snake_case__ : str = MBartaaTokenizer.from_pretrained(__A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __A ) @require_torch def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ : Union[str, Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__A , return_tensors='''pt''' ) snake_case__ : Tuple = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : Union[str, Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__A , truncation=__A , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) snake_case__ : Any = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(__A , __A ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) snake_case__ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __A ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def lowercase__ ( self ) -> Tuple: """simple docstring""" snake_case__ : Optional[Any] = self.tokenizer(self.src_text , padding=__A , truncation=__A , max_length=3 , return_tensors='''pt''' ) snake_case__ : List[Any] = self.tokenizer( text_target=self.tgt_text , padding=__A , truncation=__A , max_length=10 , return_tensors='''pt''' ) snake_case__ : List[str] = targets['''input_ids'''] snake_case__ : int = shift_tokens_right(__A , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : List[str] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(__A ) , { # en_XX, A, test, EOS '''input_ids''': [[250004, 62, 3034, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250001, } , )
715
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = "▁" _lowerCAmelCase : Dict = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} _lowerCAmelCase : Dict = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } _lowerCAmelCase : str = {"vinai/bartpho-syllable": 1_0_2_4} class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase = None , **lowerCamelCase , ) -> None: """simple docstring""" snake_case__ : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token snake_case__ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , ) snake_case__ : int = vocab_file snake_case__ : Optional[Any] = monolingual_vocab_file snake_case__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility snake_case__ : Dict = {} snake_case__ : Union[str, Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : List[str] = cnt cnt += 1 with open(lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): snake_case__ : Optional[int] = line.strip().split()[0] snake_case__ : List[Any] = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : Any = len(self.fairseq_tokens_to_ids ) snake_case__ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: """simple docstring""" snake_case__ : int = self.__dict__.copy() snake_case__ : Any = None snake_case__ : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case__ : Dict = {} snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : str = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" snake_case__ : List[str] = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self ) -> Optional[int]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : int = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCamelCase , out_type=lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowercase__ ( self , lowerCamelCase ) -> str: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : List[Any] = ''''''.join(lowerCamelCase ).replace(lowerCamelCase , ''' ''' ).strip() return out_string def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case__ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase , '''wb''' ) as fi: snake_case__ : Dict = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(lowerCamelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
694
0
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _lowerCAmelCase : List[str] = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class snake_case : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ ,snake_case__ ,snake_case__ : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Union[str, Any]: """simple docstring""" return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def lowercase__ ( self ) -> Tuple: """simple docstring""" return self.major, self.minor, self.patch def lowercase__ ( self , lowerCamelCase ) -> Optional[Any]: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return Version(__SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return other raise TypeError(f'''{other} (type {type(__SCREAMING_SNAKE_CASE )}) cannot be compared to version.''' ) def __eq__( self , lowerCamelCase ) -> List[Any]: """simple docstring""" try: snake_case__ : List[str] = self._validate_operand(__SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : Dict = self._validate_operand(__SCREAMING_SNAKE_CASE ) return self.tuple < other.tuple def __hash__( self ) -> Dict: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase__ ( cls , lowerCamelCase ) -> Optional[int]: """simple docstring""" snake_case__ : List[str] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase__ ( self ) -> Dict: """simple docstring""" return self.version_str def _A ( snake_case__ : Dict ): snake_case__ : Optional[int] = _VERSION_REG.match(_UpperCAmelCase ) if not res: raise ValueError(f'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_UpperCAmelCase ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def _A ( snake_case__ : str ): return ".".join(str(_UpperCAmelCase ) for v in version_tuple )
716
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _lowerCAmelCase : str = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") _lowerCAmelCase : Optional[int] = parser.parse_args() _lowerCAmelCase : Union[str, Any] = "cpu" _lowerCAmelCase : List[str] = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" _lowerCAmelCase : Union[str, Any] = "path-to-your-trained-model" _lowerCAmelCase : Tuple = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _lowerCAmelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _lowerCAmelCase : Optional[Any] = pipe.to(device) # to channels last _lowerCAmelCase : Optional[int] = pipe.unet.to(memory_format=torch.channels_last) _lowerCAmelCase : str = pipe.vae.to(memory_format=torch.channels_last) _lowerCAmelCase : List[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _lowerCAmelCase : List[Any] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _lowerCAmelCase : Optional[int] = torch.randn(2, 4, 6_4, 6_4) _lowerCAmelCase : List[str] = torch.rand(1) * 9_9_9 _lowerCAmelCase : Optional[int] = torch.randn(2, 7_7, 7_6_8) _lowerCAmelCase : List[Any] = (sample, timestep, encoder_hidden_status) try: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _lowerCAmelCase : List[str] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _lowerCAmelCase : Tuple = 6_6_6 _lowerCAmelCase : str = torch.Generator(device).manual_seed(seed) _lowerCAmelCase : Dict = {"generator": generator} if args.steps is not None: _lowerCAmelCase : Tuple = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _lowerCAmelCase : Any = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
694
0
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__) class snake_case ( UpperCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase=-1 ) -> Dict: """simple docstring""" snake_case__ : List[Any] = label_idx def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> List[InputExample]: """simple docstring""" if isinstance(__a , __a ): snake_case__ : Dict = mode.value snake_case__ : Tuple = os.path.join(__a , f'''{mode}.txt''' ) snake_case__ : Any = 1 snake_case__ : int = [] with open(__a , encoding='''utf-8''' ) as f: snake_case__ : int = [] snake_case__ : int = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=__a , labels=__a ) ) guid_index += 1 snake_case__ : Optional[Any] = [] snake_case__ : int = [] else: snake_case__ : List[Any] = line.split(''' ''' ) words.append(splits[0] ) if len(__a ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=__a , labels=__a ) ) return examples def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: """simple docstring""" snake_case__ : List[Any] = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(__a ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: snake_case__ : List[Any] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(__a ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" if path: with open(__a , '''r''' ) as f: snake_case__ : Tuple = f.read().splitlines() if "O" not in labels: snake_case__ : Union[str, Any] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class snake_case ( UpperCamelCase_ ): """simple docstring""" def __init__( self ) -> str: """simple docstring""" super().__init__(label_idx=-2 ) def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" if path: with open(__a , '''r''' ) as f: snake_case__ : Any = f.read().splitlines() if "O" not in labels: snake_case__ : List[Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class snake_case ( UpperCamelCase_ ): """simple docstring""" def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> List[InputExample]: """simple docstring""" if isinstance(__a , __a ): snake_case__ : List[Any] = mode.value snake_case__ : Dict = os.path.join(__a , f'''{mode}.txt''' ) snake_case__ : Union[str, Any] = 1 snake_case__ : Union[str, Any] = [] with open(__a , encoding='''utf-8''' ) as f: for sentence in parse_incr(__a ): snake_case__ : Any = [] snake_case__ : Dict = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(__a ) == len(__a ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=__a , labels=__a ) ) guid_index += 1 return examples def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: """simple docstring""" snake_case__ : int = 0 for sentence in parse_incr(__a ): snake_case__ : Optional[Any] = preds_list[example_id] snake_case__ : Any = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(__a ) example_id += 1 def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" if path: with open(__a , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
717
'''simple docstring''' import socket def _A ( ): snake_case__ : Any = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) snake_case__ : str = socket.gethostname() snake_case__ : Union[str, Any] = 1_23_12 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: snake_case__ : int = sock.recv(10_24 ) if not data: break out_file.write(snake_case__ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
694
0
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _lowerCAmelCase : Optional[Any] = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex _lowerCAmelCase : List[Any] = 1_0 _lowerCAmelCase : Optional[Any] = 2_5_6 def _A ( snake_case__ : List[Any] ): if len(_lowercase ) < MIN_NUM_TOKENS: return None snake_case__ : Dict = MinHash(num_perm=_lowercase ) for token in set(_lowercase ): min_hash.update(token.encode() ) return min_hash def _A ( snake_case__ : Union[str, Any] ): return {t for t in NON_ALPHA.split(_lowercase ) if len(t.strip() ) > 0} class snake_case : """simple docstring""" def __init__( self , *, lowerCamelCase = 0.85 , ) -> str: """simple docstring""" snake_case__ : Optional[int] = duplication_jaccard_threshold snake_case__ : int = NUM_PERM snake_case__ : str = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case__ : int = defaultdict(__A ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> None: """simple docstring""" snake_case__ : Optional[int] = self._index.query(__A ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(__A , __A ) if len(__A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__A ) break else: self._duplicate_clusters[close_duplicates[0]].add(__A ) def lowercase__ ( self ) -> List[List[Dict]]: """simple docstring""" snake_case__ : List[str] = [] for base, duplicates in self._duplicate_clusters.items(): snake_case__ : Union[str, Any] = [base] + list(__A ) # reformat the cluster to be a list of dict snake_case__ : Dict = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__A ) return duplicate_clusters def lowercase__ ( self , lowerCamelCase ) -> None: """simple docstring""" snake_case__ : Tuple = self.get_duplicate_clusters() with open(__A , '''w''' ) as f: json.dump(__A , __A ) def _A ( snake_case__ : Union[str, Any] ): snake_case__ ,snake_case__ : List[Any] = element snake_case__ : List[str] = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _A ( snake_case__ : int ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_lowercase , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def _A ( snake_case__ : Optional[int] , snake_case__ : List[Any] ): snake_case__ : Tuple = DuplicationIndex(duplication_jaccard_threshold=_lowercase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_lowercase ) ) , max_queue_size=1_00 ) ): di.add(_lowercase , _lowercase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _A ( snake_case__ : Any , snake_case__ : Optional[int] ): snake_case__ : Any = get_tokens(_lowercase ) snake_case__ : List[Any] = get_tokens(_lowercase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _lowerCAmelCase : str = None def _A ( snake_case__ : int , snake_case__ : List[Any] ): snake_case__ : Optional[Any] = [] for elementa in cluster: snake_case__ : str = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: snake_case__ : int = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(_lowercase , _lowercase ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case__ : int = 1 extremes.append(_lowercase ) return extremes def _A ( snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : Any ): global _shared_dataset snake_case__ : List[str] = dataset snake_case__ : List[str] = [] snake_case__ : List[Any] = partial(_find_cluster_extremes_shared , jaccard_threshold=_lowercase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _lowercase , _lowercase , ) , total=len(_lowercase ) , ): extremes_list.append(_lowercase ) return extremes_list def _A ( snake_case__ : str , snake_case__ : str = 0.85 ): snake_case__ : Any = make_duplicate_clusters(_lowercase , _lowercase ) snake_case__ : Dict = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} snake_case__ : Optional[Any] = {} snake_case__ : List[str] = find_extremes(_lowercase , _lowercase , _lowercase ) for extremes in extremes_clusters: for element in extremes: snake_case__ : str = element snake_case__ : Union[str, Any] = duplicate_indices - set(extreme_dict.keys() ) snake_case__ : Dict = dataset.filter(lambda snake_case__ , snake_case__ : idx not in remove_indices , with_indices=_lowercase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case__ : Tuple = element['''base_index'''] in extreme_dict if element["is_extreme"]: snake_case__ : int = extreme_dict[element['''base_index''']]['''copies'''] print(f'''Original dataset size: {len(_lowercase )}''' ) print(f'''Number of duplicate clusters: {len(_lowercase )}''' ) print(f'''Files in duplicate cluster: {len(_lowercase )}''' ) print(f'''Unique files in duplicate cluster: {len(_lowercase )}''' ) print(f'''Filtered dataset size: {len(_lowercase )}''' ) return ds_filter, duplicate_clusters
718
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float , ): if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float , ): if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( snake_case__ , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
694
0
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": _lowerCAmelCase : Dict = input("Enter image url: ").strip() print(F'Downloading image from {url} ...') _lowerCAmelCase : str = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image _lowerCAmelCase : Tuple = soup.find("meta", {"property": "og:image"})["content"] _lowerCAmelCase : List[str] = requests.get(image_url).content _lowerCAmelCase : List[Any] = F'{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg' with open(file_name, "wb") as fp: fp.write(image_data) print(F'Done. Image saved to disk as {file_name}.')
719
'''simple docstring''' from math import isqrt def _A ( snake_case__ : int ): return all(number % divisor != 0 for divisor in range(2 , isqrt(snake_case__ ) + 1 ) ) def _A ( snake_case__ : int = 10**6 ): snake_case__ : str = 0 snake_case__ : List[str] = 1 snake_case__ : str = 7 while prime_candidate < max_prime: primes_count += is_prime(snake_case__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
694
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
'''simple docstring''' from sklearn.metrics import fa_score import datasets _lowerCAmelCase : List[Any] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" _lowerCAmelCase : Tuple = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" _lowerCAmelCase : List[str] = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=1 , lowerCamelCase="binary" , lowerCamelCase=None ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = fa_score( lowerCamelCase , lowerCamelCase , labels=lowerCamelCase , pos_label=lowerCamelCase , average=lowerCamelCase , sample_weight=lowerCamelCase ) return {"f1": float(lowerCamelCase ) if score.size == 1 else score}
694
0
'''simple docstring''' import requests def _A ( snake_case__ : str , snake_case__ : str ): snake_case__ : int = {'''Content-Type''': '''application/json'''} snake_case__ : List[Any] = requests.post(lowerCAmelCase__ , json={'''text''': message_body} , headers=lowerCAmelCase__ ) if response.status_code != 2_00: snake_case__ : List[str] = ( '''Request to slack returned an error ''' f'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
721
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 42 class snake_case ( __lowerCamelCase , __lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase = 65536 , lowerCamelCase = None , lowerCamelCase = 2 , lowerCamelCase = 2 , lowerCamelCase = 0 , lowerCamelCase = "fourier" , lowerCamelCase = True , lowerCamelCase = False , lowerCamelCase = 0.0 , lowerCamelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCamelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCamelCase = "UNetMidBlock1D" , lowerCamelCase = None , lowerCamelCase = (32, 32, 64) , lowerCamelCase = None , lowerCamelCase = 8 , lowerCamelCase = 1 , lowerCamelCase = False , ) -> Union[str, Any]: """simple docstring""" super().__init__() snake_case__ : Optional[Any] = sample_size # time if time_embedding_type == "fourier": snake_case__ : Optional[int] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCamelCase , log=lowerCamelCase , flip_sin_to_cos=lowerCamelCase ) snake_case__ : List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": snake_case__ : Dict = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCamelCase , downscale_freq_shift=lowerCamelCase ) snake_case__ : Dict = block_out_channels[0] if use_timestep_embedding: snake_case__ : Any = block_out_channels[0] * 4 snake_case__ : Optional[Any] = TimestepEmbedding( in_channels=lowerCamelCase , time_embed_dim=lowerCamelCase , act_fn=lowerCamelCase , out_dim=block_out_channels[0] , ) snake_case__ : Dict = nn.ModuleList([] ) snake_case__ : List[Any] = None snake_case__ : Union[str, Any] = nn.ModuleList([] ) snake_case__ : List[str] = None # down snake_case__ : Tuple = in_channels for i, down_block_type in enumerate(lowerCamelCase ): snake_case__ : Tuple = output_channel snake_case__ : List[str] = block_out_channels[i] if i == 0: input_channel += extra_in_channels snake_case__ : List[Any] = i == len(lowerCamelCase ) - 1 snake_case__ : Dict = get_down_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCamelCase ) # mid snake_case__ : Optional[int] = get_mid_block( lowerCamelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCamelCase , add_downsample=lowerCamelCase , ) # up snake_case__ : Union[str, Any] = list(reversed(lowerCamelCase ) ) snake_case__ : Any = reversed_block_out_channels[0] if out_block_type is None: snake_case__ : List[Any] = out_channels else: snake_case__ : Dict = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase ): snake_case__ : List[str] = output_channel snake_case__ : List[str] = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase ) - 1 else final_upsample_channels ) snake_case__ : List[str] = i == len(lowerCamelCase ) - 1 snake_case__ : str = get_up_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCamelCase ) snake_case__ : Optional[Any] = output_channel # out snake_case__ : List[Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) snake_case__ : Union[str, Any] = get_out_block( out_block_type=lowerCamelCase , num_groups_out=lowerCamelCase , embed_dim=block_out_channels[0] , out_channels=lowerCamelCase , act_fn=lowerCamelCase , fc_dim=block_out_channels[-1] // 4 , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" snake_case__ : str = timestep if not torch.is_tensor(lowerCamelCase ): snake_case__ : Dict = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCamelCase ) and len(timesteps.shape ) == 0: snake_case__ : Optional[Any] = timesteps[None].to(sample.device ) snake_case__ : Any = self.time_proj(lowerCamelCase ) if self.config.use_timestep_embedding: snake_case__ : Tuple = self.time_mlp(lowerCamelCase ) else: snake_case__ : Union[str, Any] = timestep_embed[..., None] snake_case__ : Dict = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) snake_case__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down snake_case__ : List[Any] = () for downsample_block in self.down_blocks: snake_case__ ,snake_case__ : Optional[int] = downsample_block(hidden_states=lowerCamelCase , temb=lowerCamelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: snake_case__ : Any = self.mid_block(lowerCamelCase , lowerCamelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): snake_case__ : str = down_block_res_samples[-1:] snake_case__ : int = down_block_res_samples[:-1] snake_case__ : Optional[Any] = upsample_block(lowerCamelCase , res_hidden_states_tuple=lowerCamelCase , temb=lowerCamelCase ) # 5. post-process if self.out_block: snake_case__ : Dict = self.out_block(lowerCamelCase , lowerCamelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase )
694
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCAmelCase : Union[str, Any] = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = ["""MobileViTFeatureExtractor"""] _lowerCAmelCase : Dict = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _lowerCAmelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
700
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = "The Nymphenburg Palace is a beautiful palace in Munich!" def _A ( snake_case__ : str , snake_case__ : str ): snake_case__ : Tuple = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 10_24, '''hidden_size''': 7_68, '''max_length''': 5_12, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 10_24, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } snake_case__ : List[str] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py snake_case__ : str = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=snake_case__ , output_all_encodings=snake_case__ , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , snake_case__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later snake_case__ : Any = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab snake_case__ : Any = os.path.join(get_home_dir() , '''models''' ) snake_case__ : List[Any] = _load_vocab(snake_case__ , snake_case__ , snake_case__ , cls=snake_case__ ) snake_case__ : Optional[int] = nlp.model.BERTModel( snake_case__ , len(snake_case__ ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=snake_case__ , use_token_type_embed=snake_case__ , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=snake_case__ , use_decoder=snake_case__ , ) original_bort.load_parameters(snake_case__ , cast_dtype=snake_case__ , ignore_extra=snake_case__ ) snake_case__ : Any = original_bort._collect_params_with_prefix() # Build our config 🤗 snake_case__ : Union[str, Any] = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(snake_case__ ), } snake_case__ : Dict = BertConfig.from_dict(snake_case__ ) snake_case__ : Dict = BertForMaskedLM(snake_case__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(snake_case__ : str ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(snake_case__ : List[Any] , snake_case__ : Any ): snake_case__ : Union[str, Any] = hf_param.shape snake_case__ : Any = to_torch(params[gluon_param] ) snake_case__ : Dict = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param snake_case__ : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) snake_case__ : int = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) snake_case__ : str = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) snake_case__ : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) snake_case__ : str = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): snake_case__ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention snake_case__ : BertSelfAttention = layer.attention.self snake_case__ : Optional[Any] = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) snake_case__ : Dict = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) snake_case__ : List[str] = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) snake_case__ : int = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) snake_case__ : List[Any] = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) snake_case__ : List[Any] = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output snake_case__ : BertSelfOutput = layer.attention.output snake_case__ : Optional[Any] = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) snake_case__ : List[str] = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) snake_case__ : Optional[Any] = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) snake_case__ : Any = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate snake_case__ : BertIntermediate = layer.intermediate snake_case__ : int = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) snake_case__ : Optional[int] = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output snake_case__ : BertOutput = layer.output snake_case__ : Any = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) snake_case__ : Tuple = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) snake_case__ : Tuple = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) snake_case__ : Union[str, Any] = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models snake_case__ : Dict = RobertaTokenizer.from_pretrained('''roberta-base''' ) snake_case__ : str = tokenizer.encode_plus(snake_case__ )['''input_ids'''] # Get gluon output snake_case__ : List[str] = mx.nd.array([input_ids] ) snake_case__ : Optional[int] = original_bort(inputs=snake_case__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(snake_case__ ) snake_case__ : Optional[Any] = BertModel.from_pretrained(snake_case__ ) hf_bort_model.eval() snake_case__ : Optional[Any] = tokenizer.encode_plus(snake_case__ , return_tensors='''pt''' ) snake_case__ : str = hf_bort_model(**snake_case__ )[0] snake_case__ : str = output_gluon[0].asnumpy() snake_case__ : str = output_hf[0].detach().numpy() snake_case__ : Tuple = np.max(np.abs(hf_layer - gluon_layer ) ).item() snake_case__ : Optional[Any] = np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , snake_case__ ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
694
0
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters _lowerCAmelCase : List[Any] = logging.get_logger(__name__) def _A ( snake_case__ : Any , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Dict=None , snake_case__ : List[Any]=None ): # Recurse if needed if "." in tensor_name: snake_case__ : Dict = tensor_name.split('''.''' ) for split in splits[:-1]: snake_case__ : str = getattr(snake_case__ , snake_case__ ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) snake_case__ : Tuple = new_module snake_case__ : int = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'''{module} does not have a parameter or a buffer named {tensor_name}.''' ) snake_case__ : Union[str, Any] = tensor_name in module._buffers snake_case__ : Optional[Any] = getattr(snake_case__ , snake_case__ ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' ) snake_case__ : Any = False snake_case__ : List[str] = False if is_buffer or not is_bitsandbytes_available(): snake_case__ : str = False snake_case__ : List[Any] = False else: snake_case__ : Tuple = hasattr(bnb.nn , '''Params4bit''' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) snake_case__ : Dict = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: snake_case__ : List[Any] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: snake_case__ : int = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): snake_case__ : List[Any] = value.to('''cpu''' ) if value.dtype == torch.inta: snake_case__ : str = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: snake_case__ : Tuple = torch.tensor(snake_case__ , device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None: snake_case__ : int = new_value.T snake_case__ : Union[str, Any] = old_value.__dict__ if is_abit: snake_case__ : Optional[Any] = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) elif is_abit: snake_case__ : Any = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) snake_case__ : int = new_value if fpaa_statistics is not None: setattr(module.weight , '''SCB''' , fpaa_statistics.to(snake_case__ ) ) else: if value is None: snake_case__ : Dict = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): snake_case__ : Union[str, Any] = value.to(snake_case__ ) else: snake_case__ : Any = torch.tensor(snake_case__ , device=snake_case__ ) if is_buffer: snake_case__ : List[str] = new_value else: snake_case__ : Tuple = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad ) snake_case__ : List[str] = new_value def _A ( snake_case__ : int , snake_case__ : str=None , snake_case__ : int=None , snake_case__ : Union[str, Any]=None , snake_case__ : Any=False ): for name, module in model.named_children(): if current_key_name is None: snake_case__ : int = [] current_key_name.append(snake_case__ ) if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(snake_case__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(snake_case__ , snake_case__ ): snake_case__ ,snake_case__ : Dict = module.weight.shape else: snake_case__ : str = module.in_features snake_case__ : str = module.out_features if quantization_config.quantization_method() == "llm_int8": snake_case__ : Union[str, Any] = bnb.nn.LinearabitLt( snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) snake_case__ : Optional[int] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: snake_case__ : str = bnb.nn.Linearabit( snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) snake_case__ : Tuple = True # Store the module class in case we need to transpose the weight later snake_case__ : Optional[Any] = type(snake_case__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(snake_case__ ) if len(list(module.children() ) ) > 0: snake_case__ ,snake_case__ : Any = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _A ( snake_case__ : Optional[int] , snake_case__ : List[Any]=None , snake_case__ : Tuple=None , snake_case__ : int=None ): snake_case__ : Any = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert snake_case__ ,snake_case__ : List[Any] = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def _A ( *snake_case__ : Optional[Any] , **snake_case__ : int ): warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' , snake_case__ , ) return replace_with_bnb_linear(*snake_case__ , **snake_case__ ) def _A ( *snake_case__ : Optional[int] , **snake_case__ : List[Any] ): warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' , snake_case__ , ) return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ ) def _A ( snake_case__ : str ): snake_case__ : Dict = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() snake_case__ : List[Any] = find_tied_parameters(snake_case__ ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__ ): snake_case__ : Any = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: snake_case__ : Union[str, Any] = sum(snake_case__ , [] ) snake_case__ : List[str] = len(snake_case__ ) > 0 # Check if it is a base model snake_case__ : Tuple = not hasattr(snake_case__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head snake_case__ : List[Any] = list(model.named_children() ) snake_case__ : Any = [list_modules[-1][0]] # add last module together with tied weights snake_case__ : str = set(snake_case__ ) - set(snake_case__ ) snake_case__ : List[str] = list(set(snake_case__ ) ) + list(snake_case__ ) # remove ".weight" from the keys snake_case__ : Tuple = ['''.weight''', '''.bias'''] snake_case__ : Optional[Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: snake_case__ : List[Any] = name.replace(snake_case__ , '''''' ) filtered_module_names.append(snake_case__ ) return filtered_module_names
701
'''simple docstring''' def _A ( snake_case__ : int = 4_00_00_00 ): snake_case__ : int = [] snake_case__ ,snake_case__ : Union[str, Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(snake_case__ ) snake_case__ ,snake_case__ : Any = b, a + b return sum(snake_case__ ) if __name__ == "__main__": print(F'''{solution() = }''')
694
0
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _lowerCAmelCase : Union[str, Any] = TypeVar("T") class snake_case ( Generic[T] ): """simple docstring""" _lowerCAmelCase = 4_2 # Cache store of keys _lowerCAmelCase = 4_2 # References of the keys in cache _lowerCAmelCase = 1_0 # Maximum capacity of cache def __init__( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" snake_case__ : List[str] = deque() snake_case__ : Any = set() if not n: snake_case__ : List[Any] = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: snake_case__ : str = n def lowercase__ ( self , lowerCamelCase ) -> Any: """simple docstring""" if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: snake_case__ : Any = self.dq_store.pop() self.key_reference.remove(lowercase__ ) else: self.dq_store.remove(lowercase__ ) self.dq_store.appendleft(lowercase__ ) self.key_reference.add(lowercase__ ) def lowercase__ ( self ) -> Tuple: """simple docstring""" for k in self.dq_store: print(lowercase__ ) def __repr__( self ) -> Optional[Any]: """simple docstring""" return f'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : int = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
702
