code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
1
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : torch.FloatTensor UpperCAmelCase_ : Optional[torch.FloatTensor] = None def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_=0.999 , UpperCAmelCase_="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCAmelCase_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCAmelCase_ ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCAmelCase : Optional[Any] = [] for i in range(UpperCAmelCase_ ): UpperCAmelCase : int = i / num_diffusion_timesteps UpperCAmelCase : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCAmelCase_ ) / alpha_bar_fn(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) return torch.tensor(UpperCAmelCase_ , dtype=torch.floataa ) class A_ ( _snake_case , _snake_case ): '''simple docstring''' @register_to_config def __init__( self : List[Any] , lowercase_ : int = 1_000 , lowercase_ : str = "fixed_small_log" , lowercase_ : bool = True , lowercase_ : Optional[float] = 1.0 , lowercase_ : str = "epsilon" , lowercase_ : str = "squaredcos_cap_v2" , ) -> List[str]: if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' ) UpperCAmelCase : Optional[Any] = betas_for_alpha_bar(lowercase_ ) UpperCAmelCase : Optional[Any] = 1.0 - self.betas UpperCAmelCase : Any = torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase : List[str] = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase : Optional[Any] = 1.0 # setable values UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Optional[Any] = torch.from_numpy(np.arange(0 , lowercase_ )[::-1].copy() ) UpperCAmelCase : str = variance_type def UpperCAmelCase_ ( self : int , lowercase_ : torch.FloatTensor , lowercase_ : Optional[int] = None ) -> torch.FloatTensor: return sample def UpperCAmelCase_ ( self : List[Any] , lowercase_ : int , lowercase_ : Union[str, torch.device] = None ) -> str: UpperCAmelCase : List[Any] = num_inference_steps UpperCAmelCase : Dict = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase : List[str] = (np.arange(0 , lowercase_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase : Dict = torch.from_numpy(lowercase_ ).to(lowercase_ ) def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] , lowercase_ : Union[str, Any]=None , lowercase_ : List[str]=None , lowercase_ : str=None ) -> str: if prev_timestep is None: UpperCAmelCase : int = t - 1 UpperCAmelCase : Optional[int] = self.alphas_cumprod[t] UpperCAmelCase : Optional[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase : Any = 1 - alpha_prod_t UpperCAmelCase : Any = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase : Dict = self.betas[t] else: UpperCAmelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase : List[str] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase : Dict = torch.log(torch.clamp(lowercase_ , min=1E-20 ) ) UpperCAmelCase : int = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase : int = variance.log() UpperCAmelCase : str = beta.log() UpperCAmelCase : Tuple = (predicted_variance + 1) / 2 UpperCAmelCase : Dict = frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase_ ( self : Any , lowercase_ : torch.FloatTensor , lowercase_ : int , lowercase_ : torch.FloatTensor , lowercase_ : Optional[int] = None , lowercase_ : Any=None , lowercase_ : bool = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: UpperCAmelCase : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase , UpperCAmelCase : Union[str, Any] = torch.split(lowercase_ , sample.shape[1] , dim=1 ) else: UpperCAmelCase : str = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase : List[str] = t - 1 UpperCAmelCase : Any = self.alphas_cumprod[t] UpperCAmelCase : Tuple = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase : str = 1 - alpha_prod_t UpperCAmelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase : List[str] = self.betas[t] UpperCAmelCase : str = self.alphas[t] else: UpperCAmelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase : Any = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase : str = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase : Optional[Any] = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" ' for the UnCLIPScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase : int = torch.clamp( lowercase_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : Optional[int] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase : List[Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase : List[Any] = 0 if t > 0: UpperCAmelCase : Tuple = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowercase_ , device=model_output.device ) UpperCAmelCase : List[str] = self._get_variance( lowercase_ , predicted_variance=lowercase_ , prev_timestep=lowercase_ , ) if self.variance_type == "fixed_small_log": UpperCAmelCase : str = variance elif self.variance_type == "learned_range": UpperCAmelCase : List[str] = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" ' for the UnCLIPScheduler.' ) UpperCAmelCase : List[str] = variance * variance_noise UpperCAmelCase : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowercase_ , pred_original_sample=lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : torch.FloatTensor , lowercase_ : torch.FloatTensor , lowercase_ : torch.IntTensor , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples UpperCAmelCase : List[Any] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase : List[Any] = timesteps.to(original_samples.device ) UpperCAmelCase : Tuple = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase : Optional[int] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase : Dict = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase : Dict = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase : int = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase : List[Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
695
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase__ = {"tokenization_byt5": ["ByT5Tokenizer"]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : int UpperCAmelCase_ : Node | None = None UpperCAmelCase_ : Node | None = None def UpperCamelCase( ): UpperCAmelCase : str = Node(1 ) UpperCAmelCase : Optional[Any] = Node(2 ) UpperCAmelCase : Dict = Node(3 ) UpperCAmelCase : int = Node(4 ) UpperCAmelCase : str = Node(5 ) return tree def UpperCamelCase( UpperCAmelCase_ ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase( UpperCAmelCase_ ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase( UpperCAmelCase_ ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase( UpperCAmelCase_ ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : list[Any] = [] if root is None: return output UpperCAmelCase : int = deque([root] ) while process_queue: UpperCAmelCase : str = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : list[Any] = [] def populate_output(UpperCAmelCase_ , UpperCAmelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(UpperCAmelCase_ , UpperCAmelCase_ ) return output def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : list[Any] = [] def populate_output(UpperCAmelCase_ , UpperCAmelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(UpperCAmelCase_ , UpperCAmelCase_ ) return output def UpperCamelCase( UpperCAmelCase_ ): if root is None: return [] UpperCAmelCase : list[Sequence[Node | None]] = [] UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = height(UpperCAmelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(UpperCAmelCase_ , UpperCAmelCase_ ) ) UpperCAmelCase : List[str] = 1 else: output.append(get_nodes_from_right_to_left(UpperCAmelCase_ , UpperCAmelCase_ ) ) UpperCAmelCase : int = 0 return output def UpperCamelCase( ): # Main function for testing. UpperCAmelCase : Tuple = make_tree() print(F"""In-order Traversal: {inorder(UpperCAmelCase_ )}""" ) print(F"""Pre-order Traversal: {preorder(UpperCAmelCase_ )}""" ) print(F"""Post-order Traversal: {postorder(UpperCAmelCase_ )}""" , '\n' ) print(F"""Height of Tree: {height(UpperCAmelCase_ )}""" , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(UpperCAmelCase_ ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(UpperCAmelCase_ ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(UpperCAmelCase_ , level=UpperCAmelCase_ ) ) print('\nZigZag order Traversal: ' ) print(zigzag(UpperCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
695
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
1
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
1
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowercase__ = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" lowercase__ = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" lowercase__ = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" lowercase__ = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" lowercase__ = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self : int ) -> List[Any]: return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : int=[1, 10, 100] , lowercase_ : List[Any]=4 , lowercase_ : Tuple=3.0 ) -> Optional[int]: if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=lowercase_ ) as executor: UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Any = Counter() UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : str = defaultdict(lowercase_ ) for task_id, (candidates, test_case) in enumerate(zip(lowercase_ , lowercase_ ) ): for candidate in candidates: UpperCAmelCase : int = candidate + '\n' + test_case UpperCAmelCase : Dict = (test_program, timeout, task_id, completion_id[task_id]) UpperCAmelCase : Tuple = executor.submit(lowercase_ , *lowercase_ ) futures.append(lowercase_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowercase_ ): UpperCAmelCase : Any = future.result() results[result["task_id"]].append((result['completion_id'], result) ) UpperCAmelCase , UpperCAmelCase : Optional[int] = [], [] for result in results.values(): result.sort() UpperCAmelCase : List[Any] = [r[1]['passed'] for r in result] total.append(len(lowercase_ ) ) correct.append(sum(lowercase_ ) ) UpperCAmelCase : Any = np.array(lowercase_ ) UpperCAmelCase : Dict = np.array(lowercase_ ) UpperCAmelCase : List[Any] = k UpperCAmelCase : Dict = {f"""pass@{k}""": estimate_pass_at_k(lowercase_ , lowercase_ , lowercase_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): def estimator(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Dict = itertools.repeat(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) else: assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = iter(UpperCAmelCase_ ) return np.array([estimator(int(UpperCAmelCase_ ) , int(UpperCAmelCase_ ) , UpperCAmelCase_ ) for n, c in zip(UpperCAmelCase_ , UpperCAmelCase_ )] )
695
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = botoa.client('iam' ) UpperCAmelCase : Dict = { 'Version': '2012-10-17', 'Statement': [ {'Effect': 'Allow', 'Principal': {'Service': 'sagemaker.amazonaws.com'}, 'Action': 'sts:AssumeRole'} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=UpperCAmelCase_ , AssumeRolePolicyDocument=json.dumps(UpperCAmelCase_ , indent=2 ) ) UpperCAmelCase : str = { 'Version': '2012-10-17', 'Statement': [ { 'Effect': 'Allow', 'Action': [ 'sagemaker:*', 'ecr:GetDownloadUrlForLayer', 'ecr:BatchGetImage', 'ecr:BatchCheckLayerAvailability', 'ecr:GetAuthorizationToken', 'cloudwatch:PutMetricData', 'cloudwatch:GetMetricData', 'cloudwatch:GetMetricStatistics', 'cloudwatch:ListMetrics', 'logs:CreateLogGroup', 'logs:CreateLogStream', 'logs:DescribeLogStreams', 'logs:PutLogEvents', 'logs:GetLogEvents', 's3:CreateBucket', 's3:ListBucket', 's3:GetBucketLocation', 's3:GetObject', 's3:PutObject', ], 'Resource': '*', } ], } # attach policy to role iam_client.put_role_policy( RoleName=UpperCAmelCase_ , PolicyName=F"""{role_name}_policy_permission""" , PolicyDocument=json.dumps(UpperCAmelCase_ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"""role {role_name} already exists. Using existing one""" ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Dict = botoa.client('iam' ) return iam_client.get_role(RoleName=UpperCAmelCase_ )["Role"]["Arn"] def UpperCamelCase( ): UpperCAmelCase : Dict = _ask_options( 'How do you want to authorize?' , ['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '] , UpperCAmelCase_ , ) UpperCAmelCase : Union[str, Any] = None if credentials_configuration == 0: UpperCAmelCase : Optional[int] = _ask_field('Enter your AWS Profile name: [default] ' , default='default' ) UpperCAmelCase : Optional[int] = aws_profile else: print( 'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,' '`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' ) UpperCAmelCase : Union[str, Any] = _ask_field('AWS Access Key ID: ' ) UpperCAmelCase : Any = aws_access_key_id UpperCAmelCase : Optional[Any] = _ask_field('AWS Secret Access Key: ' ) UpperCAmelCase : Dict = aws_secret_access_key UpperCAmelCase : int = _ask_field('Enter your AWS Region: [us-east-1]' , default='us-east-1' ) UpperCAmelCase : List[str] = aws_region UpperCAmelCase : Optional[Any] = _ask_options( 'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?' , ['Provide IAM Role name', 'Create new IAM role using credentials'] , UpperCAmelCase_ , ) if role_management == 0: UpperCAmelCase : List[str] = _ask_field('Enter your IAM role name: ' ) else: UpperCAmelCase : Optional[int] = 'accelerate_sagemaker_execution_role' print(F"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(UpperCAmelCase_ ) UpperCAmelCase : Any = _ask_field( 'Do you want to use custom Docker image? [yes/NO]: ' , _convert_yes_no_to_bool , default=UpperCAmelCase_ , error_message='Please enter yes or no.' , ) UpperCAmelCase : int = None if is_custom_docker_image: UpperCAmelCase : Any = _ask_field('Enter your Docker image: ' , lambda UpperCAmelCase_ : str(UpperCAmelCase_ ).lower() ) UpperCAmelCase : Optional[int] = _ask_field( 'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ' , _convert_yes_no_to_bool , default=UpperCAmelCase_ , error_message='Please enter yes or no.' , ) UpperCAmelCase : List[str] = None if is_sagemaker_inputs_enabled: UpperCAmelCase : Any = _ask_field( 'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ' , lambda UpperCAmelCase_ : str(UpperCAmelCase_ ).lower() , ) UpperCAmelCase : Any = _ask_field( 'Do you want to enable SageMaker metrics? [yes/NO]: ' , _convert_yes_no_to_bool , default=UpperCAmelCase_ , error_message='Please enter yes or no.' , ) UpperCAmelCase : Tuple = None if is_sagemaker_metrics_enabled: UpperCAmelCase : Union[str, Any] = _ask_field( 'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ' , lambda UpperCAmelCase_ : str(UpperCAmelCase_ ).lower() , ) UpperCAmelCase : Any = _ask_options( 'What is the distributed mode?' , ['No distributed training', 'Data parallelism'] , _convert_sagemaker_distributed_mode , ) UpperCAmelCase : Optional[int] = {} UpperCAmelCase : str = _ask_field( 'Do you wish to optimize your script with torch dynamo?[yes/NO]:' , _convert_yes_no_to_bool , default=UpperCAmelCase_ , error_message='Please enter yes or no.' , ) if use_dynamo: UpperCAmelCase : Union[str, Any] = 'dynamo_' UpperCAmelCase : str = _ask_options( 'Which dynamo backend would you like to use?' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) UpperCAmelCase : Dict = _ask_field( 'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ' , _convert_yes_no_to_bool , default=UpperCAmelCase_ , error_message='Please enter yes or no.' , ) if use_custom_options: UpperCAmelCase : List[str] = _ask_options( 'Which mode do you want to use?' , UpperCAmelCase_ , lambda UpperCAmelCase_ : TORCH_DYNAMO_MODES[int(UpperCAmelCase_ )] , default='default' , ) UpperCAmelCase : Tuple = _ask_field( 'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ' , _convert_yes_no_to_bool , default=UpperCAmelCase_ , error_message='Please enter yes or no.' , ) UpperCAmelCase : str = _ask_field( 'Do you want to enable dynamic shape tracing? [yes/NO]: ' , _convert_yes_no_to_bool , default=UpperCAmelCase_ , error_message='Please enter yes or no.' , ) UpperCAmelCase : int = 'Which EC2 instance type you want to use for your training?' if distributed_type != SageMakerDistributedType.NO: UpperCAmelCase : Any = _ask_options( UpperCAmelCase_ , UpperCAmelCase_ , lambda UpperCAmelCase_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(UpperCAmelCase_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" UpperCAmelCase : Dict = _ask_field(UpperCAmelCase_ , lambda UpperCAmelCase_ : str(UpperCAmelCase_ ).lower() , default='ml.p3.2xlarge' ) UpperCAmelCase : str = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): UpperCAmelCase : Optional[int] = _ask_field( 'How many machines do you want use? [1]: ' , UpperCAmelCase_ , default=1 , ) UpperCAmelCase : Tuple = _ask_options( 'Do you wish to use FP16 or BF16 (mixed precision)?' , ['no', 'fp16', 'bf16', 'fp8'] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( 'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' ) return SageMakerConfig( image_uri=UpperCAmelCase_ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=UpperCAmelCase_ , use_cpu=UpperCAmelCase_ , dynamo_config=UpperCAmelCase_ , eca_instance_type=UpperCAmelCase_ , profile=UpperCAmelCase_ , region=UpperCAmelCase_ , iam_role_name=UpperCAmelCase_ , mixed_precision=UpperCAmelCase_ , num_machines=UpperCAmelCase_ , sagemaker_inputs_file=UpperCAmelCase_ , sagemaker_metrics_file=UpperCAmelCase_ , )
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return int((input_a, input_a).count(0 ) != 0 ) def UpperCamelCase( ): assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
1
'''simple docstring''' from math import factorial def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('Please enter positive integers for n and k where n >= k' ) return factorial(UpperCAmelCase_ ) // (factorial(UpperCAmelCase_ ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( "If a class of 40 students must be arranged into groups of", f'''4 for group projects, there are {combinations(40, 4)} ways''', "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", f'''are {combinations(10, 3)} ways that first, second and''', "third place can be awarded.", )
695
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
1
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Any = FileLock(str(tmpdir / 'foo.lock' ) ) UpperCAmelCase : Tuple = FileLock(str(tmpdir / 'foo.lock' ) ) UpperCAmelCase : List[Any] = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = time.time() locka.acquire(UpperCAmelCase_ ) assert time.time() - _start > timeout def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = 'a' * 10_00 + '.lock' UpperCAmelCase : List[str] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(UpperCAmelCase_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 UpperCAmelCase : Union[str, Any] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase_ ): locka.acquire(0 )
695
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
1
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase__ = "\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=8 ): UpperCAmelCase : List[str] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 UpperCAmelCase : List[Any] = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class A_ ( _snake_case ): '''simple docstring''' def __init__( self : Dict , lowercase_ : MultilingualCLIP , lowercase_ : XLMRobertaTokenizer , lowercase_ : UNetaDConditionModel , lowercase_ : Union[DDIMScheduler, DDPMScheduler] , lowercase_ : VQModel , ) -> int: super().__init__() self.register_modules( text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase_ ( self : Any , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : Dict ) -> Any: if latents is None: UpperCAmelCase : str = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase : Optional[Any] = latents.to(lowercase_ ) UpperCAmelCase : str = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[Any]=None , ) -> List[Any]: UpperCAmelCase : int = len(lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else 1 # get prompt text embeddings UpperCAmelCase : int = self.tokenizer( lowercase_ , padding='max_length' , truncation=lowercase_ , max_length=77 , return_attention_mask=lowercase_ , add_special_tokens=lowercase_ , return_tensors='pt' , ) UpperCAmelCase : List[str] = text_inputs.input_ids UpperCAmelCase : List[Any] = self.tokenizer(lowercase_ , padding='longest' , return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(lowercase_ , lowercase_ ): UpperCAmelCase : List[Any] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) UpperCAmelCase : List[Any] = text_input_ids.to(lowercase_ ) UpperCAmelCase : List[Any] = text_inputs.attention_mask.to(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = self.text_encoder( input_ids=lowercase_ , attention_mask=lowercase_ ) UpperCAmelCase : Tuple = prompt_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase : Optional[Any] = text_encoder_hidden_states.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase : Dict = text_mask.repeat_interleave(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase : List[str] if negative_prompt is None: UpperCAmelCase : List[str] = [''] * batch_size elif type(lowercase_ ) is not type(lowercase_ ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_ )} !=""" f""" {type(lowercase_ )}.""" ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Optional[int] = [negative_prompt] elif batch_size != len(lowercase_ ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(lowercase_ )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: UpperCAmelCase : str = negative_prompt UpperCAmelCase : List[str] = self.tokenizer( lowercase_ , padding='max_length' , max_length=77 , truncation=lowercase_ , return_attention_mask=lowercase_ , add_special_tokens=lowercase_ , return_tensors='pt' , ) UpperCAmelCase : Union[str, Any] = uncond_input.input_ids.to(lowercase_ ) UpperCAmelCase : Optional[Any] = uncond_input.attention_mask.to(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.text_encoder( input_ids=lowercase_ , attention_mask=lowercase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase : Optional[int] = negative_prompt_embeds.shape[1] UpperCAmelCase : Union[str, Any] = negative_prompt_embeds.repeat(1 , lowercase_ ) UpperCAmelCase : int = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowercase_ ) UpperCAmelCase : Optional[int] = uncond_text_encoder_hidden_states.shape[1] UpperCAmelCase : Optional[Any] = uncond_text_encoder_hidden_states.repeat(1 , lowercase_ , 1 ) UpperCAmelCase : Any = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , lowercase_ , -1 ) UpperCAmelCase : Dict = uncond_text_mask.repeat_interleave(lowercase_ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : Optional[Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) UpperCAmelCase : Dict = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) UpperCAmelCase : Optional[int] = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def UpperCAmelCase_ ( self : Dict , lowercase_ : int=0 ) -> Optional[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase : List[str] = torch.device(f"""cuda:{gpu_id}""" ) UpperCAmelCase : Tuple = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Optional[Any]=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) UpperCAmelCase : int = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase : Tuple = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: UpperCAmelCase , UpperCAmelCase : List[Any] = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) if self.safety_checker is not None: UpperCAmelCase , UpperCAmelCase : List[Any] = cpu_offload_with_hook(self.safety_checker , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase : List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self : Dict , lowercase_ : Union[str, List[str]] , lowercase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ : Optional[Union[str, List[str]]] = None , lowercase_ : int = 512 , lowercase_ : int = 512 , lowercase_ : int = 100 , lowercase_ : float = 4.0 , lowercase_ : int = 1 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ) -> Any: if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Any = 1 elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Optional[int] = len(lowercase_ ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(lowercase_ )}""" ) UpperCAmelCase : Any = self._execution_device UpperCAmelCase : Dict = batch_size * num_images_per_prompt UpperCAmelCase : Optional[Any] = guidance_scale > 1.0 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = self._encode_prompt( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : List[Any] = torch.cat(lowercase_ , dim=0 ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Tuple = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase : Any = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase : Tuple = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase : List[str] = self.scheduler.timesteps UpperCAmelCase : str = self.unet.config.in_channels UpperCAmelCase , UpperCAmelCase : Optional[int] = get_new_h_w(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase : Any = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : Union[str, Any] = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} UpperCAmelCase : str = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase , UpperCAmelCase : List[Any] = noise_pred.chunk(2 ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = variance_pred.chunk(2 ) UpperCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase : Dict = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase , UpperCAmelCase : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Tuple = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , ).prev_sample # post-processing UpperCAmelCase : Union[str, Any] = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase : Tuple = image * 0.5 + 0.5 UpperCAmelCase : Dict = image.clamp(0 , 1 ) UpperCAmelCase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
