code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class A_ ( _UpperCAmelCase ): '''simple docstring''' def __init__( self : List[str] , lowercase_ : Distribution , lowercase_ : Optional[int]=None , lowercase_ : Optional[Any]=None , lowercase_ : Union[str, Any]=0 ) -> Optional[int]: UpperCAmelCase : str = 1.0 if scale is None else scale UpperCAmelCase : List[Any] = 0.0 if loc is None else loc super().__init__(A_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=A_ )] ) @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase_ ( self : Any ) -> str: return self.variance.sqrt() class A_ ( nn.Module ): '''simple docstring''' def __init__( self : Any , lowercase_ : int , lowercase_ : Dict[str, int] , lowercase_ : Callable[..., Tuple[torch.Tensor]] , **lowercase_ : int ) -> None: super().__init__(**A_ ) UpperCAmelCase : List[Any] = args_dim UpperCAmelCase : Optional[Any] = nn.ModuleList([nn.Linear(A_ , A_ ) for dim in args_dim.values()] ) UpperCAmelCase : Optional[Any] = domain_map def UpperCAmelCase_ ( self : str , lowercase_ : torch.Tensor ) -> Tuple[torch.Tensor]: UpperCAmelCase : Optional[int] = [proj(A_ ) for proj in self.proj] return self.domain_map(*A_ ) class A_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : Union[str, Any] ) -> int: super().__init__() UpperCAmelCase : int = function def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict , *lowercase_ : Optional[Any] ) -> Optional[Any]: return self.function(A_ , *A_ ) class A_ : '''simple docstring''' UpperCAmelCase_ : type UpperCAmelCase_ : int UpperCAmelCase_ : Dict[str, int] def __init__( self : Optional[int] , lowercase_ : int = 1 ) -> None: UpperCAmelCase : str = dim UpperCAmelCase : Optional[Any] = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase_ ( self : str , lowercase_ : Optional[int] ) -> List[str]: if self.dim == 1: return self.distribution_class(*A_ ) else: return Independent(self.distribution_class(*A_ ) , 1 ) def UpperCAmelCase_ ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Optional[torch.Tensor] = None , lowercase_ : Optional[torch.Tensor] = None , ) -> Distribution: UpperCAmelCase : Tuple = self._base_distribution(A_ ) if loc is None and scale is None: return distr else: return AffineTransformed(A_ , loc=A_ , scale=A_ , event_dim=self.event_dim ) @property def UpperCAmelCase_ ( self : str ) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase_ ( self : str ) -> int: return len(self.event_shape ) @property def UpperCAmelCase_ ( self : Any ) -> float: return 0.0 def UpperCAmelCase_ ( self : List[str] , lowercase_ : int ) -> nn.Module: return ParameterProjection( in_features=A_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def UpperCAmelCase_ ( self : str , *lowercase_ : torch.Tensor ) -> Optional[int]: raise NotImplementedError() @staticmethod def UpperCAmelCase_ ( lowercase_ : torch.Tensor ) -> torch.Tensor: return (x + torch.sqrt(torch.square(A_ ) + 4.0 )) / 2.0 class A_ ( _UpperCAmelCase ): '''simple docstring''' UpperCAmelCase_ : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} UpperCAmelCase_ : type = StudentT @classmethod def UpperCAmelCase_ ( cls : Optional[int] , lowercase_ : torch.Tensor , lowercase_ : torch.Tensor , lowercase_ : torch.Tensor ) -> Tuple: UpperCAmelCase : List[Any] = cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCAmelCase : List[str] = 2.0 + cls.squareplus(A_ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class A_ ( _UpperCAmelCase ): '''simple docstring''' UpperCAmelCase_ : Dict[str, int] = {"loc": 1, "scale": 1} UpperCAmelCase_ : type = Normal @classmethod def UpperCAmelCase_ ( cls : Any , lowercase_ : torch.Tensor , lowercase_ : torch.Tensor ) -> List[str]: UpperCAmelCase : List[Any] = cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class A_ ( _UpperCAmelCase ): '''simple docstring''' UpperCAmelCase_ : Dict[str, int] = {"total_count": 1, "logits": 1} UpperCAmelCase_ : type = NegativeBinomial @classmethod def UpperCAmelCase_ ( cls : Union[str, Any] , lowercase_ : torch.Tensor , lowercase_ : torch.Tensor ) -> str: UpperCAmelCase : Optional[int] = cls.squareplus(A_ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Union[str, Any] ) -> Distribution: UpperCAmelCase , UpperCAmelCase : Dict = distr_args if self.dim == 1: return self.distribution_class(total_count=A_ , logits=A_ ) else: return Independent(self.distribution_class(total_count=A_ , logits=A_ ) , 1 ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[torch.Tensor] = None , lowercase_ : Optional[torch.Tensor] = None ) -> Distribution: UpperCAmelCase , UpperCAmelCase : List[Any] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
705
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
0
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def UpperCamelCase( UpperCAmelCase_ ): def is_in_circle(UpperCAmelCase_ , UpperCAmelCase_ ) -> bool: UpperCAmelCase : str = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCAmelCase : Optional[Any] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) # The ratio of the area for circle to square is pi/4. UpperCAmelCase : Optional[Any] = proportion * 4 print(F"""The estimated value of pi is {pi_estimate}""" ) print(F"""The numpy value of pi is {pi}""" ) print(F"""The total error is {abs(pi - pi_estimate )}""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 0.0 , UpperCAmelCase_ = 1.0 , ): return mean( function_to_integrate(uniform(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) * (max_value - min_value) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ = 0.0 , UpperCAmelCase_ = 1.0 ): def identity_function(UpperCAmelCase_ ) -> float: return x UpperCAmelCase : Tuple = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {expected_value}""" ) print(F"""Total error is {abs(estimated_value - expected_value )}""" ) print('******************' ) def UpperCamelCase( UpperCAmelCase_ ): def function_to_integrate(UpperCAmelCase_ ) -> float: return sqrt(4.0 - x * x ) UpperCAmelCase : Optional[Any] = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {pi}""" ) print(F"""Total error is {abs(estimated_value - pi )}""" ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