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: _lowerCAmelCase : Any = None _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = "▁" _lowerCAmelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : int = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } _lowerCAmelCase : Optional[int] = { "google/pegasus-xsum": 5_1_2, } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PegasusTokenizer _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<pad>" , lowerCamelCase="</s>" , lowerCamelCase="<unk>" , lowerCamelCase="<mask_2>" , lowerCamelCase="<mask_1>" , lowerCamelCase=None , lowerCamelCase=103 , **lowerCamelCase , ) -> Optional[int]: """simple docstring""" snake_case__ : Tuple = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(lowerCamelCase )}, but is''' f''' {type(lowerCamelCase )}''' ) snake_case__ : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(lowerCamelCase ) , self.offset - 1 ) ] if len(set(lowerCamelCase ) ) != len(lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) snake_case__ : List[Any] = additional_special_tokens_extended else: snake_case__ : Union[str, Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , pad_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , mask_token=lowerCamelCase , mask_token_sent=lowerCamelCase , offset=lowerCamelCase , additional_special_tokens=lowerCamelCase , **lowerCamelCase , ) snake_case__ : Union[str, Any] = vocab_file snake_case__ : List[Any] = False if not self.vocab_file else True def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : Tuple = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : int = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
694
0
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def _A ( snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Dict ): snake_case__ : Union[str, Any] = OmegaConf.load(SCREAMING_SNAKE_CASE_ ) snake_case__ : List[str] = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['model'] snake_case__ : str = list(state_dict.keys() ) # extract state_dict for VQVAE snake_case__ : Dict = {} snake_case__ : Any = 'first_stage_model.' for key in keys: if key.startswith(SCREAMING_SNAKE_CASE_ ): snake_case__ : Dict = state_dict[key] # extract state_dict for UNetLDM snake_case__ : str = {} snake_case__ : Optional[int] = 'model.diffusion_model.' for key in keys: if key.startswith(SCREAMING_SNAKE_CASE_ ): snake_case__ : Union[str, Any] = state_dict[key] snake_case__ : Tuple = config.model.params.first_stage_config.params snake_case__ : str = config.model.params.unet_config.params snake_case__ : int = VQModel(**SCREAMING_SNAKE_CASE_ ).eval() vqvae.load_state_dict(SCREAMING_SNAKE_CASE_ ) snake_case__ : str = UNetLDMModel(**SCREAMING_SNAKE_CASE_ ).eval() unet.load_state_dict(SCREAMING_SNAKE_CASE_ ) snake_case__ : Optional[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=SCREAMING_SNAKE_CASE_ , ) snake_case__ : Tuple = LDMPipeline(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) pipeline.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", type=str, required=True) parser.add_argument("--config_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) _lowerCAmelCase : str = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
703
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=0 ) -> Tuple: """simple docstring""" snake_case__ : Optional[Any] = 1.0 if scale is None else scale snake_case__ : Dict = 0.0 if loc is None else loc super().__init__(lowerCamelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase )] ) @property def lowercase__ ( self ) -> Dict: """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" return self.base_dist.variance * self.scale**2 @property def lowercase__ ( self ) -> List[str]: """simple docstring""" return self.variance.sqrt() class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> None: """simple docstring""" super().__init__(**lowerCamelCase ) snake_case__ : Tuple = args_dim snake_case__ : str = nn.ModuleList([nn.Linear(lowerCamelCase , lowerCamelCase ) for dim in args_dim.values()] ) snake_case__ : Optional[int] = domain_map def lowercase__ ( self , lowerCamelCase ) -> Tuple[torch.Tensor]: """simple docstring""" snake_case__ : Any = [proj(lowerCamelCase ) for proj in self.proj] return self.domain_map(*lowerCamelCase ) class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" super().__init__() snake_case__ : Tuple = function def lowercase__ ( self , lowerCamelCase , *lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return self.function(lowerCamelCase , *lowerCamelCase ) class snake_case : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 def __init__( self , lowerCamelCase = 1 ) -> None: """simple docstring""" snake_case__ : Optional[Any] = dim snake_case__ : Tuple = {k: dim * self.args_dim[k] for k in self.args_dim} def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" if self.dim == 1: return self.distribution_class(*lowerCamelCase ) else: return Independent(self.distribution_class(*lowerCamelCase ) , 1 ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , ) -> Distribution: """simple docstring""" snake_case__ : List[Any] = self._base_distribution(lowerCamelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase , loc=lowerCamelCase , scale=lowerCamelCase , event_dim=self.event_dim ) @property def lowercase__ ( self ) -> Tuple: """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def lowercase__ ( self ) -> int: """simple docstring""" return len(self.event_shape ) @property def lowercase__ ( self ) -> float: """simple docstring""" return 0.0 def lowercase__ ( self , lowerCamelCase ) -> nn.Module: """simple docstring""" return ParameterProjection( in_features=lowerCamelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def lowercase__ ( self , *lowerCamelCase ) -> Any: """simple docstring""" raise NotImplementedError() @staticmethod def lowercase__ ( lowerCamelCase ) -> torch.Tensor: """simple docstring""" return (x + torch.sqrt(torch.square(lowerCamelCase ) + 4.0 )) / 2.0 class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"df": 1, "loc": 1, "scale": 1} _lowerCAmelCase = StudentT @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: """simple docstring""" snake_case__ : Tuple = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) snake_case__ : Optional[int] = 2.0 + cls.squareplus(lowerCamelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"loc": 1, "scale": 1} _lowerCAmelCase = Normal @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase ) -> Optional[int]: """simple docstring""" snake_case__ : List[str] = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"total_count": 1, "logits": 1} _lowerCAmelCase = NegativeBinomial @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" snake_case__ : List[str] = cls.squareplus(lowerCamelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def lowercase__ ( self , lowerCamelCase ) -> Distribution: """simple docstring""" snake_case__ ,snake_case__ : str = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase ) else: return Independent(self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase ) , 1 ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None ) -> Distribution: """simple docstring""" snake_case__ ,snake_case__ : Optional[Any] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
694
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : str = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class snake_case ( __A ): """simple docstring""" _lowerCAmelCase = 'wavlm' def __init__( self , lowerCamelCase=32 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.02 , lowerCamelCase=1E-5 , lowerCamelCase="group" , lowerCamelCase="gelu" , lowerCamelCase=(512, 512, 512, 512, 512, 512, 512) , lowerCamelCase=(5, 2, 2, 2, 2, 2, 2) , lowerCamelCase=(10, 3, 3, 3, 3, 2, 2) , lowerCamelCase=False , lowerCamelCase=128 , lowerCamelCase=16 , lowerCamelCase=320 , lowerCamelCase=800 , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=0.05 , lowerCamelCase=10 , lowerCamelCase=2 , lowerCamelCase=0.0 , lowerCamelCase=10 , lowerCamelCase=320 , lowerCamelCase=2 , lowerCamelCase=0.1 , lowerCamelCase=100 , lowerCamelCase=256 , lowerCamelCase=256 , lowerCamelCase=0.1 , lowerCamelCase="mean" , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=256 , lowerCamelCase=(512, 512, 512, 512, 1500) , lowerCamelCase=(5, 3, 3, 1, 1) , lowerCamelCase=(1, 2, 3, 1, 1) , lowerCamelCase=512 , lowerCamelCase=80 , lowerCamelCase=0 , lowerCamelCase=1 , lowerCamelCase=2 , lowerCamelCase=False , lowerCamelCase=3 , lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=None , **lowerCamelCase , ) -> Dict: """simple docstring""" super().__init__(**lowerCamelCase , pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase ) snake_case__ : List[Any] = hidden_size snake_case__ : Tuple = feat_extract_norm snake_case__ : Dict = feat_extract_activation snake_case__ : Optional[Any] = list(lowerCamelCase ) snake_case__ : Union[str, Any] = list(lowerCamelCase ) snake_case__ : List[str] = list(lowerCamelCase ) snake_case__ : str = conv_bias snake_case__ : Tuple = num_buckets snake_case__ : Union[str, Any] = max_bucket_distance snake_case__ : int = num_conv_pos_embeddings snake_case__ : str = num_conv_pos_embedding_groups snake_case__ : str = len(self.conv_dim ) snake_case__ : Tuple = num_hidden_layers snake_case__ : Tuple = intermediate_size snake_case__ : Optional[Any] = hidden_act snake_case__ : Optional[Any] = num_attention_heads snake_case__ : str = hidden_dropout snake_case__ : Optional[int] = attention_dropout snake_case__ : Optional[Any] = activation_dropout snake_case__ : Optional[int] = feat_proj_dropout snake_case__ : List[Any] = final_dropout snake_case__ : Union[str, Any] = layerdrop snake_case__ : Dict = layer_norm_eps snake_case__ : Optional[Any] = initializer_range snake_case__ : str = num_ctc_classes snake_case__ : Any = vocab_size snake_case__ : str = do_stable_layer_norm snake_case__ : int = use_weighted_layer_sum snake_case__ : int = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case__ : List[str] = apply_spec_augment snake_case__ : Optional[Any] = mask_time_prob snake_case__ : int = mask_time_length snake_case__ : Any = mask_time_min_masks snake_case__ : Optional[int] = mask_feature_prob snake_case__ : Tuple = mask_feature_length # parameters for pretraining with codevector quantized representations snake_case__ : int = num_codevectors_per_group snake_case__ : Any = num_codevector_groups snake_case__ : List[Any] = contrastive_logits_temperature snake_case__ : Optional[Any] = num_negatives snake_case__ : Optional[Any] = codevector_dim snake_case__ : int = proj_codevector_dim snake_case__ : int = diversity_loss_weight # ctc loss snake_case__ : Union[str, Any] = ctc_loss_reduction snake_case__ : Any = ctc_zero_infinity # adapter snake_case__ : int = add_adapter snake_case__ : Optional[Any] = adapter_kernel_size snake_case__ : Optional[int] = adapter_stride snake_case__ : Dict = num_adapter_layers snake_case__ : str = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case__ : int = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case__ : Tuple = list(lowerCamelCase ) snake_case__ : Optional[Any] = list(lowerCamelCase ) snake_case__ : Dict = list(lowerCamelCase ) snake_case__ : Dict = xvector_output_dim @property def lowercase__ ( self ) -> Any: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
704
'''simple docstring''' from math import factorial def _A ( snake_case__ : int = 20 ): snake_case__ : int = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case__ : Union[str, Any] = n // 2 return int(factorial(snake_case__ ) / (factorial(snake_case__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: _lowerCAmelCase : Any = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
694
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class snake_case ( __lowercase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , **lowerCamelCase , ) -> str: """simple docstring""" super().__init__(features=_A , cache_dir=_A , keep_in_memory=_A , **_A ) snake_case__ : List[Any] = Sql( cache_dir=_A , features=_A , sql=_A , con=_A , **_A , ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : Optional[int] = None snake_case__ : List[str] = None snake_case__ : Any = None snake_case__ : Dict = None self.builder.download_and_prepare( download_config=_A , download_mode=_A , verification_mode=_A , base_path=_A , ) # Build dataset for splits snake_case__ : Optional[Any] = self.builder.as_dataset( split='''train''' , verification_mode=_A , in_memory=self.keep_in_memory ) return dataset class snake_case : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) snake_case__ : Union[str, Any] = dataset snake_case__ : Tuple = name snake_case__ : str = con snake_case__ : Union[str, Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE snake_case__ : Union[str, Any] = num_proc snake_case__ : Union[str, Any] = to_sql_kwargs def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : Tuple = self.to_sql_kwargs.pop('''sql''' , _A ) snake_case__ : Any = self.to_sql_kwargs.pop('''con''' , _A ) snake_case__ : str = self.to_sql_kwargs.pop('''index''' , _A ) snake_case__ : Tuple = self._write(index=_A , **self.to_sql_kwargs ) return written def lowercase__ ( self , lowerCamelCase ) -> Any: """simple docstring""" snake_case__ ,snake_case__ ,snake_case__ : Optional[int] = args snake_case__ : Any = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs snake_case__ : int = query_table( table=self.dataset.data , key=slice(_A , offset + self.batch_size ) , indices=self.dataset._indices , ) snake_case__ : Optional[Any] = batch.to_pandas() snake_case__ : Optional[Any] = df.to_sql(self.name , self.con , index=_A , **_A ) return num_rows or len(_A ) def lowercase__ ( self , lowerCamelCase , **lowerCamelCase ) -> Dict: """simple docstring""" snake_case__ : Tuple = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: snake_case__ ,snake_case__ : Optional[int] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _A , _A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
705
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = (EulerDiscreteScheduler,) _lowerCAmelCase = 1_0 def lowercase__ ( self , **lowerCamelCase ) -> Tuple: """simple docstring""" snake_case__ : Any = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCamelCase ) return config def lowercase__ ( self ) -> List[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase , beta_end=lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def lowercase__ ( self ) -> str: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Any = self.get_scheduler_config() snake_case__ : int = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ : Dict = torch.manual_seed(0 ) snake_case__ : Any = self.dummy_model() snake_case__ : str = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ : List[Any] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case__ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : int = model(lowerCamelCase , lowerCamelCase ) snake_case__ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Optional[int] = output.prev_sample snake_case__ : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : Tuple = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def lowercase__ ( self ) -> Dict: """simple docstring""" snake_case__ : Tuple = self.scheduler_classes[0] snake_case__ : Optional[Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case__ : int = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ : Optional[Any] = torch.manual_seed(0 ) snake_case__ : Optional[int] = self.dummy_model() snake_case__ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ : Optional[int] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case__ : List[str] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : List[str] = model(lowerCamelCase , lowerCamelCase ) snake_case__ : Union[str, Any] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Union[str, Any] = output.prev_sample snake_case__ : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : List[str] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 0.0_002 ) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6 ) < 1E-3 def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Optional[int] = self.get_scheduler_config() snake_case__ : List[str] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Optional[int] = self.dummy_model() snake_case__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case__ : Tuple = sample.to(lowerCamelCase ) for t in scheduler.timesteps: snake_case__ : List[str] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : str = model(lowerCamelCase , lowerCamelCase ) snake_case__ : int = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : int = output.prev_sample snake_case__ : Union[str, Any] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : int = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Dict = self.scheduler_classes[0] snake_case__ : str = self.get_scheduler_config() snake_case__ : List[Any] = scheduler_class(**lowerCamelCase , use_karras_sigmas=lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Dict = self.dummy_model() snake_case__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case__ : Optional[Any] = sample.to(lowerCamelCase ) for t in scheduler.timesteps: snake_case__ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : Optional[Any] = model(lowerCamelCase , lowerCamelCase ) snake_case__ : str = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Optional[int] = output.prev_sample snake_case__ : Dict = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : Optional[int] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1E-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1E-3
694
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = {'''vocab_file''': '''spiece.model'''} _lowerCAmelCase : Tuple = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } _lowerCAmelCase : Any = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Dict = 2 _lowerCAmelCase : List[str] = 3 _lowerCAmelCase : List[Any] = 4 class snake_case ( __a ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = '''left''' def __init__( self , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="<unk>" , lowerCamelCase="<sep>" , lowerCamelCase="<pad>" , lowerCamelCase="<cls>" , lowerCamelCase="<mask>" , lowerCamelCase=["<eop>", "<eod>"] , lowerCamelCase = None , **lowerCamelCase , ) -> Any: """simple docstring""" snake_case__ : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token snake_case__ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case__ , remove_space=snake_case__ , keep_accents=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , additional_special_tokens=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case__ : int = 3 snake_case__ : List[Any] = do_lower_case snake_case__ : List[str] = remove_space snake_case__ : Dict = keep_accents snake_case__ : int = vocab_file snake_case__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) @property def lowercase__ ( self ) -> Any: """simple docstring""" return len(self.sp_model ) def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : Optional[int] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> int: """simple docstring""" snake_case__ : Tuple = self.__dict__.copy() snake_case__ : Dict = None return state def __setstate__( self , lowerCamelCase ) -> Dict: """simple docstring""" snake_case__ : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case__ : Optional[Any] = {} snake_case__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self , lowerCamelCase ) -> Optional[Any]: """simple docstring""" if self.remove_space: snake_case__ : Optional[Any] = ''' '''.join(inputs.strip().split() ) else: snake_case__ : List[Any] = inputs snake_case__ : Optional[Any] = outputs.replace('''``''' , '''\"''' ).replace('''\'\'''' , '''\"''' ) if not self.keep_accents: snake_case__ : int = unicodedata.normalize('''NFKD''' , snake_case__ ) snake_case__ : str = ''''''.join([c for c in outputs if not unicodedata.combining(snake_case__ )] ) if self.do_lower_case: snake_case__ : Optional[int] = outputs.lower() return outputs def lowercase__ ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" snake_case__ : int = self.preprocess_text(snake_case__ ) snake_case__ : Tuple = self.sp_model.encode(snake_case__ , out_type=snake_case__ ) snake_case__ : Optional[Any] = [] for piece in pieces: if len(snake_case__ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): snake_case__ : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case__ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case__ : int = cur_pieces[1:] else: snake_case__ : Optional[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case__ ) else: new_pieces.append(snake_case__ ) return new_pieces def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" return self.sp_model.PieceToId(snake_case__ ) def lowercase__ ( self , lowerCamelCase ) -> Dict: """simple docstring""" return self.sp_model.IdToPiece(snake_case__ ) def lowercase__ ( self , lowerCamelCase ) -> Any: """simple docstring""" snake_case__ : List[str] = ''''''.join(snake_case__ ).replace(snake_case__ , ''' ''' ).strip() return out_string def lowercase__ ( self , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = True , **lowerCamelCase , ) -> Optional[int]: """simple docstring""" snake_case__ : str = kwargs.pop('''use_source_tokenizer''' , snake_case__ ) snake_case__ : int = self.convert_ids_to_tokens(snake_case__ , skip_special_tokens=snake_case__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case__ : Optional[int] = [] snake_case__ : str = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case__ ) ) snake_case__ : Union[str, Any] = [] sub_texts.append(snake_case__ ) else: current_sub_text.append(snake_case__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case__ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens snake_case__ : List[Any] = ''''''.join(snake_case__ ) snake_case__ : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case__ : Optional[Any] = self.clean_up_tokenization(snake_case__ ) return clean_text else: return text def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[str]: """simple docstring""" snake_case__ : Dict = [self.sep_token_id] snake_case__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[str]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is not None: return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1, 1] return ([0] * len(snake_case__ )) + [1, 1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Union[str, Any]: """simple docstring""" snake_case__ : Optional[Any] = [self.sep_token_id] snake_case__ : Optional[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple: """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Optional[Any] = os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , '''wb''' ) as fi: snake_case__ : str = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
706
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = ['pixel_values'] def __init__( self , lowerCamelCase = True , lowerCamelCase = 32 , lowerCamelCase=PILImageResampling.BILINEAR , lowerCamelCase = True , **lowerCamelCase , ) -> None: """simple docstring""" snake_case__ : int = do_resize snake_case__ : Dict = do_rescale snake_case__ : Any = size_divisor snake_case__ : str = resample super().__init__(**lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) -> np.ndarray: """simple docstring""" snake_case__ ,snake_case__ : Any = get_image_size(lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor snake_case__ : Any = height // size_divisor * size_divisor snake_case__ : Union[str, Any] = width // size_divisor * size_divisor snake_case__ : Tuple = resize(lowerCamelCase , (new_h, new_w) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) return image def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) -> np.ndarray: """simple docstring""" return rescale(image=lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase=None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) -> BatchFeature: """simple docstring""" snake_case__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize snake_case__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : Any = size_divisor if size_divisor is not None else self.size_divisor snake_case__ : Dict = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) snake_case__ : Optional[Any] = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. snake_case__ : Optional[int] = [to_numpy_array(lowerCamelCase ) for img in images] if do_resize: snake_case__ : Union[str, Any] = [self.resize(lowerCamelCase , size_divisor=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: snake_case__ : str = [self.rescale(lowerCamelCase , scale=1 / 255 ) for image in images] snake_case__ : Tuple = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] snake_case__ : str = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
694
0
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Optional[Any] ): if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def _A ( snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Dict , ): if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _A ( snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , ): if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( lowerCAmelCase_ , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def _A ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : str ): snake_case__ : List[Any] = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}'''
694
0
from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter _lowerCAmelCase : Optional[Any] = "Create a default config file for Accelerate with only a few flags set." def _A ( snake_case__ : int="no" , snake_case__ : Any = default_json_config_file , snake_case__ : Union[str, Any] = False ): snake_case__ : List[Any] = Path(_snake_case ) path.parent.mkdir(parents=_snake_case , exist_ok=_snake_case ) if path.exists(): print( f'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False snake_case__ : List[Any] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) snake_case__ : Any = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): snake_case__ : str = torch.cuda.device_count() snake_case__ : List[Any] = num_gpus snake_case__ : List[str] = False if num_gpus > 1: snake_case__ : Tuple = '''MULTI_GPU''' else: snake_case__ : Optional[int] = '''NO''' elif is_xpu_available() and use_xpu: snake_case__ : Optional[Any] = torch.xpu.device_count() snake_case__ : int = num_xpus snake_case__ : Dict = False if num_xpus > 1: snake_case__ : Optional[Any] = '''MULTI_XPU''' else: snake_case__ : List[str] = '''NO''' elif is_npu_available(): snake_case__ : List[Any] = torch.npu.device_count() snake_case__ : Tuple = num_npus snake_case__ : Tuple = False if num_npus > 1: snake_case__ : int = '''MULTI_NPU''' else: snake_case__ : List[Any] = '''NO''' else: snake_case__ : int = 0 snake_case__ : Optional[int] = True snake_case__ : Optional[Any] = 1 snake_case__ : Any = '''NO''' snake_case__ : int = ClusterConfig(**_snake_case ) config.to_json_file(_snake_case ) return path def _A ( snake_case__ : Union[str, Any] , snake_case__ : str ): snake_case__ : Union[str, Any] = parser.add_parser('''default''' , parents=_snake_case , help=_snake_case , formatter_class=_snake_case ) parser.add_argument( '''--config_file''' , default=_snake_case , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=_snake_case , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=_snake_case ) return parser def _A ( snake_case__ : Tuple ): snake_case__ : List[str] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f'''accelerate configuration saved at {config_file}''' )
708
'''simple docstring''' from __future__ import annotations from collections import namedtuple def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): snake_case__ : Optional[Any] = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
694
0
'''simple docstring''' def _A ( snake_case__ : int = 10_00 ): return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
709
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCAmelCase : Union[str, Any] = "\nimport os\n" _lowerCAmelCase : Optional[int] = "\ndef foo():\n import os\n return False\n" _lowerCAmelCase : Union[str, Any] = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" _lowerCAmelCase : str = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" _lowerCAmelCase : str = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" _lowerCAmelCase : Tuple = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" _lowerCAmelCase : List[str] = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" _lowerCAmelCase : Optional[int] = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" _lowerCAmelCase : Optional[int] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" _lowerCAmelCase : List[Any] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" _lowerCAmelCase : Tuple = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , snake_case__ ) def _A ( snake_case__ : List[str] , snake_case__ : Dict ): snake_case__ : str = os.path.join(snake_case__ , '''test_file.py''' ) with open(snake_case__ , '''w''' ) as _tmp_file: _tmp_file.write(snake_case__ ) snake_case__ : int = get_imports(snake_case__ ) assert parsed_imports == ["os"]
694
0
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Any = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class snake_case ( _A , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = PegasusTokenizer _lowerCAmelCase = PegasusTokenizerFast _lowerCAmelCase = True _lowerCAmelCase = True def lowercase__ ( self ) -> List[str]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing snake_case__ : Tuple = PegasusTokenizer(UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def lowercase__ ( self , **lowerCamelCase ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowercase__ ( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return ("This is a test", "This is a test") def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : Optional[Any] = '''</s>''' snake_case__ : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(UpperCamelCase__ ) , 1103 ) def lowercase__ ( self ) -> int: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) snake_case__ : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) snake_case__ : List[str] = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) snake_case__ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] snake_case__ : Dict = py_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word snake_case__ : Any = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' snake_case__ : Dict = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] snake_case__ : Optional[Any] = tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : List[str] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 snake_case__ : Optional[int] = '''To ensure a smooth flow of bank resolutions.''' snake_case__ : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] snake_case__ : Tuple = tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Dict = ['''This is going to be way too long.''' * 150, '''short example'''] snake_case__ : str = ['''not super long but more than 5 tokens''', '''tiny'''] snake_case__ : Optional[Any] = self._large_tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors='''pt''' ) snake_case__ : Union[str, Any] = self._large_tokenizer( text_target=UpperCamelCase__ , max_length=5 , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(UpperCamelCase__ ) == 2 # input_ids, attention_mask. @slow def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : int = {'''input_ids''': [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class snake_case ( _A , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = PegasusTokenizer _lowerCAmelCase = PegasusTokenizerFast _lowerCAmelCase = True _lowerCAmelCase = True def lowercase__ ( self ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing snake_case__ : Dict = PegasusTokenizer(UpperCamelCase__ , offset=0 , mask_token_sent=UpperCamelCase__ , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self ) -> str: """simple docstring""" return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def lowercase__ ( self , **lowerCamelCase ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowercase__ ( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" return ("This is a test", "This is a test") def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) snake_case__ : int = self.tokenizer_class.from_pretrained(self.tmpdirname ) snake_case__ : Tuple = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) snake_case__ : List[Any] = rust_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] snake_case__ : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @require_torch def lowercase__ ( self ) -> Tuple: """simple docstring""" snake_case__ : List[Any] = ['''This is going to be way too long.''' * 1000, '''short example'''] snake_case__ : Any = ['''not super long but more than 5 tokens''', '''tiny'''] snake_case__ : List[str] = self._large_tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors='''pt''' ) snake_case__ : int = self._large_tokenizer( text_target=UpperCamelCase__ , max_length=5 , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(UpperCamelCase__ ) == 2 # input_ids, attention_mask. def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : str = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) snake_case__ : Dict = self._large_tokenizer(UpperCamelCase__ ).input_ids self.assertListEqual( UpperCamelCase__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
710
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Any = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'markuplm' def __init__( self , lowerCamelCase=30522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1E-1_2 , lowerCamelCase=0 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase=256 , lowerCamelCase=1024 , lowerCamelCase=216 , lowerCamelCase=1001 , lowerCamelCase=32 , lowerCamelCase=50 , lowerCamelCase="absolute" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> str: """simple docstring""" super().__init__( pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase , ) snake_case__ : Optional[int] = vocab_size snake_case__ : Tuple = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : List[str] = num_attention_heads snake_case__ : List[Any] = hidden_act snake_case__ : Dict = intermediate_size snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : str = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : List[str] = initializer_range snake_case__ : List[str] = layer_norm_eps snake_case__ : Optional[Any] = position_embedding_type snake_case__ : Dict = use_cache snake_case__ : int = classifier_dropout # additional properties snake_case__ : Union[str, Any] = max_depth snake_case__ : Dict = max_xpath_tag_unit_embeddings snake_case__ : Any = max_xpath_subs_unit_embeddings snake_case__ : int = tag_pad_id snake_case__ : Tuple = subs_pad_id snake_case__ : Dict = xpath_unit_hidden_size
694
0