695
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase__ = { "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """openai-gpt""" UpperCAmelCase_ : Union[str, Any] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , lowercase_ : Union[str, Any]=40_478 , lowercase_ : Tuple=512 , lowercase_ : List[str]=768 , lowercase_ : int=12 , lowercase_ : Any=12 , lowercase_ : Optional[int]="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : str=0.1 , lowercase_ : Dict=0.1 , lowercase_ : str=1E-5 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : Tuple="cls_index" , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=None , lowercase_ : Dict=True , lowercase_ : Any=0.1 , **lowercase_ : Union[str, Any] , ) -> Union[str, Any]: UpperCAmelCase : int = vocab_size UpperCAmelCase : Tuple = n_positions UpperCAmelCase : int = n_embd UpperCAmelCase : Optional[Any] = n_layer UpperCAmelCase : List[Any] = n_head UpperCAmelCase : List[str] = afn UpperCAmelCase : int = resid_pdrop UpperCAmelCase : Optional[int] = embd_pdrop UpperCAmelCase : Optional[Any] = attn_pdrop UpperCAmelCase : Optional[Any] = layer_norm_epsilon UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Union[str, Any] = summary_type UpperCAmelCase : int = summary_use_proj UpperCAmelCase : Any = summary_activation UpperCAmelCase : List[str] = summary_first_dropout UpperCAmelCase : Optional[Any] = summary_proj_to_labels super().__init__(**lowercase_ )
695
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
1
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Dict = FunnelTokenizer UpperCAmelCase_ : Any = FunnelTokenizerFast UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Any = True def UpperCAmelCase_ ( self : str ) -> int: super().setUp() UpperCAmelCase : Any = [ '<unk>', '<cls>', '<sep>', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCAmelCase_ ( self : Any , **lowercase_ : List[str] ) -> List[Any]: return FunnelTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase_ ( self : str , **lowercase_ : Optional[Any] ) -> List[str]: return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase_ ( self : Any , lowercase_ : List[str] ) -> int: UpperCAmelCase : List[Any] = 'UNwant\u00E9d,running' UpperCAmelCase : Optional[Any] = 'unwanted, running' return input_text, output_text def UpperCAmelCase_ ( self : int ) -> int: UpperCAmelCase : List[Any] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : int = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowercase_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , [7, 4, 5, 10, 8, 9] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: UpperCAmelCase : str = tokenizer('UNwant\u00E9d,running' ) UpperCAmelCase : List[str] = len(inputs['input_ids'] ) - 1 self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len ) UpperCAmelCase : Optional[int] = tokenizer('UNwant\u00E9d,running' , 'UNwant\u00E9d,running' ) self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len + [1] * sentence_len )
695
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
1
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter lowercase__ = True except ImportError: lowercase__ = False lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase( UpperCAmelCase_ ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class A_ ( _snake_case ): '''simple docstring''' @staticmethod def UpperCAmelCase_ ( lowercase_ : ArgumentParser ) -> List[Any]: UpperCAmelCase : Union[str, Any] = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' , action='store_true' , help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' , type=lowercase_ , help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' , type=lowercase_ , help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=lowercase_ ) def __init__( self : List[Any] , lowercase_ : bool , lowercase_ : str , lowercase_ : Any=None , *lowercase_ : List[Any] ) -> Optional[int]: UpperCAmelCase : Optional[int] = testing UpperCAmelCase : Union[str, Any] = testing_file UpperCAmelCase : Optional[Any] = path def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCAmelCase : str = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(lowercase_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) UpperCAmelCase : List[str] = ( Path(lowercase_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCAmelCase : List[Any] = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(lowercase_ ) ) else: with open(self._testing_file , 'r' ) as configuration_file: UpperCAmelCase : Dict = json.load(lowercase_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowercase_ , extra_context=lowercase_ , ) UpperCAmelCase : str = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' , 'r' ) as configuration_file: UpperCAmelCase : Any = json.load(lowercase_ ) UpperCAmelCase : Optional[Any] = configuration['lowercase_modelname'] UpperCAmelCase : Union[str, Any] = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(f"""{directory}/configuration.json""" ) UpperCAmelCase : Tuple = 'PyTorch' in generate_tensorflow_pytorch_and_flax UpperCAmelCase : List[str] = 'TensorFlow' in generate_tensorflow_pytorch_and_flax UpperCAmelCase : List[Any] = 'Flax' in generate_tensorflow_pytorch_and_flax UpperCAmelCase : Tuple = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(lowercase_ , exist_ok=lowercase_ ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=lowercase_ ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , 'w' ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(lowercase_ : Tuple ): with open(lowercase_ , 'r' ) as f: UpperCAmelCase : Any = f.readlines() with open(lowercase_ , 'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowercase_ ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowercase_ : str , lowercase_ : str , lowercase_ : List[str] ): # Create temp file UpperCAmelCase , UpperCAmelCase : Tuple = mkstemp() UpperCAmelCase : Dict = False with fdopen(lowercase_ , 'w' ) as new_file: with open(lowercase_ ) as old_file: for line in old_file: new_file.write(lowercase_ ) if line_to_copy_below in line: UpperCAmelCase : Union[str, Any] = True for line_to_copy in lines_to_copy: new_file.write(lowercase_ ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(lowercase_ , lowercase_ ) # Remove original file remove(lowercase_ ) # Move new file move(lowercase_ , lowercase_ ) def skip_units(lowercase_ : int ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowercase_ : Optional[Any] ): with open(lowercase_ ) as datafile: UpperCAmelCase : Dict = [] UpperCAmelCase : Optional[int] = False UpperCAmelCase : str = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCAmelCase : List[str] = line.split('"' )[1] UpperCAmelCase : Tuple = skip_units(lowercase_ ) elif "# Below: " in line and "##" not in line: UpperCAmelCase : str = line.split('"' )[1] UpperCAmelCase : Union[str, Any] = skip_units(lowercase_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : str = [] elif "# Replace with" in line and "##" not in line: UpperCAmelCase : Tuple = [] elif "##" not in line: lines_to_copy.append(lowercase_ ) remove(lowercase_ ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(lowercase_ )
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase__ = "sshleifer/mar_enro_6_3_student" class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: super().setUp() UpperCAmelCase : Tuple = cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=lowercase_ , ) UpperCAmelCase : str = f"""{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k""" @slow @require_torch_gpu def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: MarianMTModel.from_pretrained(lowercase_ ) @slow @require_torch_gpu def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = { '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script UpperCAmelCase : List[str] = (self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() UpperCAmelCase : str = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase : Union[str, Any] = bash_script.replace(lowercase_ , str(lowercase_ ) ) UpperCAmelCase : str = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") UpperCAmelCase : Union[str, Any] = f""" --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 """.split() # XXX: args.gpus > 1 : handle multi_gpu in the future UpperCAmelCase : List[Any] = ['finetune.py'] + bash_script.split() + args with patch.object(lowercase_ , 'argv' , lowercase_ ): UpperCAmelCase : Tuple = argparse.ArgumentParser() UpperCAmelCase : int = pl.Trainer.add_argparse_args(lowercase_ ) UpperCAmelCase : int = SummarizationModule.add_model_specific_args(lowercase_ , os.getcwd() ) UpperCAmelCase : Any = parser.parse_args() UpperCAmelCase : Any = main(lowercase_ ) # Check metrics UpperCAmelCase : Union[str, Any] = load_json(model.metrics_save_path ) UpperCAmelCase : Union[str, Any] = metrics['val'][0] UpperCAmelCase : int = metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , lowercase_ ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase : Dict = os.listdir(lowercase_ ) UpperCAmelCase : Tuple = [x for x in contents if x.endswith('.ckpt' )][0] UpperCAmelCase : Optional[Any] = os.path.join(args.output_dir , lowercase_ ) UpperCAmelCase : Tuple = torch.load(lowercase_ , map_location='cpu' ) UpperCAmelCase : int = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase : Tuple = {os.path.basename(lowercase_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class A_ ( _snake_case ): '''simple docstring''' @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCAmelCase_ ( self : str ) -> Tuple: UpperCAmelCase : int = f"""{self.test_file_dir_str}/test_data/wmt_en_ro""" UpperCAmelCase : Optional[int] = { '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script UpperCAmelCase : str = ( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) UpperCAmelCase : Optional[Any] = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) UpperCAmelCase : Any = bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase : Tuple = bash_script.replace(lowercase_ , str(lowercase_ ) ) UpperCAmelCase : Dict = self.get_auto_remove_tmp_dir() UpperCAmelCase : int = bash_script.replace('--fp16' , '' ) UpperCAmelCase : List[Any] = 6 UpperCAmelCase : List[Any] = ( ['distillation.py'] + bash_script.split() + [ f"""--output_dir={output_dir}""", '--gpus=1', '--learning_rate=1e-3', f"""--num_train_epochs={epochs}""", '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(lowercase_ , 'argv' , lowercase_ ): UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() UpperCAmelCase : Optional[Any] = pl.Trainer.add_argparse_args(lowercase_ ) UpperCAmelCase : Optional[Any] = SummarizationDistiller.add_model_specific_args(lowercase_ , os.getcwd() ) UpperCAmelCase : Optional[Any] = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu UpperCAmelCase : Tuple = distill_main(lowercase_ ) # Check metrics UpperCAmelCase : int = load_json(model.metrics_save_path ) UpperCAmelCase : int = metrics['val'][0] UpperCAmelCase : int = metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , lowercase_ ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase : List[str] = os.listdir(lowercase_ ) UpperCAmelCase : Union[str, Any] = [x for x in contents if x.endswith('.ckpt' )][0] UpperCAmelCase : Dict = os.path.join(args.output_dir , lowercase_ ) UpperCAmelCase : int = torch.load(lowercase_ , map_location='cpu' ) UpperCAmelCase : Optional[int] = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase : Any = {os.path.basename(lowercase_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
695
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
1
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } lowercase__ = {"allegro/herbert-base-cased": 514} lowercase__ = {} class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = VOCAB_FILES_NAMES UpperCAmelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Optional[int] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Union[str, Any] = HerbertTokenizer def __init__( self : Optional[Any] , lowercase_ : List[Any]=None , lowercase_ : Tuple=None , lowercase_ : Tuple=None , lowercase_ : List[str]="<s>" , lowercase_ : Optional[Any]="<unk>" , lowercase_ : Any="<pad>" , lowercase_ : Tuple="<mask>" , lowercase_ : Dict="</s>" , **lowercase_ : str , ) -> Dict: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , cls_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , sep_token=lowercase_ , **lowercase_ , ) def UpperCAmelCase_ ( self : int , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : int = [self.cls_token_id] UpperCAmelCase : Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Any , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1] def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : List[str] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : int = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ )
695
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
1
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """swin2sr""" UpperCAmelCase_ : Union[str, Any] = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Dict , lowercase_ : Union[str, Any]=64 , lowercase_ : Dict=1 , lowercase_ : Optional[Any]=3 , lowercase_ : List[str]=180 , lowercase_ : Any=[6, 6, 6, 6, 6, 6] , lowercase_ : str=[6, 6, 6, 6, 6, 6] , lowercase_ : Optional[Any]=8 , lowercase_ : Union[str, Any]=2.0 , lowercase_ : Optional[Any]=True , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Dict=0.0 , lowercase_ : Dict=0.1 , lowercase_ : Dict="gelu" , lowercase_ : Dict=False , lowercase_ : Any=0.02 , lowercase_ : Optional[Any]=1E-5 , lowercase_ : List[Any]=2 , lowercase_ : List[Any]=1.0 , lowercase_ : int="1conv" , lowercase_ : Optional[Any]="pixelshuffle" , **lowercase_ : Union[str, Any] , ) -> List[str]: super().__init__(**lowercase_ ) UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : Dict = patch_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : int = embed_dim UpperCAmelCase : Optional[int] = depths UpperCAmelCase : List[Any] = len(lowercase_ ) UpperCAmelCase : Optional[int] = num_heads UpperCAmelCase : List[Any] = window_size UpperCAmelCase : Tuple = mlp_ratio UpperCAmelCase : Optional[int] = qkv_bias UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Any = drop_path_rate UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Tuple = use_absolute_embeddings UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Union[str, Any] = upscale UpperCAmelCase : Optional[int] = img_range UpperCAmelCase : List[str] = resi_connection UpperCAmelCase : List[str] = upsampler
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
1
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase__ = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : int = PegasusTokenizer UpperCAmelCase_ : Optional[int] = PegasusTokenizerFast UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : List[str] = True def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : Optional[Any] = PegasusTokenizer(lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase_ ( self : List[str] ) -> str: return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def UpperCAmelCase_ ( self : Union[str, Any] , **lowercase_ : List[str] ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Optional[int] ) -> Tuple: return ("This is a test", "This is a test") def UpperCAmelCase_ ( self : Tuple ) -> Dict: UpperCAmelCase : List[Any] = '</s>' UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def UpperCAmelCase_ ( self : Tuple ) -> str: UpperCAmelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(lowercase_ ) , 1_103 ) def UpperCAmelCase_ ( self : int ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 1_103 ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : int = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) UpperCAmelCase : Any = rust_tokenizer([raw_input_str] , return_tensors=lowercase_ , add_special_tokens=lowercase_ ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=lowercase_ , add_special_tokens=lowercase_ ).input_ids[0] self.assertListEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: UpperCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : List[Any] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' UpperCAmelCase : Tuple = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1] UpperCAmelCase : List[str] = tokenizer([raw_input_str] , return_tensors=lowercase_ ).input_ids[0] self.assertListEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: UpperCAmelCase : int = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96_103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_024 UpperCAmelCase : Any = 'To ensure a smooth flow of bank resolutions.' UpperCAmelCase : int = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1] UpperCAmelCase : Tuple = tokenizer([raw_input_str] , return_tensors=lowercase_ ).input_ids[0] self.assertListEqual(lowercase_ , lowercase_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase_ ( self : str ) -> int: UpperCAmelCase : Optional[Any] = ['This is going to be way too long.' * 150, 'short example'] UpperCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] UpperCAmelCase : int = self._large_tokenizer(lowercase_ , padding=lowercase_ , truncation=lowercase_ , return_tensors='pt' ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=lowercase_ , max_length=5 , padding=lowercase_ , truncation=lowercase_ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1_024) assert batch.attention_mask.shape == (2, 1_024) assert targets["input_ids"].shape == (2, 5) assert len(lowercase_ ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {'input_ids': [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : int = PegasusTokenizer UpperCAmelCase_ : List[str] = PegasusTokenizerFast UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Tuple = True def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(lowercase_ , offset=0 , mask_token_sent=lowercase_ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase_ ( self : List[str] ) -> List[str]: return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def UpperCAmelCase_ ( self : List[str] , **lowercase_ : Tuple ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Any ) -> str: return ("This is a test", "This is a test") def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : int = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Tuple = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) UpperCAmelCase : List[Any] = rust_tokenizer([raw_input_str] , return_tensors=lowercase_ , add_special_tokens=lowercase_ ).input_ids[0] UpperCAmelCase : List[str] = py_tokenizer([raw_input_str] , return_tensors=lowercase_ , add_special_tokens=lowercase_ ).input_ids[0] self.assertListEqual(lowercase_ , lowercase_ ) @require_torch def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[Any] = ['This is going to be way too long.' * 1_000, 'short example'] UpperCAmelCase : int = ['not super long but more than 5 tokens', 'tiny'] UpperCAmelCase : Optional[int] = self._large_tokenizer(lowercase_ , padding=lowercase_ , truncation=lowercase_ , return_tensors='pt' ) UpperCAmelCase : List[str] = self._large_tokenizer( text_target=lowercase_ , max_length=5 , padding=lowercase_ , truncation=lowercase_ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4_096) assert batch.attention_mask.shape == (2, 4_096) assert targets["input_ids"].shape == (2, 5) assert len(lowercase_ ) == 2 # input_ids, attention_mask. def UpperCAmelCase_ ( self : str ) -> Any: UpperCAmelCase : Dict = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) UpperCAmelCase : int = self._large_tokenizer(lowercase_ ).input_ids self.assertListEqual( lowercase_ , [182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1] , )
695
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A_ : '''simple docstring''' def __init__( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=3 , lowercase_ : List[Any]=32 , lowercase_ : int=3 , lowercase_ : Tuple=10 , lowercase_ : Tuple=[10, 20, 30, 40] , lowercase_ : List[str]=[1, 1, 2, 1] , lowercase_ : Tuple=True , lowercase_ : Optional[int]=True , lowercase_ : Optional[int]="relu" , lowercase_ : Dict=3 , lowercase_ : Union[str, Any]=None , ) -> Dict: UpperCAmelCase : str = parent UpperCAmelCase : str = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : Union[str, Any] = num_channels UpperCAmelCase : Optional[Any] = embeddings_size UpperCAmelCase : List[str] = hidden_sizes UpperCAmelCase : Union[str, Any] = depths UpperCAmelCase : List[str] = is_training UpperCAmelCase : str = use_labels UpperCAmelCase : str = hidden_act UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : List[Any] = scope UpperCAmelCase : Dict = len(lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Any: UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : int = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Union[str, Any] ) -> int: UpperCAmelCase : Tuple = TFResNetModel(config=lowercase_ ) UpperCAmelCase : List[str] = model(lowercase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self : int , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : int ) -> str: UpperCAmelCase : Dict = self.num_labels UpperCAmelCase : str = TFResNetForImageClassification(lowercase_ ) UpperCAmelCase : List[Any] = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs UpperCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Any = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCAmelCase_ : Any = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCAmelCase_ : int = False UpperCAmelCase_ : str = False UpperCAmelCase_ : str = False UpperCAmelCase_ : int = False UpperCAmelCase_ : Optional[Any] = False def UpperCAmelCase_ ( self : int ) -> Optional[int]: UpperCAmelCase : Optional[int] = TFResNetModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: pass def UpperCAmelCase_ ( self : int ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Union[str, Any] = model_class(lowercase_ ) UpperCAmelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : List[str] = [*signature.parameters.keys()] UpperCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: def check_hidden_states_output(lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : Tuple ): UpperCAmelCase : Optional[Any] = model_class(lowercase_ ) UpperCAmelCase : Dict = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[int] = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase : Any = layer_type UpperCAmelCase : Union[str, Any] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Optional[int] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : str = TFResNetModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCamelCase( ): UpperCAmelCase : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self : Any ) -> Dict: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: UpperCAmelCase : Dict = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase : Optional[Any] = self.default_image_processor UpperCAmelCase : str = prepare_img() UpperCAmelCase : Optional[int] = image_processor(images=lowercase_ , return_tensors='tf' ) # forward pass UpperCAmelCase : Any = model(**lowercase_ ) # verify the logits UpperCAmelCase : str = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCAmelCase : List[str] = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowercase_ , atol=1E-4 ) )
695
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
1
'''simple docstring''' from __future__ import annotations import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = F"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(UpperCAmelCase_ ).json() def UpperCamelCase( UpperCAmelCase_ = 10 ): UpperCAmelCase : str = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' UpperCAmelCase : List[str] = requests.get(UpperCAmelCase_ ).json()[:max_stories] return [get_hackernews_story(UpperCAmelCase_ ) for story_id in story_ids] def UpperCamelCase( UpperCAmelCase_ = 10 ): UpperCAmelCase : Tuple = hackernews_top_stories(UpperCAmelCase_ ) return "\n".join('* [{title}]({url})'.format(**UpperCAmelCase_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
695
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
1