'''simple docstring''' import os from collections.abc import Iterator def _A ( snake_case__ : List[str] = "." ): for dir_path, dir_names, filenames in os.walk(snake_case__ ): snake_case__ : Optional[Any] = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(snake_case__ )[1] in (".py", ".ipynb"): yield os.path.join(snake_case__ , snake_case__ ).lstrip('''./''' ) def _A ( snake_case__ : Tuple ): return f'''{i * ' '}*''' if i else "\n##" def _A ( snake_case__ : List[str] , snake_case__ : Any ): snake_case__ : int = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(snake_case__ ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(snake_case__ )} {new_part.replace('_' , ' ' ).title()}''' ) return new_path def _A ( snake_case__ : List[str] = "." ): snake_case__ : List[str] = '' for filepath in sorted(good_file_paths(snake_case__ ) ): snake_case__ : Any = os.path.split(snake_case__ ) if filepath != old_path: snake_case__ : Union[str, Any] = print_path(snake_case__ , snake_case__ ) snake_case__ : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 snake_case__ : Optional[int] = f'''{filepath}/{filename}'''.replace(''' ''' , '''%20''' ) snake_case__ : str = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(f'''{md_prefix(snake_case__ )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
711
'''simple docstring''' def _A ( snake_case__ : float ): return 10 - x * x def _A ( snake_case__ : float , snake_case__ : float ): # Bolzano theory in order to find if there is a root between a and b if equation(snake_case__ ) * equation(snake_case__ ) >= 0: raise ValueError('''Wrong space!''' ) snake_case__ : List[str] = a while (b - a) >= 0.01: # Find middle point snake_case__ : Optional[int] = (a + b) / 2 # Check if middle point is root if equation(snake_case__ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case__ ) * equation(snake_case__ ) < 0: snake_case__ : Dict = c else: snake_case__ : List[str] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
694
0
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser( description=( "Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="bert", choices=["bert"]) parser.add_argument("--model_name", default="bert-base-uncased", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") _lowerCAmelCase : Dict = parser.parse_args() if args.model_type == "bert": _lowerCAmelCase : Optional[Any] = BertForMaskedLM.from_pretrained(args.model_name) _lowerCAmelCase : Optional[int] = "bert" else: raise ValueError("args.model_type should be \"bert\".") _lowerCAmelCase : int = model.state_dict() _lowerCAmelCase : Tuple = {} for w in ["word_embeddings", "position_embeddings"]: _lowerCAmelCase : Dict = state_dict[F'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: _lowerCAmelCase : Union[str, Any] = state_dict[F'''{prefix}.embeddings.LayerNorm.{w}'''] _lowerCAmelCase : int = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: _lowerCAmelCase : List[Any] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] _lowerCAmelCase : Optional[int] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] _lowerCAmelCase : Optional[int] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] _lowerCAmelCase : Union[str, Any] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] _lowerCAmelCase : List[Any] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] _lowerCAmelCase : Optional[Any] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] _lowerCAmelCase : Union[str, Any] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] _lowerCAmelCase : Tuple = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 _lowerCAmelCase : Any = state_dict["cls.predictions.decoder.weight"] _lowerCAmelCase : str = state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: _lowerCAmelCase : List[Any] = state_dict[F'''cls.predictions.transform.dense.{w}'''] _lowerCAmelCase : Optional[int] = state_dict[F'''cls.predictions.transform.LayerNorm.{w}'''] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
712
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : list[float] , snake_case__ : list[float] ): snake_case__ : Dict = sorted(numsa + numsa ) snake_case__ ,snake_case__ : Tuple = divmod(len(snake_case__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Tuple = [float(x) for x in input("Enter the elements of first array: ").split()] _lowerCAmelCase : List[str] = [float(x) for x in input("Enter the elements of second array: ").split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
694
0
'''simple docstring''' def _A ( snake_case__ : Optional[Any] = 1_00_00_00 ): snake_case__ : Union[str, Any] = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , lowerCamelCase_ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
713
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Any = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
694
0
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _lowerCAmelCase : Tuple = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } _lowerCAmelCase : Dict = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def _A ( snake_case__ : List[Any] , snake_case__ : Optional[Any]=False ): snake_case__ ,snake_case__ : Optional[int] = create_model( '''HTSAT-tiny''' , '''roberta''' , A__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=A__ , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def _A ( snake_case__ : List[Any] ): snake_case__ : str = {} snake_case__ : Optional[int] = R'''.*sequential.(\d+).*''' snake_case__ : Any = R'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case__ : Optional[Any] = key.replace(A__ , A__ ) if re.match(A__ , A__ ): # replace sequential layers with list snake_case__ : List[Any] = re.match(A__ , A__ ).group(1 ) snake_case__ : Any = key.replace(f'''sequential.{sequential_layer}.''' , f'''layers.{int(A__ )//3}.linear.''' ) elif re.match(A__ , A__ ): snake_case__ : Optional[int] = int(re.match(A__ , A__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... snake_case__ : List[str] = 1 if projecton_layer == 0 else 2 snake_case__ : str = key.replace(f'''_projection.{projecton_layer}.''' , f'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value snake_case__ : Union[str, Any] = value snake_case__ : Dict = mixed_qkv.size(0 ) // 3 snake_case__ : List[Any] = mixed_qkv[:qkv_dim] snake_case__ : Optional[Any] = mixed_qkv[qkv_dim : qkv_dim * 2] snake_case__ : Dict = mixed_qkv[qkv_dim * 2 :] snake_case__ : str = query_layer snake_case__ : int = key_layer snake_case__ : Optional[Any] = value_layer else: snake_case__ : Dict = value return model_state_dict def _A ( snake_case__ : Tuple , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any]=False ): snake_case__ ,snake_case__ : Dict = init_clap(A__ , enable_fusion=A__ ) clap_model.eval() snake_case__ : Any = clap_model.state_dict() snake_case__ : Union[str, Any] = rename_state_dict(A__ ) snake_case__ : str = ClapConfig() snake_case__ : Union[str, Any] = enable_fusion snake_case__ : Any = ClapModel(A__ ) # ignore the spectrogram embedding layer model.load_state_dict(A__ , strict=A__ ) model.save_pretrained(A__ ) transformers_config.save_pretrained(A__ ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") _lowerCAmelCase : List[Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
714
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'encoder-decoder' _lowerCAmelCase = True def __init__( self , **lowerCamelCase ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" snake_case__ : List[str] = kwargs.pop('''encoder''' ) snake_case__ : Any = encoder_config.pop('''model_type''' ) snake_case__ : List[str] = kwargs.pop('''decoder''' ) snake_case__ : str = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig snake_case__ : Tuple = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) snake_case__ : Optional[Any] = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) snake_case__ : str = True @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> PretrainedConfig: """simple docstring""" logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) snake_case__ : Optional[int] = True snake_case__ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[Any] = copy.deepcopy(self.__dict__ ) snake_case__ : List[Any] = self.encoder.to_dict() snake_case__ : str = self.decoder.to_dict() snake_case__ : Any = self.__class__.model_type return output
694
0
'''simple docstring''' class snake_case : """simple docstring""" def __init__( self , lowerCamelCase = "" , lowerCamelCase = False ) -> Optional[int]: """simple docstring""" snake_case__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word snake_case__ : Optional[int] = is_leaf snake_case__ : Tuple = prefix def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" snake_case__ : Union[str, Any] = 0 for q, w in zip(self.prefix , lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self , lowerCamelCase ) -> Tuple: """simple docstring""" for word in words: self.insert(lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> str: """simple docstring""" if self.prefix == word: snake_case__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: snake_case__ : List[str] = RadixNode(prefix=lowerCamelCase , is_leaf=lowerCamelCase ) else: snake_case__ : Any = self.nodes[word[0]] snake_case__ : str = incoming_node.match( lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: snake_case__ : Any = remaining_prefix snake_case__ : List[str] = self.nodes[matching_string[0]] snake_case__ : Union[str, Any] = RadixNode(lowerCamelCase , lowerCamelCase ) snake_case__ : Optional[int] = aux_node if remaining_word == "": snake_case__ : Optional[Any] = True else: self.nodes[matching_string[0]].insert(lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" snake_case__ : Optional[Any] = self.nodes.get(word[0] , lowerCamelCase ) if not incoming_node: return False else: snake_case__ : str = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> Tuple: """simple docstring""" snake_case__ : Union[str, Any] = self.nodes.get(word[0] , lowerCamelCase ) if not incoming_node: return False else: snake_case__ : int = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: snake_case__ : str = list(self.nodes.values() )[0] snake_case__ : Any = merging_node.is_leaf self.prefix += merging_node.prefix snake_case__ : Dict = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: snake_case__ : Dict = False # If there is 1 edge, we merge it with its child else: snake_case__ : List[Any] = list(incoming_node.nodes.values() )[0] snake_case__ : Tuple = merging_node.is_leaf incoming_node.prefix += merging_node.prefix snake_case__ : str = merging_node.nodes return True def lowercase__ ( self , lowerCamelCase = 0 ) -> Any: """simple docstring""" if self.prefix != "": print('''-''' * height , self.prefix , ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def _A ( ): snake_case__ : List[str] = "banana bananas bandana band apple all beast".split() snake_case__ : Optional[int] = RadixNode() root.insert_many(lowerCamelCase__ ) assert all(root.find(lowerCamelCase__ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def _A ( ): assert test_trie() def _A ( ): snake_case__ : List[str] = RadixNode() snake_case__ : List[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(lowerCamelCase__ ) print('''Words:''' , lowerCamelCase__ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
715
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = "▁" _lowerCAmelCase : Dict = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} _lowerCAmelCase : Dict = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } _lowerCAmelCase : str = {"vinai/bartpho-syllable": 1_0_2_4} class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase = None , **lowerCamelCase , ) -> None: """simple docstring""" snake_case__ : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token snake_case__ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , ) snake_case__ : int = vocab_file snake_case__ : Optional[Any] = monolingual_vocab_file snake_case__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility snake_case__ : Dict = {} snake_case__ : Union[str, Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : List[str] = cnt cnt += 1 with open(lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): snake_case__ : Optional[int] = line.strip().split()[0] snake_case__ : List[Any] = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : Any = len(self.fairseq_tokens_to_ids ) snake_case__ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: """simple docstring""" snake_case__ : int = self.__dict__.copy() snake_case__ : Any = None snake_case__ : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case__ : Dict = {} snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : str = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" snake_case__ : List[str] = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self ) -> Optional[int]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : int = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCamelCase , out_type=lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowercase__ ( self , lowerCamelCase ) -> str: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : List[Any] = ''''''.join(lowerCamelCase ).replace(lowerCamelCase , ''' ''' ).strip() return out_string def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case__ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase , '''wb''' ) as fi: snake_case__ : Dict = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(lowerCamelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
694
0
'''simple docstring''' import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) @dataclass class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) _lowerCAmelCase = field(default=__lowerCamelCase , metadata={'help': 'Whether to SortishSamler or not.'} ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) _lowerCAmelCase = field(default=__lowerCamelCase , metadata={'help': 'whether to use adafactor'} ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) _lowerCAmelCase = field(default=__lowerCamelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) _lowerCAmelCase = field( default='linear' , metadata={'help': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
716
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _lowerCAmelCase : str = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") _lowerCAmelCase : Optional[int] = parser.parse_args() _lowerCAmelCase : Union[str, Any] = "cpu" _lowerCAmelCase : List[str] = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" _lowerCAmelCase : Union[str, Any] = "path-to-your-trained-model" _lowerCAmelCase : Tuple = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _lowerCAmelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _lowerCAmelCase : Optional[Any] = pipe.to(device) # to channels last _lowerCAmelCase : Optional[int] = pipe.unet.to(memory_format=torch.channels_last) _lowerCAmelCase : str = pipe.vae.to(memory_format=torch.channels_last) _lowerCAmelCase : List[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _lowerCAmelCase : List[Any] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _lowerCAmelCase : Optional[int] = torch.randn(2, 4, 6_4, 6_4) _lowerCAmelCase : List[str] = torch.rand(1) * 9_9_9 _lowerCAmelCase : Optional[int] = torch.randn(2, 7_7, 7_6_8) _lowerCAmelCase : List[Any] = (sample, timestep, encoder_hidden_status) try: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _lowerCAmelCase : List[str] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _lowerCAmelCase : Tuple = 6_6_6 _lowerCAmelCase : str = torch.Generator(device).manual_seed(seed) _lowerCAmelCase : Dict = {"generator": generator} if args.steps is not None: _lowerCAmelCase : Tuple = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _lowerCAmelCase : Any = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
694
0
'''simple docstring''' def _A ( snake_case__ : int , snake_case__ : int , snake_case__ : list[list[int]] ): def update_area_of_max_square(snake_case__ : int , snake_case__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 snake_case__ : List[Any] = update_area_of_max_square(snake_case__ , col + 1 ) snake_case__ : int = update_area_of_max_square(row + 1 , col + 1 ) snake_case__ : Dict = update_area_of_max_square(row + 1 , snake_case__ ) if mat[row][col]: snake_case__ : Union[str, Any] = 1 + min([right, diagonal, down] ) snake_case__ : List[Any] = max(largest_square_area[0] , snake_case__ ) return sub_problem_sol else: return 0 snake_case__ : Dict = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _A ( snake_case__ : int , snake_case__ : int , snake_case__ : list[list[int]] ): def update_area_of_max_square_using_dp_array( snake_case__ : int , snake_case__ : int , snake_case__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] snake_case__ : List[str] = update_area_of_max_square_using_dp_array(snake_case__ , col + 1 , snake_case__ ) snake_case__ : Any = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , snake_case__ ) snake_case__ : str = update_area_of_max_square_using_dp_array(row + 1 , snake_case__ , snake_case__ ) if mat[row][col]: snake_case__ : Optional[int] = 1 + min([right, diagonal, down] ) snake_case__ : Dict = max(largest_square_area[0] , snake_case__ ) snake_case__ : List[Any] = sub_problem_sol return sub_problem_sol else: return 0 snake_case__ : Tuple = [0] snake_case__ : List[str] = [[-1] * cols for _ in range(snake_case__ )] update_area_of_max_square_using_dp_array(0 , 0 , snake_case__ ) return largest_square_area[0] def _A ( snake_case__ : int , snake_case__ : int , snake_case__ : list[list[int]] ): snake_case__ : Dict = [[0] * (cols + 1) for _ in range(rows + 1 )] snake_case__ : Union[str, Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case__ : int = dp_array[row][col + 1] snake_case__ : Optional[Any] = dp_array[row + 1][col + 1] snake_case__ : Any = dp_array[row + 1][col] if mat[row][col] == 1: snake_case__ : Union[str, Any] = 1 + min(snake_case__ , snake_case__ , snake_case__ ) snake_case__ : Union[str, Any] = max(dp_array[row][col] , snake_case__ ) else: snake_case__ : Dict = 0 return largest_square_area def _A ( snake_case__ : int , snake_case__ : int , snake_case__ : list[list[int]] ): snake_case__ : int = [0] * (cols + 1) snake_case__ : Optional[int] = [0] * (cols + 1) snake_case__ : Tuple = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case__ : Optional[Any] = current_row[col + 1] snake_case__ : str = next_row[col + 1] snake_case__ : Optional[Any] = next_row[col] if mat[row][col] == 1: snake_case__ : Union[str, Any] = 1 + min(snake_case__ , snake_case__ , snake_case__ ) snake_case__ : List[str] = max(current_row[col] , snake_case__ ) else: snake_case__ : Dict = 0 snake_case__ : List[str] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
717
'''simple docstring''' import socket def _A ( ): snake_case__ : Any = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) snake_case__ : str = socket.gethostname() snake_case__ : Union[str, Any] = 1_23_12 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: snake_case__ : int = sock.recv(10_24 ) if not data: break out_file.write(snake_case__ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
694
0
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _lowerCAmelCase : List[str] = [ 'python', 'tqdm', 'regex', 'requests', 'packaging', 'filelock', 'numpy', 'tokenizers', 'huggingface-hub', 'safetensors', 'accelerate', 'pyyaml', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def _A ( snake_case__ : Dict , snake_case__ : Optional[int]=None ): require_version(deps[pkg] , snake_case__ )
718
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float , ): if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float , ): if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( snake_case__ , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
694
0
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : Any ): if not nums: raise ValueError('''List is empty''' ) return sum(snake_case__ ) / len(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' from math import isqrt def _A ( snake_case__ : int ): return all(number % divisor != 0 for divisor in range(2 , isqrt(snake_case__ ) + 1 ) ) def _A ( snake_case__ : int = 10**6 ): snake_case__ : str = 0 snake_case__ : List[str] = 1 snake_case__ : str = 7 while prime_candidate < max_prime: primes_count += is_prime(snake_case__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
694
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> List[Any]: """simple docstring""" super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self , lowerCamelCase = "auto" ) -> int: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case__ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def lowercase__ ( self ) -> Dict: """simple docstring""" self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , lowerCamelCase , lowerCamelCase = 512 , lowerCamelCase = 512 , lowerCamelCase = 50 , lowerCamelCase = 7.5 , lowerCamelCase = None , lowerCamelCase = 1 , lowerCamelCase = 0.0 , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = "pil" , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = 1 , lowerCamelCase = None , **lowerCamelCase , ) -> Tuple: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): snake_case__ : str = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): snake_case__ : str = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(SCREAMING_SNAKE_CASE_ )}.''' ) # get prompt text embeddings snake_case__ : Any = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) snake_case__ : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case__ : Any = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) snake_case__ : Any = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: snake_case__ : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method snake_case__ ,snake_case__ ,snake_case__ : Tuple = text_embeddings.shape snake_case__ : Union[str, Any] = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 ) snake_case__ : str = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. snake_case__ : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: snake_case__ : Optional[Any] = 42 if negative_prompt is None: snake_case__ : Optional[int] = [''''''] elif type(SCREAMING_SNAKE_CASE_ ) is not type(SCREAMING_SNAKE_CASE_ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_ )} !=''' f''' {type(SCREAMING_SNAKE_CASE_ )}.''' ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): snake_case__ : Tuple = [negative_prompt] elif batch_size != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ''' the batch size of `prompt`.''' ) else: snake_case__ : Dict = negative_prompt snake_case__ : List[Any] = text_input_ids.shape[-1] snake_case__ : Optional[Any] = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , ) snake_case__ : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case__ : Any = uncond_embeddings.shape[1] snake_case__ : str = uncond_embeddings.repeat(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) snake_case__ : Any = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case__ : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. snake_case__ : Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) snake_case__ : int = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) snake_case__ : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps snake_case__ : Optional[int] = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='''cpu''' , dtype=SCREAMING_SNAKE_CASE_ ).to(self.device ) snake_case__ : Optional[Any] = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='''cpu''' , dtype=SCREAMING_SNAKE_CASE_ ).to( self.device ) else: snake_case__ : List[str] = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) snake_case__ : str = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) snake_case__ : Tuple = latents_reference.to(self.device ) snake_case__ : Optional[int] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images snake_case__ : List[str] = (latents_shape[3] - latents_shape_reference[3]) // 2 snake_case__ : Optional[Any] = (latents_shape[2] - latents_shape_reference[2]) // 2 snake_case__ : Union[str, Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx snake_case__ : Union[str, Any] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy snake_case__ : List[Any] = 0 if dx < 0 else dx snake_case__ : Dict = 0 if dy < 0 else dy snake_case__ : Any = max(-dx , 0 ) snake_case__ : str = max(-dy , 0 ) # import pdb # pdb.set_trace() snake_case__ : Union[str, Any] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand snake_case__ : Dict = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler snake_case__ : Optional[int] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case__ : Any = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case__ : Any = {} if accepts_eta: snake_case__ : List[str] = eta for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance snake_case__ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case__ : Dict = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual snake_case__ : Any = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample # perform guidance if do_classifier_free_guidance: snake_case__ ,snake_case__ : Dict = noise_pred.chunk(2 ) snake_case__ : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 snake_case__ : int = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) snake_case__ : Any = 1 / 0.18_215 * latents snake_case__ : int = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample snake_case__ : int = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case__ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: snake_case__ : List[Any] = self.feature_extractor(self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) , return_tensors='''pt''' ).to( self.device ) snake_case__ ,snake_case__ : Any = self.safety_checker( images=SCREAMING_SNAKE_CASE_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: snake_case__ : Tuple = None if output_type == "pil": snake_case__ : List[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
720
'''simple docstring''' from sklearn.metrics import fa_score import datasets _lowerCAmelCase : List[Any] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" _lowerCAmelCase : Tuple = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" _lowerCAmelCase : List[str] = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=1 , lowerCamelCase="binary" , lowerCamelCase=None ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = fa_score( lowerCamelCase , lowerCamelCase , labels=lowerCamelCase , pos_label=lowerCamelCase , average=lowerCamelCase , sample_weight=lowerCamelCase ) return {"f1": float(lowerCamelCase ) if score.size == 1 else score}
694
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : str = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class snake_case ( _snake_case ): """simple docstring""" _lowerCAmelCase = """openai-gpt""" _lowerCAmelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCamelCase=40478 , lowerCamelCase=512 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=1E-5 , lowerCamelCase=0.02 , lowerCamelCase="cls_index" , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=0.1 , **lowerCamelCase , ) -> Any: """simple docstring""" snake_case__ : Tuple = vocab_size snake_case__ : Dict = n_positions snake_case__ : Any = n_embd snake_case__ : Any = n_layer snake_case__ : Optional[int] = n_head snake_case__ : Union[str, Any] = afn snake_case__ : Dict = resid_pdrop snake_case__ : str = embd_pdrop snake_case__ : Union[str, Any] = attn_pdrop snake_case__ : str = layer_norm_epsilon snake_case__ : Union[str, Any] = initializer_range snake_case__ : Any = summary_type snake_case__ : List[str] = summary_use_proj snake_case__ : Optional[int] = summary_activation snake_case__ : Union[str, Any] = summary_first_dropout snake_case__ : Optional[int] = summary_proj_to_labels super().__init__(**snake_case_ )
721
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 42 class snake_case ( __lowerCamelCase , __lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase = 65536 , lowerCamelCase = None , lowerCamelCase = 2 , lowerCamelCase = 2 , lowerCamelCase = 0 , lowerCamelCase = "fourier" , lowerCamelCase = True , lowerCamelCase = False , lowerCamelCase = 0.0 , lowerCamelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCamelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCamelCase = "UNetMidBlock1D" , lowerCamelCase = None , lowerCamelCase = (32, 32, 64) , lowerCamelCase = None , lowerCamelCase = 8 , lowerCamelCase = 1 , lowerCamelCase = False , ) -> Union[str, Any]: """simple docstring""" super().__init__() snake_case__ : Optional[Any] = sample_size # time if time_embedding_type == "fourier": snake_case__ : Optional[int] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCamelCase , log=lowerCamelCase , flip_sin_to_cos=lowerCamelCase ) snake_case__ : List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": snake_case__ : Dict = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCamelCase , downscale_freq_shift=lowerCamelCase ) snake_case__ : Dict = block_out_channels[0] if use_timestep_embedding: snake_case__ : Any = block_out_channels[0] * 4 snake_case__ : Optional[Any] = TimestepEmbedding( in_channels=lowerCamelCase , time_embed_dim=lowerCamelCase , act_fn=lowerCamelCase , out_dim=block_out_channels[0] , ) snake_case__ : Dict = nn.ModuleList([] ) snake_case__ : List[Any] = None snake_case__ : Union[str, Any] = nn.ModuleList([] ) snake_case__ : List[str] = None # down snake_case__ : Tuple = in_channels for i, down_block_type in enumerate(lowerCamelCase ): snake_case__ : Tuple = output_channel snake_case__ : List[str] = block_out_channels[i] if i == 0: input_channel += extra_in_channels snake_case__ : List[Any] = i == len(lowerCamelCase ) - 1 snake_case__ : Dict = get_down_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCamelCase ) # mid snake_case__ : Optional[int] = get_mid_block( lowerCamelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCamelCase , add_downsample=lowerCamelCase , ) # up snake_case__ : Union[str, Any] = list(reversed(lowerCamelCase ) ) snake_case__ : Any = reversed_block_out_channels[0] if out_block_type is None: snake_case__ : List[Any] = out_channels else: snake_case__ : Dict = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase ): snake_case__ : List[str] = output_channel snake_case__ : List[str] = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase ) - 1 else final_upsample_channels ) snake_case__ : List[str] = i == len(lowerCamelCase ) - 1 snake_case__ : str = get_up_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCamelCase ) snake_case__ : Optional[Any] = output_channel # out snake_case__ : List[Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) snake_case__ : Union[str, Any] = get_out_block( out_block_type=lowerCamelCase , num_groups_out=lowerCamelCase , embed_dim=block_out_channels[0] , out_channels=lowerCamelCase , act_fn=lowerCamelCase , fc_dim=block_out_channels[-1] // 4 , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" snake_case__ : str = timestep if not torch.is_tensor(lowerCamelCase ): snake_case__ : Dict = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCamelCase ) and len(timesteps.shape ) == 0: snake_case__ : Optional[Any] = timesteps[None].to(sample.device ) snake_case__ : Any = self.time_proj(lowerCamelCase ) if self.config.use_timestep_embedding: snake_case__ : Tuple = self.time_mlp(lowerCamelCase ) else: snake_case__ : Union[str, Any] = timestep_embed[..., None] snake_case__ : Dict = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) snake_case__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down snake_case__ : List[Any] = () for downsample_block in self.down_blocks: snake_case__ ,snake_case__ : Optional[int] = downsample_block(hidden_states=lowerCamelCase , temb=lowerCamelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: snake_case__ : Any = self.mid_block(lowerCamelCase , lowerCamelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): snake_case__ : str = down_block_res_samples[-1:] snake_case__ : int = down_block_res_samples[:-1] snake_case__ : Optional[Any] = upsample_block(lowerCamelCase , res_hidden_states_tuple=lowerCamelCase , temb=lowerCamelCase ) # 5. post-process if self.out_block: snake_case__ : Dict = self.out_block(lowerCamelCase , lowerCamelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase )
694
0
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets _lowerCAmelCase : Optional[Any] = "\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n" _lowerCAmelCase : Tuple = "\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n" _lowerCAmelCase : List[str] = "\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for 'cvit-mkb-clsr' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'precision@10': 1.0}\n\n" def _A ( snake_case__ : int , snake_case__ : Optional[int] ): return float((preds == labels).mean() ) def _A ( snake_case__ : Union[str, Any] , snake_case__ : Tuple ): snake_case__ : List[Any] = simple_accuracy(snake_case__ , snake_case__ ) snake_case__ : List[str] = float(fa_score(y_true=snake_case__ , y_pred=snake_case__ ) ) return { "accuracy": acc, "f1": fa, } def _A ( snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] ): snake_case__ : List[str] = np.array(snake_case__ ) snake_case__ : List[str] = np.array(snake_case__ ) snake_case__ : str = en_sentvecs.shape[0] # mean centering snake_case__ : Tuple = en_sentvecs - np.mean(snake_case__ , axis=0 ) snake_case__ : str = in_sentvecs - np.mean(snake_case__ , axis=0 ) snake_case__ : str = cdist(snake_case__ , snake_case__ , '''cosine''' ) snake_case__ : List[str] = np.array(range(snake_case__ ) ) snake_case__ : Dict = sim.argsort(axis=1 )[:, :10] snake_case__ : Optional[int] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(UpperCAmelCase__ , UpperCAmelCase__ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
700