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[str] = """new-model""" if is_tf_available(): class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = NewModelConfig @require_tf class A_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self : Dict ) -> Dict: UpperCAmelCase : str = 'bert-base-cased' UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: UpperCAmelCase : Dict = 'bert-base-cased' UpperCAmelCase : int = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = TFAutoModelForPreTraining.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def UpperCAmelCase_ ( self : Dict ) -> Any: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : str = TFAutoModelForCausalLM.from_pretrained(lowercase_ ) UpperCAmelCase , UpperCAmelCase : int = TFAutoModelForCausalLM.from_pretrained(lowercase_ , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def UpperCAmelCase_ ( self : List[Any] ) -> Dict: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def UpperCAmelCase_ ( self : Dict ) -> List[str]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : List[Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = TFAutoModelForMaskedLM.from_pretrained(lowercase_ , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def UpperCAmelCase_ ( self : int ) -> List[str]: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase_ , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase : Tuple = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = TFAutoModelForSequenceClassification.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : Optional[int] = TFAutoModelForQuestionAnswering.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow @require_tensorflow_probability def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: UpperCAmelCase : str = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = TFAutoModelForTableQuestionAnswering.from_pretrained(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = TFAutoModelForTableQuestionAnswering.from_pretrained( lowercase_ , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase_ ) , 14_410 ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase_ ) , 14_410 ) def UpperCAmelCase_ ( self : int ) -> List[Any]: # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel UpperCAmelCase : List[str] = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : List[Any] = copy.deepcopy(model.config ) UpperCAmelCase : Any = ['FunnelBaseModel'] UpperCAmelCase : Optional[Any] = TFAutoModel.from_config(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase_ ) UpperCAmelCase : Optional[Any] = TFAutoModel.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> int: try: AutoConfig.register('new-model' , lowercase_ ) UpperCAmelCase : Optional[int] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(lowercase_ ): auto_class.register(lowercase_ , lowercase_ ) auto_class.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): auto_class.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Optional[Any] = BertModelTester(self ).get_config() UpperCAmelCase : Union[str, Any] = NewModelConfig(**tiny_config.to_dict() ) UpperCAmelCase : Optional[int] = auto_class.from_config(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase_ ) UpperCAmelCase : int = auto_class.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[Any] = TFAutoModel.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : List[str] = TFAutoModel.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): UpperCAmelCase : Optional[Any] = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: with self.assertRaisesRegex(lowercase_ , 'Use `from_pt=True` to load this model' ): UpperCAmelCase : Tuple = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def UpperCAmelCase_ ( self : Any ) -> str: # Make sure we have cached the model. UpperCAmelCase : str = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: UpperCAmelCase : Tuple = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint UpperCAmelCase : Optional[Any] = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: UpperCAmelCase : Optional[Any] = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
695
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
1
'''simple docstring''' import numpy # List of input, output pairs lowercase__ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowercase__ = (((515, 22, 13), 555), ((61, 35, 49), 150)) lowercase__ = [2, 4, 1, 5] lowercase__ = len(train_data) lowercase__ = 0.009 def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_="train" ): return calculate_hypothesis_value(UpperCAmelCase_ , UpperCAmelCase_ ) - output( UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : int = 0 for i in range(len(UpperCAmelCase_ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_=m ): UpperCAmelCase : Dict = 0 for i in range(UpperCAmelCase_ ): if index == -1: summation_value += _error(UpperCAmelCase_ ) else: summation_value += _error(UpperCAmelCase_ ) * train_data[i][0][index] return summation_value def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = summation_of_cost_derivative(UpperCAmelCase_ , UpperCAmelCase_ ) / m return cost_derivative_value def UpperCamelCase( ): global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase : List[str] = 0.00_0002 UpperCAmelCase : str = 0 UpperCAmelCase : str = 0 while True: j += 1 UpperCAmelCase : Any = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase_ ) ): UpperCAmelCase : List[Any] = get_cost_derivative(i - 1 ) UpperCAmelCase : Union[str, Any] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase_ , UpperCAmelCase_ , atol=UpperCAmelCase_ , rtol=UpperCAmelCase_ , ): break UpperCAmelCase : List[Any] = temp_parameter_vector print(('Number of iterations:', j) ) def UpperCamelCase( ): for i in range(len(UpperCAmelCase_ ) ): print(('Actual output value:', output(UpperCAmelCase_ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase_ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
695
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
1
'''simple docstring''' import string def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = '' for i in sequence: UpperCAmelCase : Any = ord(UpperCAmelCase_ ) if 65 <= extract <= 90: output += chr(1_55 - extract ) elif 97 <= extract <= 1_22: output += chr(2_19 - extract ) else: output += i return output def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = string.ascii_letters UpperCAmelCase : Any = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(UpperCAmelCase_ )] if c in letters else c for c in sequence ) def UpperCamelCase( ): from timeit import timeit print('Running performance benchmarks...' ) UpperCAmelCase : Any = 'from string import printable ; from __main__ import atbash, atbash_slow' print(F"""> atbash_slow(): {timeit("atbash_slow(printable)" , setup=UpperCAmelCase_ )} seconds""" ) print(F"""> atbash(): {timeit("atbash(printable)" , setup=UpperCAmelCase_ )} seconds""" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
695
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
1
'''simple docstring''' import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowercase__ = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } lowercase__ = logging.WARNING def UpperCamelCase( ): UpperCAmelCase : Tuple = os.getenv('DATASETS_VERBOSITY' , UpperCAmelCase_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def UpperCamelCase( ): return __name__.split('.' )[0] def UpperCamelCase( ): return logging.getLogger(_get_library_name() ) def UpperCamelCase( ): # Apply our default configuration to the library root logger. UpperCAmelCase : List[Any] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def UpperCamelCase( ): UpperCAmelCase : Tuple = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def UpperCamelCase( UpperCAmelCase_ = None ): if name is None: UpperCAmelCase : List[Any] = _get_library_name() return logging.getLogger(UpperCAmelCase_ ) def UpperCamelCase( ): return _get_library_root_logger().getEffectiveLevel() def UpperCamelCase( UpperCAmelCase_ ): _get_library_root_logger().setLevel(UpperCAmelCase_ ) def UpperCamelCase( ): return set_verbosity(UpperCAmelCase_ ) def UpperCamelCase( ): return set_verbosity(UpperCAmelCase_ ) def UpperCamelCase( ): return set_verbosity(UpperCAmelCase_ ) def UpperCamelCase( ): return set_verbosity(UpperCAmelCase_ ) def UpperCamelCase( ): UpperCAmelCase : int = False def UpperCamelCase( ): UpperCAmelCase : Union[str, Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class A_ : '''simple docstring''' def __init__( self : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Any ) -> Optional[int]: # pylint: disable=unused-argument UpperCAmelCase : List[Any] = args[0] if args else None def __iter__( self : Tuple ) -> str: return iter(self._iterator ) def __getattr__( self : List[str] , lowercase_ : Union[str, Any] ) -> str: def empty_fn(*lowercase_ : Union[str, Any] , **lowercase_ : Tuple ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : str ) -> Union[str, Any]: return self def __exit__( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Tuple ) -> str: return lowercase__ = True class A_ : '''simple docstring''' def __call__( self : Optional[int] , *lowercase_ : Tuple , lowercase_ : List[str]=False , **lowercase_ : Dict ) -> Union[str, Any]: if _tqdm_active and not disable: return tqdm_lib.tqdm(*lowercase_ , **lowercase_ ) else: return EmptyTqdm(*lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , *lowercase_ : int , **lowercase_ : Any ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowercase__ = _tqdm_cls() def UpperCamelCase( ): global _tqdm_active return bool(_tqdm_active ) def UpperCamelCase( ): global _tqdm_active UpperCAmelCase : Dict = True def UpperCamelCase( ): global _tqdm_active UpperCAmelCase : Any = False
695
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
1
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase__ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def UpperCamelCase( UpperCAmelCase_ ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model UpperCAmelCase : List[Any] = list(s_dict.keys() ) for key in keys: UpperCAmelCase : List[str] = R'.*/layers_(\d+)' UpperCAmelCase : List[Any] = key if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = re.sub(R'layers_(\d+)' , R'block/\1/layer' , UpperCAmelCase_ ) UpperCAmelCase : List[Any] = R'(encoder|decoder)\/' if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Dict = re.match(UpperCAmelCase_ , UpperCAmelCase_ ).groups() if groups[0] == "encoder": UpperCAmelCase : Optional[Any] = re.sub(R'/mlp/' , R'/1/mlp/' , UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , UpperCAmelCase_ ) elif groups[0] == "decoder": UpperCAmelCase : Any = re.sub(R'/mlp/' , R'/2/mlp/' , UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , UpperCAmelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: UpperCAmelCase : Optional[int] = new_key.replace(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"""{key} -> {new_key}""" ) UpperCAmelCase : Optional[int] = s_dict.pop(UpperCAmelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase : Union[str, Any] = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase : List[str] = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: UpperCAmelCase : str = s_dict[key].shape[0] UpperCAmelCase : List[str] = s_dict[key] for idx in range(UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = expert_weihts[idx] print(F"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(UpperCAmelCase_ ) return s_dict lowercase__ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase_ , 'r' ) as f: UpperCAmelCase : Any = f.read() UpperCAmelCase : Union[str, Any] = re.findall(R'(.*) = ([0-9.]*)' , UpperCAmelCase_ ) UpperCAmelCase : Dict = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": UpperCAmelCase : Optional[Any] = float(UpperCAmelCase_ ) if '.' in value else int(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = re.findall(R'(.*activations) = \(\'(.*)\',\)' , UpperCAmelCase_ )[0] UpperCAmelCase : Tuple = str(activation[1] ) UpperCAmelCase : Dict = num_experts UpperCAmelCase : Any = SwitchTransformersConfig(**UpperCAmelCase_ ) return config def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_="./" , UpperCAmelCase_=8 ): # Initialise PyTorch model print(F"""Loading flax weights from : {flax_checkpoint_path}""" ) UpperCAmelCase : Union[str, Any] = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) if gin_file is not None: UpperCAmelCase : Optional[int] = convert_gin_to_config(UpperCAmelCase_ , UpperCAmelCase_ ) else: UpperCAmelCase : int = SwitchTransformersConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : Dict = SwitchTransformersForConditionalGeneration(UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = flax_params['target'] UpperCAmelCase : Tuple = flatten_dict(UpperCAmelCase_ , sep='/' ) UpperCAmelCase : List[str] = rename_keys(UpperCAmelCase_ ) UpperCAmelCase : Dict = unflatten_dict(UpperCAmelCase_ , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase__ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers lowercase__ = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = ["""sentencepiece"""] def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> List[Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = ["""sentencepiece"""] def __init__( self : int , *lowercase_ : Optional[Any] , **lowercase_ : Tuple ) -> int: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Any = ["""sentencepiece"""] def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[str] ) -> Union[str, Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : str = ["""sentencepiece"""] def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : List[str] ) -> Union[str, Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = ["""sentencepiece"""] def __init__( self : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : Tuple ) -> Optional[int]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : str = ["""sentencepiece"""] def __init__( self : Any , *lowercase_ : Dict , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : str = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *lowercase_ : Optional[int] , **lowercase_ : int ) -> Dict: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = ["""sentencepiece"""] def __init__( self : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : List[Any] ) -> Tuple: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = ["""sentencepiece"""] def __init__( self : str , *lowercase_ : Any , **lowercase_ : List[str] ) -> Any: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = ["""sentencepiece"""] def __init__( self : str , *lowercase_ : Dict , **lowercase_ : str ) -> int: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : int = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[Any] ) -> Optional[Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : str = ["""sentencepiece"""] def __init__( self : Dict , *lowercase_ : List[Any] , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = ["""sentencepiece"""] def __init__( self : int , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> Optional[Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : str = ["""sentencepiece"""] def __init__( self : Any , *lowercase_ : Any , **lowercase_ : Any ) -> int: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = ["""sentencepiece"""] def __init__( self : Tuple , *lowercase_ : Dict , **lowercase_ : Union[str, Any] ) -> List[str]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : int = ["""sentencepiece"""] def __init__( self : Optional[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Any ) -> Dict: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : int = ["""sentencepiece"""] def __init__( self : Optional[Any] , *lowercase_ : str , **lowercase_ : Tuple ) -> List[str]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : int = ["""sentencepiece"""] def __init__( self : Any , *lowercase_ : Dict , **lowercase_ : int ) -> str: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = ["""sentencepiece"""] def __init__( self : int , *lowercase_ : List[Any] , **lowercase_ : Union[str, Any] ) -> Dict: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : str = ["""sentencepiece"""] def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : int ) -> str: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : List[str] = ["""sentencepiece"""] def __init__( self : str , *lowercase_ : Any , **lowercase_ : int ) -> str: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *lowercase_ : Any , **lowercase_ : Dict ) -> str: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = ["""sentencepiece"""] def __init__( self : int , *lowercase_ : Optional[Any] , **lowercase_ : str ) -> Union[str, Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = ["""sentencepiece"""] def __init__( self : int , *lowercase_ : Any , **lowercase_ : Dict ) -> Optional[int]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = ["""sentencepiece"""] def __init__( self : List[Any] , *lowercase_ : int , **lowercase_ : Optional[Any] ) -> Union[str, Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : List[str] = ["""sentencepiece"""] def __init__( self : Any , *lowercase_ : int , **lowercase_ : List[str] ) -> Tuple: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = ["""sentencepiece"""] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : List[Any] ) -> Optional[int]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : str = ["""sentencepiece"""] def __init__( self : Optional[int] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> Dict: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *lowercase_ : str , **lowercase_ : Dict ) -> List[Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = ["""sentencepiece"""] def __init__( self : Dict , *lowercase_ : Optional[Any] , **lowercase_ : str ) -> Any: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = ["""sentencepiece"""] def __init__( self : Optional[Any] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Optional[int]: requires_backends(self , ['sentencepiece'] )
695
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
1
'''simple docstring''' lowercase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): # Return True if there is node that has not iterated. UpperCAmelCase : Any = [False] * len(UpperCAmelCase_ ) UpperCAmelCase : str = [s] UpperCAmelCase : List[str] = True while queue: UpperCAmelCase : Dict = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = True UpperCAmelCase : Optional[int] = u return visited[t] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = [-1] * (len(UpperCAmelCase_ )) UpperCAmelCase : Any = 0 UpperCAmelCase : str = [] UpperCAmelCase : Union[str, Any] = [i[:] for i in graph] # Record original cut, copy. while bfs(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = float('Inf' ) UpperCAmelCase : Optional[Any] = sink while s != source: # Find the minimum value in select path UpperCAmelCase : Optional[Any] = min(UpperCAmelCase_ , graph[parent[s]][s] ) UpperCAmelCase : List[Any] = parent[s] max_flow += path_flow UpperCAmelCase : Optional[Any] = sink while v != source: UpperCAmelCase : Tuple = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase : List[str] = parent[v] for i in range(len(UpperCAmelCase_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
695
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
1
'''simple docstring''' import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = BertTokenizer UpperCAmelCase_ : Optional[int] = BertTokenizerFast UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = filter_non_english def UpperCAmelCase_ ( self : str ) -> Optional[Any]: super().setUp() UpperCAmelCase : Any = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Any ) -> Tuple: UpperCAmelCase : List[str] = 'UNwant\u00E9d,running' UpperCAmelCase : Dict = 'unwanted, running' return input_text, output_text def UpperCAmelCase_ ( self : int ) -> Dict: UpperCAmelCase : List[Any] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : Union[str, Any] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowercase_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , [9, 6, 7, 12, 10, 11] ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: if not self.test_rust_tokenizer: return UpperCAmelCase : int = self.get_tokenizer() UpperCAmelCase : int = self.get_rust_tokenizer() UpperCAmelCase : Any = 'UNwant\u00E9d,running' UpperCAmelCase : Tuple = tokenizer.tokenize(lowercase_ ) UpperCAmelCase : List[Any] = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase : int = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase : List[str] = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase : Any = self.get_rust_tokenizer() UpperCAmelCase : Union[str, Any] = tokenizer.encode(lowercase_ ) UpperCAmelCase : Tuple = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # With lower casing UpperCAmelCase : int = self.get_tokenizer(do_lower_case=lowercase_ ) UpperCAmelCase : Optional[int] = self.get_rust_tokenizer(do_lower_case=lowercase_ ) UpperCAmelCase : Tuple = 'UNwant\u00E9d,running' UpperCAmelCase : Optional[Any] = tokenizer.tokenize(lowercase_ ) UpperCAmelCase : Optional[Any] = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase : Any = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = self.get_rust_tokenizer() UpperCAmelCase : Optional[int] = tokenizer.encode(lowercase_ ) UpperCAmelCase : Optional[Any] = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : int = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: UpperCAmelCase : str = BasicTokenizer(do_lower_case=lowercase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCAmelCase_ ( self : int ) -> Tuple: UpperCAmelCase : str = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def UpperCAmelCase_ ( self : str ) -> List[Any]: UpperCAmelCase : Optional[Any] = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : str = BasicTokenizer(do_lower_case=lowercase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: UpperCAmelCase : Dict = BasicTokenizer(do_lower_case=lowercase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : str = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCAmelCase_ ( self : List[str] ) -> str: UpperCAmelCase : Dict = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCAmelCase_ ( self : Dict ) -> int: UpperCAmelCase : Optional[int] = BasicTokenizer(do_lower_case=lowercase_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: UpperCAmelCase : Any = BasicTokenizer() UpperCAmelCase : Tuple = 'a\n\'ll !!to?\'d of, can\'t.' UpperCAmelCase : Any = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(lowercase_ ) , lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: UpperCAmelCase : List[str] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] UpperCAmelCase : Optional[Any] = {} for i, token in enumerate(lowercase_ ): UpperCAmelCase : List[Any] = i UpperCAmelCase : List[str] = WordpieceTokenizer(vocab=lowercase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def UpperCAmelCase_ ( self : Dict ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def UpperCAmelCase_ ( self : Tuple ) -> Tuple: UpperCAmelCase : Any = self.get_tokenizer() UpperCAmelCase : Union[str, Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowercase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowercase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: UpperCAmelCase : Any = self.tokenizer_class.from_pretrained('bert-base-uncased' ) UpperCAmelCase : Optional[Any] = tokenizer.encode('sequence builders' , add_special_tokens=lowercase_ ) UpperCAmelCase : List[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase_ ) UpperCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(lowercase_ ) UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase : str = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCAmelCase : List[Any] = tokenizer_r.encode_plus( lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ , ) UpperCAmelCase : List[str] = tokenizer_r.do_lower_case if hasattr(lowercase_ , 'do_lower_case' ) else False UpperCAmelCase : str = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: UpperCAmelCase : Tuple = ['的', '人', '有'] UpperCAmelCase : Tuple = ''.join(lowercase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase : Dict = tokenizer_p.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase : Optional[int] = tokenizer_r.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase : Tuple = tokenizer_r.convert_ids_to_tokens(lowercase_ ) UpperCAmelCase : Any = tokenizer_p.convert_ids_to_tokens(lowercase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase : Any = False UpperCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase : int = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase : List[str] = tokenizer_r.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase : str = tokenizer_p.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(lowercase_ ) UpperCAmelCase : Any = tokenizer_p.convert_ids_to_tokens(lowercase_ ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase : str = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowercase_ ) ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ )
695
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
1
'''simple docstring''' import math def UpperCamelCase( UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Dict = F"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCAmelCase_ ) if number < 1: UpperCAmelCase : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCAmelCase_ ) elif number == 1: return 3 elif number == 2: return 5 else: UpperCAmelCase : str = int(math.log(number // 3 , 2 ) ) + 2 UpperCAmelCase : Union[str, Any] = [3, 5] UpperCAmelCase : str = 2 UpperCAmelCase : List[str] = 3 for block in range(1 , UpperCAmelCase_ ): for _ in range(UpperCAmelCase_ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): lowercase__ = 0 try: lowercase__ = proth(number) except ValueError: print(f'''ValueError: there is no {number}th Proth number''') continue print(f'''The {number}th Proth number: {value}''')
695
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
1
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if days_between_payments <= 0: raise ValueError('days_between_payments must be > 0' ) if daily_interest_rate < 0: raise ValueError('daily_interest_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * daily_interest_rate * days_between_payments def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): if number_of_compounding_periods <= 0: raise ValueError('number_of_compounding_periods must be > 0' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): if number_of_years <= 0: raise ValueError('number_of_years must be > 0' ) if nominal_annual_percentage_rate < 0: raise ValueError('nominal_annual_percentage_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return compound_interest( UpperCAmelCase_ , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
695
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[str] = XGLMConfig UpperCAmelCase_ : Union[str, Any] = {} UpperCAmelCase_ : int = """gelu""" def __init__( self : List[Any] , lowercase_ : int , lowercase_ : Any=14 , lowercase_ : List[str]=7 , lowercase_ : Optional[Any]=True , lowercase_ : str=True , lowercase_ : str=True , lowercase_ : List[Any]=99 , lowercase_ : Any=32 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[int]=4 , lowercase_ : int=37 , lowercase_ : Tuple="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=512 , lowercase_ : Any=0.02 , ) -> Tuple: UpperCAmelCase : int = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : List[Any] = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : List[Any] = use_input_mask UpperCAmelCase : Any = use_labels UpperCAmelCase : Tuple = vocab_size UpperCAmelCase : Union[str, Any] = d_model UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = ffn_dim UpperCAmelCase : Optional[int] = activation_function UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : str = initializer_range UpperCAmelCase : Optional[int] = None UpperCAmelCase : str = 0 UpperCAmelCase : int = 2 UpperCAmelCase : int = 1 def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : int = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCAmelCase : int = None if self.use_input_mask: UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : int = self.get_config() UpperCAmelCase : str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Any = config_and_inputs UpperCAmelCase : int = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCAmelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCAmelCase_ : List[Any] = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : Any = False def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : Dict = TFXGLMModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=lowercase_ , n_embd=37 ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: self.config_tester.run_common_tests() @slow def UpperCAmelCase_ ( self : int ) -> Optional[int]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] = TFXGLMModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def UpperCAmelCase_ ( self : Dict ) -> Any: super().test_resize_token_embeddings() @require_tf class A_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self : int , lowercase_ : Optional[Any]=True ) -> Any: UpperCAmelCase : Any = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) UpperCAmelCase : Tuple = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCAmelCase : List[str] = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on UpperCAmelCase : Optional[Any] = model.generate(lowercase_ , do_sample=lowercase_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_ ) @slow def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) UpperCAmelCase : Optional[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' ) UpperCAmelCase : List[str] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): UpperCAmelCase : Tuple = model.generate(lowercase_ , do_sample=lowercase_ , seed=[7, 0] ) UpperCAmelCase : int = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase_ ) UpperCAmelCase : str = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowercase_ , lowercase_ ) @slow def UpperCAmelCase_ ( self : str ) -> Tuple: UpperCAmelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) UpperCAmelCase : Optional[Any] = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) UpperCAmelCase : Optional[int] = 'left' # use different length sentences to test batching UpperCAmelCase : Any = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] UpperCAmelCase : int = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) UpperCAmelCase : Any = inputs['input_ids'] UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) UpperCAmelCase : List[str] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids UpperCAmelCase : int = model.generate(input_ids=lowercase_ , max_new_tokens=12 ) UpperCAmelCase : Union[str, Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids UpperCAmelCase : List[str] = model.generate(input_ids=lowercase_ , max_new_tokens=12 ) UpperCAmelCase : List[str] = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) UpperCAmelCase : Optional[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) UpperCAmelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) UpperCAmelCase : Optional[Any] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
695
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase__ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase__ = 250004 lowercase__ = 250020 @require_sentencepiece @require_tokenizers class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = MBartaaTokenizer UpperCAmelCase_ : int = MBartaaTokenizerFast UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : str = True def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = MBartaaTokenizer(lowercase_ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : str = '<s>' UpperCAmelCase : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: UpperCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(lowercase_ ) , 1_054 ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1_054 ) def UpperCAmelCase_ ( self : Any ) -> Any: UpperCAmelCase : List[Any] = MBartaaTokenizer(lowercase_ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=lowercase_ ) UpperCAmelCase : Tuple = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase : Union[str, Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) UpperCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: # fmt: off UpperCAmelCase : Dict = {'input_ids': [[250_004, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [250_004, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250_004, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase : List[Any] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase : int = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase : str = tempfile.mkdtemp() UpperCAmelCase : Union[str, Any] = tokenizer_r.save_pretrained(lowercase_ ) UpperCAmelCase : Optional[Any] = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) UpperCAmelCase : Optional[Any] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way UpperCAmelCase : Tuple = tokenizer_r.from_pretrained(lowercase_ ) UpperCAmelCase : Tuple = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=True UpperCAmelCase : Dict = tempfile.mkdtemp() UpperCAmelCase : int = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) UpperCAmelCase : Union[str, Any] = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way UpperCAmelCase : Tuple = tokenizer_r.from_pretrained(lowercase_ ) UpperCAmelCase : str = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=False UpperCAmelCase : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase : Optional[int] = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) UpperCAmelCase : Optional[int] = tokenizer_p.save_pretrained(lowercase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase : str = tokenizer_r.from_pretrained(lowercase_ ) UpperCAmelCase : Tuple = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """facebook/mbart-large-50-one-to-many-mmt""" UpperCAmelCase_ : Optional[int] = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCAmelCase_ : Any = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCAmelCase_ : int = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2] @classmethod def UpperCAmelCase_ ( cls : List[str] ) -> Any: UpperCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) UpperCAmelCase : Any = 1 return cls def UpperCAmelCase_ ( self : int ) -> List[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 250_020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 250_038 ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: UpperCAmelCase : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: self.assertIn(lowercase_ , self.tokenizer.all_special_ids ) UpperCAmelCase : str = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] UpperCAmelCase : Dict = self.tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) UpperCAmelCase : Optional[int] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertNotIn(self.tokenizer.eos_token , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> int: UpperCAmelCase : Any = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , lowercase_ ) UpperCAmelCase : str = 10 UpperCAmelCase : List[str] = self.tokenizer(lowercase_ , max_length=lowercase_ , truncation=lowercase_ ).input_ids[0] self.assertEqual(ids[0] , lowercase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowercase_ ) , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [250_053, 250_001] ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: UpperCAmelCase : Tuple = tempfile.mkdtemp() UpperCAmelCase : List[str] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = MBartaaTokenizer.from_pretrained(lowercase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase_ ) @require_torch def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase : Any = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase_ , return_tensors='pt' ) UpperCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: UpperCAmelCase : List[str] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) UpperCAmelCase : Dict = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCAmelCase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , padding=lowercase_ , truncation=lowercase_ , max_length=3 , return_tensors='pt' ) UpperCAmelCase : Optional[int] = self.tokenizer( text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=10 , return_tensors='pt' ) UpperCAmelCase : List[str] = targets['input_ids'] UpperCAmelCase : List[Any] = shift_tokens_right(lowercase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: UpperCAmelCase : Any = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(lowercase_ ) , { # en_XX, A, test, EOS 'input_ids': [[250_004, 62, 3_034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250_001, } , )
695
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
1
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase__ = "bert-base-cased" lowercase__ = "google/pegasus-xsum" lowercase__ = [" Sam ate lunch today.", "Sams lunch ingredients."] lowercase__ = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] lowercase__ = "patrickvonplaten/t5-tiny-random" lowercase__ = "sshleifer/bart-tiny-random" lowercase__ = "sshleifer/tiny-mbart" lowercase__ = "sshleifer/tiny-marian-en-de" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = '\n'.join(UpperCAmelCase_ ) Path(UpperCAmelCase_ ).open('w' ).writelines(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(UpperCAmelCase_ , F"""{split}.source""" ) , UpperCAmelCase_ ) _dump_articles(os.path.join(UpperCAmelCase_ , F"""{split}.target""" ) , UpperCAmelCase_ ) return tmp_dir class A_ ( _snake_case ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Dict ) -> str: UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(lowercase_ ) UpperCAmelCase : Optional[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCAmelCase : Union[str, Any] = max(len(tokenizer.encode(lowercase_ ) ) for a in ARTICLES ) UpperCAmelCase : str = max(len(tokenizer.encode(lowercase_ ) ) for a in SUMMARIES ) UpperCAmelCase : Union[str, Any] = 4 UpperCAmelCase : Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated UpperCAmelCase , UpperCAmelCase : List[str] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. UpperCAmelCase : Union[str, Any] = SeqaSeqDataset( lowercase_ , data_dir=lowercase_ , type_path='train' , max_source_length=lowercase_ , max_target_length=lowercase_ , src_lang=lowercase_ , tgt_lang=lowercase_ , ) UpperCAmelCase : Dict = DataLoader(lowercase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowercase_ , lowercase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place UpperCAmelCase : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Any ) -> Any: UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(lowercase_ ) UpperCAmelCase : str = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCAmelCase : int = max(len(tokenizer.encode(lowercase_ ) ) for a in ARTICLES ) UpperCAmelCase : Optional[int] = max(len(tokenizer.encode(lowercase_ ) ) for a in SUMMARIES ) UpperCAmelCase : Any = 4 UpperCAmelCase : List[str] = LegacySeqaSeqDataset( lowercase_ , data_dir=lowercase_ , type_path='train' , max_source_length=20 , max_target_length=lowercase_ , ) UpperCAmelCase : Union[str, Any] = DataLoader(lowercase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) UpperCAmelCase : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) UpperCAmelCase : Union[str, Any] = tmp_dir.joinpath('train.source' ).open().readlines() UpperCAmelCase : List[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowercase_ , lowercase_ , 128 , lowercase_ ) UpperCAmelCase : int = {x.name for x in tmp_dir.iterdir()} UpperCAmelCase : Union[str, Any] = {x.name for x in save_dir.iterdir()} UpperCAmelCase : Optional[Any] = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowercase_ ) < len(lowercase_ ) assert len(lowercase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowercase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: if not FAIRSEQ_AVAILABLE: return UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = self._get_dataset(max_len=64 ) UpperCAmelCase : Optional[int] = 64 UpperCAmelCase : Optional[Any] = ds.make_dynamic_sampler(lowercase_ , required_batch_size_multiple=lowercase_ ) UpperCAmelCase : Any = [len(lowercase_ ) for x in batch_sampler] assert len(set(lowercase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowercase_ ) == len(lowercase_ ) # no dropped or added examples UpperCAmelCase : str = DataLoader(lowercase_ , batch_sampler=lowercase_ , collate_fn=ds.collate_fn , num_workers=2 ) UpperCAmelCase : List[str] = [] UpperCAmelCase : Any = [] for batch in data_loader: UpperCAmelCase : Union[str, Any] = batch['input_ids'].shape UpperCAmelCase : List[str] = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple UpperCAmelCase : Tuple = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowercase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowercase_ ) assert num_src_per_batch[0] == max(lowercase_ ) if failures: raise AssertionError(f"""too many tokens in {len(lowercase_ )} batches""" ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = self._get_dataset(max_len=512 ) UpperCAmelCase : Any = 2 UpperCAmelCase : Optional[int] = ds.make_sortish_sampler(lowercase_ , shuffle=lowercase_ ) UpperCAmelCase : int = DataLoader(lowercase_ , batch_size=lowercase_ , collate_fn=ds.collate_fn , num_workers=2 ) UpperCAmelCase : List[str] = DataLoader(lowercase_ , batch_size=lowercase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowercase_ ) UpperCAmelCase : Optional[Any] = tokenizer.pad_token_id def count_pad_tokens(lowercase_ : str , lowercase_ : List[Any]="input_ids" ): return [batch[k].eq(lowercase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowercase_ , k='labels' ) ) < sum(count_pad_tokens(lowercase_ , k='labels' ) ) assert sum(count_pad_tokens(lowercase_ ) ) < sum(count_pad_tokens(lowercase_ ) ) assert len(lowercase_ ) == len(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : List[Any]=1_000 , lowercase_ : Optional[Any]=128 ) -> Any: if os.getenv('USE_REAL_DATA' , lowercase_ ): UpperCAmelCase : int = 'examples/seq2seq/wmt_en_ro' UpperCAmelCase : Any = max_len * 2 * 64 if not Path(lowercase_ ).joinpath('train.len' ).exists(): save_len_file(lowercase_ , lowercase_ ) else: UpperCAmelCase : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' UpperCAmelCase : Any = max_len * 4 save_len_file(lowercase_ , lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = SeqaSeqDataset( lowercase_ , data_dir=lowercase_ , type_path='train' , max_source_length=lowercase_ , max_target_length=lowercase_ , n_obs=lowercase_ , ) return ds, max_tokens, tokenizer def UpperCAmelCase_ ( self : Dict ) -> Dict: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = self._get_dataset() UpperCAmelCase : Optional[Any] = set(DistributedSortishSampler(lowercase_ , 256 , num_replicas=2 , rank=0 , add_extra_examples=lowercase_ ) ) UpperCAmelCase : Optional[Any] = set(DistributedSortishSampler(lowercase_ , 256 , num_replicas=2 , rank=1 , add_extra_examples=lowercase_ ) ) assert idsa.intersection(lowercase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : List[str] ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase_ , use_fast=lowercase_ ) if tok_name == MBART_TINY: UpperCAmelCase : Any = SeqaSeqDataset( lowercase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) UpperCAmelCase : Dict = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: UpperCAmelCase : Dict = SeqaSeqDataset( lowercase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) UpperCAmelCase : Dict = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowercase_ ) == 1 if tok_name == BART_TINY else len(lowercase_ ) == 0
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' def UpperCamelCase( ): return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowercase__ = generate_large_matrix() lowercase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCamelCase( UpperCAmelCase_ ): assert all(row == sorted(UpperCAmelCase_ , reverse=UpperCAmelCase_ ) for row in grid ) assert all(list(UpperCAmelCase_ ) == sorted(UpperCAmelCase_ , reverse=UpperCAmelCase_ ) for col in zip(*UpperCAmelCase_ ) ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : int = 0 UpperCAmelCase : List[Any] = len(UpperCAmelCase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: UpperCAmelCase : List[str] = (left + right) // 2 UpperCAmelCase : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: UpperCAmelCase : Optional[int] = mid + 1 else: UpperCAmelCase : List[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = 0 UpperCAmelCase : int = len(grid[0] ) for i in range(len(UpperCAmelCase_ ) ): UpperCAmelCase : List[str] = find_negative_index(grid[i][:bound] ) total += bound return (len(UpperCAmelCase_ ) * len(grid[0] )) - total def UpperCamelCase( UpperCAmelCase_ ): return len([number for row in grid for number in row if number < 0] ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = 0 for row in grid: for i, number in enumerate(UpperCAmelCase_ ): if number < 0: total += len(UpperCAmelCase_ ) - i break return total def UpperCamelCase( ): from timeit import timeit print('Running benchmarks' ) UpperCAmelCase : int = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): UpperCAmelCase : Tuple = timeit(F"""{func}(grid=grid)""" , setup=UpperCAmelCase_ , number=5_00 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
695
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
1
'''simple docstring''' import argparse from collections import defaultdict def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(UpperCAmelCase_ , 'r' ) as f: UpperCAmelCase : Optional[Any] = f.readlines() UpperCAmelCase : List[Any] = F"""class {class_name}(""" UpperCAmelCase : Optional[int] = F"""{4 * " "}def {test_name}(""" UpperCAmelCase : Optional[int] = F"""{8 * " "}{correct_line.split()[0]}""" UpperCAmelCase : str = F"""{16 * " "}{correct_line.split()[0]}""" UpperCAmelCase : List[Any] = False UpperCAmelCase : Optional[Any] = False UpperCAmelCase : List[Any] = False UpperCAmelCase : Any = False UpperCAmelCase : int = 0 UpperCAmelCase : Any = 0 UpperCAmelCase : Dict = [] for line in lines: if line.startswith(UpperCAmelCase_ ): UpperCAmelCase : List[Any] = True elif in_class and line.startswith(UpperCAmelCase_ ): UpperCAmelCase : int = True elif in_class and in_func and (line.startswith(UpperCAmelCase_ ) or line.startswith(UpperCAmelCase_ )): UpperCAmelCase : List[Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: UpperCAmelCase : List[str] = True if in_class and in_func and in_line: if ")" not in line: continue else: UpperCAmelCase : str = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) UpperCAmelCase : Union[str, Any] = False else: new_lines.append(UpperCAmelCase_ ) with open(UpperCAmelCase_ , 'w' ) as f: for line in new_lines: f.write(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_=None ): if fail is not None: with open(UpperCAmelCase_ , 'r' ) as f: UpperCAmelCase : Optional[Any] = {l.strip() for l in f.readlines()} else: UpperCAmelCase : Tuple = None with open(UpperCAmelCase_ , 'r' ) as f: UpperCAmelCase : List[Any] = f.readlines() UpperCAmelCase : Optional[int] = defaultdict(UpperCAmelCase_ ) for line in correct_lines: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) lowercase__ = parser.parse_args() main(args.correct_filename, args.fail_filename)
695
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
1
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def UpperCamelCase( ): UpperCAmelCase : Union[str, Any] = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) UpperCAmelCase : Tuple = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(UpperCAmelCase_ ) DownloadCommand.register_subcommand(UpperCAmelCase_ ) EnvironmentCommand.register_subcommand(UpperCAmelCase_ ) RunCommand.register_subcommand(UpperCAmelCase_ ) ServeCommand.register_subcommand(UpperCAmelCase_ ) UserCommands.register_subcommand(UpperCAmelCase_ ) AddNewModelCommand.register_subcommand(UpperCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(UpperCAmelCase_ ) LfsCommands.register_subcommand(UpperCAmelCase_ ) PTtoTFCommand.register_subcommand(UpperCAmelCase_ ) # Let's go UpperCAmelCase : str = parser.parse_args() if not hasattr(UpperCAmelCase_ , 'func' ): parser.print_help() exit(1 ) # Run UpperCAmelCase : Union[str, Any] = args.func(UpperCAmelCase_ ) service.run() if __name__ == "__main__": main()
695
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
1
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
1
'''simple docstring''' import math class A_ : '''simple docstring''' def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : list[list[float]] , lowercase_ : list[int] ) -> int: UpperCAmelCase : List[str] = 0.0 UpperCAmelCase : Any = 0.0 for i in range(len(lowercase_ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def UpperCAmelCase_ ( self : List[Any] , lowercase_ : list[list[int | float]] , lowercase_ : list[int] , lowercase_ : int , lowercase_ : float ) -> list[list[int | float]]: for i in range(len(lowercase_ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def UpperCamelCase( ): # Training Examples ( m, n ) UpperCAmelCase : Any = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) UpperCAmelCase : Any = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training UpperCAmelCase : List[Any] = SelfOrganizingMap() UpperCAmelCase : Optional[int] = 3 UpperCAmelCase : List[Any] = 0.5 for _ in range(UpperCAmelCase_ ): for j in range(len(UpperCAmelCase_ ) ): # training sample UpperCAmelCase : Optional[int] = training_samples[j] # Compute the winning vector UpperCAmelCase : Any = self_organizing_map.get_winner(UpperCAmelCase_ , UpperCAmelCase_ ) # Update the winning vector UpperCAmelCase : str = self_organizing_map.update(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # classify test sample UpperCAmelCase : List[Any] = [0, 0, 0, 1] UpperCAmelCase : Dict = self_organizing_map.get_winner(UpperCAmelCase_ , UpperCAmelCase_ ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
695
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
1
'''simple docstring''' import numpy as np def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[Any] = int(np.ceil((x_end - xa) / h ) ) UpperCAmelCase : Union[str, Any] = np.zeros((n + 1,) ) UpperCAmelCase : Dict = ya UpperCAmelCase : Optional[int] = xa for k in range(UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = f(UpperCAmelCase_ , y[k] ) UpperCAmelCase : Dict = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCAmelCase : Tuple = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCAmelCase : Any = f(x + h , y[k] + h * ka ) UpperCAmelCase : int = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
695
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
1
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = DistilBertTokenizer UpperCAmelCase_ : Any = DistilBertTokenizerFast UpperCAmelCase_ : Optional[Any] = True @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Dict = DistilBertTokenizer.from_pretrained('distilbert-base-uncased' ) UpperCAmelCase : Tuple = tokenizer.encode('sequence builders' , add_special_tokens=lowercase_ ) UpperCAmelCase : Tuple = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase_ ) UpperCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ ) UpperCAmelCase : int = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
695