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = "The Nymphenburg Palace is a beautiful palace in Munich!" def _A ( snake_case__ : str , snake_case__ : str ): snake_case__ : Tuple = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 10_24, '''hidden_size''': 7_68, '''max_length''': 5_12, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 10_24, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } snake_case__ : List[str] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py snake_case__ : str = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=snake_case__ , output_all_encodings=snake_case__ , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , snake_case__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later snake_case__ : Any = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab snake_case__ : Any = os.path.join(get_home_dir() , '''models''' ) snake_case__ : List[Any] = _load_vocab(snake_case__ , snake_case__ , snake_case__ , cls=snake_case__ ) snake_case__ : Optional[int] = nlp.model.BERTModel( snake_case__ , len(snake_case__ ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=snake_case__ , use_token_type_embed=snake_case__ , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=snake_case__ , use_decoder=snake_case__ , ) original_bort.load_parameters(snake_case__ , cast_dtype=snake_case__ , ignore_extra=snake_case__ ) snake_case__ : Any = original_bort._collect_params_with_prefix() # Build our config 🤗 snake_case__ : Union[str, Any] = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(snake_case__ ), } snake_case__ : Dict = BertConfig.from_dict(snake_case__ ) snake_case__ : Dict = BertForMaskedLM(snake_case__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(snake_case__ : str ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(snake_case__ : List[Any] , snake_case__ : Any ): snake_case__ : Union[str, Any] = hf_param.shape snake_case__ : Any = to_torch(params[gluon_param] ) snake_case__ : Dict = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param snake_case__ : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) snake_case__ : int = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) snake_case__ : str = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) snake_case__ : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) snake_case__ : str = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): snake_case__ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention snake_case__ : BertSelfAttention = layer.attention.self snake_case__ : Optional[Any] = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) snake_case__ : Dict = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) snake_case__ : List[str] = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) snake_case__ : int = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) snake_case__ : List[Any] = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) snake_case__ : List[Any] = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output snake_case__ : BertSelfOutput = layer.attention.output snake_case__ : Optional[Any] = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) snake_case__ : List[str] = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) snake_case__ : Optional[Any] = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) snake_case__ : Any = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate snake_case__ : BertIntermediate = layer.intermediate snake_case__ : int = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) snake_case__ : Optional[int] = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output snake_case__ : BertOutput = layer.output snake_case__ : Any = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) snake_case__ : Tuple = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) snake_case__ : Tuple = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) snake_case__ : Union[str, Any] = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models snake_case__ : Dict = RobertaTokenizer.from_pretrained('''roberta-base''' ) snake_case__ : str = tokenizer.encode_plus(snake_case__ )['''input_ids'''] # Get gluon output snake_case__ : List[str] = mx.nd.array([input_ids] ) snake_case__ : Optional[int] = original_bort(inputs=snake_case__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(snake_case__ ) snake_case__ : Optional[Any] = BertModel.from_pretrained(snake_case__ ) hf_bort_model.eval() snake_case__ : Optional[Any] = tokenizer.encode_plus(snake_case__ , return_tensors='''pt''' ) snake_case__ : str = hf_bort_model(**snake_case__ )[0] snake_case__ : str = output_gluon[0].asnumpy() snake_case__ : str = output_hf[0].detach().numpy() snake_case__ : Tuple = np.max(np.abs(hf_layer - gluon_layer ) ).item() snake_case__ : Optional[Any] = np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , snake_case__ ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
694
0
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class snake_case ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : str = torch.nn.Linear(10 , 10 ) snake_case__ : Any = torch.optim.SGD(model.parameters() , 0.1 ) snake_case__ : str = Accelerator() snake_case__ : Optional[int] = accelerator.prepare(_lowerCamelCase ) try: pickle.loads(pickle.dumps(_lowerCamelCase ) ) except Exception as e: self.fail(f'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
701
'''simple docstring''' def _A ( snake_case__ : int = 4_00_00_00 ): snake_case__ : int = [] snake_case__ ,snake_case__ : Union[str, Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(snake_case__ ) snake_case__ ,snake_case__ : Any = b, a + b return sum(snake_case__ ) if __name__ == "__main__": print(F'''{solution() = }''')
694
0
'''simple docstring''' from collections.abc import Callable import numpy as np def _A ( snake_case__ : Callable , snake_case__ : float , snake_case__ : float , snake_case__ : float , snake_case__ : float ): snake_case__ : Dict = int(np.ceil((x_end - xa) / step_size ) ) snake_case__ : Any = np.zeros((n + 1,) ) snake_case__ : Union[str, Any] = ya snake_case__ : str = xa for k in range(lowerCamelCase_ ): snake_case__ : Tuple = y[k] + step_size * ode_func(lowerCamelCase_ , y[k] ) snake_case__ : str = y[k] + ( (step_size / 2) * (ode_func(lowerCamelCase_ , y[k] ) + ode_func(x + step_size , lowerCamelCase_ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: _lowerCAmelCase : Any = None _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = "▁" _lowerCAmelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : int = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } _lowerCAmelCase : Optional[int] = { "google/pegasus-xsum": 5_1_2, } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PegasusTokenizer _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<pad>" , lowerCamelCase="</s>" , lowerCamelCase="<unk>" , lowerCamelCase="<mask_2>" , lowerCamelCase="<mask_1>" , lowerCamelCase=None , lowerCamelCase=103 , **lowerCamelCase , ) -> Optional[int]: """simple docstring""" snake_case__ : Tuple = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(lowerCamelCase )}, but is''' f''' {type(lowerCamelCase )}''' ) snake_case__ : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(lowerCamelCase ) , self.offset - 1 ) ] if len(set(lowerCamelCase ) ) != len(lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) snake_case__ : List[Any] = additional_special_tokens_extended else: snake_case__ : Union[str, Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , pad_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , mask_token=lowerCamelCase , mask_token_sent=lowerCamelCase , offset=lowerCamelCase , additional_special_tokens=lowerCamelCase , **lowerCamelCase , ) snake_case__ : Union[str, Any] = vocab_file snake_case__ : List[Any] = False if not self.vocab_file else True def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : Tuple = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : int = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
694
0
'''simple docstring''' from __future__ import annotations import numpy as np def _A ( snake_case__ : Optional[Any] ): snake_case__ ,snake_case__ : Any = np.shape(UpperCamelCase__ ) if rows != columns: snake_case__ : Dict = ( '''\'table\' has to be of square shaped array but got a ''' f'''{rows}x{columns} array:\n{table}''' ) raise ValueError(UpperCamelCase__ ) snake_case__ : Optional[Any] = np.zeros((rows, columns) ) snake_case__ : Optional[int] = np.zeros((rows, columns) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): snake_case__ : int = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) snake_case__ : int = (table[i][j] - total) / upper[j][j] snake_case__ : int = 1 for j in range(UpperCamelCase__ , UpperCamelCase__ ): snake_case__ : Optional[int] = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) ) snake_case__ : Union[str, Any] = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=0 ) -> Tuple: """simple docstring""" snake_case__ : Optional[Any] = 1.0 if scale is None else scale snake_case__ : Dict = 0.0 if loc is None else loc super().__init__(lowerCamelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase )] ) @property def lowercase__ ( self ) -> Dict: """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" return self.base_dist.variance * self.scale**2 @property def lowercase__ ( self ) -> List[str]: """simple docstring""" return self.variance.sqrt() class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> None: """simple docstring""" super().__init__(**lowerCamelCase ) snake_case__ : Tuple = args_dim snake_case__ : str = nn.ModuleList([nn.Linear(lowerCamelCase , lowerCamelCase ) for dim in args_dim.values()] ) snake_case__ : Optional[int] = domain_map def lowercase__ ( self , lowerCamelCase ) -> Tuple[torch.Tensor]: """simple docstring""" snake_case__ : Any = [proj(lowerCamelCase ) for proj in self.proj] return self.domain_map(*lowerCamelCase ) class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" super().__init__() snake_case__ : Tuple = function def lowercase__ ( self , lowerCamelCase , *lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return self.function(lowerCamelCase , *lowerCamelCase ) class snake_case : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 def __init__( self , lowerCamelCase = 1 ) -> None: """simple docstring""" snake_case__ : Optional[Any] = dim snake_case__ : Tuple = {k: dim * self.args_dim[k] for k in self.args_dim} def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" if self.dim == 1: return self.distribution_class(*lowerCamelCase ) else: return Independent(self.distribution_class(*lowerCamelCase ) , 1 ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , ) -> Distribution: """simple docstring""" snake_case__ : List[Any] = self._base_distribution(lowerCamelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase , loc=lowerCamelCase , scale=lowerCamelCase , event_dim=self.event_dim ) @property def lowercase__ ( self ) -> Tuple: """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def lowercase__ ( self ) -> int: """simple docstring""" return len(self.event_shape ) @property def lowercase__ ( self ) -> float: """simple docstring""" return 0.0 def lowercase__ ( self , lowerCamelCase ) -> nn.Module: """simple docstring""" return ParameterProjection( in_features=lowerCamelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def lowercase__ ( self , *lowerCamelCase ) -> Any: """simple docstring""" raise NotImplementedError() @staticmethod def lowercase__ ( lowerCamelCase ) -> torch.Tensor: """simple docstring""" return (x + torch.sqrt(torch.square(lowerCamelCase ) + 4.0 )) / 2.0 class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"df": 1, "loc": 1, "scale": 1} _lowerCAmelCase = StudentT @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: """simple docstring""" snake_case__ : Tuple = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) snake_case__ : Optional[int] = 2.0 + cls.squareplus(lowerCamelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"loc": 1, "scale": 1} _lowerCAmelCase = Normal @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase ) -> Optional[int]: """simple docstring""" snake_case__ : List[str] = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"total_count": 1, "logits": 1} _lowerCAmelCase = NegativeBinomial @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" snake_case__ : List[str] = cls.squareplus(lowerCamelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def lowercase__ ( self , lowerCamelCase ) -> Distribution: """simple docstring""" snake_case__ ,snake_case__ : str = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase ) else: return Independent(self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase ) , 1 ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None ) -> Distribution: """simple docstring""" snake_case__ ,snake_case__ : Optional[Any] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
694
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _A ( snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Any ): if (ksize % 2) == 0: snake_case__ : int = ksize + 1 snake_case__ : Any = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__SCREAMING_SNAKE_CASE ): for x in range(__SCREAMING_SNAKE_CASE ): # distance from center snake_case__ : Optional[Any] = x - ksize // 2 snake_case__ : Optional[Any] = y - ksize // 2 # degree to radiant snake_case__ : List[Any] = theta / 1_80 * np.pi snake_case__ : Tuple = np.cos(_theta ) snake_case__ : str = np.sin(_theta ) # get kernel x snake_case__ : Any = cos_theta * px + sin_theta * py # get kernel y snake_case__ : Dict = -sin_theta * px + cos_theta * py # fill kernel snake_case__ : Optional[int] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _lowerCAmelCase : Dict = imread("../image_data/lena.jpg") # turn image in gray scale value _lowerCAmelCase : Dict = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _lowerCAmelCase : List[str] = np.zeros(gray.shape[:2]) for theta in [0, 3_0, 6_0, 9_0, 1_2_0, 1_5_0]: _lowerCAmelCase : Tuple = gabor_filter_kernel(1_0, 8, theta, 1_0, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _lowerCAmelCase : str = out / out.max() * 2_5_5 _lowerCAmelCase : Tuple = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
704
'''simple docstring''' from math import factorial def _A ( snake_case__ : int = 20 ): snake_case__ : int = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case__ : Union[str, Any] = n // 2 return int(factorial(snake_case__ ) / (factorial(snake_case__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: _lowerCAmelCase : Any = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
694
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _A ( snake_case__ : Optional[Any] ): snake_case__ : Dict = 3_84 if "tiny" in model_name: snake_case__ : Optional[Any] = [3, 3, 9, 3] snake_case__ : Union[str, Any] = [96, 1_92, 3_84, 7_68] if "small" in model_name: snake_case__ : Optional[int] = [3, 3, 27, 3] snake_case__ : Dict = [96, 1_92, 3_84, 7_68] if "base" in model_name: snake_case__ : Dict = [3, 3, 27, 3] snake_case__ : Any = [1_28, 2_56, 5_12, 10_24] snake_case__ : Optional[int] = 5_12 if "large" in model_name: snake_case__ : int = [3, 3, 27, 3] snake_case__ : Optional[int] = [1_92, 3_84, 7_68, 15_36] snake_case__ : int = 7_68 if "xlarge" in model_name: snake_case__ : Optional[Any] = [3, 3, 27, 3] snake_case__ : int = [2_56, 5_12, 10_24, 20_48] snake_case__ : Any = 10_24 # set label information snake_case__ : int = 1_50 snake_case__ : str = '''huggingface/label-files''' snake_case__ : Optional[int] = '''ade20k-id2label.json''' snake_case__ : Union[str, Any] = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} snake_case__ : Optional[Any] = {v: k for k, v in idalabel.items()} snake_case__ : List[str] = ConvNextConfig( depths=snake_case__ , hidden_sizes=snake_case__ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) snake_case__ : Union[str, Any] = UperNetConfig( backbone_config=snake_case__ , auxiliary_in_channels=snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ , ) return config def _A ( snake_case__ : Optional[Any] ): snake_case__ : Dict = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def _A ( snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[Any] ): snake_case__ : Union[str, Any] = dct.pop(snake_case__ ) snake_case__ : List[str] = val def _A ( snake_case__ : Any , snake_case__ : int , snake_case__ : str ): snake_case__ : Tuple = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } snake_case__ : Tuple = model_name_to_url[model_name] snake_case__ : Dict = torch.hub.load_state_dict_from_url(snake_case__ , map_location='''cpu''' )['''state_dict'''] snake_case__ : Union[str, Any] = get_upernet_config(snake_case__ ) snake_case__ : Optional[int] = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): snake_case__ : List[Any] = state_dict.pop(snake_case__ ) if "bn" in key: snake_case__ : Tuple = key.replace('''bn''' , '''batch_norm''' ) snake_case__ : Dict = val # rename keys snake_case__ : Dict = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image snake_case__ : int = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' snake_case__ : int = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('''RGB''' ) snake_case__ : int = SegformerImageProcessor() snake_case__ : Tuple = processor(snake_case__ , return_tensors='''pt''' ).pixel_values with torch.no_grad(): snake_case__ : Any = model(snake_case__ ) if model_name == "upernet-convnext-tiny": snake_case__ : str = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ) elif model_name == "upernet-convnext-small": snake_case__ : int = torch.tensor( [[-8.82_36, -8.82_36, -8.67_71], [-8.82_36, -8.82_36, -8.67_71], [-8.76_38, -8.76_38, -8.62_40]] ) elif model_name == "upernet-convnext-base": snake_case__ : Optional[int] = torch.tensor( [[-8.85_58, -8.85_58, -8.69_05], [-8.85_58, -8.85_58, -8.69_05], [-8.76_69, -8.76_69, -8.60_21]] ) elif model_name == "upernet-convnext-large": snake_case__ : Tuple = torch.tensor( [[-8.66_60, -8.66_60, -8.62_10], [-8.66_60, -8.66_60, -8.62_10], [-8.63_10, -8.63_10, -8.59_64]] ) elif model_name == "upernet-convnext-xlarge": snake_case__ : Any = torch.tensor( [[-8.49_80, -8.49_80, -8.39_77], [-8.49_80, -8.49_80, -8.39_77], [-8.43_79, -8.43_79, -8.34_12]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case__ , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[F'''upernet-convnext-{size}''' for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowerCAmelCase : int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
705
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = (EulerDiscreteScheduler,) _lowerCAmelCase = 1_0 def lowercase__ ( self , **lowerCamelCase ) -> Tuple: """simple docstring""" snake_case__ : Any = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCamelCase ) return config def lowercase__ ( self ) -> List[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase , beta_end=lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def lowercase__ ( self ) -> str: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Any = self.get_scheduler_config() snake_case__ : int = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ : Dict = torch.manual_seed(0 ) snake_case__ : Any = self.dummy_model() snake_case__ : str = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ : List[Any] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case__ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : int = model(lowerCamelCase , lowerCamelCase ) snake_case__ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Optional[int] = output.prev_sample snake_case__ : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : Tuple = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def lowercase__ ( self ) -> Dict: """simple docstring""" snake_case__ : Tuple = self.scheduler_classes[0] snake_case__ : Optional[Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case__ : int = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ : Optional[Any] = torch.manual_seed(0 ) snake_case__ : Optional[int] = self.dummy_model() snake_case__ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ : Optional[int] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case__ : List[str] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : List[str] = model(lowerCamelCase , lowerCamelCase ) snake_case__ : Union[str, Any] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Union[str, Any] = output.prev_sample snake_case__ : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : List[str] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 0.0_002 ) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6 ) < 1E-3 def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Optional[int] = self.get_scheduler_config() snake_case__ : List[str] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Optional[int] = self.dummy_model() snake_case__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case__ : Tuple = sample.to(lowerCamelCase ) for t in scheduler.timesteps: snake_case__ : List[str] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : str = model(lowerCamelCase , lowerCamelCase ) snake_case__ : int = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : int = output.prev_sample snake_case__ : Union[str, Any] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : int = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Dict = self.scheduler_classes[0] snake_case__ : str = self.get_scheduler_config() snake_case__ : List[Any] = scheduler_class(**lowerCamelCase , use_karras_sigmas=lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Dict = self.dummy_model() snake_case__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case__ : Optional[Any] = sample.to(lowerCamelCase ) for t in scheduler.timesteps: snake_case__ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : Optional[Any] = model(lowerCamelCase , lowerCamelCase ) snake_case__ : str = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Optional[int] = output.prev_sample snake_case__ : Dict = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : Optional[int] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1E-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1E-3
694
0
'''simple docstring''' def _A ( snake_case__ : str ): snake_case__ : Any = [0 for i in range(len(_lowerCamelCase ) )] # initialize interval's left pointer and right pointer snake_case__ : Optional[Any] = 0, 0 for i in range(1 , len(_lowerCamelCase ) ): # case when current index is inside the interval if i <= right_pointer: snake_case__ : Tuple = min(right_pointer - i + 1 , z_result[i - left_pointer] ) snake_case__ : Any = min_edge while go_next(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: snake_case__ : Any = i, i + z_result[i] - 1 return z_result def _A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : str ): return i + z_result[i] < len(_lowerCamelCase ) and s[z_result[i]] == s[i + z_result[i]] def _A ( snake_case__ : str , snake_case__ : str ): snake_case__ : Optional[int] = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string snake_case__ : Union[str, Any] = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowerCamelCase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = ['pixel_values'] def __init__( self , lowerCamelCase = True , lowerCamelCase = 32 , lowerCamelCase=PILImageResampling.BILINEAR , lowerCamelCase = True , **lowerCamelCase , ) -> None: """simple docstring""" snake_case__ : int = do_resize snake_case__ : Dict = do_rescale snake_case__ : Any = size_divisor snake_case__ : str = resample super().__init__(**lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) -> np.ndarray: """simple docstring""" snake_case__ ,snake_case__ : Any = get_image_size(lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor snake_case__ : Any = height // size_divisor * size_divisor snake_case__ : Union[str, Any] = width // size_divisor * size_divisor snake_case__ : Tuple = resize(lowerCamelCase , (new_h, new_w) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) return image def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) -> np.ndarray: """simple docstring""" return rescale(image=lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase=None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) -> BatchFeature: """simple docstring""" snake_case__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize snake_case__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : Any = size_divisor if size_divisor is not None else self.size_divisor snake_case__ : Dict = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) snake_case__ : Optional[Any] = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. snake_case__ : Optional[int] = [to_numpy_array(lowerCamelCase ) for img in images] if do_resize: snake_case__ : Union[str, Any] = [self.resize(lowerCamelCase , size_divisor=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: snake_case__ : str = [self.rescale(lowerCamelCase , scale=1 / 255 ) for image in images] snake_case__ : Tuple = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] snake_case__ : str = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
694
0
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging _lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> List[Any]: """simple docstring""" super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: snake_case__ : List[str] = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) snake_case__ : Any = dict(scheduler.config ) snake_case__ : int = 1 snake_case__ : int = FrozenDict(__UpperCamelCase ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: snake_case__ : Optional[int] = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) snake_case__ : str = dict(scheduler.config ) snake_case__ : Optional[Any] = True snake_case__ : str = FrozenDict(__UpperCamelCase ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=__UpperCamelCase , segmentation_processor=__UpperCamelCase , vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , ) def lowercase__ ( self , lowerCamelCase = "auto" ) -> Dict: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case__ : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCamelCase ) def lowercase__ ( self ) -> Any: """simple docstring""" self.enable_attention_slicing(__UpperCamelCase ) def lowercase__ ( self ) -> Any: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) snake_case__ : Union[str, Any] = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__UpperCamelCase , __UpperCamelCase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowercase__ ( self ) -> Optional[int]: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__UpperCamelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 512 , lowerCamelCase = 512 , lowerCamelCase = 50 , lowerCamelCase = 7.5 , lowerCamelCase = None , lowerCamelCase = 1 , lowerCamelCase = 0.0 , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = "pil" , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = 1 , **lowerCamelCase , ) -> Any: """simple docstring""" snake_case__ : int = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) snake_case__ : str = self.segmentation_model(**__UpperCamelCase ) snake_case__ : int = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() snake_case__ : str = self.numpy_to_pil(__UpperCamelCase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask snake_case__ : Tuple = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , height=__UpperCamelCase , width=__UpperCamelCase , num_inference_steps=__UpperCamelCase , guidance_scale=__UpperCamelCase , negative_prompt=__UpperCamelCase , num_images_per_prompt=__UpperCamelCase , eta=__UpperCamelCase , generator=__UpperCamelCase , latents=__UpperCamelCase , output_type=__UpperCamelCase , return_dict=__UpperCamelCase , callback=__UpperCamelCase , callback_steps=__UpperCamelCase , )
707
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def _A ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : str ): snake_case__ : List[Any] = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}'''
694
0
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Union[str, Any] = logging.get_logger() def _A ( snake_case__ : int , snake_case__ : str , snake_case__ : LevitConfig , snake_case__ : Path , snake_case__ : bool = True ): print(f'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": snake_case__ : Optional[int] = timm.create_model('''levit_128s''' , pretrained=snake_case__ ) else: snake_case__ : List[str] = timm.create_model('''levit_128''' , pretrained=snake_case__ ) if hidden_sizes == 1_92: snake_case__ : int = timm.create_model('''levit_192''' , pretrained=snake_case__ ) if hidden_sizes == 2_56: snake_case__ : Dict = timm.create_model('''levit_256''' , pretrained=snake_case__ ) if hidden_sizes == 3_84: snake_case__ : List[Any] = timm.create_model('''levit_384''' , pretrained=snake_case__ ) from_model.eval() snake_case__ : int = LevitForImageClassificationWithTeacher(snake_case__ ).eval() snake_case__ : str = OrderedDict() snake_case__ : Dict = from_model.state_dict() snake_case__ : Optional[int] = list(from_model.state_dict().keys() ) snake_case__ : List[str] = list(our_model.state_dict().keys() ) print(len(snake_case__ ) , len(snake_case__ ) ) for i in range(len(snake_case__ ) ): snake_case__ : Dict = weights[og_keys[i]] our_model.load_state_dict(snake_case__ ) snake_case__ : int = torch.randn((2, 3, 2_24, 2_24) ) snake_case__ : Tuple = from_model(snake_case__ ) snake_case__ : str = our_model(snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ ), "The model logits don't match the original one." snake_case__ : int = name print(snake_case__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) snake_case__ : Optional[Any] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f'''Pushed {checkpoint_name}''' ) def _A ( snake_case__ : Path , snake_case__ : str = None , snake_case__ : bool = True ): snake_case__ : List[Any] = """imagenet-1k-id2label.json""" snake_case__ : str = 10_00 snake_case__ : int = (1, num_labels) snake_case__ : Tuple = """huggingface/label-files""" snake_case__ : Dict = num_labels snake_case__ : Dict = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} snake_case__ : Union[str, Any] = idalabel snake_case__ : Any = {v: k for k, v in idalabel.items()} snake_case__ : Union[str, Any] = partial(snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ ) snake_case__ : int = { """levit-128S""": 1_28, """levit-128""": 1_28, """levit-192""": 1_92, """levit-256""": 2_56, """levit-384""": 3_84, } snake_case__ : Tuple = { """levit-128S""": ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-128""": ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-192""": ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-256""": ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-384""": ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , snake_case__ , names_to_config[model_name] , snake_case__ , snake_case__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,", ) parser.add_argument( "--pytorch_dump_folder_path", default="levit-dump-folder/", type=Path, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) _lowerCAmelCase : Optional[int] = parser.parse_args() _lowerCAmelCase : Any = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
708
'''simple docstring''' from __future__ import annotations from collections import namedtuple def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): snake_case__ : Optional[Any] = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
694
0
'''simple docstring''' import numpy as np def _A ( snake_case__ : np.array ): return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCAmelCase : Union[str, Any] = "\nimport os\n" _lowerCAmelCase : Optional[int] = "\ndef foo():\n import os\n return False\n" _lowerCAmelCase : Union[str, Any] = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" _lowerCAmelCase : str = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" _lowerCAmelCase : str = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" _lowerCAmelCase : Tuple = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" _lowerCAmelCase : List[str] = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" _lowerCAmelCase : Optional[int] = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" _lowerCAmelCase : Optional[int] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" _lowerCAmelCase : List[Any] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" _lowerCAmelCase : Tuple = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , snake_case__ ) def _A ( snake_case__ : List[str] , snake_case__ : Dict ): snake_case__ : str = os.path.join(snake_case__ , '''test_file.py''' ) with open(snake_case__ , '''w''' ) as _tmp_file: _tmp_file.write(snake_case__ ) snake_case__ : int = get_imports(snake_case__ ) assert parsed_imports == ["os"]
694
0
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _A ( snake_case__ : Union[str, Any] , snake_case__ : List[Any] ): snake_case__ : Union[str, Any] = [] for part_id in partition_order: snake_case__ : Dict = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case__ ): expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _A ( ): snake_case__ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : List[str] = spark.range(1_00 ).repartition(1 ) snake_case__ : List[str] = Spark(snake_case__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _A ( ): snake_case__ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Tuple = spark.range(10 ).repartition(2 ) snake_case__ : int = [1, 0] snake_case__ : Union[str, Any] = _generate_iterable_examples(snake_case__ , snake_case__ ) # Reverse the partitions. snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , snake_case__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__ ,snake_case__ : Optional[int] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _A ( ): snake_case__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : str = spark.range(10 ).repartition(1 ) snake_case__ : Optional[int] = SparkExamplesIterable(snake_case__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case__ ): assert row_id == f'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _A ( ): snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Union[str, Any] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: snake_case__ : Tuple = lambda snake_case__ : x.reverse() snake_case__ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [2, 1, 0] ) snake_case__ : str = SparkExamplesIterable(snake_case__ ).shuffle_data_sources(snake_case__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case__ ): snake_case__ ,snake_case__ : Dict = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _A ( ): snake_case__ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Dict = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : Optional[Any] = SparkExamplesIterable(snake_case__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case__ ): snake_case__ ,snake_case__ : List[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : List[str] = SparkExamplesIterable(snake_case__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case__ ): snake_case__ ,snake_case__ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _A ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : int = spark.range(1_00 ).repartition(1 ) snake_case__ : Any = Spark(snake_case__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
710
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Any = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'markuplm' def __init__( self , lowerCamelCase=30522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1E-1_2 , lowerCamelCase=0 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase=256 , lowerCamelCase=1024 , lowerCamelCase=216 , lowerCamelCase=1001 , lowerCamelCase=32 , lowerCamelCase=50 , lowerCamelCase="absolute" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> str: """simple docstring""" super().__init__( pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase , ) snake_case__ : Optional[int] = vocab_size snake_case__ : Tuple = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : List[str] = num_attention_heads snake_case__ : List[Any] = hidden_act snake_case__ : Dict = intermediate_size snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : str = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : List[str] = initializer_range snake_case__ : List[str] = layer_norm_eps snake_case__ : Optional[Any] = position_embedding_type snake_case__ : Dict = use_cache snake_case__ : int = classifier_dropout # additional properties snake_case__ : Union[str, Any] = max_depth snake_case__ : Dict = max_xpath_tag_unit_embeddings snake_case__ : Any = max_xpath_subs_unit_embeddings snake_case__ : int = tag_pad_id snake_case__ : Tuple = subs_pad_id snake_case__ : Dict = xpath_unit_hidden_size