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = UnCLIPImageVariationPipeline UpperCAmelCase_ : Any = IMAGE_VARIATION_PARAMS - {"""height""", """width""", """guidance_scale"""} UpperCAmelCase_ : List[Any] = IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase_ : str = [ """generator""", """return_dict""", """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] UpperCAmelCase_ : Dict = False @property def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: return 32 @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: return 32 @property def UpperCAmelCase_ ( self : Any ) -> Optional[int]: return self.time_input_dim @property def UpperCAmelCase_ ( self : Dict ) -> Tuple: return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: return 100 @property def UpperCAmelCase_ ( self : str ) -> List[Any]: UpperCAmelCase : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: torch.manual_seed(0 ) UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(lowercase_ ) @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(lowercase_ ) @property def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } UpperCAmelCase : List[Any] = UnCLIPTextProjModel(**lowercase_ ) return model @property def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : List[str] = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } UpperCAmelCase : List[Any] = UNetaDConditionModel(**lowercase_ ) return model @property def UpperCAmelCase_ ( self : Any ) -> Any: return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def UpperCAmelCase_ ( self : str ) -> Tuple: torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) UpperCAmelCase : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def UpperCAmelCase_ ( self : Any ) -> Any: UpperCAmelCase : Tuple = self.dummy_decoder UpperCAmelCase : List[Any] = self.dummy_text_proj UpperCAmelCase : str = self.dummy_text_encoder UpperCAmelCase : List[Any] = self.dummy_tokenizer UpperCAmelCase : Any = self.dummy_super_res_first UpperCAmelCase : Optional[Any] = self.dummy_super_res_last UpperCAmelCase : Any = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) UpperCAmelCase : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) UpperCAmelCase : Union[str, Any] = CLIPImageProcessor(crop_size=32 , size=32 ) UpperCAmelCase : Union[str, Any] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def UpperCAmelCase_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : Any=0 , lowercase_ : Union[str, Any]=True ) -> List[str]: UpperCAmelCase : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) if str(lowercase_ ).startswith('mps' ): UpperCAmelCase : Dict = torch.manual_seed(lowercase_ ) else: UpperCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) if pil_image: UpperCAmelCase : Tuple = input_image * 0.5 + 0.5 UpperCAmelCase : Union[str, Any] = input_image.clamp(0 , 1 ) UpperCAmelCase : Optional[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase : str = DiffusionPipeline.numpy_to_pil(lowercase_ )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def UpperCAmelCase_ ( self : str ) -> Any: UpperCAmelCase : Any = 'cpu' UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : Optional[int] = self.pipeline_class(**lowercase_ ) UpperCAmelCase : Optional[int] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : int = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : int = pipe(**lowercase_ ) UpperCAmelCase : str = output.images UpperCAmelCase : Dict = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : List[Any] = pipe( **lowercase_ , return_dict=lowercase_ , )[0] UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Optional[Any] = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Dict ) -> str: UpperCAmelCase : Dict = 'cpu' UpperCAmelCase : Any = self.get_dummy_components() UpperCAmelCase : List[Any] = self.pipeline_class(**lowercase_ ) UpperCAmelCase : Tuple = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : Union[str, Any] = pipe(**lowercase_ ) UpperCAmelCase : List[Any] = output.images UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : List[str] = pipe( **lowercase_ , return_dict=lowercase_ , )[0] UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Dict = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : List[Any] ) -> int: UpperCAmelCase : List[Any] = 'cpu' UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : int = self.pipeline_class(**lowercase_ ) UpperCAmelCase : Tuple = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Any = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : List[Any] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] UpperCAmelCase : List[Any] = pipe(**lowercase_ ) UpperCAmelCase : Tuple = output.images UpperCAmelCase : str = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : Optional[int] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] UpperCAmelCase : Dict = pipe( **lowercase_ , return_dict=lowercase_ , )[0] UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) UpperCAmelCase : int = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : Dict = torch.device('cpu' ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : List[Any] = self.pipeline_class(**lowercase_ ) UpperCAmelCase : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.Generator(device=lowercase_ ).manual_seed(0 ) UpperCAmelCase : Tuple = pipe.decoder.dtype UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[Any] = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) UpperCAmelCase : Any = pipe.prepare_latents( lowercase_ , dtype=lowercase_ , device=lowercase_ , generator=lowercase_ , latents=lowercase_ , scheduler=DummyScheduler() ) UpperCAmelCase : List[str] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) UpperCAmelCase : List[Any] = pipe.prepare_latents( lowercase_ , dtype=lowercase_ , device=lowercase_ , generator=lowercase_ , latents=lowercase_ , scheduler=DummyScheduler() ) UpperCAmelCase : List[str] = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : Any = pipe( **lowercase_ , decoder_latents=lowercase_ , super_res_latents=lowercase_ ).images UpperCAmelCase : int = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) # Don't pass image, instead pass embedding UpperCAmelCase : Any = pipeline_inputs.pop('image' ) UpperCAmelCase : List[str] = pipe.image_encoder(lowercase_ ).image_embeds UpperCAmelCase : str = pipe( **lowercase_ , decoder_latents=lowercase_ , super_res_latents=lowercase_ , image_embeddings=lowercase_ , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : Any = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor UpperCAmelCase : Tuple = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , expected_max_diff=lowercase_ ) @skip_mps def UpperCAmelCase_ ( self : str ) -> List[str]: UpperCAmelCase : Dict = torch_device == 'cpu' UpperCAmelCase : Optional[int] = True UpperCAmelCase : Tuple = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , additional_params_copy_to_batched_inputs=lowercase_ , ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes UpperCAmelCase : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=lowercase_ , additional_params_copy_to_batched_inputs=lowercase_ , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=lowercase_ ) @skip_mps def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCAmelCase_ ( self : Any ) -> Dict: return super().test_save_load_local() @skip_mps def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: return super().test_save_load_optional_components() @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : int ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: UpperCAmelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) UpperCAmelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) UpperCAmelCase : List[Any] = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) UpperCAmelCase : Dict = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCAmelCase : Dict = pipeline( lowercase_ , generator=lowercase_ , output_type='np' , ) UpperCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ , 15 )
695
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """gpt_bigcode""" UpperCAmelCase_ : List[Any] = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Optional[Any] , lowercase_ : Dict=50_257 , lowercase_ : Optional[Any]=1_024 , lowercase_ : str=768 , lowercase_ : List[Any]=12 , lowercase_ : List[Any]=12 , lowercase_ : int=None , lowercase_ : List[Any]="gelu_pytorch_tanh" , lowercase_ : Optional[int]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Any=1E-5 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : List[Any]=True , lowercase_ : Tuple=True , lowercase_ : Optional[int]=50_256 , lowercase_ : Tuple=50_256 , lowercase_ : List[str]=True , lowercase_ : Any=True , lowercase_ : str=True , **lowercase_ : int , ) -> Optional[int]: UpperCAmelCase : List[str] = vocab_size UpperCAmelCase : Optional[int] = n_positions UpperCAmelCase : Tuple = n_embd UpperCAmelCase : Any = n_layer UpperCAmelCase : str = n_head UpperCAmelCase : Dict = n_inner UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Optional[Any] = resid_pdrop UpperCAmelCase : Tuple = embd_pdrop UpperCAmelCase : int = attn_pdrop UpperCAmelCase : Tuple = layer_norm_epsilon UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = scale_attn_weights UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : Tuple = attention_softmax_in_fpaa UpperCAmelCase : List[Any] = scale_attention_softmax_in_fpaa UpperCAmelCase : Optional[int] = multi_query UpperCAmelCase : List[str] = bos_token_id UpperCAmelCase : Any = eos_token_id super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
695
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
1
'''simple docstring''' from __future__ import annotations import time lowercase__ = list[tuple[int, int]] lowercase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class A_ : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : Node | None ) -> Optional[int]: UpperCAmelCase : Optional[int] = pos_x UpperCAmelCase : Tuple = pos_y UpperCAmelCase : List[str] = (pos_y, pos_x) UpperCAmelCase : List[Any] = goal_x UpperCAmelCase : List[str] = goal_y UpperCAmelCase : List[Any] = parent class A_ : '''simple docstring''' def __init__( self : Dict , lowercase_ : tuple[int, int] , lowercase_ : tuple[int, int] ) -> Tuple: UpperCAmelCase : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , lowercase_ ) UpperCAmelCase : str = Node(goal[1] , goal[0] , goal[1] , goal[0] , lowercase_ ) UpperCAmelCase : Union[str, Any] = [self.start] UpperCAmelCase : str = False def UpperCAmelCase_ ( self : Any ) -> Path | None: while self.node_queue: UpperCAmelCase : List[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: UpperCAmelCase : List[Any] = True return self.retrace_path(lowercase_ ) UpperCAmelCase : Any = self.get_successors(lowercase_ ) for node in successors: self.node_queue.append(lowercase_ ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase_ ( self : List[str] , lowercase_ : Node ) -> list[Node]: UpperCAmelCase : List[str] = [] for action in delta: UpperCAmelCase : str = parent.pos_x + action[1] UpperCAmelCase : str = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , lowercase_ ) ) return successors def UpperCAmelCase_ ( self : str , lowercase_ : Node | None ) -> Path: UpperCAmelCase : str = node UpperCAmelCase : Dict = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase : List[Any] = current_node.parent path.reverse() return path class A_ : '''simple docstring''' def __init__( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[Any] ) -> List[str]: UpperCAmelCase : str = BreadthFirstSearch(lowercase_ , lowercase_ ) UpperCAmelCase : Optional[int] = BreadthFirstSearch(lowercase_ , lowercase_ ) UpperCAmelCase : List[str] = False def UpperCAmelCase_ ( self : str ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: UpperCAmelCase : Any = self.fwd_bfs.node_queue.pop(0 ) UpperCAmelCase : Any = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: UpperCAmelCase : Tuple = True return self.retrace_bidirectional_path( lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = current_bwd_node UpperCAmelCase : Tuple = current_fwd_node UpperCAmelCase : Dict = { self.fwd_bfs: self.fwd_bfs.get_successors(lowercase_ ), self.bwd_bfs: self.bwd_bfs.get_successors(lowercase_ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(lowercase_ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase_ ( self : int , lowercase_ : Node , lowercase_ : Node ) -> Path: UpperCAmelCase : Union[str, Any] = self.fwd_bfs.retrace_path(lowercase_ ) UpperCAmelCase : Any = self.bwd_bfs.retrace_path(lowercase_ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase : str = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowercase__ = (0, 0) lowercase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowercase__ = time.time() lowercase__ = BreadthFirstSearch(init, goal) lowercase__ = bfs.search() lowercase__ = time.time() - start_bfs_time print("Unidirectional BFS computation time : ", bfs_time) lowercase__ = time.time() lowercase__ = BidirectionalBreadthFirstSearch(init, goal) lowercase__ = bd_bfs.search() lowercase__ = time.time() - start_bd_bfs_time print("Bidirectional BFS computation time : ", bd_bfs_time)
695
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
1
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : List[str] , lowercase_ : List[Any] ) -> Union[str, Any]: UpperCAmelCase : int = 3 UpperCAmelCase : Optional[int] = 250 UpperCAmelCase : Any = ids_tensor((batch_size, length) , lowercase_ ) UpperCAmelCase : Optional[int] = torch.ones((batch_size, length) , device=lowercase_ , dtype=torch.float ) / length return input_ids, scores def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase : Any = self._get_tensors(5 ) UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase , UpperCAmelCase : Any = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase : Optional[int] = self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase , UpperCAmelCase : Any = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def UpperCAmelCase_ ( self : Dict ) -> str: UpperCAmelCase : List[str] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase : List[Any] = self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase , UpperCAmelCase : List[Any] = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase , UpperCAmelCase : int = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase : List[str] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: UpperCAmelCase , UpperCAmelCase : Dict = self._get_tensors(5 ) UpperCAmelCase : Union[str, Any] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase : int = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowercase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase : Optional[Any] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowercase_ ) , 1 )
695
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json", "BridgeTower/bridgetower-base-itm-mlm": ( "https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """bridgetower_vision_model""" def __init__( self : List[str] , lowercase_ : Any=768 , lowercase_ : Dict=12 , lowercase_ : List[str]=3 , lowercase_ : int=16 , lowercase_ : Optional[Any]=288 , lowercase_ : Tuple=1 , lowercase_ : List[str]=1E-05 , lowercase_ : Tuple=False , lowercase_ : str=True , lowercase_ : Optional[int]=False , **lowercase_ : Any , ) -> str: super().__init__(**lowercase_ ) UpperCAmelCase : int = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : Dict = num_channels UpperCAmelCase : Optional[int] = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : Optional[Any] = layer_norm_eps UpperCAmelCase : Tuple = stop_gradient UpperCAmelCase : Tuple = share_layernorm UpperCAmelCase : int = remove_last_layer @classmethod def UpperCAmelCase_ ( cls : Any , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": UpperCAmelCase , UpperCAmelCase : Union[str, Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) if config_dict.get('model_type' ) == "bridgetower": UpperCAmelCase : Dict = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Any = """bridgetower_text_model""" def __init__( self : Any , lowercase_ : Optional[int]=50_265 , lowercase_ : List[Any]=768 , lowercase_ : int=12 , lowercase_ : Any=12 , lowercase_ : Optional[Any]=1 , lowercase_ : Any=3_072 , lowercase_ : Optional[int]="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=514 , lowercase_ : str=1 , lowercase_ : List[str]=1E-05 , lowercase_ : str=1 , lowercase_ : List[Any]=0 , lowercase_ : Union[str, Any]=2 , lowercase_ : Any="absolute" , lowercase_ : Any=True , **lowercase_ : List[str] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : Any = hidden_act UpperCAmelCase : int = initializer_factor UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : Dict = type_vocab_size UpperCAmelCase : Optional[Any] = layer_norm_eps UpperCAmelCase : Optional[int] = position_embedding_type UpperCAmelCase : Optional[Any] = use_cache UpperCAmelCase : str = pad_token_id UpperCAmelCase : Dict = bos_token_id UpperCAmelCase : Dict = eos_token_id @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) if config_dict.get('model_type' ) == "bridgetower": UpperCAmelCase : Optional[int] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """bridgetower""" def __init__( self : List[str] , lowercase_ : Dict=True , lowercase_ : Optional[Any]="gelu" , lowercase_ : Optional[Any]=768 , lowercase_ : List[Any]=1 , lowercase_ : Union[str, Any]=1E-05 , lowercase_ : Optional[int]=False , lowercase_ : Any="add" , lowercase_ : str=12 , lowercase_ : Optional[Any]=6 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=None , **lowercase_ : Any , ) -> Union[str, Any]: # TODO: remove this once the Hub files are updated. UpperCAmelCase : Any = kwargs.pop('text_config_dict' , lowercase_ ) UpperCAmelCase : Optional[Any] = kwargs.pop('vision_config_dict' , lowercase_ ) super().__init__(**lowercase_ ) UpperCAmelCase : List[Any] = share_cross_modal_transformer_layers UpperCAmelCase : Dict = hidden_act UpperCAmelCase : Dict = hidden_size UpperCAmelCase : str = initializer_factor UpperCAmelCase : List[Any] = layer_norm_eps UpperCAmelCase : Optional[int] = share_link_tower_layers UpperCAmelCase : Tuple = link_tower_type UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : str = tie_word_embeddings UpperCAmelCase : Optional[int] = init_layernorm_from_vision_encoder if text_config is None: UpperCAmelCase : Dict = {} logger.info('`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.' ) if vision_config is None: UpperCAmelCase : str = {} logger.info('`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.' ) UpperCAmelCase : List[Any] = BridgeTowerTextConfig(**lowercase_ ) UpperCAmelCase : List[Any] = BridgeTowerVisionConfig(**lowercase_ ) @classmethod def UpperCAmelCase_ ( cls : int , lowercase_ : BridgeTowerTextConfig , lowercase_ : BridgeTowerVisionConfig , **lowercase_ : Any ) -> Union[str, Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : str = self.text_config.to_dict() UpperCAmelCase : List[str] = self.vision_config.to_dict() UpperCAmelCase : int = self.__class__.model_type return output
695
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
1
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = FlaxAutoencoderKL @property def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: UpperCAmelCase : Dict = 4 UpperCAmelCase : Dict = 3 UpperCAmelCase : List[Any] = (32, 32) UpperCAmelCase : Dict = jax.random.PRNGKey(0 ) UpperCAmelCase : int = jax.random.uniform(lowercase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : Tuple = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } UpperCAmelCase : str = self.dummy_input return init_dict, inputs_dict
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase__ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
1
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowercase__ = 2 class A_ : '''simple docstring''' def __init__( self : Any , *, # begin keyword-only arguments lowercase_ : List[Any]="<s>" , lowercase_ : List[str]="<pad>" , lowercase_ : Union[str, Any]="</s>" , lowercase_ : Optional[int]="<unk>" , lowercase_ : Optional[Any]=None , ) -> List[str]: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = bos, unk, pad, eos UpperCAmelCase : str = [] UpperCAmelCase : int = [] UpperCAmelCase : str = {} UpperCAmelCase : Any = self.add_symbol(lowercase_ ) UpperCAmelCase : Tuple = self.add_symbol(lowercase_ ) UpperCAmelCase : Tuple = self.add_symbol(lowercase_ ) UpperCAmelCase : Tuple = self.add_symbol(lowercase_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowercase_ ) UpperCAmelCase : str = len(self.symbols ) def __eq__( self : str , lowercase_ : int ) -> Union[str, Any]: return self.indices == other.indices def __getitem__( self : Optional[Any] , lowercase_ : Union[str, Any] ) -> Tuple: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : List[Any] ) -> Optional[int]: return len(self.symbols ) def __contains__( self : Tuple , lowercase_ : Dict ) -> Union[str, Any]: return sym in self.indices @classmethod def UpperCAmelCase_ ( cls : int , lowercase_ : Any ) -> List[Any]: UpperCAmelCase : Union[str, Any] = cls() d.add_from_file(lowercase_ ) return d def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Tuple=1 , lowercase_ : List[str]=False ) -> List[str]: if word in self.indices and not overwrite: UpperCAmelCase : Dict = self.indices[word] UpperCAmelCase : str = self.count[idx] + n return idx else: UpperCAmelCase : List[str] = len(self.symbols ) UpperCAmelCase : Dict = idx self.symbols.append(lowercase_ ) self.count.append(lowercase_ ) return idx def UpperCAmelCase_ ( self : Any , lowercase_ : Any ) -> Optional[int]: return 0 def UpperCAmelCase_ ( self : Dict , lowercase_ : Optional[Any] ) -> Any: if isinstance(lowercase_ , lowercase_ ): try: with open(lowercase_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowercase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowercase_ ) ) return UpperCAmelCase : str = f.readlines() UpperCAmelCase : Tuple = self._load_meta(lowercase_ ) for line in lines[indices_start_line:]: try: UpperCAmelCase , UpperCAmelCase : Any = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": UpperCAmelCase : int = True UpperCAmelCase , UpperCAmelCase : str = line.rsplit(' ' , 1 ) else: UpperCAmelCase : List[Any] = False UpperCAmelCase : Optional[Any] = int(lowercase_ ) UpperCAmelCase : Optional[int] = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowercase_ ) ) self.add_symbol(lowercase_ , n=lowercase_ , overwrite=lowercase_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def UpperCamelCase( UpperCAmelCase_ ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} UpperCAmelCase : str = dict((re.sub(R'@@$' , '' , UpperCAmelCase_ ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , UpperCAmelCase_ ), v) for k, v in d.items() ) UpperCAmelCase : str = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] UpperCAmelCase : Any = d[k] # restore return da def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): # prep if not os.path.exists(UpperCAmelCase_ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models UpperCAmelCase : Dict = os.path.join(UpperCAmelCase_ , 'checkpoint.pt' ) if not os.path.isfile(UpperCAmelCase_ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) UpperCAmelCase : str = torch.load(UpperCAmelCase_ , map_location='cpu' ) UpperCAmelCase : List[Any] = chkpt['cfg']['model'] # dicts UpperCAmelCase : Any = os.path.join(UpperCAmelCase_ , 'dict.txt' ) if not os.path.isfile(UpperCAmelCase_ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) UpperCAmelCase : List[str] = Dictionary.load(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase : Dict = len(UpperCAmelCase_ ) UpperCAmelCase : int = os.path.join(UpperCAmelCase_ , VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_ , indent=UpperCAmelCase_ ) ) # merges_file (bpecodes) UpperCAmelCase : Optional[int] = os.path.join(UpperCAmelCase_ , 'bpecodes' ) if not os.path.isfile(UpperCAmelCase_ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) UpperCAmelCase : Any = os.path.join(UpperCAmelCase_ , VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(UpperCAmelCase_ , UpperCAmelCase_ ) # model config UpperCAmelCase : List[Any] = os.path.join(UpperCAmelCase_ , 'config.json' ) UpperCAmelCase : Tuple = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_ , indent=UpperCAmelCase_ ) ) # tokenizer config UpperCAmelCase : Dict = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : int = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 10_24, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_ , indent=UpperCAmelCase_ ) ) # model UpperCAmelCase : str = chkpt['model'] # remove unneeded keys UpperCAmelCase : Optional[Any] = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : str = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): UpperCAmelCase : Union[str, Any] = model_state_dict.pop(UpperCAmelCase_ ) else: UpperCAmelCase : Union[str, Any] = model_state_dict.pop(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = BioGptConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = BioGptForCausalLM(UpperCAmelCase_ ) # check that it loads ok model_new.load_state_dict(UpperCAmelCase_ ) # save UpperCAmelCase : Tuple = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) print('Conversion is done!' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--biogpt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase__ = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
695
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
1