694
0
'''simple docstring''' def _A ( snake_case__ : int ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' def _A ( snake_case__ : float ): return 10 - x * x def _A ( snake_case__ : float , snake_case__ : float ): # Bolzano theory in order to find if there is a root between a and b if equation(snake_case__ ) * equation(snake_case__ ) >= 0: raise ValueError('''Wrong space!''' ) snake_case__ : List[str] = a while (b - a) >= 0.01: # Find middle point snake_case__ : Optional[int] = (a + b) / 2 # Check if middle point is root if equation(snake_case__ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case__ ) * equation(snake_case__ ) < 0: snake_case__ : Dict = c else: snake_case__ : List[str] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
694
0
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": _lowerCAmelCase : str = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") _lowerCAmelCase : int = F'''https://www.google.com/search?q={query}&num=100''' _lowerCAmelCase : Any = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: _lowerCAmelCase : str = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: _lowerCAmelCase : Optional[Any] = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
712
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : list[float] , snake_case__ : list[float] ): snake_case__ : Dict = sorted(numsa + numsa ) snake_case__ ,snake_case__ : Tuple = divmod(len(snake_case__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Tuple = [float(x) for x in input("Enter the elements of first array: ").split()] _lowerCAmelCase : List[str] = [float(x) for x in input("Enter the elements of second array: ").split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
694
0
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _lowerCAmelCase : List[str] = TypeVar("T") class snake_case ( Generic[T] ): """simple docstring""" _lowerCAmelCase = 4_2 # Cache store of keys _lowerCAmelCase = 4_2 # References of the keys in cache _lowerCAmelCase = 1_0 # Maximum capacity of cache def __init__( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" snake_case__ : List[Any] = deque() snake_case__ : Optional[Any] = set() if not n: snake_case__ : List[str] = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: snake_case__ : Dict = n def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: snake_case__ : List[str] = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def lowercase__ ( self ) -> Dict: """simple docstring""" for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ) -> List[Any]: """simple docstring""" return f'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
713
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Any = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
694
0
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class snake_case ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ) -> Tuple: """simple docstring""" debug_launcher(test_script.main ) def lowercase__ ( self ) -> List[str]: """simple docstring""" debug_launcher(test_ops.main )
714
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'encoder-decoder' _lowerCAmelCase = True def __init__( self , **lowerCamelCase ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" snake_case__ : List[str] = kwargs.pop('''encoder''' ) snake_case__ : Any = encoder_config.pop('''model_type''' ) snake_case__ : List[str] = kwargs.pop('''decoder''' ) snake_case__ : str = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig snake_case__ : Tuple = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) snake_case__ : Optional[Any] = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) snake_case__ : str = True @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> PretrainedConfig: """simple docstring""" logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) snake_case__ : Optional[int] = True snake_case__ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[Any] = copy.deepcopy(self.__dict__ ) snake_case__ : List[Any] = self.encoder.to_dict() snake_case__ : str = self.decoder.to_dict() snake_case__ : Any = self.__class__.model_type return output
694
0
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=24 , lowerCamelCase=2 , lowerCamelCase=6 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=None , lowerCamelCase=1000 , ) -> Optional[Any]: """simple docstring""" snake_case__ : List[str] = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : int = seq_length snake_case__ : Optional[int] = is_training snake_case__ : Any = use_input_mask snake_case__ : int = use_token_type_ids snake_case__ : Union[str, Any] = use_labels snake_case__ : str = vocab_size snake_case__ : str = hidden_size snake_case__ : Any = num_hidden_layers snake_case__ : Dict = num_attention_heads snake_case__ : int = intermediate_size snake_case__ : str = hidden_act snake_case__ : Dict = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : Optional[int] = type_vocab_size snake_case__ : List[str] = type_sequence_label_size snake_case__ : List[Any] = initializer_range snake_case__ : Any = num_labels snake_case__ : List[str] = scope snake_case__ : Optional[Any] = range_bbox def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case__ : int = bbox[i, j, 3] snake_case__ : Dict = bbox[i, j, 1] snake_case__ : List[str] = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case__ : List[str] = bbox[i, j, 2] snake_case__ : List[str] = bbox[i, j, 0] snake_case__ : List[str] = t snake_case__ : List[str] = None if self.use_input_mask: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) snake_case__ : List[Any] = None if self.use_token_type_ids: snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Dict = None snake_case__ : Any = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Any = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self ) -> Dict: """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> List[Any]: """simple docstring""" snake_case__ : Optional[Any] = LiltModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case__ : Optional[Any] = model(__UpperCamelCase , bbox=__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) snake_case__ : Optional[Any] = model(__UpperCamelCase , bbox=__UpperCamelCase , token_type_ids=__UpperCamelCase ) snake_case__ : Dict = model(__UpperCamelCase , bbox=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> Optional[Any]: """simple docstring""" snake_case__ : Tuple = self.num_labels snake_case__ : int = LiltForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case__ : int = model( __UpperCamelCase , bbox=__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> str: """simple docstring""" snake_case__ : Optional[Any] = LiltForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case__ : List[str] = model( __UpperCamelCase , bbox=__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : List[Any] = self.prepare_config_and_inputs() ( ( snake_case__ ) ,( snake_case__ ) ,( snake_case__ ) ,( snake_case__ ) ,( snake_case__ ) ,( snake_case__ ) ,( snake_case__ ) , ) : List[Any] = config_and_inputs snake_case__ : List[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class snake_case ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _lowerCAmelCase = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" return True def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : Dict = LiltModelTester(self ) snake_case__ : Tuple = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def lowercase__ ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ : List[Any] = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) @slow def lowercase__ ( self ) -> List[str]: """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : List[str] = LiltModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_torch @slow class snake_case ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : int = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__UpperCamelCase ) snake_case__ : Union[str, Any] = torch.tensor([[1, 2]] , device=__UpperCamelCase ) snake_case__ : List[str] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case__ : Dict = model(input_ids=__UpperCamelCase , bbox=__UpperCamelCase ) snake_case__ : Optional[Any] = torch.Size([1, 2, 768] ) snake_case__ : Optional[int] = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__UpperCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , __UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __UpperCamelCase , atol=1E-3 ) )
715
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = "▁" _lowerCAmelCase : Dict = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} _lowerCAmelCase : Dict = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } _lowerCAmelCase : str = {"vinai/bartpho-syllable": 1_0_2_4} class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase = None , **lowerCamelCase , ) -> None: """simple docstring""" snake_case__ : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token snake_case__ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , ) snake_case__ : int = vocab_file snake_case__ : Optional[Any] = monolingual_vocab_file snake_case__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility snake_case__ : Dict = {} snake_case__ : Union[str, Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : List[str] = cnt cnt += 1 with open(lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): snake_case__ : Optional[int] = line.strip().split()[0] snake_case__ : List[Any] = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : Any = len(self.fairseq_tokens_to_ids ) snake_case__ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: """simple docstring""" snake_case__ : int = self.__dict__.copy() snake_case__ : Any = None snake_case__ : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case__ : Dict = {} snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : str = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" snake_case__ : List[str] = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self ) -> Optional[int]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : int = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCamelCase , out_type=lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowercase__ ( self , lowerCamelCase ) -> str: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : List[Any] = ''''''.join(lowerCamelCase ).replace(lowerCamelCase , ''' ''' ).strip() return out_string def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case__ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase , '''wb''' ) as fi: snake_case__ : Dict = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(lowerCamelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
694
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Optional[Any] = logging.get_logger() @dataclass class snake_case : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = field(default_factory=__lowerCamelCase ) _lowerCAmelCase = field(default_factory=__lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: """simple docstring""" snake_case__ : List[Any] = len(list(m.modules() ) ) == 1 or isinstance(lowerCamelCase , nn.Convad ) or isinstance(lowerCamelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCamelCase ) def __call__( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCamelCase ) [x.remove() for x in self.handles] return self @property def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" return list(filter(lambda lowerCamelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class snake_case : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 1 _lowerCAmelCase = field(default_factory=__lowerCamelCase ) _lowerCAmelCase = field(default_factory=__lowerCamelCase ) _lowerCAmelCase = True def __call__( self , lowerCamelCase ) -> Any: """simple docstring""" snake_case__ : Optional[Any] = Tracker(self.dest )(lowerCamelCase ).parametrized snake_case__ : Tuple = Tracker(self.src )(lowerCamelCase ).parametrized snake_case__ : Tuple = list(filter(lambda lowerCamelCase : type(lowerCamelCase ) not in self.src_skip , lowerCamelCase ) ) snake_case__ : Optional[int] = list(filter(lambda lowerCamelCase : type(lowerCamelCase ) not in self.dest_skip , lowerCamelCase ) ) if len(lowerCamelCase ) != len(lowerCamelCase ) and self.raise_if_mismatch: raise Exception( f'''Numbers of operations are different. Source module has {len(lowerCamelCase )} operations while''' f''' destination module has {len(lowerCamelCase )}.''' ) for dest_m, src_m in zip(lowerCamelCase , lowerCamelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase ) -> str: """simple docstring""" super().__init__() snake_case__ : List[str] = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), f'''Unexpected layer name {k}''' snake_case__ : List[str] = len(lowerCamelCase ) + 1 feature_blocks.append((f'''res{block_index}''', v) ) snake_case__ : Tuple = nn.ModuleDict(lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> Any: """simple docstring""" return get_trunk_forward_outputs( lowerCamelCase , out_feat_keys=lowerCamelCase , feature_blocks=self._feature_blocks , ) class snake_case ( __lowerCamelCase ): """simple docstring""" def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" snake_case__ : List[str] = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , lowerCamelCase ) -> List[str]: """simple docstring""" if x not in self: snake_case__ : List[str] = self.convert_name_to_timm(lowerCamelCase ) snake_case__ : Optional[int] = partial(lambda: (timm.create_model(lowerCamelCase , pretrained=lowerCamelCase ).eval(), None) ) else: snake_case__ : List[Any] = super().__getitem__(lowerCamelCase ) return val class snake_case ( __lowerCamelCase ): """simple docstring""" def __getitem__( self , lowerCamelCase ) -> List[Any]: """simple docstring""" if "seer" in x and "in1k" not in x: snake_case__ : Tuple = RegNetModel else: snake_case__ : Tuple = RegNetForImageClassification return val def _A ( snake_case__ : Any , snake_case__ : Optional[int] , snake_case__ : List[Tuple[str, str]] ): for from_key, to_key in keys: snake_case__ : List[Any] = from_state_dict[from_key].clone() print(f'''Copied key={from_key} to={to_key}''' ) return to_state_dict def _A ( snake_case__ : str , snake_case__ : Callable[[], nn.Module] , snake_case__ : Callable[[], nn.Module] , snake_case__ : RegNetConfig , snake_case__ : Path , snake_case__ : bool = True , ): print(f'''Converting {name}...''' ) with torch.no_grad(): snake_case__ ,snake_case__ : str = from_model_func() snake_case__ : List[Any] = our_model_func(_UpperCamelCase ).eval() snake_case__ : Union[str, Any] = ModuleTransfer(src=_UpperCamelCase , dest=_UpperCamelCase , raise_if_mismatch=_UpperCamelCase ) snake_case__ : Optional[int] = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(_UpperCamelCase ) if from_state_dict is not None: snake_case__ : int = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: snake_case__ : Tuple = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] snake_case__ : Any = manually_copy_vissl_head(_UpperCamelCase , our_model.state_dict() , _UpperCamelCase ) our_model.load_state_dict(_UpperCamelCase ) snake_case__ : Optional[int] = our_model(_UpperCamelCase , output_hidden_states=_UpperCamelCase ) snake_case__ : Optional[Any] = ( our_outputs.logits if isinstance(_UpperCamelCase , _UpperCamelCase ) else our_outputs.last_hidden_state ) snake_case__ : str = from_model(_UpperCamelCase ) snake_case__ : int = from_output[-1] if type(_UpperCamelCase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: snake_case__ : Any = our_outputs.hidden_states[-1] assert torch.allclose(_UpperCamelCase , _UpperCamelCase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=_UpperCamelCase , ) snake_case__ : List[str] = 2_24 if '''seer''' not in name else 3_84 # we can use the convnext one snake_case__ : Optional[Any] = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=_UpperCamelCase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=_UpperCamelCase , ) print(f'''Pushed {name}''' ) def _A ( snake_case__ : Path , snake_case__ : str = None , snake_case__ : bool = True ): snake_case__ : Dict = '''imagenet-1k-id2label.json''' snake_case__ : List[Any] = 10_00 snake_case__ : Dict = (1, num_labels) snake_case__ : Optional[Any] = '''huggingface/label-files''' snake_case__ : Optional[int] = num_labels snake_case__ : Optional[Any] = json.load(open(cached_download(hf_hub_url(_UpperCamelCase , _UpperCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) snake_case__ : List[Any] = {int(_UpperCamelCase ): v for k, v in idalabel.items()} snake_case__ : int = idalabel snake_case__ : Optional[int] = {v: k for k, v in idalabel.items()} snake_case__ : Tuple = partial(_UpperCamelCase , num_labels=_UpperCamelCase , idalabel=_UpperCamelCase , labelaid=_UpperCamelCase ) snake_case__ : Union[str, Any] = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 1_60, 3_84] , groups_width=16 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 2_40, 5_28] , groups_width=24 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 1_28, 2_88, 6_72] , groups_width=16 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 1_68, 4_08, 9_12] , groups_width=24 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 1_92, 4_32, 10_08] , groups_width=48 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 2_40, 5_60, 13_60] , groups_width=40 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 3_92, 7_84, 16_24] , groups_width=56 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 2_40, 7_20, 19_20] , groups_width=1_20 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[2_56, 5_12, 8_96, 20_48] , groups_width=1_28 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[3_36, 6_72, 13_44, 25_20] , groups_width=1_68 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 1_04, 2_08, 4_40] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 1_12, 2_56, 6_08] , groups_width=16 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 1_28, 3_20, 7_68] , groups_width=16 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 1_20, 3_36, 8_88] , groups_width=24 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 2_16, 5_76, 15_12] , groups_width=24 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[1_28, 1_92, 5_12, 10_88] , groups_width=64 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[1_44, 2_88, 5_76, 12_96] , groups_width=72 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 4_48, 8_96, 20_16] , groups_width=56 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[2_24, 4_48, 12_32, 30_24] , groups_width=1_12 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), } snake_case__ : Any = NameToOurModelFuncMap() snake_case__ : List[str] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(snake_case__ : str , snake_case__ : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: snake_case__ : Any = torch.hub.load_state_dict_from_url(_UpperCamelCase , model_dir=str(_UpperCamelCase ) , map_location='''cpu''' ) snake_case__ : Dict = model_func() # check if we have a head, if yes add it snake_case__ : Any = files['''classy_state_dict''']['''base_model''']['''model'''] snake_case__ : str = model_state_dict['''trunk'''] model.load_state_dict(_UpperCamelCase ) return model.eval(), model_state_dict["heads"] # pretrained snake_case__ : Dict = partial( _UpperCamelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case__ : Optional[int] = partial( _UpperCamelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case__ : Optional[int] = partial( _UpperCamelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) snake_case__ : Any = partial( _UpperCamelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned snake_case__ : Optional[Any] = partial( _UpperCamelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case__ : Any = partial( _UpperCamelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case__ : Optional[Any] = partial( _UpperCamelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) snake_case__ : str = partial( _UpperCamelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( _UpperCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _UpperCamelCase , _UpperCamelCase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _UpperCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() _lowerCAmelCase : Any = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
716
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _lowerCAmelCase : str = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") _lowerCAmelCase : Optional[int] = parser.parse_args() _lowerCAmelCase : Union[str, Any] = "cpu" _lowerCAmelCase : List[str] = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" _lowerCAmelCase : Union[str, Any] = "path-to-your-trained-model" _lowerCAmelCase : Tuple = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _lowerCAmelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _lowerCAmelCase : Optional[Any] = pipe.to(device) # to channels last _lowerCAmelCase : Optional[int] = pipe.unet.to(memory_format=torch.channels_last) _lowerCAmelCase : str = pipe.vae.to(memory_format=torch.channels_last) _lowerCAmelCase : List[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _lowerCAmelCase : List[Any] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _lowerCAmelCase : Optional[int] = torch.randn(2, 4, 6_4, 6_4) _lowerCAmelCase : List[str] = torch.rand(1) * 9_9_9 _lowerCAmelCase : Optional[int] = torch.randn(2, 7_7, 7_6_8) _lowerCAmelCase : List[Any] = (sample, timestep, encoder_hidden_status) try: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _lowerCAmelCase : List[str] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _lowerCAmelCase : Tuple = 6_6_6 _lowerCAmelCase : str = torch.Generator(device).manual_seed(seed) _lowerCAmelCase : Dict = {"generator": generator} if args.steps is not None: _lowerCAmelCase : Tuple = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _lowerCAmelCase : Any = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
694
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase : Dict = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase : Any = { """yjernite/retribert-base-uncased""": 5_1_2, } _lowerCAmelCase : Optional[int] = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class snake_case ( __UpperCAmelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = RetriBertTokenizer _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase="[UNK]" , lowerCamelCase="[SEP]" , lowerCamelCase="[PAD]" , lowerCamelCase="[CLS]" , lowerCamelCase="[MASK]" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> Union[str, Any]: """simple docstring""" super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , tokenize_chinese_chars=lowerCamelCase , strip_accents=lowerCamelCase , **lowerCamelCase , ) snake_case__ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCamelCase ) != tokenize_chinese_chars ): snake_case__ : Optional[Any] = getattr(lowerCamelCase , normalizer_state.pop('''type''' ) ) snake_case__ : Optional[int] = do_lower_case snake_case__ : Dict = strip_accents snake_case__ : Optional[Any] = tokenize_chinese_chars snake_case__ : Tuple = normalizer_class(**lowerCamelCase ) snake_case__ : List[str] = do_lower_case def lowercase__ ( self , lowerCamelCase , lowerCamelCase=None ) -> Dict: """simple docstring""" snake_case__ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Dict: """simple docstring""" snake_case__ : Optional[Any] = [self.sep_token_id] snake_case__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> str: """simple docstring""" snake_case__ : Optional[int] = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase )
717
'''simple docstring''' import socket def _A ( ): snake_case__ : Any = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) snake_case__ : str = socket.gethostname() snake_case__ : Union[str, Any] = 1_23_12 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: snake_case__ : int = sock.recv(10_24 ) if not data: break out_file.write(snake_case__ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
694
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=30 , lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=32 , lowerCamelCase=2 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=10 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=None , ) -> Optional[int]: """simple docstring""" snake_case__ : Tuple = parent snake_case__ : List[str] = batch_size snake_case__ : List[Any] = image_size snake_case__ : Any = patch_size snake_case__ : List[Any] = num_channels snake_case__ : Tuple = is_training snake_case__ : Tuple = use_labels snake_case__ : Any = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : str = intermediate_size snake_case__ : Any = hidden_act snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : Tuple = type_sequence_label_size snake_case__ : List[str] = initializer_range snake_case__ : Dict = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ : List[str] = (image_size // patch_size) ** 2 snake_case__ : Optional[Any] = num_patches + 1 def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Optional[Any] = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : str = self.get_config() return config, pixel_values, labels def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : Any = TFViTModel(config=lowerCamelCase__ ) snake_case__ : Union[str, Any] = model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. snake_case__ : str = self.image_size // 2 snake_case__ : List[str] = pixel_values[:, :, :image_size, :image_size] snake_case__ : int = model(lowerCamelCase__ , interpolate_pos_encoding=lowerCamelCase__ , training=lowerCamelCase__ ) snake_case__ : Any = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: """simple docstring""" snake_case__ : Dict = self.type_sequence_label_size snake_case__ : Dict = TFViTForImageClassification(lowerCamelCase__ ) snake_case__ : Dict = model(lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. snake_case__ : List[str] = self.image_size // 2 snake_case__ : Optional[Any] = pixel_values[:, :, :image_size, :image_size] snake_case__ : Dict = model(lowerCamelCase__ , interpolate_pos_encoding=lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ : Optional[Any] = 1 snake_case__ : Optional[int] = TFViTForImageClassification(lowerCamelCase__ ) snake_case__ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ : Dict = self.prepare_config_and_inputs() snake_case__ : List[Any] = config_and_inputs snake_case__ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () _lowerCAmelCase = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Optional[int] = TFViTModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def lowercase__ ( self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def lowercase__ ( self ) -> Any: """simple docstring""" pass def lowercase__ ( self ) -> Dict: """simple docstring""" snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Dict = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , tf.keras.layers.Layer ) ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[Any] = model_class(lowerCamelCase__ ) snake_case__ : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : str = [*signature.parameters.keys()] snake_case__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def lowercase__ ( self ) -> Tuple: """simple docstring""" snake_case__ : List[str] = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(lowerCamelCase__ ) def _A ( ): snake_case__ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : str = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ) snake_case__ : str = self.default_image_processor snake_case__ : Optional[int] = prepare_img() snake_case__ : str = image_processor(images=lowerCamelCase__ , return_tensors='''tf''' ) # forward pass snake_case__ : List[Any] = model(**lowerCamelCase__ ) # verify the logits snake_case__ : Optional[int] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) snake_case__ : Tuple = tf.constant([-0.2_744, 0.8_215, -0.0_836] ) tf.debugging.assert_near(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 )
718
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float , ): if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float , ): if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( snake_case__ , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
694
0
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _lowerCAmelCase : int = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def _A ( snake_case__ : Dict=None ): if subparsers is not None: snake_case__ : int = subparsers.add_parser('''tpu-config''' , description=_description ) else: snake_case__ : Tuple = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments snake_case__ : Optional[int] = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=snake_case_ , default=snake_case_ , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=snake_case_ , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=snake_case_ , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) snake_case__ : Any = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=snake_case_ , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def _A ( snake_case__ : List[str] ): snake_case__ : Dict = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(snake_case_ ): snake_case__ : str = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: snake_case__ : int = defaults.command_file if not args.command and defaults.commands is not None: snake_case__ : Tuple = defaults.commands if not args.tpu_name: snake_case__ : int = defaults.tpu_name if not args.tpu_zone: snake_case__ : Tuple = defaults.tpu_zone if args.accelerate_version == "dev": snake_case__ : str = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": snake_case__ : Any = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , snake_case_ ): snake_case__ : Dict = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: snake_case__ : List[str] = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , snake_case_ ): snake_case__ : Dict = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate snake_case__ : Optional[int] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command snake_case__ : List[Any] = '''; '''.join(snake_case_ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess snake_case__ : int = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {' '.join(snake_case_ )}''' ) return subprocess.run(snake_case_ ) print('''Successfully setup pod.''' ) def _A ( ): snake_case__ : Union[str, Any] = tpu_command_parser() snake_case__ : Tuple = parser.parse_args() tpu_command_launcher(snake_case_ )
719
'''simple docstring''' from math import isqrt def _A ( snake_case__ : int ): return all(number % divisor != 0 for divisor in range(2 , isqrt(snake_case__ ) + 1 ) ) def _A ( snake_case__ : int = 10**6 ): snake_case__ : str = 0 snake_case__ : List[str] = 1 snake_case__ : str = 7 while prime_candidate < max_prime: primes_count += is_prime(snake_case__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
694
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCAmelCase : Dict = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = ["""DeiTFeatureExtractor"""] _lowerCAmelCase : Any = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
'''simple docstring''' from sklearn.metrics import fa_score import datasets _lowerCAmelCase : List[Any] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" _lowerCAmelCase : Tuple = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" _lowerCAmelCase : List[str] = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=1 , lowerCamelCase="binary" , lowerCamelCase=None ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = fa_score( lowerCamelCase , lowerCamelCase , labels=lowerCamelCase , pos_label=lowerCamelCase , average=lowerCamelCase , sample_weight=lowerCamelCase ) return {"f1": float(lowerCamelCase ) if score.size == 1 else score}
694
0
'''simple docstring''' import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Dict = "▁" _lowerCAmelCase : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class snake_case ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = BertGenerationTokenizer _lowerCAmelCase = False _lowerCAmelCase = True def lowercase__ ( self ) -> int: """simple docstring""" super().setUp() snake_case__ : Tuple = BertGenerationTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : List[Any] = '''<s>''' snake_case__ : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(lowerCamelCase ) , 1002 ) def lowercase__ ( self ) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : List[str] = BertGenerationTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) snake_case__ : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [285, 46, 10, 170, 382] , ) snake_case__ : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) snake_case__ : str = tokenizer.convert_tokens_to_ids(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) snake_case__ : List[str] = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def lowercase__ ( self ) -> str: """simple docstring""" return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : Union[str, Any] = '''Hello World!''' snake_case__ : Tuple = [18536, 2260, 101] self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @slow def lowercase__ ( self ) -> Tuple: """simple docstring""" snake_case__ : Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) snake_case__ : Dict = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @require_torch @slow def lowercase__ ( self ) -> Dict: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence snake_case__ : Any = list(self.big_tokenizer.get_vocab().keys() )[:10] snake_case__ : Tuple = ''' '''.join(lowerCamelCase ) snake_case__ : Any = self.big_tokenizer.encode_plus(lowerCamelCase , return_tensors='''pt''' , return_token_type_ids=lowerCamelCase ) snake_case__ : List[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=lowerCamelCase ) snake_case__ : List[Any] = BertGenerationConfig() snake_case__ : Tuple = BertGenerationEncoder(lowerCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase ) model(**lowerCamelCase ) @slow def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ : List[str] = {'''input_ids''': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
721
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 42 class snake_case ( __lowerCamelCase , __lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase = 65536 , lowerCamelCase = None , lowerCamelCase = 2 , lowerCamelCase = 2 , lowerCamelCase = 0 , lowerCamelCase = "fourier" , lowerCamelCase = True , lowerCamelCase = False , lowerCamelCase = 0.0 , lowerCamelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCamelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCamelCase = "UNetMidBlock1D" , lowerCamelCase = None , lowerCamelCase = (32, 32, 64) , lowerCamelCase = None , lowerCamelCase = 8 , lowerCamelCase = 1 , lowerCamelCase = False , ) -> Union[str, Any]: """simple docstring""" super().__init__() snake_case__ : Optional[Any] = sample_size # time if time_embedding_type == "fourier": snake_case__ : Optional[int] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCamelCase , log=lowerCamelCase , flip_sin_to_cos=lowerCamelCase ) snake_case__ : List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": snake_case__ : Dict = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCamelCase , downscale_freq_shift=lowerCamelCase ) snake_case__ : Dict = block_out_channels[0] if use_timestep_embedding: snake_case__ : Any = block_out_channels[0] * 4 snake_case__ : Optional[Any] = TimestepEmbedding( in_channels=lowerCamelCase , time_embed_dim=lowerCamelCase , act_fn=lowerCamelCase , out_dim=block_out_channels[0] , ) snake_case__ : Dict = nn.ModuleList([] ) snake_case__ : List[Any] = None snake_case__ : Union[str, Any] = nn.ModuleList([] ) snake_case__ : List[str] = None # down snake_case__ : Tuple = in_channels for i, down_block_type in enumerate(lowerCamelCase ): snake_case__ : Tuple = output_channel snake_case__ : List[str] = block_out_channels[i] if i == 0: input_channel += extra_in_channels snake_case__ : List[Any] = i == len(lowerCamelCase ) - 1 snake_case__ : Dict = get_down_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCamelCase ) # mid snake_case__ : Optional[int] = get_mid_block( lowerCamelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCamelCase , add_downsample=lowerCamelCase , ) # up snake_case__ : Union[str, Any] = list(reversed(lowerCamelCase ) ) snake_case__ : Any = reversed_block_out_channels[0] if out_block_type is None: snake_case__ : List[Any] = out_channels else: snake_case__ : Dict = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase ): snake_case__ : List[str] = output_channel snake_case__ : List[str] = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase ) - 1 else final_upsample_channels ) snake_case__ : List[str] = i == len(lowerCamelCase ) - 1 snake_case__ : str = get_up_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCamelCase ) snake_case__ : Optional[Any] = output_channel # out snake_case__ : List[Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) snake_case__ : Union[str, Any] = get_out_block( out_block_type=lowerCamelCase , num_groups_out=lowerCamelCase , embed_dim=block_out_channels[0] , out_channels=lowerCamelCase , act_fn=lowerCamelCase , fc_dim=block_out_channels[-1] // 4 , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" snake_case__ : str = timestep if not torch.is_tensor(lowerCamelCase ): snake_case__ : Dict = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCamelCase ) and len(timesteps.shape ) == 0: snake_case__ : Optional[Any] = timesteps[None].to(sample.device ) snake_case__ : Any = self.time_proj(lowerCamelCase ) if self.config.use_timestep_embedding: snake_case__ : Tuple = self.time_mlp(lowerCamelCase ) else: snake_case__ : Union[str, Any] = timestep_embed[..., None] snake_case__ : Dict = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) snake_case__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down snake_case__ : List[Any] = () for downsample_block in self.down_blocks: snake_case__ ,snake_case__ : Optional[int] = downsample_block(hidden_states=lowerCamelCase , temb=lowerCamelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: snake_case__ : Any = self.mid_block(lowerCamelCase , lowerCamelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): snake_case__ : str = down_block_res_samples[-1:] snake_case__ : int = down_block_res_samples[:-1] snake_case__ : Optional[Any] = upsample_block(lowerCamelCase , res_hidden_states_tuple=lowerCamelCase , temb=lowerCamelCase ) # 5. post-process if self.out_block: snake_case__ : Dict = self.out_block(lowerCamelCase , lowerCamelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase )
694
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class snake_case : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=64 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , ) -> List[str]: """simple docstring""" snake_case__ : Union[str, Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Optional[Any] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_input_mask snake_case__ : List[str] = use_token_type_ids snake_case__ : List[str] = use_labels snake_case__ : Optional[Any] = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : int = intermediate_size snake_case__ : List[str] = hidden_act snake_case__ : Optional[int] = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : int = max_position_embeddings snake_case__ : Optional[int] = type_vocab_size snake_case__ : Dict = type_sequence_label_size snake_case__ : Tuple = initializer_range snake_case__ : Any = num_labels snake_case__ : Union[str, Any] = num_choices snake_case__ : Optional[int] = scope snake_case__ : List[str] = vocab_size - 1 def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Tuple = None if self.use_input_mask: snake_case__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : int = None if self.use_labels: snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Union[str, Any] = self.get_config() return config, input_ids, input_mask, token_labels def lowercase__ ( self ) -> Any: """simple docstring""" return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : str = self.prepare_config_and_inputs() snake_case__ : Any = True return config, input_ids, input_mask, token_labels def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : Tuple = GPTNeoXModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ : Union[str, Any] = model(lowerCamelCase , attention_mask=lowerCamelCase ) snake_case__ : Optional[int] = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: """simple docstring""" snake_case__ : List[str] = True snake_case__ : Optional[Any] = GPTNeoXModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ : List[str] = model(lowerCamelCase , attention_mask=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: """simple docstring""" snake_case__ : List[Any] = GPTNeoXForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ : Optional[int] = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : str = self.num_labels snake_case__ : Optional[Any] = GPTNeoXForQuestionAnswering(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ : Any = model(lowerCamelCase , attention_mask=lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: """simple docstring""" snake_case__ : Dict = self.num_labels snake_case__ : int = GPTNeoXForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Optional[int] = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: """simple docstring""" snake_case__ : Optional[int] = self.num_labels snake_case__ : Dict = GPTNeoXForTokenClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ : int = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: """simple docstring""" snake_case__ : Optional[Any] = True snake_case__ : Dict = GPTNeoXForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # first forward pass snake_case__ : Optional[Any] = model(lowerCamelCase , attention_mask=lowerCamelCase , use_cache=lowerCamelCase ) snake_case__ : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : Optional[int] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : str = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ : Tuple = model(lowerCamelCase , attention_mask=lowerCamelCase , output_hidden_states=lowerCamelCase ) snake_case__ : int = output_from_no_past['''hidden_states'''][0] snake_case__ : str = model( lowerCamelCase , attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , output_hidden_states=lowerCamelCase , )['''hidden_states'''][0] # select random slice snake_case__ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : Optional[Any] = self.prepare_config_and_inputs() snake_case__ : Any = config_and_inputs snake_case__ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) _lowerCAmelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () _lowerCAmelCase = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : Any = GPTNeoXModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=lowerCamelCase , hidden_size=64 , num_attention_heads=8 ) def lowercase__ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case__ : Any = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowercase__ ( self ) -> Tuple: """simple docstring""" snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase ) def lowercase__ ( self ) -> Dict: """simple docstring""" snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase ) def lowercase__ ( self ) -> Tuple: """simple docstring""" snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def lowercase__ ( self , lowerCamelCase ) -> Tuple: """simple docstring""" snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = ids_tensor([1, 10] , config.vocab_size ) snake_case__ : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : Dict = GPTNeoXModel(lowerCamelCase ) original_model.to(lowerCamelCase ) original_model.eval() snake_case__ : Tuple = original_model(lowerCamelCase ).last_hidden_state snake_case__ : Optional[Any] = original_model(lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : Dict = {'''type''': scaling_type, '''factor''': 10.0} snake_case__ : Dict = GPTNeoXModel(lowerCamelCase ) scaled_model.to(lowerCamelCase ) scaled_model.eval() snake_case__ : List[str] = scaled_model(lowerCamelCase ).last_hidden_state snake_case__ : Optional[int] = scaled_model(lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-5 ) ) @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Any = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: snake_case__ : Any = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase ) snake_case__ : Optional[int] = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(lowerCamelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 snake_case__ : List[str] = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' snake_case__ : List[str] = model.generate(**lowerCamelCase , do_sample=lowerCamelCase , max_new_tokens=20 ) snake_case__ : List[str] = tokenizer.batch_decode(lowerCamelCase )[0] self.assertEqual(lowerCamelCase , lowerCamelCase )
700
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = "The Nymphenburg Palace is a beautiful palace in Munich!" def _A ( snake_case__ : str , snake_case__ : str ): snake_case__ : Tuple = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 10_24, '''hidden_size''': 7_68, '''max_length''': 5_12, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 10_24, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } snake_case__ : List[str] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py snake_case__ : str = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=snake_case__ , output_all_encodings=snake_case__ , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , snake_case__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later snake_case__ : Any = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab snake_case__ : Any = os.path.join(get_home_dir() , '''models''' ) snake_case__ : List[Any] = _load_vocab(snake_case__ , snake_case__ , snake_case__ , cls=snake_case__ ) snake_case__ : Optional[int] = nlp.model.BERTModel( snake_case__ , len(snake_case__ ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=snake_case__ , use_token_type_embed=snake_case__ , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=snake_case__ , use_decoder=snake_case__ , ) original_bort.load_parameters(snake_case__ , cast_dtype=snake_case__ , ignore_extra=snake_case__ ) snake_case__ : Any = original_bort._collect_params_with_prefix() # Build our config 🤗 snake_case__ : Union[str, Any] = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(snake_case__ ), } snake_case__ : Dict = BertConfig.from_dict(snake_case__ ) snake_case__ : Dict = BertForMaskedLM(snake_case__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(snake_case__ : str ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(snake_case__ : List[Any] , snake_case__ : Any ): snake_case__ : Union[str, Any] = hf_param.shape snake_case__ : Any = to_torch(params[gluon_param] ) snake_case__ : Dict = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param snake_case__ : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) snake_case__ : int = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) snake_case__ : str = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) snake_case__ : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) snake_case__ : str = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): snake_case__ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention snake_case__ : BertSelfAttention = layer.attention.self snake_case__ : Optional[Any] = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) snake_case__ : Dict = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) snake_case__ : List[str] = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) snake_case__ : int = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) snake_case__ : List[Any] = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) snake_case__ : List[Any] = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output snake_case__ : BertSelfOutput = layer.attention.output snake_case__ : Optional[Any] = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) snake_case__ : List[str] = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) snake_case__ : Optional[Any] = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) snake_case__ : Any = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate snake_case__ : BertIntermediate = layer.intermediate snake_case__ : int = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) snake_case__ : Optional[int] = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output snake_case__ : BertOutput = layer.output snake_case__ : Any = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) snake_case__ : Tuple = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) snake_case__ : Tuple = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) snake_case__ : Union[str, Any] = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models snake_case__ : Dict = RobertaTokenizer.from_pretrained('''roberta-base''' ) snake_case__ : str = tokenizer.encode_plus(snake_case__ )['''input_ids'''] # Get gluon output snake_case__ : List[str] = mx.nd.array([input_ids] ) snake_case__ : Optional[int] = original_bort(inputs=snake_case__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(snake_case__ ) snake_case__ : Optional[Any] = BertModel.from_pretrained(snake_case__ ) hf_bort_model.eval() snake_case__ : Optional[Any] = tokenizer.encode_plus(snake_case__ , return_tensors='''pt''' ) snake_case__ : str = hf_bort_model(**snake_case__ )[0] snake_case__ : str = output_gluon[0].asnumpy() snake_case__ : str = output_hf[0].detach().numpy() snake_case__ : Tuple = np.max(np.abs(hf_layer - gluon_layer ) ).item() snake_case__ : Optional[Any] = np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , snake_case__ ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
694
0
'''simple docstring''' _lowerCAmelCase : Optional[int] = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
701
'''simple docstring''' def _A ( snake_case__ : int = 4_00_00_00 ): snake_case__ : int = [] snake_case__ ,snake_case__ : Union[str, Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(snake_case__ ) snake_case__ ,snake_case__ : Any = b, a + b return sum(snake_case__ ) if __name__ == "__main__": print(F'''{solution() = }''')
694
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = ['pixel_values'] def __init__( self , lowerCamelCase = True , lowerCamelCase = 32 , lowerCamelCase=PILImageResampling.BILINEAR , lowerCamelCase = True , **lowerCamelCase , ) -> None: """simple docstring""" snake_case__ : int = do_resize snake_case__ : Dict = do_rescale snake_case__ : Any = size_divisor snake_case__ : str = resample super().__init__(**lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) -> np.ndarray: """simple docstring""" snake_case__ : Any = get_image_size(lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor snake_case__ : Any = height // size_divisor * size_divisor snake_case__ : Union[str, Any] = width // size_divisor * size_divisor snake_case__ : Tuple = resize(lowerCamelCase , (new_h, new_w) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) return image def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) -> np.ndarray: """simple docstring""" return rescale(image=lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase=None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) -> BatchFeature: """simple docstring""" snake_case__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize snake_case__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : Any = size_divisor if size_divisor is not None else self.size_divisor snake_case__ : Dict = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) snake_case__ : Optional[Any] = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. snake_case__ : Optional[int] = [to_numpy_array(lowerCamelCase ) for img in images] if do_resize: snake_case__ : Union[str, Any] = [self.resize(lowerCamelCase , size_divisor=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: snake_case__ : str = [self.rescale(lowerCamelCase , scale=1 / 255 ) for image in images] snake_case__ : Tuple = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] snake_case__ : str = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
702
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: _lowerCAmelCase : Any = None _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = "▁" _lowerCAmelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : int = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } _lowerCAmelCase : Optional[int] = { "google/pegasus-xsum": 5_1_2, } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PegasusTokenizer _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<pad>" , lowerCamelCase="</s>" , lowerCamelCase="<unk>" , lowerCamelCase="<mask_2>" , lowerCamelCase="<mask_1>" , lowerCamelCase=None , lowerCamelCase=103 , **lowerCamelCase , ) -> Optional[int]: """simple docstring""" snake_case__ : Tuple = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(lowerCamelCase )}, but is''' f''' {type(lowerCamelCase )}''' ) snake_case__ : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(lowerCamelCase ) , self.offset - 1 ) ] if len(set(lowerCamelCase ) ) != len(lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) snake_case__ : List[Any] = additional_special_tokens_extended else: snake_case__ : Union[str, Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , pad_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , mask_token=lowerCamelCase , mask_token_sent=lowerCamelCase , offset=lowerCamelCase , additional_special_tokens=lowerCamelCase , **lowerCamelCase , ) snake_case__ : Union[str, Any] = vocab_file snake_case__ : List[Any] = False if not self.vocab_file else True def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : Tuple = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : int = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
694
0
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: _lowerCAmelCase : Any = None try: import msvcrt except ImportError: _lowerCAmelCase : Tuple = None try: import fcntl except ImportError: _lowerCAmelCase : Any = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _lowerCAmelCase : List[str] = OSError # Data # ------------------------------------------------ _lowerCAmelCase : Optional[Any] = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] _lowerCAmelCase : Union[str, Any] = "3.0.12" _lowerCAmelCase : Dict = None def _A ( ): global _logger snake_case__ : Tuple = _logger or logging.getLogger(__name__ ) return _logger class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : int = lock_file return None def __str__( self ) -> str: """simple docstring""" snake_case__ : Dict = f'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class snake_case : """simple docstring""" def __init__( self , lowerCamelCase ) -> Dict: """simple docstring""" snake_case__ : str = lock return None def __enter__( self ) -> Tuple: """simple docstring""" return self.lock def __exit__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" self.lock.release() return None class snake_case : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=-1 , lowerCamelCase=None ) -> int: """simple docstring""" snake_case__ : Tuple = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long snake_case__ : int = self.hash_filename_if_too_long(lowerCamelCase , lowerCamelCase ) # The path to the lock file. snake_case__ : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. snake_case__ : Dict = None # The default timeout value. snake_case__ : Any = timeout # We use this lock primarily for the lock counter. snake_case__ : int = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. snake_case__ : Any = 0 return None @property def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" return self._lock_file @property def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" return self._timeout @timeout.setter def lowercase__ ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" snake_case__ : Optional[int] = float(lowerCamelCase ) return None def lowercase__ ( self ) -> int: """simple docstring""" raise NotImplementedError() def lowercase__ ( self ) -> Optional[int]: """simple docstring""" raise NotImplementedError() @property def lowercase__ ( self ) -> Dict: """simple docstring""" return self._lock_file_fd is not None def lowercase__ ( self , lowerCamelCase=None , lowerCamelCase=0.05 ) -> str: """simple docstring""" if timeout is None: snake_case__ : Dict = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 snake_case__ : Tuple = id(self ) snake_case__ : Any = self._lock_file snake_case__ : int = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(f'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( f'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(lowerCamelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: snake_case__ : List[Any] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowercase__ ( self , lowerCamelCase=False ) -> str: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: snake_case__ : str = id(self ) snake_case__ : Tuple = self._lock_file logger().debug(f'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() snake_case__ : List[Any] = 0 logger().debug(f'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: """simple docstring""" self.release() return None def __del__( self ) -> Any: """simple docstring""" self.release(force=lowerCamelCase ) return None def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : List[str] = os.path.basename(lowerCamelCase ) if len(lowerCamelCase ) > max_length and max_length > 0: snake_case__ : int = os.path.dirname(lowerCamelCase ) snake_case__ : List[str] = str(hash(lowerCamelCase ) ) snake_case__ : Optional[int] = filename[: max_length - len(lowerCamelCase ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(lowerCamelCase , lowerCamelCase ) else: return path class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=-1 , lowerCamelCase=None ) -> List[str]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(lowerCamelCase , timeout=lowerCamelCase , max_filename_length=lowerCamelCase ) snake_case__ : int = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ : Union[str, Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: snake_case__ : Optional[Any] = os.open(self._lock_file , lowerCamelCase ) except OSError: pass else: try: msvcrt.locking(lowerCamelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowerCamelCase ) else: snake_case__ : Optional[Any] = fd return None def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ : List[str] = self._lock_file_fd snake_case__ : Tuple = None msvcrt.locking(lowerCamelCase , msvcrt.LK_UNLCK , 1 ) os.close(lowerCamelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=-1 , lowerCamelCase=None ) -> Dict: """simple docstring""" snake_case__ : str = os.statvfs(os.path.dirname(lowerCamelCase ) ).f_namemax super().__init__(lowerCamelCase , timeout=lowerCamelCase , max_filename_length=lowerCamelCase ) def lowercase__ ( self ) -> Tuple: """simple docstring""" snake_case__ : int = os.O_RDWR | os.O_CREAT | os.O_TRUNC snake_case__ : Any = os.open(self._lock_file , lowerCamelCase ) try: fcntl.flock(lowerCamelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCamelCase ) else: snake_case__ : Optional[Any] = fd return None def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : Tuple = self._lock_file_fd snake_case__ : int = None fcntl.flock(lowerCamelCase , fcntl.LOCK_UN ) os.close(lowerCamelCase ) return None class snake_case ( __lowerCamelCase ): """simple docstring""" def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : Optional[int] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: snake_case__ : List[Any] = os.open(self._lock_file , lowerCamelCase ) except OSError: pass else: snake_case__ : Any = fd return None def lowercase__ ( self ) -> Optional[int]: """simple docstring""" os.close(self._lock_file_fd ) snake_case__ : Tuple = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _lowerCAmelCase : Tuple = None if msvcrt: _lowerCAmelCase : Tuple = WindowsFileLock elif fcntl: _lowerCAmelCase : List[Any] = UnixFileLock else: _lowerCAmelCase : int = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
703
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=0 ) -> Tuple: """simple docstring""" snake_case__ : Optional[Any] = 1.0 if scale is None else scale snake_case__ : Dict = 0.0 if loc is None else loc super().__init__(lowerCamelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase )] ) @property def lowercase__ ( self ) -> Dict: """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" return self.base_dist.variance * self.scale**2 @property def lowercase__ ( self ) -> List[str]: """simple docstring""" return self.variance.sqrt() class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> None: """simple docstring""" super().__init__(**lowerCamelCase ) snake_case__ : Tuple = args_dim snake_case__ : str = nn.ModuleList([nn.Linear(lowerCamelCase , lowerCamelCase ) for dim in args_dim.values()] ) snake_case__ : Optional[int] = domain_map def lowercase__ ( self , lowerCamelCase ) -> Tuple[torch.Tensor]: """simple docstring""" snake_case__ : Any = [proj(lowerCamelCase ) for proj in self.proj] return self.domain_map(*lowerCamelCase ) class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" super().__init__() snake_case__ : Tuple = function def lowercase__ ( self , lowerCamelCase , *lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return self.function(lowerCamelCase , *lowerCamelCase ) class snake_case : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 def __init__( self , lowerCamelCase = 1 ) -> None: """simple docstring""" snake_case__ : Optional[Any] = dim snake_case__ : Tuple = {k: dim * self.args_dim[k] for k in self.args_dim} def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" if self.dim == 1: return self.distribution_class(*lowerCamelCase ) else: return Independent(self.distribution_class(*lowerCamelCase ) , 1 ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , ) -> Distribution: """simple docstring""" snake_case__ : List[Any] = self._base_distribution(lowerCamelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase , loc=lowerCamelCase , scale=lowerCamelCase , event_dim=self.event_dim ) @property def lowercase__ ( self ) -> Tuple: """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def lowercase__ ( self ) -> int: """simple docstring""" return len(self.event_shape ) @property def lowercase__ ( self ) -> float: """simple docstring""" return 0.0 def lowercase__ ( self , lowerCamelCase ) -> nn.Module: """simple docstring""" return ParameterProjection( in_features=lowerCamelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def lowercase__ ( self , *lowerCamelCase ) -> Any: """simple docstring""" raise NotImplementedError() @staticmethod def lowercase__ ( lowerCamelCase ) -> torch.Tensor: """simple docstring""" return (x + torch.sqrt(torch.square(lowerCamelCase ) + 4.0 )) / 2.0 class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"df": 1, "loc": 1, "scale": 1} _lowerCAmelCase = StudentT @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: """simple docstring""" snake_case__ : Tuple = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) snake_case__ : Optional[int] = 2.0 + cls.squareplus(lowerCamelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"loc": 1, "scale": 1} _lowerCAmelCase = Normal @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase ) -> Optional[int]: """simple docstring""" snake_case__ : List[str] = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"total_count": 1, "logits": 1} _lowerCAmelCase = NegativeBinomial @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" snake_case__ : List[str] = cls.squareplus(lowerCamelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def lowercase__ ( self , lowerCamelCase ) -> Distribution: """simple docstring""" snake_case__ ,snake_case__ : str = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase ) else: return Independent(self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase ) , 1 ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None ) -> Distribution: """simple docstring""" snake_case__ ,snake_case__ : Optional[Any] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
694
0
'''simple docstring''' import argparse import os import re _lowerCAmelCase : List[str] = "src/diffusers" # Pattern that looks at the indentation in a line. _lowerCAmelCase : Optional[int] = re.compile(R"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Optional[int] = re.compile(R"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : int = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : List[Any] = re.compile(R"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Any = re.compile(R"\[([^\]]+)\]") def _A ( snake_case__ : Optional[Any] ): snake_case__ : Union[str, Any] = _re_indent.search(snake_case__ ) return "" if search is None else search.groups()[0] def _A ( snake_case__ : Any , snake_case__ : List[Any]="" , snake_case__ : Optional[Any]=None , snake_case__ : List[Any]=None ): snake_case__ : Dict = 0 snake_case__ : Optional[Any] = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(snake_case__ ): index += 1 snake_case__ : Tuple = ['''\n'''.join(lines[:index] )] else: snake_case__ : Optional[int] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). snake_case__ : int = [lines[index]] index += 1 while index < len(snake_case__ ) and (end_prompt is None or not lines[index].startswith(snake_case__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(snake_case__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(snake_case__ ) ) if index < len(snake_case__ ) - 1: snake_case__ : Any = [lines[index + 1]] index += 1 else: snake_case__ : int = [] else: blocks.append('''\n'''.join(snake_case__ ) ) snake_case__ : List[str] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(snake_case__ ) > 0: blocks.append('''\n'''.join(snake_case__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(snake_case__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( snake_case__ : Optional[Any] ): def _inner(snake_case__ : List[Any] ): return key(snake_case__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( snake_case__ : str , snake_case__ : Optional[Any]=None ): # If no key is provided, we use a noop. def noop(snake_case__ : Optional[Any] ): return x if key is None: snake_case__ : Union[str, Any] = noop # Constants are all uppercase, they go first. snake_case__ : Any = [obj for obj in objects if key(snake_case__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. snake_case__ : Optional[int] = [obj for obj in objects if key(snake_case__ )[0].isupper() and not key(snake_case__ ).isupper()] # Functions begin with a lowercase, they go last. snake_case__ : Union[str, Any] = [obj for obj in objects if not key(snake_case__ )[0].isupper()] snake_case__ : Tuple = ignore_underscore(snake_case__ ) return sorted(snake_case__ , key=snake_case__ ) + sorted(snake_case__ , key=snake_case__ ) + sorted(snake_case__ , key=snake_case__ ) def _A ( snake_case__ : List[Any] ): # This inner function sort imports between [ ]. def _replace(snake_case__ : Dict ): snake_case__ : Optional[int] = match.groups()[0] if "," not in imports: return f'''[{imports}]''' snake_case__ : Optional[int] = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : Any = keys[:-1] return "[" + ", ".join([f'''"{k}"''' for k in sort_objects(snake_case__ )] ) + "]" snake_case__ : Optional[int] = import_statement.split('''\n''' ) if len(snake_case__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. snake_case__ : Optional[Any] = 2 if lines[1].strip() == '''[''' else 1 snake_case__ : Dict = [(i, _re_strip_line.search(snake_case__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] snake_case__ : str = sort_objects(snake_case__ , key=lambda snake_case__ : x[1] ) snake_case__ : Optional[int] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(snake_case__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: snake_case__ : Optional[Any] = _re_bracket_content.sub(_replace , lines[1] ) else: snake_case__ : int = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : Optional[Any] = keys[:-1] snake_case__ : List[Any] = get_indent(lines[1] ) + ''', '''.join([f'''"{k}"''' for k in sort_objects(snake_case__ )] ) return "\n".join(snake_case__ ) else: # Finally we have to deal with imports fitting on one line snake_case__ : Any = _re_bracket_content.sub(_replace , snake_case__ ) return import_statement def _A ( snake_case__ : List[str] , snake_case__ : Dict=True ): with open(snake_case__ , '''r''' ) as f: snake_case__ : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 snake_case__ : int = split_code_in_indented_blocks( snake_case__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(snake_case__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. snake_case__ : str = main_blocks[block_idx] snake_case__ : List[Any] = block.split('''\n''' ) # Get to the start of the imports. snake_case__ : List[str] = 0 while line_idx < len(snake_case__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: snake_case__ : str = len(snake_case__ ) else: line_idx += 1 if line_idx >= len(snake_case__ ): continue # Ignore beginning and last line: they don't contain anything. snake_case__ : Optional[Any] = '''\n'''.join(block_lines[line_idx:-1] ) snake_case__ : Optional[Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. snake_case__ : Optional[Any] = split_code_in_indented_blocks(snake_case__ , indent_level=snake_case__ ) # We have two categories of import key: list or _import_structure[key].append/extend snake_case__ : Tuple = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. snake_case__ : Any = [(pattern.search(snake_case__ ).groups()[0] if pattern.search(snake_case__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. snake_case__ : Any = [(i, key) for i, key in enumerate(snake_case__ ) if key is not None] snake_case__ : List[Any] = [x[0] for x in sorted(snake_case__ , key=lambda snake_case__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. snake_case__ : Union[str, Any] = 0 snake_case__ : Tuple = [] for i in range(len(snake_case__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: snake_case__ : Tuple = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(snake_case__ ) count += 1 # And we put our main block back together with its first and last line. snake_case__ : Optional[int] = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(snake_case__ ): if check_only: return True else: print(f'''Overwriting {file}.''' ) with open(snake_case__ , '''w''' ) as f: f.write('''\n'''.join(snake_case__ ) ) def _A ( snake_case__ : Union[str, Any]=True ): snake_case__ : Optional[Any] = [] for root, _, files in os.walk(snake_case__ ): if "__init__.py" in files: snake_case__ : List[Any] = sort_imports(os.path.join(snake_case__ , '''__init__.py''' ) , check_only=snake_case__ ) if result: snake_case__ : Optional[int] = [os.path.join(snake_case__ , '''__init__.py''' )] if len(snake_case__ ) > 0: raise ValueError(f'''Would overwrite {len(snake_case__ )} files, run `make style`.''' ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") _lowerCAmelCase : Any = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