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = DownBlockaD # noqa F405 UpperCAmelCase_ : Any = """down""" def UpperCAmelCase_ ( self : str ) -> Any: UpperCAmelCase : Any = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : int = ResnetDownsampleBlockaD # noqa F405 UpperCAmelCase_ : int = """down""" def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: UpperCAmelCase : Optional[int] = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = AttnDownBlockaD # noqa F405 UpperCAmelCase_ : str = """down""" def UpperCAmelCase_ ( self : int ) -> Tuple: UpperCAmelCase : List[Any] = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = CrossAttnDownBlockaD # noqa F405 UpperCAmelCase_ : List[Any] = """down""" def UpperCAmelCase_ ( self : Dict ) -> Tuple: UpperCAmelCase , UpperCAmelCase : Optional[int] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : Any = 32 return init_dict, inputs_dict def UpperCAmelCase_ ( self : Dict ) -> List[Any]: UpperCAmelCase : Tuple = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : int = SimpleCrossAttnDownBlockaD # noqa F405 UpperCAmelCase_ : List[Any] = """down""" @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: return super().get_dummy_input(include_encoder_hidden_states=lowercase_ ) def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase , UpperCAmelCase : Optional[int] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : int = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Union[str, Any] = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = SkipDownBlockaD # noqa F405 UpperCAmelCase_ : Optional[Any] = """down""" @property def UpperCAmelCase_ ( self : Dict ) -> List[Any]: return super().get_dummy_input(include_skip_sample=lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[int] = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Any = AttnSkipDownBlockaD # noqa F405 UpperCAmelCase_ : List[str] = """down""" @property def UpperCAmelCase_ ( self : List[str] ) -> Tuple: return super().get_dummy_input(include_skip_sample=lowercase_ ) def UpperCAmelCase_ ( self : str ) -> int: UpperCAmelCase : int = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = DownEncoderBlockaD # noqa F405 UpperCAmelCase_ : Union[str, Any] = """down""" @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: return super().get_dummy_input(include_temb=lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: UpperCAmelCase : Tuple = { 'in_channels': 32, 'out_channels': 32, } UpperCAmelCase : Tuple = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase : int = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = AttnDownEncoderBlockaD # noqa F405 UpperCAmelCase_ : Optional[int] = """down""" @property def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: return super().get_dummy_input(include_temb=lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: UpperCAmelCase : str = { 'in_channels': 32, 'out_channels': 32, } UpperCAmelCase : Dict = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self : str ) -> int: UpperCAmelCase : Any = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = UNetMidBlockaD # noqa F405 UpperCAmelCase_ : Optional[int] = """mid""" def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[Any] = { 'in_channels': 32, 'temb_channels': 128, } UpperCAmelCase : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self : Any ) -> str: UpperCAmelCase : Optional[int] = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = UNetMidBlockaDCrossAttn # noqa F405 UpperCAmelCase_ : Union[str, Any] = """mid""" def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase : List[str] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : List[Any] = 32 return init_dict, inputs_dict def UpperCAmelCase_ ( self : str ) -> str: UpperCAmelCase : str = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = UNetMidBlockaDSimpleCrossAttn # noqa F405 UpperCAmelCase_ : Any = """mid""" @property def UpperCAmelCase_ ( self : List[str] ) -> Tuple: return super().get_dummy_input(include_encoder_hidden_states=lowercase_ ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: UpperCAmelCase , UpperCAmelCase : Any = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : Any = 32 return init_dict, inputs_dict def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = UpBlockaD # noqa F405 UpperCAmelCase_ : List[str] = """up""" @property def UpperCAmelCase_ ( self : Any ) -> str: return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: UpperCAmelCase : List[Any] = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[str] = ResnetUpsampleBlockaD # noqa F405 UpperCAmelCase_ : List[Any] = """up""" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Optional[int] = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : int = CrossAttnUpBlockaD # noqa F405 UpperCAmelCase_ : Tuple = """up""" @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def UpperCAmelCase_ ( self : List[str] ) -> Any: UpperCAmelCase , UpperCAmelCase : Optional[Any] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : List[Any] = 32 return init_dict, inputs_dict def UpperCAmelCase_ ( self : Tuple ) -> int: UpperCAmelCase : int = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = SimpleCrossAttnUpBlockaD # noqa F405 UpperCAmelCase_ : Union[str, Any] = """up""" @property def UpperCAmelCase_ ( self : List[Any] ) -> Any: return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ , include_encoder_hidden_states=lowercase_ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase : Dict = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : str = 32 return init_dict, inputs_dict def UpperCAmelCase_ ( self : List[Any] ) -> Dict: UpperCAmelCase : Any = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = AttnUpBlockaD # noqa F405 UpperCAmelCase_ : str = """up""" @property def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def UpperCAmelCase_ ( self : Any ) -> List[Any]: UpperCAmelCase : List[str] = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Any = SkipUpBlockaD # noqa F405 UpperCAmelCase_ : Union[str, Any] = """up""" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[int] = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[str] = AttnSkipUpBlockaD # noqa F405 UpperCAmelCase_ : Union[str, Any] = """up""" @property def UpperCAmelCase_ ( self : Tuple ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def UpperCAmelCase_ ( self : int ) -> str: UpperCAmelCase : str = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = UpDecoderBlockaD # noqa F405 UpperCAmelCase_ : str = """up""" @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: return super().get_dummy_input(include_temb=lowercase_ ) def UpperCAmelCase_ ( self : str ) -> int: UpperCAmelCase : Any = {'in_channels': 32, 'out_channels': 32} UpperCAmelCase : str = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self : Any ) -> Dict: UpperCAmelCase : Union[str, Any] = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = AttnUpDecoderBlockaD # noqa F405 UpperCAmelCase_ : Union[str, Any] = """up""" @property def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: return super().get_dummy_input(include_temb=lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : List[Any] = {'in_channels': 32, 'out_channels': 32} UpperCAmelCase : Any = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Tuple = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(lowercase_ )
695
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
695
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
1
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = """megatron-bert""" def __init__( self : List[Any] , lowercase_ : Tuple=29_056 , lowercase_ : Any=1_024 , lowercase_ : int=24 , lowercase_ : Optional[int]=16 , lowercase_ : List[str]=4_096 , lowercase_ : str="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[Any]=2 , lowercase_ : Any=0.02 , lowercase_ : str=1E-12 , lowercase_ : Any=0 , lowercase_ : Tuple="absolute" , lowercase_ : Tuple=True , **lowercase_ : Any , ) -> Any: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : Dict = vocab_size UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Any = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : List[Any] = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : List[str] = use_cache
695
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
1
'''simple docstring''' import math def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.pow(UpperCAmelCase_ , 2 ) - a def UpperCamelCase( UpperCAmelCase_ ): return 2 * x def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = 2.0 while start <= a: UpperCAmelCase : str = math.pow(UpperCAmelCase_ , 2 ) return start def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ = 99_99 , UpperCAmelCase_ = 0.00_0000_0000_0001 ): if a < 0: raise ValueError('math domain error' ) UpperCAmelCase : int = get_initial_point(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ): UpperCAmelCase : Any = value UpperCAmelCase : List[Any] = value - fx(UpperCAmelCase_ , UpperCAmelCase_ ) / fx_derivative(UpperCAmelCase_ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
695
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
1
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): UpperCAmelCase , UpperCAmelCase : str = array[indexa], array[indexa] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if length > 1: UpperCAmelCase : Optional[int] = int(length / 2 ) for i in range(UpperCAmelCase_ , low + middle ): comp_and_swap(UpperCAmelCase_ , UpperCAmelCase_ , i + middle , UpperCAmelCase_ ) bitonic_merge(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) bitonic_merge(UpperCAmelCase_ , low + middle , UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if length > 1: UpperCAmelCase : Any = int(length / 2 ) bitonic_sort(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , 1 ) bitonic_sort(UpperCAmelCase_ , low + middle , UpperCAmelCase_ , 0 ) bitonic_merge(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = input("Enter numbers separated by a comma:\n").strip() lowercase__ = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCamelCase( ): raise RuntimeError('CUDA out of memory.' ) class A_ ( nn.Module ): '''simple docstring''' def __init__( self : int ) -> Optional[Any]: super().__init__() UpperCAmelCase : Tuple = nn.Linear(3 , 4 ) UpperCAmelCase : Optional[Any] = nn.BatchNormad(4 ) UpperCAmelCase : Any = nn.Linear(4 , 5 ) def UpperCAmelCase_ ( self : Any , lowercase_ : Dict ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(lowercase_ ) ) ) class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase_ : Tuple ): nonlocal batch_sizes batch_sizes.append(lowercase_ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowercase_ , [128, 64, 32, 16, 8] ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: UpperCAmelCase : Tuple = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase_ : List[Any] , lowercase_ : Dict ): nonlocal batch_sizes batch_sizes.append(lowercase_ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCAmelCase , UpperCAmelCase : str = mock_training_loop_function('hello' ) self.assertListEqual(lowercase_ , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowercase_ : List[str] ): pass with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCAmelCase_ ( self : Any ) -> Any: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowercase_ : Any ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCAmelCase_ ( self : Dict ) -> int: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase_ : int , lowercase_ : int , lowercase_ : List[str] ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function(128 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowercase_ : List[str] ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def UpperCAmelCase_ ( self : Optional[Any] ) -> str: UpperCAmelCase : List[str] = torch.cuda.memory_allocated() UpperCAmelCase : Tuple = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowercase_ ) UpperCAmelCase : List[str] = release_memory(lowercase_ ) self.assertEqual(torch.cuda.memory_allocated() , lowercase_ )
695
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
1
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = [] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): for v in tree.values(): shapes.extend(_fetch_dims(UpperCAmelCase_ ) ) elif isinstance(UpperCAmelCase_ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(UpperCAmelCase_ ) ) elif isinstance(UpperCAmelCase_ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[str] = [] for d in reversed(UpperCAmelCase_ ): idx.append(flat_idx % d ) UpperCAmelCase : Tuple = flat_idx // d return tuple(reversed(UpperCAmelCase_ ) ) @torch.jit.ignore def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(UpperCAmelCase_ ) -> None: UpperCAmelCase : str = True for i in range(len(UpperCAmelCase_ ) ): UpperCAmelCase : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCAmelCase : int = l[reversed_idx] if start_edges is None: UpperCAmelCase : Union[str, Any] = [s == 0 for s in start] reduce_edge_list(UpperCAmelCase_ ) if end_edges is None: UpperCAmelCase : List[str] = [e == (d - 1) for e, d in zip(UpperCAmelCase_ , UpperCAmelCase_ )] reduce_edge_list(UpperCAmelCase_ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(UpperCAmelCase_ ) == 0: return [()] elif len(UpperCAmelCase_ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] UpperCAmelCase : List[Tuple[slice, ...]] = [] UpperCAmelCase : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(UpperCAmelCase_ , UpperCAmelCase_ ): if s == e: path_list.append(slice(UpperCAmelCase_ , s + 1 ) ) else: break UpperCAmelCase : Tuple[slice, ...] = tuple(UpperCAmelCase_ ) UpperCAmelCase : Tuple = len(UpperCAmelCase_ ) # start == end, and we're done if divergence_idx == len(UpperCAmelCase_ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase : int = start[divergence_idx] return tuple( path + (slice(UpperCAmelCase_ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase : List[str] = end[divergence_idx] return tuple( path + (slice(UpperCAmelCase_ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) UpperCAmelCase : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Dict = t.shape[:no_batch_dims] UpperCAmelCase : int = list(_flat_idx_to_idx(UpperCAmelCase_ , UpperCAmelCase_ ) ) # _get_minimal_slice_set is inclusive UpperCAmelCase : Optional[int] = list(_flat_idx_to_idx(flat_end - 1 , UpperCAmelCase_ ) ) # Get an ordered list of slices to perform UpperCAmelCase : Any = _get_minimal_slice_set( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCAmelCase : str = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = False , ): if not (len(UpperCAmelCase_ ) > 0): raise ValueError('Must provide at least one input' ) UpperCAmelCase : List[str] = [shape[:no_batch_dims] for shape in _fetch_dims(UpperCAmelCase_ )] UpperCAmelCase : Optional[Any] = tuple([max(UpperCAmelCase_ ) for s in zip(*UpperCAmelCase_ )] ) def _prep_inputs(UpperCAmelCase_ ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: UpperCAmelCase : Any = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) UpperCAmelCase : int = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: UpperCAmelCase : Tuple = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t UpperCAmelCase : Dict[str, Any] = tensor_tree_map(_prep_inputs , UpperCAmelCase_ ) UpperCAmelCase : Dict = None if _out is not None: UpperCAmelCase : Dict = tensor_tree_map(lambda UpperCAmelCase_ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) UpperCAmelCase : Optional[Any] = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCAmelCase : List[str] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(UpperCAmelCase_ ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCAmelCase : List[str] = 0 UpperCAmelCase : Tuple = prepped_outputs for _ in range(UpperCAmelCase_ ): # Chunk the input if not low_mem: UpperCAmelCase : Optional[Any] = _select_chunk else: UpperCAmelCase : Any = partial( _chunk_slice , flat_start=UpperCAmelCase_ , flat_end=min(UpperCAmelCase_ , i + chunk_size ) , no_batch_dims=len(UpperCAmelCase_ ) , ) UpperCAmelCase : Dict[str, Any] = tensor_tree_map(UpperCAmelCase_ , UpperCAmelCase_ ) # Run the layer on the chunk UpperCAmelCase : Dict = layer(**UpperCAmelCase_ ) # Allocate space for the output if out is None: UpperCAmelCase : Union[str, Any] = tensor_tree_map(lambda UpperCAmelCase_ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , UpperCAmelCase_ ) # Put the chunk in its pre-allocated space if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): def assign(UpperCAmelCase_ , UpperCAmelCase_ ) -> None: for k, v in da.items(): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): assign(UpperCAmelCase_ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCAmelCase : int = da[k] assign(UpperCAmelCase_ , UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): for xa, xa in zip(UpperCAmelCase_ , UpperCAmelCase_ ): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCAmelCase : Optional[int] = xa elif isinstance(UpperCAmelCase_ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCAmelCase : Tuple = output_chunk else: raise ValueError('Not supported' ) i += chunk_size UpperCAmelCase : List[str] = tensor_tree_map(lambda UpperCAmelCase_ : t.view(orig_batch_dims + t.shape[1:] ) , UpperCAmelCase_ ) return out class A_ : '''simple docstring''' def __init__( self : Any , lowercase_ : int = 512 , ) -> int: UpperCAmelCase : Any = max_chunk_size UpperCAmelCase : Optional[int] = None UpperCAmelCase : Optional[tuple] = None def UpperCAmelCase_ ( self : str , lowercase_ : Callable , lowercase_ : tuple , lowercase_ : int ) -> int: logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCAmelCase : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] UpperCAmelCase : Optional[int] = [c for c in candidates if c > min_chunk_size] UpperCAmelCase : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(lowercase_ : int ) -> bool: try: with torch.no_grad(): fn(*lowercase_ , chunk_size=lowercase_ ) return True except RuntimeError: return False UpperCAmelCase : List[Any] = 0 UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 while i > min_viable_chunk_size_index: UpperCAmelCase : Optional[Any] = test_chunk_size(candidates[i] ) if not viable: UpperCAmelCase : str = (min_viable_chunk_size_index + i) // 2 else: UpperCAmelCase : Union[str, Any] = i UpperCAmelCase : str = (i + len(lowercase_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Iterable , lowercase_ : Iterable ) -> bool: UpperCAmelCase : Optional[int] = True for aa, aa in zip(lowercase_ , lowercase_ ): assert type(lowercase_ ) == type(lowercase_ ) if isinstance(lowercase_ , (list, tuple) ): consistent &= self._compare_arg_caches(lowercase_ , lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Tuple = [v for _, v in sorted(aa.items() , key=lambda lowercase_ : x[0] )] UpperCAmelCase : Optional[int] = [v for _, v in sorted(aa.items() , key=lambda lowercase_ : x[0] )] consistent &= self._compare_arg_caches(lowercase_ , lowercase_ ) else: consistent &= aa == aa return consistent def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Callable , lowercase_ : tuple , lowercase_ : int , ) -> int: UpperCAmelCase : str = True UpperCAmelCase : tuple = tree_map(lambda lowercase_ : a.shape if isinstance(lowercase_ , torch.Tensor ) else a , lowercase_ , lowercase_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(lowercase_ ) UpperCAmelCase : int = self._compare_arg_caches(self.cached_arg_data , lowercase_ ) else: # Otherwise, we can reuse the precomputed value UpperCAmelCase : Union[str, Any] = False if not consistent: UpperCAmelCase : Any = self._determine_favorable_chunk_size( lowercase_ , lowercase_ , lowercase_ , ) UpperCAmelCase : int = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
695
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
1
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase__ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def UpperCamelCase( UpperCAmelCase_ = "mumbai" ): UpperCAmelCase : Any = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): UpperCAmelCase : Any = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() UpperCAmelCase : Optional[Any] = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=False ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = len(set_a.intersection(UpperCAmelCase_ ) ) if alternative_union: UpperCAmelCase : Any = len(UpperCAmelCase_ ) + len(UpperCAmelCase_ ) else: UpperCAmelCase : Tuple = len(set_a.union(UpperCAmelCase_ ) ) return intersection / union if isinstance(UpperCAmelCase_ , (list, tuple) ) and isinstance(UpperCAmelCase_ , (list, tuple) ): UpperCAmelCase : str = [element for element in set_a if element in set_b] if alternative_union: UpperCAmelCase : Optional[Any] = len(UpperCAmelCase_ ) + len(UpperCAmelCase_ ) return len(UpperCAmelCase_ ) / union else: UpperCAmelCase : List[str] = set_a + [element for element in set_b if element not in set_a] return len(UpperCAmelCase_ ) / len(UpperCAmelCase_ ) return len(UpperCAmelCase_ ) / len(UpperCAmelCase_ ) return None if __name__ == "__main__": lowercase__ = {"a", "b", "c", "d", "e"} lowercase__ = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
695
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
1
'''simple docstring''' import argparse import os import re import packaging.version lowercase__ = "examples/" lowercase__ = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } lowercase__ = { "init": "src/diffusers/__init__.py", "setup": "setup.py", } lowercase__ = "README.md" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): with open(UpperCAmelCase_ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCAmelCase : Optional[Any] = f.read() UpperCAmelCase , UpperCAmelCase : Optional[int] = REPLACE_PATTERNS[pattern] UpperCAmelCase : Optional[int] = replace.replace('VERSION' , UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = re_pattern.sub(UpperCAmelCase_ , UpperCAmelCase_ ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ ): for folder, directories, fnames in os.walk(UpperCAmelCase_ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ , pattern='examples' ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if not patch: update_version_in_examples(UpperCAmelCase_ ) def UpperCamelCase( ): UpperCAmelCase : Any = '🤗 Transformers currently provides the following architectures' UpperCAmelCase : int = '1. Want to contribute a new model?' with open(UpperCAmelCase_ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCAmelCase : Optional[int] = f.readlines() # Find the start of the list. UpperCAmelCase : Any = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase : str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): UpperCAmelCase : List[str] = lines[index].replace( 'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , ) index += 1 with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCAmelCase_ ) def UpperCamelCase( ): with open(REPLACE_FILES['init'] , 'r' ) as f: UpperCAmelCase : int = f.read() UpperCAmelCase : Dict = REPLACE_PATTERNS['init'][0].search(UpperCAmelCase_ ).groups()[0] return packaging.version.parse(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_=False ): UpperCAmelCase : Optional[int] = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: UpperCAmelCase : Union[str, Any] = default_version.base_version elif patch: UpperCAmelCase : List[Any] = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase : str = input(F"""Which version are you releasing? [{default_version}]""" ) if len(UpperCAmelCase_ ) == 0: UpperCAmelCase : int = default_version print(F"""Updating version to {version}.""" ) global_version_update(UpperCAmelCase_ , patch=UpperCAmelCase_ ) def UpperCamelCase( ): UpperCAmelCase : str = get_version() UpperCAmelCase : int = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase : Dict = current_version.base_version # Check with the user we got that right. UpperCAmelCase : Optional[Any] = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCAmelCase_ ) == 0: UpperCAmelCase : List[Any] = dev_version print(F"""Updating version to {version}.""" ) global_version_update(UpperCAmelCase_ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") lowercase__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
695
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowercase__ = logging.get_logger(__name__) lowercase__ = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """dpt""" def __init__( self : Optional[int] , lowercase_ : Union[str, Any]=768 , lowercase_ : Tuple=12 , lowercase_ : List[str]=12 , lowercase_ : Tuple=3_072 , lowercase_ : int="gelu" , lowercase_ : Optional[int]=0.0 , lowercase_ : str=0.0 , lowercase_ : List[Any]=0.02 , lowercase_ : Optional[int]=1E-12 , lowercase_ : Any=384 , lowercase_ : List[Any]=16 , lowercase_ : Any=3 , lowercase_ : Dict=False , lowercase_ : Union[str, Any]=True , lowercase_ : str=[2, 5, 8, 11] , lowercase_ : Union[str, Any]="project" , lowercase_ : Tuple=[4, 2, 1, 0.5] , lowercase_ : Dict=[96, 192, 384, 768] , lowercase_ : List[Any]=256 , lowercase_ : List[Any]=-1 , lowercase_ : Dict=False , lowercase_ : List[str]=True , lowercase_ : List[str]=0.4 , lowercase_ : List[Any]=255 , lowercase_ : Dict=0.1 , lowercase_ : Optional[Any]=[1, 1_024, 24, 24] , lowercase_ : List[Any]=[0, 1] , lowercase_ : Optional[int]=None , **lowercase_ : Any , ) -> List[str]: super().__init__(**lowercase_ ) UpperCAmelCase : List[Any] = hidden_size UpperCAmelCase : Optional[int] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) UpperCAmelCase : str = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } UpperCAmelCase : Tuple = BitConfig(**lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): logger.info('Initializing the config with a `BiT` backbone.' ) UpperCAmelCase : Optional[int] = BitConfig(**lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Optional[int] = backbone_config else: raise ValueError( f"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) UpperCAmelCase : int = backbone_featmap_shape UpperCAmelCase : str = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: UpperCAmelCase : int = None UpperCAmelCase : Optional[int] = None UpperCAmelCase : int = [] UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : str = intermediate_size UpperCAmelCase : Tuple = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : int = image_size UpperCAmelCase : str = patch_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = qkv_bias UpperCAmelCase : Union[str, Any] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) UpperCAmelCase : int = readout_type UpperCAmelCase : Union[str, Any] = reassemble_factors UpperCAmelCase : Any = neck_hidden_sizes UpperCAmelCase : Dict = fusion_hidden_size UpperCAmelCase : List[Any] = head_in_index UpperCAmelCase : Dict = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) UpperCAmelCase : List[Any] = use_auxiliary_head UpperCAmelCase : str = auxiliary_loss_weight UpperCAmelCase : Optional[Any] = semantic_loss_ignore_index UpperCAmelCase : Optional[int] = semantic_classifier_dropout def UpperCAmelCase_ ( self : str ) -> int: UpperCAmelCase : int = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Tuple = self.backbone_config.to_dict() UpperCAmelCase : List[str] = self.__class__.model_type return output