704
'''simple docstring''' from math import factorial def _A ( snake_case__ : int = 20 ): snake_case__ : int = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case__ : Union[str, Any] = n // 2 return int(factorial(snake_case__ ) / (factorial(snake_case__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: _lowerCAmelCase : Any = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
694
0
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar _lowerCAmelCase : Optional[Any] = TypeVar("KEY") _lowerCAmelCase : Optional[int] = TypeVar("VAL") @dataclass(frozen=__lowerCamelCase , slots=__lowerCamelCase ) class snake_case ( Generic[KEY, VAL] ): """simple docstring""" _lowerCAmelCase = 4_2 _lowerCAmelCase = 4_2 class snake_case ( _Item ): """simple docstring""" def __init__( self ) -> None: """simple docstring""" super().__init__(lowerCamelCase , lowerCamelCase ) def __bool__( self ) -> bool: """simple docstring""" return False _lowerCAmelCase : Any = _DeletedItem() class snake_case ( MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self , lowerCamelCase = 8 , lowerCamelCase = 0.75 ) -> None: """simple docstring""" snake_case__ : int = initial_block_size snake_case__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 snake_case__ : Any = capacity_factor snake_case__ : Union[str, Any] = 0 def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" return hash(lowerCamelCase ) % len(self._buckets ) def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" return (ind + 1) % len(self._buckets ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> bool: """simple docstring""" snake_case__ : Dict = self._buckets[ind] if not stored: snake_case__ : Optional[Any] = _Item(lowerCamelCase , lowerCamelCase ) self._len += 1 return True elif stored.key == key: snake_case__ : Any = _Item(lowerCamelCase , lowerCamelCase ) return True else: return False def lowercase__ ( self ) -> bool: """simple docstring""" snake_case__ : List[str] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase ) def lowercase__ ( self ) -> bool: """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False snake_case__ : Dict = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def lowercase__ ( self , lowerCamelCase ) -> None: """simple docstring""" snake_case__ : int = self._buckets snake_case__ : Optional[int] = [None] * new_size snake_case__ : str = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def lowercase__ ( self ) -> None: """simple docstring""" self._resize(len(self._buckets ) * 2 ) def lowercase__ ( self ) -> None: """simple docstring""" self._resize(len(self._buckets ) // 2 ) def lowercase__ ( self , lowerCamelCase ) -> Iterator[int]: """simple docstring""" snake_case__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase ) for _ in range(len(self._buckets ) ): yield ind snake_case__ : List[str] = self._get_next_ind(lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> None: """simple docstring""" for ind in self._iterate_buckets(lowerCamelCase ): if self._try_set(lowerCamelCase , lowerCamelCase , lowerCamelCase ): break def __setitem__( self , lowerCamelCase , lowerCamelCase ) -> None: """simple docstring""" if self._is_full(): self._size_up() self._add_item(lowerCamelCase , lowerCamelCase ) def __delitem__( self , lowerCamelCase ) -> None: """simple docstring""" for ind in self._iterate_buckets(lowerCamelCase ): snake_case__ : List[Any] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase ) if item is _deleted: continue if item.key == key: snake_case__ : Optional[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , lowerCamelCase ) -> VAL: """simple docstring""" for ind in self._iterate_buckets(lowerCamelCase ): snake_case__ : Optional[int] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase ) def __len__( self ) -> int: """simple docstring""" return self._len def __iter__( self ) -> Iterator[KEY]: """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self ) -> str: """simple docstring""" snake_case__ : str = ''' ,'''.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
705
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = (EulerDiscreteScheduler,) _lowerCAmelCase = 1_0 def lowercase__ ( self , **lowerCamelCase ) -> Tuple: """simple docstring""" snake_case__ : Any = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCamelCase ) return config def lowercase__ ( self ) -> List[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase , beta_end=lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def lowercase__ ( self ) -> str: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Any = self.get_scheduler_config() snake_case__ : int = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ : Dict = torch.manual_seed(0 ) snake_case__ : Any = self.dummy_model() snake_case__ : str = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ : List[Any] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case__ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : int = model(lowerCamelCase , lowerCamelCase ) snake_case__ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Optional[int] = output.prev_sample snake_case__ : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : Tuple = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def lowercase__ ( self ) -> Dict: """simple docstring""" snake_case__ : Tuple = self.scheduler_classes[0] snake_case__ : Optional[Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case__ : int = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ : Optional[Any] = torch.manual_seed(0 ) snake_case__ : Optional[int] = self.dummy_model() snake_case__ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ : Optional[int] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case__ : List[str] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : List[str] = model(lowerCamelCase , lowerCamelCase ) snake_case__ : Union[str, Any] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Union[str, Any] = output.prev_sample snake_case__ : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : List[str] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 0.0_002 ) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6 ) < 1E-3 def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Optional[int] = self.get_scheduler_config() snake_case__ : List[str] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Optional[int] = self.dummy_model() snake_case__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case__ : Tuple = sample.to(lowerCamelCase ) for t in scheduler.timesteps: snake_case__ : List[str] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : str = model(lowerCamelCase , lowerCamelCase ) snake_case__ : int = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : int = output.prev_sample snake_case__ : Union[str, Any] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : int = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Dict = self.scheduler_classes[0] snake_case__ : str = self.get_scheduler_config() snake_case__ : List[Any] = scheduler_class(**lowerCamelCase , use_karras_sigmas=lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Dict = self.dummy_model() snake_case__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case__ : Optional[Any] = sample.to(lowerCamelCase ) for t in scheduler.timesteps: snake_case__ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : Optional[Any] = model(lowerCamelCase , lowerCamelCase ) snake_case__ : str = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Optional[int] = output.prev_sample snake_case__ : Dict = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : Optional[int] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1E-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1E-3
694
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class snake_case : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=[1, 1, 2] , lowerCamelCase=1 , lowerCamelCase=32 , lowerCamelCase=4 , lowerCamelCase=8 , lowerCamelCase=37 , lowerCamelCase="gelu_new" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=512 , lowerCamelCase=3 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , lowerCamelCase=False , ) -> Optional[int]: """simple docstring""" snake_case__ : List[Any] = parent snake_case__ : Optional[int] = batch_size snake_case__ : List[str] = seq_length snake_case__ : Optional[int] = is_training snake_case__ : Union[str, Any] = use_input_mask snake_case__ : Optional[int] = use_token_type_ids snake_case__ : List[str] = use_labels snake_case__ : int = vocab_size snake_case__ : str = block_sizes snake_case__ : Any = num_decoder_layers snake_case__ : Union[str, Any] = d_model snake_case__ : Union[str, Any] = n_head snake_case__ : Tuple = d_head snake_case__ : List[str] = d_inner snake_case__ : str = hidden_act snake_case__ : Any = hidden_dropout snake_case__ : str = attention_dropout snake_case__ : Optional[int] = activation_dropout snake_case__ : List[Any] = max_position_embeddings snake_case__ : Union[str, Any] = type_vocab_size snake_case__ : str = 2 snake_case__ : Union[str, Any] = num_labels snake_case__ : List[str] = num_choices snake_case__ : Union[str, Any] = scope snake_case__ : Union[str, Any] = initializer_std # Used in the tests to check the size of the first attention layer snake_case__ : Dict = n_head # Used in the tests to check the size of the first hidden state snake_case__ : Optional[int] = self.d_model # Used in the tests to check the number of output hidden states/attentions snake_case__ : int = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: snake_case__ : Dict = self.num_hidden_layers + 2 def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : List[str] = None if self.use_input_mask: snake_case__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Any = None if self.use_token_type_ids: snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Tuple = None snake_case__ : Union[str, Any] = None snake_case__ : Any = None if self.use_labels: snake_case__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : Optional[int] = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> str: """simple docstring""" snake_case__ : int = TFFunnelModel(config=lowerCamelCase ) snake_case__ : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case__ : Any = model(lowerCamelCase ) snake_case__ : List[str] = [input_ids, input_mask] snake_case__ : str = model(lowerCamelCase ) snake_case__ : Dict = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) snake_case__ : str = False snake_case__ : Optional[int] = TFFunnelModel(config=lowerCamelCase ) snake_case__ : Optional[int] = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) snake_case__ : Any = False snake_case__ : int = TFFunnelModel(config=lowerCamelCase ) snake_case__ : Optional[int] = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> List[str]: """simple docstring""" snake_case__ : Optional[int] = TFFunnelBaseModel(config=lowerCamelCase ) snake_case__ : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case__ : Dict = model(lowerCamelCase ) snake_case__ : Dict = [input_ids, input_mask] snake_case__ : Optional[Any] = model(lowerCamelCase ) snake_case__ : Tuple = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) snake_case__ : int = False snake_case__ : int = TFFunnelBaseModel(config=lowerCamelCase ) snake_case__ : int = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) snake_case__ : int = False snake_case__ : Dict = TFFunnelBaseModel(config=lowerCamelCase ) snake_case__ : Optional[Any] = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> Dict: """simple docstring""" snake_case__ : str = TFFunnelForPreTraining(config=lowerCamelCase ) snake_case__ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case__ : str = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> List[Any]: """simple docstring""" snake_case__ : int = TFFunnelForMaskedLM(config=lowerCamelCase ) snake_case__ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case__ : Dict = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> Dict: """simple docstring""" snake_case__ : Dict = self.num_labels snake_case__ : Optional[int] = TFFunnelForSequenceClassification(config=lowerCamelCase ) snake_case__ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case__ : Tuple = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> Optional[int]: """simple docstring""" snake_case__ : str = self.num_choices snake_case__ : Union[str, Any] = TFFunnelForMultipleChoice(config=lowerCamelCase ) snake_case__ : Union[str, Any] = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case__ : List[str] = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Any = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Dict = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } snake_case__ : Tuple = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> Dict: """simple docstring""" snake_case__ : str = self.num_labels snake_case__ : Dict = TFFunnelForTokenClassification(config=lowerCamelCase ) snake_case__ : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case__ : str = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> Union[str, Any]: """simple docstring""" snake_case__ : Dict = TFFunnelForQuestionAnswering(config=lowerCamelCase ) snake_case__ : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case__ : str = model(lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : Optional[int] = self.prepare_config_and_inputs() ( snake_case__ ) : str = config_and_inputs snake_case__ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) _lowerCAmelCase = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : List[Any] = TFFunnelModelTester(self ) snake_case__ : Optional[int] = ConfigTester(self , config_class=lowerCamelCase ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase ) def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase ) def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase ) @require_tf class snake_case ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) _lowerCAmelCase = False _lowerCAmelCase = False def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Any = TFFunnelModelTester(self , base=lowerCamelCase ) snake_case__ : int = ConfigTester(self , config_class=lowerCamelCase ) def lowercase__ ( self ) -> int: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ) -> Tuple: """simple docstring""" snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase ) def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase )
706
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = ['pixel_values'] def __init__( self , lowerCamelCase = True , lowerCamelCase = 32 , lowerCamelCase=PILImageResampling.BILINEAR , lowerCamelCase = True , **lowerCamelCase , ) -> None: """simple docstring""" snake_case__ : int = do_resize snake_case__ : Dict = do_rescale snake_case__ : Any = size_divisor snake_case__ : str = resample super().__init__(**lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) -> np.ndarray: """simple docstring""" snake_case__ ,snake_case__ : Any = get_image_size(lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor snake_case__ : Any = height // size_divisor * size_divisor snake_case__ : Union[str, Any] = width // size_divisor * size_divisor snake_case__ : Tuple = resize(lowerCamelCase , (new_h, new_w) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) return image def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) -> np.ndarray: """simple docstring""" return rescale(image=lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase=None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) -> BatchFeature: """simple docstring""" snake_case__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize snake_case__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : Any = size_divisor if size_divisor is not None else self.size_divisor snake_case__ : Dict = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) snake_case__ : Optional[Any] = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. snake_case__ : Optional[int] = [to_numpy_array(lowerCamelCase ) for img in images] if do_resize: snake_case__ : Union[str, Any] = [self.resize(lowerCamelCase , size_divisor=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: snake_case__ : str = [self.rescale(lowerCamelCase , scale=1 / 255 ) for image in images] snake_case__ : Tuple = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] snake_case__ : str = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
694
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { "configuration_xlm_roberta_xl": [ "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig", "XLMRobertaXLOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
707
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def _A ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : str ): snake_case__ : List[Any] = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}'''
694
0
import json import os import torch from diffusers import UNetaDModel os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) def _A ( snake_case__ : Dict ): if hor == 1_28: snake_case__ : List[Any] = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') snake_case__ : List[Any] = (32, 1_28, 2_56) snake_case__ : Tuple = ('''UpResnetBlock1D''', '''UpResnetBlock1D''') elif hor == 32: snake_case__ : str = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') snake_case__ : str = (32, 64, 1_28, 2_56) snake_case__ : List[Any] = ('''UpResnetBlock1D''', '''UpResnetBlock1D''', '''UpResnetBlock1D''') snake_case__ : Dict = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) snake_case__ : int = model.state_dict() snake_case__ : Any = { '''down_block_types''': down_block_types, '''block_out_channels''': block_out_channels, '''up_block_types''': up_block_types, '''layers_per_block''': 1, '''use_timestep_embedding''': True, '''out_block_type''': '''OutConv1DBlock''', '''norm_num_groups''': 8, '''downsample_each_block''': False, '''in_channels''': 14, '''out_channels''': 14, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''sample_size''': 6_55_36, '''mid_block_type''': '''MidResTemporalBlock1D''', '''act_fn''': '''mish''', } snake_case__ : List[str] = UNetaDModel(**snake_case__ ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) snake_case__ : List[Any] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): snake_case__ : Optional[Any] = state_dict.pop(snake_case__ ) hf_value_function.load_state_dict(snake_case__ ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , '''w''' ) as f: json.dump(snake_case__ , snake_case__ ) def _A ( ): snake_case__ : Tuple = { '''in_channels''': 14, '''down_block_types''': ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D'''), '''up_block_types''': (), '''out_block_type''': '''ValueFunction''', '''mid_block_type''': '''ValueFunctionMidBlock1D''', '''block_out_channels''': (32, 64, 1_28, 2_56), '''layers_per_block''': 1, '''downsample_each_block''': True, '''sample_size''': 6_55_36, '''out_channels''': 14, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''use_timestep_embedding''': True, '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''norm_num_groups''': 8, '''act_fn''': '''mish''', } snake_case__ : Optional[Any] = torch.load('''/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch''' ) snake_case__ : int = model snake_case__ : Tuple = UNetaDModel(**snake_case__ ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) snake_case__ : Optional[int] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): snake_case__ : Optional[int] = state_dict.pop(snake_case__ ) hf_value_function.load_state_dict(snake_case__ ) torch.save(hf_value_function.state_dict() , '''hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin''' ) with open('''hub/hopper-medium-v2/value_function/config.json''' , '''w''' ) as f: json.dump(snake_case__ , snake_case__ ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
708
'''simple docstring''' from __future__ import annotations from collections import namedtuple def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): snake_case__ : Optional[Any] = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
694
0
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _lowerCAmelCase : Optional[Any] = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=1_6, ), "generator": 2, }, # 2048-bit 1_4: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=1_6, ), "generator": 2, }, # 3072-bit 1_5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=1_6, ), "generator": 2, }, # 4096-bit 1_6: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=1_6, ), "generator": 2, }, # 6144-bit 1_7: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=1_6, ), "generator": 2, }, # 8192-bit 1_8: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=1_6, ), "generator": 2, }, } class snake_case : """simple docstring""" def __init__( self , lowerCamelCase = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) snake_case__ : int = primes[group]['''prime'''] snake_case__ : List[Any] = primes[group]['''generator'''] snake_case__ : Union[str, Any] = int(hexlify(urandom(32 ) ) , base=16 ) def lowercase__ ( self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Tuple = pow(self.generator , self.__private_key , self.prime ) return hex(lowerCamelCase )[2:] def lowercase__ ( self , lowerCamelCase ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def lowercase__ ( self , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : str = int(lowerCamelCase , base=16 ) if not self.is_valid_public_key(lowerCamelCase ): raise ValueError('''Invalid public key''' ) snake_case__ : List[Any] = pow(lowerCamelCase , self.__private_key , self.prime ) return shaaaa(str(lowerCamelCase ).encode() ).hexdigest() @staticmethod def lowercase__ ( lowerCamelCase , lowerCamelCase ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase , (prime - 1) // 2 , lowerCamelCase ) == 1 ) @staticmethod def lowercase__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 14 ) -> str: """simple docstring""" snake_case__ : str = int(lowerCamelCase , base=16 ) snake_case__ : Dict = int(lowerCamelCase , base=16 ) snake_case__ : Tuple = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase , lowerCamelCase ): raise ValueError('''Invalid public key''' ) snake_case__ : str = pow(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return shaaaa(str(lowerCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCAmelCase : Union[str, Any] = "\nimport os\n" _lowerCAmelCase : Optional[int] = "\ndef foo():\n import os\n return False\n" _lowerCAmelCase : Union[str, Any] = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" _lowerCAmelCase : str = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" _lowerCAmelCase : str = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" _lowerCAmelCase : Tuple = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" _lowerCAmelCase : List[str] = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" _lowerCAmelCase : Optional[int] = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" _lowerCAmelCase : Optional[int] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" _lowerCAmelCase : List[Any] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" _lowerCAmelCase : Tuple = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , snake_case__ ) def _A ( snake_case__ : List[str] , snake_case__ : Dict ): snake_case__ : str = os.path.join(snake_case__ , '''test_file.py''' ) with open(snake_case__ , '''w''' ) as _tmp_file: _tmp_file.write(snake_case__ ) snake_case__ : int = get_imports(snake_case__ ) assert parsed_imports == ["os"]
694
0
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : list[float] , snake_case__ : list[float] ): snake_case__ : Dict = sorted(numsa + numsa ) snake_case__ : Tuple = divmod(len(snake_case__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Tuple = [float(x) for x in input("Enter the elements of first array: ").split()] _lowerCAmelCase : List[str] = [float(x) for x in input("Enter the elements of second array: ").split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
710
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Any = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'markuplm' def __init__( self , lowerCamelCase=30522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1E-1_2 , lowerCamelCase=0 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase=256 , lowerCamelCase=1024 , lowerCamelCase=216 , lowerCamelCase=1001 , lowerCamelCase=32 , lowerCamelCase=50 , lowerCamelCase="absolute" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> str: """simple docstring""" super().__init__( pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase , ) snake_case__ : Optional[int] = vocab_size snake_case__ : Tuple = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : List[str] = num_attention_heads snake_case__ : List[Any] = hidden_act snake_case__ : Dict = intermediate_size snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : str = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : List[str] = initializer_range snake_case__ : List[str] = layer_norm_eps snake_case__ : Optional[Any] = position_embedding_type snake_case__ : Dict = use_cache snake_case__ : int = classifier_dropout # additional properties snake_case__ : Union[str, Any] = max_depth snake_case__ : Dict = max_xpath_tag_unit_embeddings snake_case__ : Any = max_xpath_subs_unit_embeddings snake_case__ : int = tag_pad_id snake_case__ : Tuple = subs_pad_id snake_case__ : Dict = xpath_unit_hidden_size
694
0
'''simple docstring''' _lowerCAmelCase : Dict = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _A ( ): snake_case__ : Dict = input('''Enter message: ''' ) snake_case__ : Union[str, Any] = input('''Enter key [alphanumeric]: ''' ) snake_case__ : List[Any] = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): snake_case__ : List[Any] = '''encrypt''' snake_case__ : List[str] = encrypt_message(snake_case__ , snake_case__ ) elif mode.lower().startswith('''d''' ): snake_case__ : List[Any] = '''decrypt''' snake_case__ : str = decrypt_message(snake_case__ , snake_case__ ) print(f'''\n{mode.title()}ed message:''' ) print(snake_case__ ) def _A ( snake_case__ : str , snake_case__ : str ): return translate_message(snake_case__ , snake_case__ , '''encrypt''' ) def _A ( snake_case__ : str , snake_case__ : str ): return translate_message(snake_case__ , snake_case__ , '''decrypt''' ) def _A ( snake_case__ : str , snake_case__ : str , snake_case__ : str ): snake_case__ : Optional[int] = [] snake_case__ : Union[str, Any] = 0 snake_case__ : str = key.upper() for symbol in message: snake_case__ : Tuple = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(snake_case__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(snake_case__ ): snake_case__ : List[str] = 0 else: translated.append(snake_case__ ) return "".join(snake_case__ ) if __name__ == "__main__": main()
711
'''simple docstring''' def _A ( snake_case__ : float ): return 10 - x * x def _A ( snake_case__ : float , snake_case__ : float ): # Bolzano theory in order to find if there is a root between a and b if equation(snake_case__ ) * equation(snake_case__ ) >= 0: raise ValueError('''Wrong space!''' ) snake_case__ : List[str] = a while (b - a) >= 0.01: # Find middle point snake_case__ : Optional[int] = (a + b) / 2 # Check if middle point is root if equation(snake_case__ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case__ ) * equation(snake_case__ ) < 0: snake_case__ : Dict = c else: snake_case__ : List[str] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
694
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCAmelCase : int = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def _A ( snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int ): snake_case__ : List[Any] = state_dict.pop(snake_case__ ) snake_case__ : List[str] = val def _A ( snake_case__ : List[str] ): snake_case__ : str = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case__ : str = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) snake_case__ : List[Any] = value else: snake_case__ : Any = value return new_state_dict def _A ( snake_case__ : int , snake_case__ : Any=False ): snake_case__ : int = '''''' if is_panoptic: snake_case__ : Optional[Any] = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case__ : int = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case__ : Optional[int] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Optional[int] = in_proj_weight[:2_56, :] snake_case__ : str = in_proj_bias[:2_56] snake_case__ : Dict = in_proj_weight[2_56:5_12, :] snake_case__ : Tuple = in_proj_bias[2_56:5_12] snake_case__ : int = in_proj_weight[-2_56:, :] snake_case__ : Tuple = in_proj_bias[-2_56:] def _A ( ): snake_case__ : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ : int = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def _A ( snake_case__ : Optional[Any] , snake_case__ : Optional[Any] ): snake_case__ : List[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case__ : Optional[int] = '''resnet101''' if "dc5" in model_name: snake_case__ : List[Any] = True snake_case__ : Dict = '''panoptic''' in model_name if is_panoptic: snake_case__ : Union[str, Any] = 2_50 else: snake_case__ : str = 91 snake_case__ : Tuple = '''huggingface/label-files''' snake_case__ : Dict = '''coco-detection-id2label.json''' snake_case__ : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ : Tuple = {int(snake_case__ ): v for k, v in idalabel.items()} snake_case__ : Tuple = idalabel snake_case__ : str = {v: k for k, v in idalabel.items()} # load image processor snake_case__ : Optional[int] = '''coco_panoptic''' if is_panoptic else '''coco_detection''' snake_case__ : int = ConditionalDetrImageProcessor(format=snake_case__ ) # prepare image snake_case__ : Dict = prepare_img() snake_case__ : int = image_processor(images=snake_case__ , return_tensors='''pt''' ) snake_case__ : Any = encoding['''pixel_values'''] logger.info(f'''Converting model {model_name}...''' ) # load original model from torch hub snake_case__ : Union[str, Any] = torch.hub.load('''DeppMeng/ConditionalDETR''' , snake_case__ , pretrained=snake_case__ ).eval() snake_case__ : str = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case__ : Optional[Any] = '''conditional_detr.''' + src rename_key(snake_case__ , snake_case__ , snake_case__ ) snake_case__ : Dict = rename_backbone_keys(snake_case__ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case__ , is_panoptic=snake_case__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case__ : Tuple = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): snake_case__ : int = state_dict.pop(snake_case__ ) snake_case__ : str = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case__ : str = state_dict.pop(snake_case__ ) snake_case__ : List[str] = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: snake_case__ : Any = state_dict.pop(snake_case__ ) snake_case__ : Union[str, Any] = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): snake_case__ : Dict = state_dict.pop(snake_case__ ) snake_case__ : Optional[Any] = val # finally, create HuggingFace model and load state dict snake_case__ : int = ConditionalDetrForSegmentation(snake_case__ ) if is_panoptic else ConditionalDetrForObjectDetection(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() model.push_to_hub(repo_id=snake_case__ , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion snake_case__ : Optional[Any] = conditional_detr(snake_case__ ) snake_case__ : List[Any] = model(snake_case__ ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _lowerCAmelCase : List[str] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
712
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : list[float] , snake_case__ : list[float] ): snake_case__ : Dict = sorted(numsa + numsa ) snake_case__ ,snake_case__ : Tuple = divmod(len(snake_case__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Tuple = [float(x) for x in input("Enter the elements of first array: ").split()] _lowerCAmelCase : List[str] = [float(x) for x in input("Enter the elements of second array: ").split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
694
0
'''simple docstring''' def _A ( snake_case__ : list[list[int | float]] ): snake_case__ : int = len(snake_case__ ) snake_case__ : Union[str, Any] = len(matrix[0] ) snake_case__ : List[Any] = min(snake_case__ , snake_case__ ) for row in range(snake_case__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , snake_case__ ): snake_case__ : str = matrix[col][row] / matrix[row][row] for i in range(snake_case__ , snake_case__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows snake_case__ : List[Any] = True for i in range(row + 1 , snake_case__ ): if matrix[i][row] != 0: snake_case__ : List[Any] = matrix[i], matrix[row] snake_case__ : Dict = False break if reduce: rank -= 1 for i in range(snake_case__ ): snake_case__ : int = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
713
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Any = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
694
0