695
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
1
'''simple docstring''' import math from datetime import datetime, timedelta def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = year % 19 UpperCAmelCase : Union[str, Any] = year % 4 UpperCAmelCase : Optional[int] = year % 7 UpperCAmelCase : str = math.floor(year / 1_00 ) UpperCAmelCase : List[Any] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) UpperCAmelCase : Optional[int] = leap_day_inhibits / 4 UpperCAmelCase : Dict = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCAmelCase : Tuple = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCAmelCase : Any = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCAmelCase : Any = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase_ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase_ , 4 , 18 ) else: return datetime(UpperCAmelCase_ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): lowercase__ = "will be" if year > datetime.now().year else "was" print(f'''Easter in {year} {tense} {gauss_easter(year)}''')
695
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
1
'''simple docstring''' class A_ : # Public class to implement a graph '''simple docstring''' def __init__( self : str , lowercase_ : int , lowercase_ : int , lowercase_ : list[list[bool]] ) -> None: UpperCAmelCase : List[Any] = row UpperCAmelCase : str = col UpperCAmelCase : List[Any] = graph def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : int , lowercase_ : int , lowercase_ : list[list[bool]] ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int , lowercase_ : list[list[bool]] ) -> None: # Checking all 8 elements surrounding nth element UpperCAmelCase : Union[str, Any] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase : str = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , lowercase_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> int: # And finally, count all islands. UpperCAmelCase : List[Any] = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase : Optional[Any] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowercase_ , lowercase_ , lowercase_ ) count += 1 return count
695
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A_ ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = StableDiffusionInpaintPipeline UpperCAmelCase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase_ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase_ : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase_ : Optional[Any] = frozenset([] ) def UpperCAmelCase_ ( self : List[Any] ) -> str: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , ) UpperCAmelCase : Optional[Any] = PNDMScheduler(skip_prk_steps=lowercase_ ) torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) UpperCAmelCase : Optional[Any] = CLIPTextModel(lowercase_ ) UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : List[str] , lowercase_ : Tuple=0 ) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase : Tuple = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((64, 64) ) UpperCAmelCase : Dict = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((64, 64) ) if str(lowercase_ ).startswith('mps' ): UpperCAmelCase : int = torch.manual_seed(lowercase_ ) else: UpperCAmelCase : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCAmelCase_ ( self : List[str] ) -> str: UpperCAmelCase : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Union[str, Any] = self.get_dummy_components() UpperCAmelCase : List[str] = StableDiffusionInpaintPipeline(**lowercase_ ) UpperCAmelCase : List[str] = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Dict = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase : Union[str, Any] = sd_pipe(**lowercase_ ).images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[Any] = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) UpperCAmelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) UpperCAmelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) UpperCAmelCase : int = 'stabilityai/stable-diffusion-2-inpainting' UpperCAmelCase : Any = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() UpperCAmelCase : Optional[Any] = 'Face of a yellow cat, high resolution, sitting on a park bench' UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : Any = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) UpperCAmelCase : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def UpperCAmelCase_ ( self : Tuple ) -> int: UpperCAmelCase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) UpperCAmelCase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) UpperCAmelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) UpperCAmelCase : List[str] = 'stabilityai/stable-diffusion-2-inpainting' UpperCAmelCase : Tuple = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() UpperCAmelCase : Optional[Any] = 'Face of a yellow cat, high resolution, sitting on a park bench' UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) UpperCAmelCase : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) UpperCAmelCase : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) UpperCAmelCase : Dict = 'stabilityai/stable-diffusion-2-inpainting' UpperCAmelCase : List[str] = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' ) UpperCAmelCase : Optional[int] = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase : List[str] = 'Face of a yellow cat, high resolution, sitting on a park bench' UpperCAmelCase : Dict = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , ) UpperCAmelCase : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
695
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ = False ): if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_31_70_44_06_46_79_88_73_85_96_19_81 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis UpperCAmelCase : Dict = [ 20_47, 1_37_36_53, 25_32_60_01, 32_15_03_17_51, 2_15_23_02_89_87_47, 3_47_47_49_66_03_83, 3_41_55_00_71_72_83_21, 1, 3_82_51_23_05_65_46_41_30_51, 1, 1, 31_86_65_85_78_34_03_11_51_16_74_61, 3_31_70_44_06_46_79_88_73_85_96_19_81, ] UpperCAmelCase : List[Any] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(UpperCAmelCase_ , 1 ): if n < _p: # then we have our last prime to check UpperCAmelCase : int = primes[:idx] break UpperCAmelCase , UpperCAmelCase : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: UpperCAmelCase : str = False for r in range(UpperCAmelCase_ ): UpperCAmelCase : str = pow(UpperCAmelCase_ , d * 2**r , UpperCAmelCase_ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): UpperCAmelCase : Any = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def UpperCamelCase( ): assert not miller_rabin(5_61 ) assert miller_rabin(5_63 ) # 2047 assert not miller_rabin(83_82_01 ) assert miller_rabin(83_82_07 ) # 1_373_653 assert not miller_rabin(17_31_60_01 ) assert miller_rabin(17_31_60_17 ) # 25_326_001 assert not miller_rabin(30_78_38_66_41 ) assert miller_rabin(30_78_38_66_53 ) # 3_215_031_751 assert not miller_rabin(1_71_30_45_57_48_01 ) assert miller_rabin(1_71_30_45_57_48_19 ) # 2_152_302_898_747 assert not miller_rabin(2_77_97_99_72_83_07 ) assert miller_rabin(2_77_97_99_72_83_27 ) # 3_474_749_660_383 assert not miller_rabin(1_13_85_00_23_90_94_41 ) assert miller_rabin(1_13_85_00_23_90_95_27 ) # 341_550_071_728_321 assert not miller_rabin(1_27_50_41_01_88_48_80_43_51 ) assert miller_rabin(1_27_50_41_01_88_48_80_43_91 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_96_66_46_44_58_50_77_87_79_18_67 ) assert miller_rabin(7_96_66_46_44_58_50_77_87_79_19_51 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(55_28_40_67_74_46_64_78_97_66_03_33 ) assert miller_rabin(55_28_40_67_74_46_64_78_97_66_03_59 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
695
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
1
'''simple docstring''' from collections import namedtuple lowercase__ = namedtuple("from_to", "from_ to") lowercase__ = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1000), "kilolitre": from_to(1, 1), "gallon": from_to(0.00454, 264.172), "cubicyard": from_to(0.76455, 1.30795), "cubicfoot": from_to(0.028, 35.3147), "cup": from_to(0.000236588, 4226.75), } def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ', '.join(UpperCAmelCase_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ', '.join(UpperCAmelCase_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
695
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase_ : Any = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase_ : int = False UpperCAmelCase_ : int = False def UpperCAmelCase_ ( self : Any , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Optional[int]=False ) -> Tuple: UpperCAmelCase : Tuple = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class in get_values(lowercase_ ): UpperCAmelCase : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class A_ ( _snake_case ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Tuple , lowercase_ : Any=13 , lowercase_ : str=7 , lowercase_ : Union[str, Any]=True , lowercase_ : Optional[int]=True , lowercase_ : Union[str, Any]=True , lowercase_ : Tuple=True , lowercase_ : Optional[int]=99 , lowercase_ : Tuple=32 , lowercase_ : int=32 , lowercase_ : List[str]=2 , lowercase_ : List[Any]=4 , lowercase_ : Tuple=37 , lowercase_ : Any="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : str=16 , lowercase_ : List[Any]=2 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : Dict=3 , lowercase_ : Tuple=4 , lowercase_ : Optional[Any]=None , ) -> List[Any]: UpperCAmelCase : List[Any] = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : str = seq_length UpperCAmelCase : Tuple = is_training UpperCAmelCase : Union[str, Any] = use_input_mask UpperCAmelCase : Optional[Any] = use_token_type_ids UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : int = hidden_act UpperCAmelCase : Optional[Any] = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Optional[Any] = max_position_embeddings UpperCAmelCase : Union[str, Any] = type_vocab_size UpperCAmelCase : int = type_sequence_label_size UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : Optional[int] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : int = scope UpperCAmelCase : Union[str, Any] = embedding_size def UpperCAmelCase_ ( self : Any ) -> Dict: UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : List[str] = None if self.use_input_mask: UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : List[Any] = None if self.use_token_type_ids: UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Dict = None UpperCAmelCase : str = None UpperCAmelCase : Optional[int] = None if self.use_labels: UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : str ) -> Optional[int]: UpperCAmelCase : int = TFMobileBertModel(config=lowercase_ ) UpperCAmelCase : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase : Any = model(lowercase_ ) UpperCAmelCase : Tuple = [input_ids, input_mask] UpperCAmelCase : Union[str, Any] = model(lowercase_ ) UpperCAmelCase : List[Any] = model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self : int , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : str , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Any ) -> List[str]: UpperCAmelCase : Dict = TFMobileBertForMaskedLM(config=lowercase_ ) UpperCAmelCase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase : Optional[int] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : Any , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Tuple ) -> Optional[int]: UpperCAmelCase : Optional[Any] = TFMobileBertForNextSentencePrediction(config=lowercase_ ) UpperCAmelCase : Dict = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase : Tuple = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : str , lowercase_ : Any , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : List[str] ) -> Union[str, Any]: UpperCAmelCase : int = TFMobileBertForPreTraining(config=lowercase_ ) UpperCAmelCase : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase : Tuple = model(lowercase_ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCAmelCase_ ( self : Dict , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : Optional[int] ) -> Dict: UpperCAmelCase : Any = self.num_labels UpperCAmelCase : str = TFMobileBertForSequenceClassification(config=lowercase_ ) UpperCAmelCase : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase : int = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : List[Any] ) -> List[Any]: UpperCAmelCase : Dict = self.num_choices UpperCAmelCase : Optional[int] = TFMobileBertForMultipleChoice(config=lowercase_ ) UpperCAmelCase : Optional[int] = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase : Any = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase : Any = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase : Any = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCAmelCase : Tuple = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self : int , lowercase_ : int , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str ) -> Dict: UpperCAmelCase : List[Any] = self.num_labels UpperCAmelCase : int = TFMobileBertForTokenClassification(config=lowercase_ ) UpperCAmelCase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase : Optional[Any] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Any ) -> str: UpperCAmelCase : Union[str, Any] = TFMobileBertForQuestionAnswering(config=lowercase_ ) UpperCAmelCase : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase : Union[str, Any] = model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: UpperCAmelCase : int = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : str = config_and_inputs UpperCAmelCase : str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Any ) -> Optional[int]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> List[Any]: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowercase_ ) def UpperCAmelCase_ ( self : Tuple ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowercase_ ) def UpperCAmelCase_ ( self : List[str] ) -> Any: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowercase_ ) @slow def UpperCAmelCase_ ( self : Optional[int] ) -> str: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: UpperCAmelCase : int = TFMobileBertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_tf class A_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self : List[Any] ) -> Dict: UpperCAmelCase : Union[str, Any] = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) UpperCAmelCase : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase : List[Any] = model(lowercase_ )[0] UpperCAmelCase : Union[str, Any] = [1, 6, 30_522] self.assertEqual(output.shape , lowercase_ ) UpperCAmelCase : Any = tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase_ , atol=1E-4 )
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , lowercase_ : Any , lowercase_ : int=13 , lowercase_ : Optional[int]=3 , lowercase_ : Union[str, Any]=224 , lowercase_ : int=30 , lowercase_ : Dict=400 , lowercase_ : Tuple=True , lowercase_ : str=None , lowercase_ : str=True , lowercase_ : int=[0.5, 0.5, 0.5] , lowercase_ : Tuple=[0.5, 0.5, 0.5] , ) -> Any: UpperCAmelCase : Tuple = size if size is not None else {'height': 18, 'width': 18} UpperCAmelCase : List[str] = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Any = image_size UpperCAmelCase : Any = min_resolution UpperCAmelCase : Optional[int] = max_resolution UpperCAmelCase : str = do_resize UpperCAmelCase : Tuple = size UpperCAmelCase : Optional[Any] = do_normalize UpperCAmelCase : Optional[Any] = image_mean UpperCAmelCase : int = image_std def UpperCAmelCase_ ( self : Tuple ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = ViTImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : Any ) -> Any: UpperCAmelCase : Any = EfficientFormerImageProcessorTester(self ) @property def UpperCAmelCase_ ( self : Dict ) -> Dict: return self.image_proc_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowercase_ , 'image_std' ) ) self.assertTrue(hasattr(lowercase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase_ , 'do_resize' ) ) self.assertTrue(hasattr(lowercase_ , 'size' ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: pass def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: # Initialize image_processor UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input UpperCAmelCase : Any = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched UpperCAmelCase : List[Any] = image_processor(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: # Initialize image_processor UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input UpperCAmelCase : Any = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched UpperCAmelCase : int = image_processor(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def UpperCAmelCase_ ( self : int ) -> Any: # Initialize image_processor UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input UpperCAmelCase : Tuple = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched UpperCAmelCase : Optional[int] = image_processor(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , )
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
1
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase( ): UpperCAmelCase : str = HfArgumentParser(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase : str = TensorFlowBenchmark(args=UpperCAmelCase_ ) try: UpperCAmelCase : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase : Optional[int] = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' UpperCAmelCase : Dict = ' '.join(str(UpperCAmelCase_ ).split(' ' )[:-1] ) UpperCAmelCase : Optional[int] = '' UpperCAmelCase : str = eval(str(UpperCAmelCase_ ).split(' ' )[-1] ) UpperCAmelCase : Optional[Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: UpperCAmelCase : Tuple = full_error_msg + begin_error_msg + str(UpperCAmelCase_ ) raise ValueError(UpperCAmelCase_ ) benchmark.run() if __name__ == "__main__": main()
695
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
1
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ ): if not nums: return 0 UpperCAmelCase : str = nums[0] UpperCAmelCase : Optional[int] = 0 for num in nums[1:]: UpperCAmelCase , UpperCAmelCase : str = ( max_excluding + num, max(UpperCAmelCase_ , UpperCAmelCase_ ), ) return max(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
695
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
1
'''simple docstring''' lowercase__ = {str(digit): digit**5 for digit in range(10)} def UpperCamelCase( UpperCAmelCase_ ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(UpperCAmelCase_ ) ) def UpperCamelCase( ): return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(UpperCAmelCase_ ) ) if __name__ == "__main__": print(solution())
695
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = ["""pixel_values"""] def __init__( self : List[Any] , lowercase_ : bool = True , lowercase_ : int = 32 , lowercase_ : Union[str, Any]=PILImageResampling.BILINEAR , lowercase_ : bool = True , **lowercase_ : Optional[Any] , ) -> None: UpperCAmelCase : List[Any] = do_resize UpperCAmelCase : int = do_rescale UpperCAmelCase : Tuple = size_divisor UpperCAmelCase : Any = resample super().__init__(**lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : np.ndarray , lowercase_ : int , lowercase_ : str , lowercase_ : Optional[ChannelDimension] = None , **lowercase_ : Tuple ) -> np.ndarray: UpperCAmelCase , UpperCAmelCase : Optional[Any] = get_image_size(lowercase_ ) # Rounds the height and width down to the closest multiple of size_divisor UpperCAmelCase : List[str] = height // size_divisor * size_divisor UpperCAmelCase : Union[str, Any] = width // size_divisor * size_divisor UpperCAmelCase : List[str] = resize(lowercase_ , (new_h, new_w) , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) return image def UpperCAmelCase_ ( self : Dict , lowercase_ : np.ndarray , lowercase_ : float , lowercase_ : Optional[ChannelDimension] = None , **lowercase_ : Optional[Any] ) -> np.ndarray: return rescale(image=lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , lowercase_ : Optional[bool] = None , lowercase_ : Optional[int] = None , lowercase_ : int=None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[Union[TensorType, str]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : List[Any] , ) -> BatchFeature: UpperCAmelCase : Dict = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Dict = size_divisor if size_divisor is not None else self.size_divisor UpperCAmelCase : Tuple = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) UpperCAmelCase : List[Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. UpperCAmelCase : Any = [to_numpy_array(lowercase_ ) for img in images] if do_resize: UpperCAmelCase : Union[str, Any] = [self.resize(lowercase_ , size_divisor=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: UpperCAmelCase : str = [self.rescale(lowercase_ , scale=1 / 255 ) for image in images] UpperCAmelCase : Dict = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] UpperCAmelCase : Tuple = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
695
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
1
'''simple docstring''' from __future__ import annotations class A_ : '''simple docstring''' def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Union[str, Any] = data UpperCAmelCase : Node | None = None UpperCAmelCase : Node | None = None def UpperCamelCase( UpperCAmelCase_ ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def UpperCamelCase( UpperCAmelCase_ ): return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def UpperCamelCase( UpperCAmelCase_ ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def UpperCamelCase( ): # Main function for testing. UpperCAmelCase : Optional[Any] = Node(1 ) UpperCAmelCase : Tuple = Node(2 ) UpperCAmelCase : List[str] = Node(3 ) UpperCAmelCase : Any = Node(4 ) UpperCAmelCase : Union[str, Any] = Node(5 ) UpperCAmelCase : Any = Node(6 ) UpperCAmelCase : Union[str, Any] = Node(7 ) UpperCAmelCase : List[Any] = Node(8 ) UpperCAmelCase : Tuple = Node(9 ) print(is_full_binary_tree(UpperCAmelCase_ ) ) print(depth_of_tree(UpperCAmelCase_ ) ) print('Tree is: ' ) display(UpperCAmelCase_ ) if __name__ == "__main__": main()
695
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
1
'''simple docstring''' from jiwer import compute_measures import datasets lowercase__ = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" lowercase__ = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" lowercase__ = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[int] ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Tuple=None , lowercase_ : str=None , lowercase_ : Optional[int]=False ) -> str: if concatenate_texts: return compute_measures(lowercase_ , lowercase_ )["wer"] else: UpperCAmelCase : int = 0 UpperCAmelCase : List[str] = 0 for prediction, reference in zip(lowercase_ , lowercase_ ): UpperCAmelCase : List[str] = compute_measures(lowercase_ , lowercase_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
695
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ = "▁" lowercase__ = {"vocab_file": "spiece.model"} lowercase__ = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } lowercase__ = { "google/pegasus-xsum": 512, } lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase_ : int = VOCAB_FILES_NAMES UpperCAmelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : Any , lowercase_ : int , lowercase_ : Optional[Any]="<pad>" , lowercase_ : Dict="</s>" , lowercase_ : int="<unk>" , lowercase_ : Optional[int]="<mask_2>" , lowercase_ : str="<mask_1>" , lowercase_ : List[str]=None , lowercase_ : List[Any]=103 , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : Union[str, Any] , ) -> None: UpperCAmelCase : Any = offset if additional_special_tokens is not None: if not isinstance(lowercase_ , lowercase_ ): raise TypeError( f"""additional_special_tokens should be of type {type(lowercase_ )}, but is""" f""" {type(lowercase_ )}""" ) UpperCAmelCase : Optional[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(lowercase_ ) , self.offset - 1 ) ] if len(set(lowercase_ ) ) != len(lowercase_ ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) UpperCAmelCase : Optional[Any] = additional_special_tokens_extended else: UpperCAmelCase : Dict = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] UpperCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase_ , unk_token=lowercase_ , mask_token=lowercase_ , pad_token=lowercase_ , mask_token_sent=lowercase_ , offset=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase : Dict = mask_token_sent UpperCAmelCase : Any = vocab_file UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) # add special tokens to encoder dict UpperCAmelCase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCAmelCase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def UpperCAmelCase_ ( self : Any ) -> int: return len(self.sp_model ) + self.offset def UpperCAmelCase_ ( self : str ) -> Dict[str, int]: UpperCAmelCase : List[str] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : Tuple = self.__dict__.copy() UpperCAmelCase : Optional[int] = None return state def __setstate__( self : List[str] , lowercase_ : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : str ) -> List[str]: return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCAmelCase_ ( self : Any , lowercase_ : str ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCAmelCase : Union[str, Any] = self.sp_model.piece_to_id(lowercase_ ) return sp_id + self.offset def UpperCAmelCase_ ( self : List[str] , lowercase_ : int ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCAmelCase : int = self.sp_model.IdToPiece(index - self.offset ) return token def UpperCAmelCase_ ( self : int , lowercase_ : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : str = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token UpperCAmelCase : Optional[int] = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def UpperCAmelCase_ ( self : int , lowercase_ : List[str]=False ) -> int: return 1 def UpperCAmelCase_ ( self : Tuple , lowercase_ : List[Any] ) -> Any: UpperCAmelCase : List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def UpperCAmelCase_ ( self : Dict , lowercase_ : List , lowercase_ : Optional[List] = None , lowercase_ : bool = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowercase_ ) elif token_ids_a is None: return self._special_token_mask(lowercase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCAmelCase_ ( self : Dict , lowercase_ : Tuple , lowercase_ : Any=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase_ ( self : List[str] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Union[str, Any] = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: UpperCAmelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' lowercase__ = 8.3144598 def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if temperature < 0: raise Exception('Temperature cannot be less than 0 K' ) if molar_mass <= 0: raise Exception('Molar mass cannot be less than or equal to 0 kg/mol' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example lowercase__ = 300 lowercase__ = 28 lowercase__ = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
695
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """dpr""" def __init__( self : Union[str, Any] , lowercase_ : Optional[int]=30_522 , lowercase_ : Any=768 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Dict=3_072 , lowercase_ : Optional[int]="gelu" , lowercase_ : Optional[Any]=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : Dict=512 , lowercase_ : Tuple=2 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : Dict=1E-12 , lowercase_ : Any=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : int = 0 , **lowercase_ : Optional[Any] , ) -> List[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : Tuple = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : int = intermediate_size UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : List[str] = max_position_embeddings UpperCAmelCase : Optional[int] = type_vocab_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = projection_dim UpperCAmelCase : Dict = position_embedding_type
695
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if index == r: for j in range(UpperCAmelCase_ ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCAmelCase : str = arr[i] combination_util(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , index + 1 , UpperCAmelCase_ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): # A temporary array to store all combination one by one UpperCAmelCase : str = [0] * r # Print all combination using temporary array 'data[]' combination_util(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , 0 , UpperCAmelCase_ , 0 ) if __name__ == "__main__": # Driver code to check the function above lowercase__ = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
695
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
1
'''simple docstring''' import json import sys def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): with open(UpperCAmelCase_ , encoding='utf-8' ) as f: UpperCAmelCase : Optional[Any] = json.load(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = results[benchmark_name] UpperCAmelCase : List[str] = benchmark_name.split('/' )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) UpperCAmelCase : Union[str, Any] = '| metric |' UpperCAmelCase : List[Any] = '|--------|' UpperCAmelCase : int = '| new / old (diff) |' for metric_name in sorted(UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = benchmark_res[metric_name] UpperCAmelCase : List[Any] = metric_vals['new'] UpperCAmelCase : Any = metric_vals.get('old' , UpperCAmelCase_ ) UpperCAmelCase : int = metric_vals.get('diff' , UpperCAmelCase_ ) UpperCAmelCase : Dict = F""" {new_val:f}""" if isinstance(UpperCAmelCase_ , (int, float) ) else 'None' if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(UpperCAmelCase_ , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(UpperCAmelCase_ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(UpperCAmelCase_ ) ) if __name__ == "__main__": lowercase__ = sys.argv[1] lowercase__ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
1
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , ): if config_name_or_path is None: UpperCAmelCase : Any = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: UpperCAmelCase : Tuple = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: UpperCAmelCase : Union[str, Any] = question_encoder_name_or_path UpperCAmelCase : Dict = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. UpperCAmelCase : List[str] = RagConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : Dict = AutoConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : Tuple = AutoConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : Dict = gen_config UpperCAmelCase : Any = question_encoder_config UpperCAmelCase : str = model_class.from_pretrained_question_encoder_generator( UpperCAmelCase_ , UpperCAmelCase_ , config=UpperCAmelCase_ ) rag_model.save_pretrained(UpperCAmelCase_ ) # Sanity check. model_class.from_pretrained(UpperCAmelCase_ ) # Save tokenizers. UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) lowercase__ = parser.parse_args() lowercase__ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
695
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
1
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): # Initialise PyTorch model UpperCAmelCase : Optional[Any] = BigBirdConfig.from_json_file(UpperCAmelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase : List[str] = BigBirdForQuestionAnswering(UpperCAmelCase_ ) else: UpperCAmelCase : List[Any] = BigBirdForPreTraining(UpperCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(UpperCAmelCase_ , UpperCAmelCase_ , is_trivia_qa=UpperCAmelCase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) lowercase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
695
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
1
'''simple docstring''' import os from math import logaa def UpperCamelCase( UpperCAmelCase_ = "base_exp.txt" ): UpperCAmelCase : float = 0 UpperCAmelCase : Any = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ): UpperCAmelCase , UpperCAmelCase : int = list(map(UpperCAmelCase_ , line.split(',' ) ) ) if x * logaa(UpperCAmelCase_ ) > largest: UpperCAmelCase : List[Any] = x * logaa(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = i + 1 return result if __name__ == "__main__": print(solution())
695
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowercase__ = logging.get_logger(__name__) @dataclass class A_ : '''simple docstring''' def __init__( self : Any , lowercase_ : List[Any]=False , lowercase_ : int=False , lowercase_ : str=6.0 , lowercase_ : int=None , lowercase_ : List[str]=False , lowercase_ : Dict=False , lowercase_ : str=None , lowercase_ : Any="fp4" , lowercase_ : Optional[Any]=False , **lowercase_ : Union[str, Any] , ) -> int: UpperCAmelCase : Optional[int] = load_in_abit UpperCAmelCase : Union[str, Any] = load_in_abit UpperCAmelCase : Tuple = llm_inta_threshold UpperCAmelCase : int = llm_inta_skip_modules UpperCAmelCase : str = llm_inta_enable_fpaa_cpu_offload UpperCAmelCase : str = llm_inta_has_fpaa_weight UpperCAmelCase : List[Any] = bnb_abit_quant_type UpperCAmelCase : Optional[int] = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: UpperCAmelCase : Any = torch.floataa elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Optional[Any] = getattr(lowercase_ , lowercase_ ) elif isinstance(lowercase_ , torch.dtype ): UpperCAmelCase : List[Any] = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def UpperCAmelCase_ ( self : int ) -> Tuple: if not isinstance(self.llm_inta_threshold , lowercase_ ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , lowercase_ ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , lowercase_ ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , lowercase_ ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , lowercase_ ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , lowercase_ ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def UpperCAmelCase_ ( self : int ) -> Any: return self.load_in_abit or self.load_in_abit def UpperCAmelCase_ ( self : int ) -> List[str]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]: UpperCAmelCase : int = cls(**lowercase_ ) UpperCAmelCase : Dict = [] for key, value in kwargs.items(): if hasattr(lowercase_ , lowercase_ ): setattr(lowercase_ , lowercase_ , lowercase_ ) to_remove.append(lowercase_ ) for key in to_remove: kwargs.pop(lowercase_ , lowercase_ ) if return_unused_kwargs: return config, kwargs else: return config def UpperCAmelCase_ ( self : Any , lowercase_ : Union[str, os.PathLike] ) -> List[str]: with open(lowercase_ , 'w' , encoding='utf-8' ) as writer: UpperCAmelCase : Tuple = self.to_dict() UpperCAmelCase : int = json.dumps(lowercase_ , indent=2 , sort_keys=lowercase_ ) + '\n' writer.write(lowercase_ ) def UpperCAmelCase_ ( self : List[str] ) -> Dict[str, Any]: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[Any] = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self : Union[str, Any] ) -> Optional[Any]: return f"""{self.__class__.__name__} {self.to_json_string()}""" def UpperCAmelCase_ ( self : int , lowercase_ : bool = True ) -> str: if use_diff is True: UpperCAmelCase : str = self.to_diff_dict() else: UpperCAmelCase : List[str] = self.to_dict() return json.dumps(lowercase_ , indent=2 , sort_keys=lowercase_ ) + "\n" def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: UpperCAmelCase : List[str] = self.to_dict() # get the default config dict UpperCAmelCase : Any = BitsAndBytesConfig().to_dict() UpperCAmelCase : Optional[Any] = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: UpperCAmelCase : Any = value return serializable_config_dict
695
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """trajectory_transformer""" UpperCAmelCase_ : Any = ["""past_key_values"""] UpperCAmelCase_ : Any = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[Any] , lowercase_ : List[Any]=100 , lowercase_ : Dict=5 , lowercase_ : Optional[int]=1 , lowercase_ : int=1 , lowercase_ : int=249 , lowercase_ : Any=6 , lowercase_ : Tuple=17 , lowercase_ : Dict=25 , lowercase_ : List[Any]=4 , lowercase_ : Tuple=4 , lowercase_ : Dict=128 , lowercase_ : List[str]=0.1 , lowercase_ : int=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : int=0.0006 , lowercase_ : int=512 , lowercase_ : int=0.02 , lowercase_ : Dict=1E-12 , lowercase_ : List[str]=1 , lowercase_ : Union[str, Any]=True , lowercase_ : Tuple=1 , lowercase_ : Any=50_256 , lowercase_ : Optional[Any]=50_256 , **lowercase_ : Any , ) -> int: UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : Optional[Any] = action_weight UpperCAmelCase : Tuple = reward_weight UpperCAmelCase : Union[str, Any] = value_weight UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : Tuple = block_size UpperCAmelCase : Optional[int] = action_dim UpperCAmelCase : Tuple = observation_dim UpperCAmelCase : Any = transition_dim UpperCAmelCase : Dict = learning_rate UpperCAmelCase : Any = n_layer UpperCAmelCase : str = n_head UpperCAmelCase : Optional[int] = n_embd UpperCAmelCase : List[str] = embd_pdrop UpperCAmelCase : Union[str, Any] = attn_pdrop UpperCAmelCase : str = resid_pdrop UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Dict = layer_norm_eps UpperCAmelCase : Optional[Any] = kaiming_initializer_range UpperCAmelCase : Union[str, Any] = use_cache super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
695
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
1
'''simple docstring''' from timeit import timeit lowercase__ = { "MALAYALAM": True, "String": False, "rotor": True, "level": True, "A": True, "BB": True, "ABC": False, "amanaplanacanalpanama": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : str = len(UpperCAmelCase_ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[Any] = len(UpperCAmelCase_ ) // 2 UpperCAmelCase : int = len(UpperCAmelCase_ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(UpperCAmelCase_ ) ) def UpperCamelCase( UpperCAmelCase_ ): if len(UpperCAmelCase_ ) <= 2: return True if s[0] == s[len(UpperCAmelCase_ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def UpperCamelCase( UpperCAmelCase_ ): return s == s[::-1] def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = F"""all({name}(key) is value for key, value in test_data.items())""" UpperCAmelCase : Optional[int] = F"""from __main__ import test_data, {name}""" UpperCAmelCase : List[str] = 50_00_00 UpperCAmelCase : List[Any] = timeit(stmt=UpperCAmelCase_ , setup=UpperCAmelCase_ , number=UpperCAmelCase_ ) print(F"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f'''{key:21} {value}''') print("a man a plan a canal panama") # finished 500,000 runs in 0.46793 seconds benchmark_function("is_palindrome_slice") # finished 500,000 runs in 0.85234 seconds benchmark_function("is_palindrome") # finished 500,000 runs in 1.32028 seconds benchmark_function("is_palindrome_recursive") # finished 500,000 runs in 2.08679 seconds benchmark_function("is_palindrome_traversal")
695
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
1
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase__ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class A_ ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCAmelCase_ ( cls : int ) -> Dict: UpperCAmelCase : Union[str, Any] = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def UpperCAmelCase_ ( cls : Tuple ) -> Any: try: delete_repo(token=cls._token , repo_id='test-model-flax' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-model-flax-org' ) except HTTPError: pass def UpperCAmelCase_ ( self : Tuple ) -> Dict: UpperCAmelCase : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : str = FlaxBertModel(lowercase_ ) model.push_to_hub('test-model-flax' , use_auth_token=self._token ) UpperCAmelCase : Any = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) UpperCAmelCase : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : List[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1E-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='test-model-flax' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase_ , repo_id='test-model-flax' , push_to_hub=lowercase_ , use_auth_token=self._token ) UpperCAmelCase : Optional[int] = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) UpperCAmelCase : List[str] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Union[str, Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1E-3 , msg=f"""{key} not identical""" ) def UpperCAmelCase_ ( self : str ) -> List[Any]: UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Optional[Any] = FlaxBertModel(lowercase_ ) model.push_to_hub('valid_org/test-model-flax-org' , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) UpperCAmelCase : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : str = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1E-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-model-flax-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowercase_ , repo_id='valid_org/test-model-flax-org' , push_to_hub=lowercase_ , use_auth_token=self._token ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) UpperCAmelCase : Union[str, Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Dict = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : List[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1E-3 , msg=f"""{key} not identical""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = True UpperCAmelCase : str = flatten_dict(modela.params ) UpperCAmelCase : Tuple = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: UpperCAmelCase : Optional[int] = False return models_are_equal @require_flax class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : List[str] ) -> Dict: UpperCAmelCase : str = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) UpperCAmelCase : List[str] = FlaxBertModel(lowercase_ ) UpperCAmelCase : List[Any] = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowercase_ , lowercase_ ) ) with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = FlaxBertModel.from_pretrained(lowercase_ ) UpperCAmelCase : int = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertTrue(check_models_equal(lowercase_ , lowercase_ ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: UpperCAmelCase : int = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) UpperCAmelCase : Optional[int] = FlaxBertModel(lowercase_ ) UpperCAmelCase : int = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowercase_ , lowercase_ ) , max_shard_size='10KB' ) with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(lowercase_ ) UpperCAmelCase : List[str] = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertTrue(check_models_equal(lowercase_ , lowercase_ ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: UpperCAmelCase : List[Any] = 'bert' UpperCAmelCase : Any = 'hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(lowercase_ ): UpperCAmelCase : Optional[int] = FlaxBertModel.from_pretrained(lowercase_ ) UpperCAmelCase : List[Any] = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> int: UpperCAmelCase : Any = 'bert' UpperCAmelCase : str = 'hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(lowercase_ ): UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(lowercase_ ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertIsNotNone(lowercase_ )
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' import pytest lowercase__ = "__dummy_dataset1__" lowercase__ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def UpperCamelCase( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = dataset_loading_script_name UpperCAmelCase : Tuple = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=UpperCAmelCase_ ) UpperCAmelCase : Any = script_dir / F"""{script_name}.py""" with open(UpperCAmelCase_ , 'w' ) as f: f.write(UpperCAmelCase_ ) return str(UpperCAmelCase_ )
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
1
'''simple docstring''' import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowercase__ = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowercase__ = "main" # Default branch name lowercase__ = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) lowercase__ = "aaaaaaa" # This commit does not exist, so we should 404. lowercase__ = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes lowercase__ = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def UpperCamelCase( ): print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def UpperCamelCase( ): print('Bonjour!' ) yield print('Au revoir!' ) class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class A_ ( unittest.TestCase ): '''simple docstring''' @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> str: with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , 'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def UpperCAmelCase_ ( self : Dict , lowercase_ : Union[str, Any] ) -> int: with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] ) -> List[str]: with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: self.assertEqual(find_labels(lowercase_ ) , ['labels'] ) self.assertEqual(find_labels(lowercase_ ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(lowercase_ ) , ['start_positions', 'end_positions'] ) class A_ ( _snake_case ): '''simple docstring''' pass self.assertEqual(find_labels(lowercase_ ) , ['labels'] ) @require_tf def UpperCAmelCase_ ( self : Optional[int] ) -> str: self.assertEqual(find_labels(lowercase_ ) , ['labels'] ) self.assertEqual(find_labels(lowercase_ ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(lowercase_ ) , ['start_positions', 'end_positions'] ) class A_ ( _snake_case ): '''simple docstring''' pass self.assertEqual(find_labels(lowercase_ ) , ['labels'] ) @require_flax def UpperCAmelCase_ ( self : str ) -> int: # Flax models don't have labels self.assertEqual(find_labels(lowercase_ ) , [] ) self.assertEqual(find_labels(lowercase_ ) , [] ) self.assertEqual(find_labels(lowercase_ ) , [] ) class A_ ( _snake_case ): '''simple docstring''' pass self.assertEqual(find_labels(lowercase_ ) , [] )
695
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black lowercase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowercase__ = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: UpperCAmelCase : Union[str, Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) UpperCAmelCase : int = self.transformer_dir shutil.copy( os.path.join(lowercase_ , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : Optional[Any] = 'src/transformers' shutil.rmtree(self.transformer_dir ) def UpperCAmelCase_ ( self : int , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Union[str, Any]=None ) -> Tuple: UpperCAmelCase : List[str] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: UpperCAmelCase : Optional[int] = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result UpperCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) UpperCAmelCase : Union[str, Any] = black.format_str(lowercase_ , mode=lowercase_ ) UpperCAmelCase : str = os.path.join(self.transformer_dir , 'new_code.py' ) with open(lowercase_ , 'w' , newline='\n' ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , 'r' ) as f: self.assertTrue(f.read() , lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: UpperCAmelCase : int = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Tuple ) -> List[str]: # Base copy consistency self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , lowercase_ ) , ) # Copy consistency with a really long name UpperCAmelCase : Optional[int] = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , f"""{long_class_name}LMPredictionHead""" , re.sub('Bert' , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , lowercase_ , overwrite_result=re.sub('Bert' , 'TestModel' , lowercase_ ) , ) def UpperCAmelCase_ ( self : Dict ) -> Any: UpperCAmelCase : Dict = check_copies.LOCALIZED_READMES['README_zh-hans.md'] UpperCAmelCase : Tuple = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) UpperCAmelCase : Dict = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) UpperCAmelCase : Optional[int] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) UpperCAmelCase , UpperCAmelCase : List[str] = check_copies.convert_to_localized_md( lowercase_ , lowercase_ , localized_readme['format_model_list'] ) self.assertFalse(lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[int] = check_copies.convert_to_localized_md( lowercase_ , lowercase_ , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowercase_ ) UpperCAmelCase : str = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) UpperCAmelCase : Union[str, Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) UpperCAmelCase : Union[str, Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = check_copies.convert_to_localized_md( lowercase_ , lowercase_ , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(lowercase_ , lowercase_ )
695
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 0 UpperCAmelCase : Any = len(UpperCAmelCase_ ) # No of vertices in graph UpperCAmelCase : int = [0] * n UpperCAmelCase : List[str] = [False] * n def dfs(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = True UpperCAmelCase : List[str] = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , id_ ) UpperCAmelCase : List[str] = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge UpperCAmelCase : Union[str, Any] = min(low[at] , low[to] ) UpperCAmelCase : list[tuple[int, int]] = [] for i in range(UpperCAmelCase_ ): if not visited[i]: dfs(UpperCAmelCase_ , -1 , UpperCAmelCase_ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
695
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
1