'''simple docstring''' from sklearn.metrics import fa_score import datasets _lowerCAmelCase : List[Any] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" _lowerCAmelCase : Tuple = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" _lowerCAmelCase : List[str] = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=1 , lowerCamelCase="binary" , lowerCamelCase=None ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = fa_score( lowerCamelCase , lowerCamelCase , labels=lowerCamelCase , pos_label=lowerCamelCase , average=lowerCamelCase , sample_weight=lowerCamelCase ) return {"f1": float(lowerCamelCase ) if score.size == 1 else score}
714
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'encoder-decoder' _lowerCAmelCase = True def __init__( self , **lowerCamelCase ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" snake_case__ : List[str] = kwargs.pop('''encoder''' ) snake_case__ : Any = encoder_config.pop('''model_type''' ) snake_case__ : List[str] = kwargs.pop('''decoder''' ) snake_case__ : str = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig snake_case__ : Tuple = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) snake_case__ : Optional[Any] = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) snake_case__ : str = True @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> PretrainedConfig: """simple docstring""" logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) snake_case__ : Optional[int] = True snake_case__ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[Any] = copy.deepcopy(self.__dict__ ) snake_case__ : List[Any] = self.encoder.to_dict() snake_case__ : str = self.decoder.to_dict() snake_case__ : Any = self.__class__.model_type return output
694
0
'''simple docstring''' def _A ( snake_case__ : float ): return 10 - x * x def _A ( snake_case__ : float , snake_case__ : float ): # Bolzano theory in order to find if there is a root between a and b if equation(snake_case__ ) * equation(snake_case__ ) >= 0: raise ValueError('''Wrong space!''' ) snake_case__ : List[str] = a while (b - a) >= 0.01: # Find middle point snake_case__ : Optional[int] = (a + b) / 2 # Check if middle point is root if equation(snake_case__ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case__ ) * equation(snake_case__ ) < 0: snake_case__ : Dict = c else: snake_case__ : List[str] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
715
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = "▁" _lowerCAmelCase : Dict = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} _lowerCAmelCase : Dict = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } _lowerCAmelCase : str = {"vinai/bartpho-syllable": 1_0_2_4} class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase = None , **lowerCamelCase , ) -> None: """simple docstring""" snake_case__ : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token snake_case__ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , ) snake_case__ : int = vocab_file snake_case__ : Optional[Any] = monolingual_vocab_file snake_case__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility snake_case__ : Dict = {} snake_case__ : Union[str, Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : List[str] = cnt cnt += 1 with open(lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): snake_case__ : Optional[int] = line.strip().split()[0] snake_case__ : List[Any] = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : Any = len(self.fairseq_tokens_to_ids ) snake_case__ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: """simple docstring""" snake_case__ : int = self.__dict__.copy() snake_case__ : Any = None snake_case__ : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case__ : Dict = {} snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : str = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" snake_case__ : List[str] = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self ) -> Optional[int]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : int = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCamelCase , out_type=lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowercase__ ( self , lowerCamelCase ) -> str: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : List[Any] = ''''''.join(lowerCamelCase ).replace(lowerCamelCase , ''' ''' ).strip() return out_string def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case__ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase , '''wb''' ) as fi: snake_case__ : Dict = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(lowerCamelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
694
0
'''simple docstring''' def _A ( snake_case__ : int , snake_case__ : int ): if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) snake_case__ : Any = str(bin(snake_case__ ) ) binary_number += "0" * shift_amount return binary_number def _A ( snake_case__ : int , snake_case__ : int ): if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) snake_case__ : Optional[int] = str(bin(snake_case__ ) )[2:] if shift_amount >= len(snake_case__ ): return "0b0" snake_case__ : Tuple = binary_number[: len(snake_case__ ) - shift_amount] return "0b" + shifted_binary_number def _A ( snake_case__ : int , snake_case__ : int ): if number >= 0: # Get binary representation of positive number snake_case__ : Dict = '''0''' + str(bin(snake_case__ ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number snake_case__ : Optional[Any] = len(bin(snake_case__ )[3:] ) # Find 2's complement of number snake_case__ : str = bin(abs(snake_case__ ) - (1 << binary_number_length) )[3:] snake_case__ : Tuple = ( '''1''' + '''0''' * (binary_number_length - len(snake_case__ )) + binary_number ) if shift_amount >= len(snake_case__ ): return "0b" + binary_number[0] * len(snake_case__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(snake_case__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _lowerCAmelCase : str = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") _lowerCAmelCase : Optional[int] = parser.parse_args() _lowerCAmelCase : Union[str, Any] = "cpu" _lowerCAmelCase : List[str] = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" _lowerCAmelCase : Union[str, Any] = "path-to-your-trained-model" _lowerCAmelCase : Tuple = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _lowerCAmelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _lowerCAmelCase : Optional[Any] = pipe.to(device) # to channels last _lowerCAmelCase : Optional[int] = pipe.unet.to(memory_format=torch.channels_last) _lowerCAmelCase : str = pipe.vae.to(memory_format=torch.channels_last) _lowerCAmelCase : List[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _lowerCAmelCase : List[Any] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _lowerCAmelCase : Optional[int] = torch.randn(2, 4, 6_4, 6_4) _lowerCAmelCase : List[str] = torch.rand(1) * 9_9_9 _lowerCAmelCase : Optional[int] = torch.randn(2, 7_7, 7_6_8) _lowerCAmelCase : List[Any] = (sample, timestep, encoder_hidden_status) try: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _lowerCAmelCase : List[str] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _lowerCAmelCase : Tuple = 6_6_6 _lowerCAmelCase : str = torch.Generator(device).manual_seed(seed) _lowerCAmelCase : Dict = {"generator": generator} if args.steps is not None: _lowerCAmelCase : Tuple = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _lowerCAmelCase : Any = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
694
0
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = (EulerDiscreteScheduler,) _lowerCAmelCase = 1_0 def lowercase__ ( self , **lowerCamelCase ) -> Tuple: """simple docstring""" snake_case__ : Any = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCamelCase ) return config def lowercase__ ( self ) -> List[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase , beta_end=lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def lowercase__ ( self ) -> str: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Any = self.get_scheduler_config() snake_case__ : int = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ : Dict = torch.manual_seed(0 ) snake_case__ : Any = self.dummy_model() snake_case__ : str = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ : List[Any] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case__ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : int = model(lowerCamelCase , lowerCamelCase ) snake_case__ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Optional[int] = output.prev_sample snake_case__ : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : Tuple = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def lowercase__ ( self ) -> Dict: """simple docstring""" snake_case__ : Tuple = self.scheduler_classes[0] snake_case__ : Optional[Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case__ : int = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ : Optional[Any] = torch.manual_seed(0 ) snake_case__ : Optional[int] = self.dummy_model() snake_case__ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ : Optional[int] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case__ : List[str] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : List[str] = model(lowerCamelCase , lowerCamelCase ) snake_case__ : Union[str, Any] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Union[str, Any] = output.prev_sample snake_case__ : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : List[str] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 0.0_002 ) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6 ) < 1E-3 def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Optional[int] = self.get_scheduler_config() snake_case__ : List[str] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Optional[int] = self.dummy_model() snake_case__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case__ : Tuple = sample.to(lowerCamelCase ) for t in scheduler.timesteps: snake_case__ : List[str] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : str = model(lowerCamelCase , lowerCamelCase ) snake_case__ : int = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : int = output.prev_sample snake_case__ : Union[str, Any] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : int = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Dict = self.scheduler_classes[0] snake_case__ : str = self.get_scheduler_config() snake_case__ : List[Any] = scheduler_class(**lowerCamelCase , use_karras_sigmas=lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Dict = self.dummy_model() snake_case__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case__ : Optional[Any] = sample.to(lowerCamelCase ) for t in scheduler.timesteps: snake_case__ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : Optional[Any] = model(lowerCamelCase , lowerCamelCase ) snake_case__ : str = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Optional[int] = output.prev_sample snake_case__ : Dict = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : Optional[int] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1E-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1E-3
717
'''simple docstring''' import socket def _A ( ): snake_case__ : Any = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) snake_case__ : str = socket.gethostname() snake_case__ : Union[str, Any] = 1_23_12 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: snake_case__ : int = sock.recv(10_24 ) if not data: break out_file.write(snake_case__ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
694
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : str = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _lowerCAmelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
718
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float , ): if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float , ): if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( snake_case__ , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
694
0
'''simple docstring''' from math import isqrt def _A ( snake_case__ : int ): return all(number % divisor != 0 for divisor in range(2 , isqrt(snake_case__ ) + 1 ) ) def _A ( snake_case__ : int = 10**6 ): snake_case__ : str = 0 snake_case__ : List[str] = 1 snake_case__ : str = 7 while prime_candidate < max_prime: primes_count += is_prime(snake_case__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'{solution() = }')
719
'''simple docstring''' from math import isqrt def _A ( snake_case__ : int ): return all(number % divisor != 0 for divisor in range(2 , isqrt(snake_case__ ) + 1 ) ) def _A ( snake_case__ : int = 10**6 ): snake_case__ : str = 0 snake_case__ : List[str] = 1 snake_case__ : str = 7 while prime_candidate < max_prime: primes_count += is_prime(snake_case__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
694
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig _lowerCAmelCase : Optional[int] = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring _lowerCAmelCase : Dict = "UperNetConfig" class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 0 , lowerCamelCase = False , lowerCamelCase = 1 , ) -> None: """simple docstring""" super().__init__() snake_case__ : List[Any] = nn.Convad( in_channels=lowerCamelCase , out_channels=lowerCamelCase , kernel_size=lowerCamelCase , padding=lowerCamelCase , bias=lowerCamelCase , dilation=lowerCamelCase , ) snake_case__ : Union[str, Any] = nn.BatchNormad(lowerCamelCase ) snake_case__ : int = nn.ReLU() def lowercase__ ( self , lowerCamelCase ) -> torch.Tensor: """simple docstring""" snake_case__ : Optional[Any] = self.conv(lowerCamelCase ) snake_case__ : Optional[int] = self.batch_norm(lowerCamelCase ) snake_case__ : Dict = self.activation(lowerCamelCase ) return output class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> None: """simple docstring""" super().__init__() snake_case__ : Optional[Any] = [ nn.AdaptiveAvgPoolad(lowerCamelCase ), UperNetConvModule(lowerCamelCase , lowerCamelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(lowerCamelCase ) , lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> torch.Tensor: """simple docstring""" snake_case__ : Dict = input for layer in self.layers: snake_case__ : List[Any] = layer(lowerCamelCase ) return hidden_state class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> None: """simple docstring""" super().__init__() snake_case__ : int = pool_scales snake_case__ : Optional[Any] = align_corners snake_case__ : Dict = in_channels snake_case__ : int = channels snake_case__ : Union[str, Any] = [] for i, pool_scale in enumerate(lowerCamelCase ): snake_case__ : List[Any] = UperNetPyramidPoolingBlock(pool_scale=lowerCamelCase , in_channels=lowerCamelCase , channels=lowerCamelCase ) self.blocks.append(lowerCamelCase ) self.add_module(str(lowerCamelCase ) , lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> List[torch.Tensor]: """simple docstring""" snake_case__ : str = [] for ppm in self.blocks: snake_case__ : Any = ppm(lowerCamelCase ) snake_case__ : Tuple = nn.functional.interpolate( lowerCamelCase , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(lowerCamelCase ) return ppm_outs class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: """simple docstring""" super().__init__() snake_case__ : List[Any] = config snake_case__ : Optional[int] = config.pool_scales # e.g. (1, 2, 3, 6) snake_case__ : Any = in_channels snake_case__ : Union[str, Any] = config.hidden_size snake_case__ : Union[str, Any] = False snake_case__ : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module snake_case__ : List[str] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) snake_case__ : Any = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module snake_case__ : str = nn.ModuleList() snake_case__ : str = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer snake_case__ : Optional[Any] = UperNetConvModule(lowerCamelCase , self.channels , kernel_size=1 ) snake_case__ : List[str] = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(lowerCamelCase ) self.fpn_convs.append(lowerCamelCase ) snake_case__ : Union[str, Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def lowercase__ ( self ) -> Tuple: """simple docstring""" self.apply(self._init_weights ) def lowercase__ ( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" if isinstance(lowerCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowercase__ ( self , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : Tuple = inputs[-1] snake_case__ : str = [x] psp_outs.extend(self.psp_modules(lowerCamelCase ) ) snake_case__ : int = torch.cat(lowerCamelCase , dim=1 ) snake_case__ : Union[str, Any] = self.bottleneck(lowerCamelCase ) return output def lowercase__ ( self , lowerCamelCase ) -> torch.Tensor: """simple docstring""" snake_case__ : Dict = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(lowerCamelCase ) ) # build top-down path snake_case__ : int = len(lowerCamelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): snake_case__ : int = laterals[i - 1].shape[2:] snake_case__ : List[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=lowerCamelCase , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs snake_case__ : Tuple = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): snake_case__ : Union[str, Any] = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) snake_case__ : Optional[Any] = torch.cat(lowerCamelCase , dim=1 ) snake_case__ : Union[str, Any] = self.fpn_bottleneck(lowerCamelCase ) snake_case__ : Optional[int] = self.classifier(lowerCamelCase ) return output class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase = 2 , lowerCamelCase = 3 , lowerCamelCase = 1 ) -> None: """simple docstring""" super().__init__() snake_case__ : int = config snake_case__ : int = config.auxiliary_in_channels snake_case__ : Optional[Any] = config.auxiliary_channels snake_case__ : Union[str, Any] = config.auxiliary_num_convs snake_case__ : Union[str, Any] = config.auxiliary_concat_input snake_case__ : str = in_index snake_case__ : Dict = (kernel_size // 2) * dilation snake_case__ : List[str] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=lowerCamelCase , padding=lowerCamelCase , dilation=lowerCamelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=lowerCamelCase , padding=lowerCamelCase , dilation=lowerCamelCase ) ) if self.num_convs == 0: snake_case__ : Tuple = nn.Identity() else: snake_case__ : Dict = nn.Sequential(*lowerCamelCase ) if self.concat_input: snake_case__ : str = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=lowerCamelCase , padding=kernel_size // 2 ) snake_case__ : List[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" self.apply(self._init_weights ) def lowercase__ ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" if isinstance(lowerCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowercase__ ( self , lowerCamelCase ) -> torch.Tensor: """simple docstring""" snake_case__ : Any = encoder_hidden_states[self.in_index] snake_case__ : Optional[Any] = self.convs(lowerCamelCase ) if self.concat_input: snake_case__ : List[Any] = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) snake_case__ : Optional[Any] = self.classifier(lowerCamelCase ) return output class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = UperNetConfig _lowerCAmelCase = 'pixel_values' _lowerCAmelCase = True def lowercase__ ( self , lowerCamelCase ) -> Dict: """simple docstring""" if isinstance(lowerCamelCase , lowerCamelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def lowercase__ ( self , lowerCamelCase , lowerCamelCase=False ) -> str: """simple docstring""" if isinstance(lowerCamelCase , lowerCamelCase ): snake_case__ : List[Any] = value _lowerCAmelCase : List[Any] = R"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _lowerCAmelCase : Tuple = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.' , __lowerCamelCase , ) class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" super().__init__(lowerCamelCase ) snake_case__ : int = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) snake_case__ : Tuple = UperNetHead(lowerCamelCase , in_channels=self.backbone.channels ) snake_case__ : Any = UperNetFCNHead(lowerCamelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=lowerCamelCase , config_class=_CONFIG_FOR_DOC ) def lowercase__ ( self , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , ) -> Union[tuple, SemanticSegmenterOutput]: """simple docstring""" snake_case__ : Tuple = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ : Optional[int] = output_attentions if output_attentions is not None else self.config.output_attentions snake_case__ : int = self.backbone.forward_with_filtered_kwargs( lowerCamelCase , output_hidden_states=lowerCamelCase , output_attentions=lowerCamelCase ) snake_case__ : Dict = outputs.feature_maps snake_case__ : List[str] = self.decode_head(lowerCamelCase ) snake_case__ : int = nn.functional.interpolate(lowerCamelCase , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=lowerCamelCase ) snake_case__ : int = None if self.auxiliary_head is not None: snake_case__ : Any = self.auxiliary_head(lowerCamelCase ) snake_case__ : List[Any] = nn.functional.interpolate( lowerCamelCase , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=lowerCamelCase ) snake_case__ : List[Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss snake_case__ : Dict = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) snake_case__ : List[str] = loss_fct(lowerCamelCase , lowerCamelCase ) snake_case__ : int = loss_fct(lowerCamelCase , lowerCamelCase ) snake_case__ : Any = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: snake_case__ : Any = (logits,) + outputs[1:] else: snake_case__ : Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=lowerCamelCase , logits=lowerCamelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
720
'''simple docstring''' from sklearn.metrics import fa_score import datasets _lowerCAmelCase : List[Any] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" _lowerCAmelCase : Tuple = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" _lowerCAmelCase : List[str] = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=1 , lowerCamelCase="binary" , lowerCamelCase=None ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = fa_score( lowerCamelCase , lowerCamelCase , labels=lowerCamelCase , pos_label=lowerCamelCase , average=lowerCamelCase , sample_weight=lowerCamelCase ) return {"f1": float(lowerCamelCase ) if score.size == 1 else score}
694
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'mctct' def __init__( self , lowerCamelCase=8065 , lowerCamelCase=1536 , lowerCamelCase=36 , lowerCamelCase=6144 , lowerCamelCase=4 , lowerCamelCase=384 , lowerCamelCase=920 , lowerCamelCase=1E-5 , lowerCamelCase=0.3 , lowerCamelCase="relu" , lowerCamelCase=0.02 , lowerCamelCase=0.3 , lowerCamelCase=0.3 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=0.3 , lowerCamelCase=1 , lowerCamelCase=(7,) , lowerCamelCase=(3,) , lowerCamelCase=80 , lowerCamelCase=1 , lowerCamelCase=None , lowerCamelCase="sum" , lowerCamelCase=False , **lowerCamelCase , ) -> Optional[int]: """simple docstring""" super().__init__(**lowerCamelCase , pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase ) snake_case__ : Optional[Any] = vocab_size snake_case__ : int = hidden_size snake_case__ : Any = num_hidden_layers snake_case__ : Union[str, Any] = intermediate_size snake_case__ : Optional[Any] = num_attention_heads snake_case__ : Dict = attention_head_dim snake_case__ : Tuple = max_position_embeddings snake_case__ : List[Any] = layer_norm_eps snake_case__ : int = layerdrop snake_case__ : Optional[int] = hidden_act snake_case__ : List[str] = initializer_range snake_case__ : str = hidden_dropout_prob snake_case__ : List[str] = attention_probs_dropout_prob snake_case__ : Optional[int] = pad_token_id snake_case__ : List[Any] = bos_token_id snake_case__ : str = eos_token_id snake_case__ : Dict = conv_glu_dim snake_case__ : str = conv_dropout snake_case__ : List[str] = num_conv_layers snake_case__ : str = input_feat_per_channel snake_case__ : int = input_channels snake_case__ : Union[str, Any] = conv_channels snake_case__ : Any = ctc_loss_reduction snake_case__ : int = ctc_zero_infinity # prevents config testing fail with exporting to json snake_case__ : List[Any] = list(lowerCamelCase ) snake_case__ : Any = list(lowerCamelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' f'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
721
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 42 class snake_case ( __lowerCamelCase , __lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase = 65536 , lowerCamelCase = None , lowerCamelCase = 2 , lowerCamelCase = 2 , lowerCamelCase = 0 , lowerCamelCase = "fourier" , lowerCamelCase = True , lowerCamelCase = False , lowerCamelCase = 0.0 , lowerCamelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCamelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCamelCase = "UNetMidBlock1D" , lowerCamelCase = None , lowerCamelCase = (32, 32, 64) , lowerCamelCase = None , lowerCamelCase = 8 , lowerCamelCase = 1 , lowerCamelCase = False , ) -> Union[str, Any]: """simple docstring""" super().__init__() snake_case__ : Optional[Any] = sample_size # time if time_embedding_type == "fourier": snake_case__ : Optional[int] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCamelCase , log=lowerCamelCase , flip_sin_to_cos=lowerCamelCase ) snake_case__ : List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": snake_case__ : Dict = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCamelCase , downscale_freq_shift=lowerCamelCase ) snake_case__ : Dict = block_out_channels[0] if use_timestep_embedding: snake_case__ : Any = block_out_channels[0] * 4 snake_case__ : Optional[Any] = TimestepEmbedding( in_channels=lowerCamelCase , time_embed_dim=lowerCamelCase , act_fn=lowerCamelCase , out_dim=block_out_channels[0] , ) snake_case__ : Dict = nn.ModuleList([] ) snake_case__ : List[Any] = None snake_case__ : Union[str, Any] = nn.ModuleList([] ) snake_case__ : List[str] = None # down snake_case__ : Tuple = in_channels for i, down_block_type in enumerate(lowerCamelCase ): snake_case__ : Tuple = output_channel snake_case__ : List[str] = block_out_channels[i] if i == 0: input_channel += extra_in_channels snake_case__ : List[Any] = i == len(lowerCamelCase ) - 1 snake_case__ : Dict = get_down_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCamelCase ) # mid snake_case__ : Optional[int] = get_mid_block( lowerCamelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCamelCase , add_downsample=lowerCamelCase , ) # up snake_case__ : Union[str, Any] = list(reversed(lowerCamelCase ) ) snake_case__ : Any = reversed_block_out_channels[0] if out_block_type is None: snake_case__ : List[Any] = out_channels else: snake_case__ : Dict = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase ): snake_case__ : List[str] = output_channel snake_case__ : List[str] = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase ) - 1 else final_upsample_channels ) snake_case__ : List[str] = i == len(lowerCamelCase ) - 1 snake_case__ : str = get_up_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCamelCase ) snake_case__ : Optional[Any] = output_channel # out snake_case__ : List[Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) snake_case__ : Union[str, Any] = get_out_block( out_block_type=lowerCamelCase , num_groups_out=lowerCamelCase , embed_dim=block_out_channels[0] , out_channels=lowerCamelCase , act_fn=lowerCamelCase , fc_dim=block_out_channels[-1] // 4 , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" snake_case__ : str = timestep if not torch.is_tensor(lowerCamelCase ): snake_case__ : Dict = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCamelCase ) and len(timesteps.shape ) == 0: snake_case__ : Optional[Any] = timesteps[None].to(sample.device ) snake_case__ : Any = self.time_proj(lowerCamelCase ) if self.config.use_timestep_embedding: snake_case__ : Tuple = self.time_mlp(lowerCamelCase ) else: snake_case__ : Union[str, Any] = timestep_embed[..., None] snake_case__ : Dict = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) snake_case__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down snake_case__ : List[Any] = () for downsample_block in self.down_blocks: snake_case__ ,snake_case__ : Optional[int] = downsample_block(hidden_states=lowerCamelCase , temb=lowerCamelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: snake_case__ : Any = self.mid_block(lowerCamelCase , lowerCamelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): snake_case__ : str = down_block_res_samples[-1:] snake_case__ : int = down_block_res_samples[:-1] snake_case__ : Optional[Any] = upsample_block(lowerCamelCase , res_hidden_states_tuple=lowerCamelCase , temb=lowerCamelCase ) # 5. post-process if self.out_block: snake_case__ : Dict = self.out_block(lowerCamelCase , lowerCamelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase )
694
0
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : list[list[int]] ): snake_case__ : Dict = len(snake_case__ ) # We need to create solution object to save path. snake_case__ : Any = [[0 for _ in range(snake_case__ )] for _ in range(snake_case__ )] snake_case__ : Dict = run_maze(snake_case__ , 0 , 0 , snake_case__ ) if solved: print('''\n'''.join(str(snake_case__ ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def _A ( snake_case__ : list[list[int]] , snake_case__ : int , snake_case__ : int , snake_case__ : list[list[int]] ): snake_case__ : Union[str, Any] = len(snake_case__ ) # Final check point. if i == j == (size - 1): snake_case__ : Tuple = 1 return True snake_case__ : Any = (not i < 0) and (not j < 0) # Check lower bounds snake_case__ : Tuple = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. snake_case__ : str = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited snake_case__ : List[str] = 1 # check for directions if ( run_maze(snake_case__ , i + 1 , snake_case__ , snake_case__ ) or run_maze(snake_case__ , snake_case__ , j + 1 , snake_case__ ) or run_maze(snake_case__ , i - 1 , snake_case__ , snake_case__ ) or run_maze(snake_case__ , snake_case__ , j - 1 , snake_case__ ) ): return True snake_case__ : Tuple = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = "The Nymphenburg Palace is a beautiful palace in Munich!" def _A ( snake_case__ : str , snake_case__ : str ): snake_case__ : Tuple = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 10_24, '''hidden_size''': 7_68, '''max_length''': 5_12, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 10_24, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } snake_case__ : List[str] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py snake_case__ : str = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=snake_case__ , output_all_encodings=snake_case__ , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , snake_case__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later snake_case__ : Any = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab snake_case__ : Any = os.path.join(get_home_dir() , '''models''' ) snake_case__ : List[Any] = _load_vocab(snake_case__ , snake_case__ , snake_case__ , cls=snake_case__ ) snake_case__ : Optional[int] = nlp.model.BERTModel( snake_case__ , len(snake_case__ ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=snake_case__ , use_token_type_embed=snake_case__ , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=snake_case__ , use_decoder=snake_case__ , ) original_bort.load_parameters(snake_case__ , cast_dtype=snake_case__ , ignore_extra=snake_case__ ) snake_case__ : Any = original_bort._collect_params_with_prefix() # Build our config 🤗 snake_case__ : Union[str, Any] = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(snake_case__ ), } snake_case__ : Dict = BertConfig.from_dict(snake_case__ ) snake_case__ : Dict = BertForMaskedLM(snake_case__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(snake_case__ : str ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(snake_case__ : List[Any] , snake_case__ : Any ): snake_case__ : Union[str, Any] = hf_param.shape snake_case__ : Any = to_torch(params[gluon_param] ) snake_case__ : Dict = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param snake_case__ : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) snake_case__ : int = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) snake_case__ : str = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) snake_case__ : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) snake_case__ : str = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): snake_case__ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention snake_case__ : BertSelfAttention = layer.attention.self snake_case__ : Optional[Any] = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) snake_case__ : Dict = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) snake_case__ : List[str] = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) snake_case__ : int = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) snake_case__ : List[Any] = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) snake_case__ : List[Any] = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output snake_case__ : BertSelfOutput = layer.attention.output snake_case__ : Optional[Any] = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) snake_case__ : List[str] = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) snake_case__ : Optional[Any] = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) snake_case__ : Any = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate snake_case__ : BertIntermediate = layer.intermediate snake_case__ : int = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) snake_case__ : Optional[int] = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output snake_case__ : BertOutput = layer.output snake_case__ : Any = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) snake_case__ : Tuple = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) snake_case__ : Tuple = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) snake_case__ : Union[str, Any] = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models snake_case__ : Dict = RobertaTokenizer.from_pretrained('''roberta-base''' ) snake_case__ : str = tokenizer.encode_plus(snake_case__ )['''input_ids'''] # Get gluon output snake_case__ : List[str] = mx.nd.array([input_ids] ) snake_case__ : Optional[int] = original_bort(inputs=snake_case__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(snake_case__ ) snake_case__ : Optional[Any] = BertModel.from_pretrained(snake_case__ ) hf_bort_model.eval() snake_case__ : Optional[Any] = tokenizer.encode_plus(snake_case__ , return_tensors='''pt''' ) snake_case__ : str = hf_bort_model(**snake_case__ )[0] snake_case__ : str = output_gluon[0].asnumpy() snake_case__ : str = output_hf[0].detach().numpy() snake_case__ : Tuple = np.max(np.abs(hf_layer - gluon_layer ) ).item() snake_case__ : Optional[Any] = np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , snake_case__ ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
694
0