0
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = F"""{sampling_rate}""" UpperCAmelCase : List[Any] = """1""" UpperCAmelCase : Optional[int] = """f32le""" UpperCAmelCase : str = [ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(UpperCAmelCase_ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCAmelCase : Dict = ffmpeg_process.communicate(UpperCAmelCase_ ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error UpperCAmelCase : Any = output_stream[0] UpperCAmelCase : Optional[Any] = np.frombuffer(UpperCAmelCase_ , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = "f32le" , ): UpperCAmelCase : int = F"""{sampling_rate}""" UpperCAmelCase : Dict = """1""" if format_for_conversion == "s16le": UpperCAmelCase : str = 2 elif format_for_conversion == "f32le": UpperCAmelCase : Any = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) UpperCAmelCase : List[str] = platform.system() if system == "Linux": UpperCAmelCase : str = """alsa""" UpperCAmelCase : Dict = """default""" elif system == "Darwin": UpperCAmelCase : Optional[int] = """avfoundation""" UpperCAmelCase : Optional[int] = """:0""" elif system == "Windows": UpperCAmelCase : str = """dshow""" UpperCAmelCase : Tuple = """default""" UpperCAmelCase : Tuple = [ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] UpperCAmelCase : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCAmelCase : Dict = _ffmpeg_stream(UpperCAmelCase_ , UpperCAmelCase_ ) for item in iterator: yield item def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = "f32le" , ): if stream_chunk_s is not None: UpperCAmelCase : Optional[Any] = stream_chunk_s else: UpperCAmelCase : Union[str, Any] = chunk_length_s UpperCAmelCase : Any = ffmpeg_microphone(UpperCAmelCase_ , UpperCAmelCase_ , format_for_conversion=UpperCAmelCase_ ) if format_for_conversion == "s16le": UpperCAmelCase : Any = np.intaa UpperCAmelCase : List[Any] = 2 elif format_for_conversion == "f32le": UpperCAmelCase : Dict = np.floataa UpperCAmelCase : Tuple = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: UpperCAmelCase : List[Any] = chunk_length_s / 6 UpperCAmelCase : Optional[Any] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(UpperCAmelCase_ , (int, float) ): UpperCAmelCase : List[Any] = [stride_length_s, stride_length_s] UpperCAmelCase : int = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCAmelCase : Optional[Any] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCAmelCase : int = datetime.datetime.now() UpperCAmelCase : Optional[int] = datetime.timedelta(seconds=UpperCAmelCase_ ) for item in chunk_bytes_iter(UpperCAmelCase_ , UpperCAmelCase_ , stride=(stride_left, stride_right) , stream=UpperCAmelCase_ ): # Put everything back in numpy scale UpperCAmelCase : Optional[int] = np.frombuffer(item['raw'] , dtype=UpperCAmelCase_ ) UpperCAmelCase : List[str] = ( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) UpperCAmelCase : int = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = False ): UpperCAmelCase : Optional[Any] = B"""""" UpperCAmelCase : str = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) UpperCAmelCase : List[str] = 0 for raw in iterator: acc += raw if stream and len(UpperCAmelCase_ ) < chunk_len: UpperCAmelCase : Any = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(UpperCAmelCase_ ) >= chunk_len: # We are flushing the accumulator UpperCAmelCase : List[str] = (_stride_left, stride_right) UpperCAmelCase : Optional[int] = {"""raw""": acc[:chunk_len], """stride""": stride} if stream: UpperCAmelCase : Any = False yield item UpperCAmelCase : str = stride_left UpperCAmelCase : Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(UpperCAmelCase_ ) > stride_left: UpperCAmelCase : List[str] = {"""raw""": acc, """stride""": (_stride_left, 0)} if stream: UpperCAmelCase : List[str] = False yield item def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = 2**24 # 16Mo try: with subprocess.Popen(UpperCAmelCase_ , stdout=subprocess.PIPE , bufsize=UpperCAmelCase_ ) as ffmpeg_process: while True: UpperCAmelCase : List[str] = ffmpeg_process.stdout.read(UpperCAmelCase_ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
708
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
0
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCAmelCase : int = list(lowerCAmelCase__ ) UpperCAmelCase : Tuple = list(lowerCAmelCase__ ) UpperCAmelCase : Optional[Any] = 0 for i in range(len(lowerCAmelCase__ ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Dict = '_' if count > 1: return False else: return "".join(lowerCAmelCase__ ) def UpperCamelCase( UpperCAmelCase_ ): '''simple docstring''' UpperCAmelCase : Any = [] while True: UpperCAmelCase : List[Any] = ['$'] * len(lowerCAmelCase__ ) UpperCAmelCase : int = [] for i in range(len(lowerCAmelCase__ ) ): for j in range(i + 1 , len(lowerCAmelCase__ ) ): UpperCAmelCase : Optional[Any] = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = '*' UpperCAmelCase : Any = '*' temp.append('X' ) for i in range(len(lowerCAmelCase__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowerCAmelCase__ ) == 0: return pi UpperCAmelCase : List[str] = list(set(lowerCAmelCase__ ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCAmelCase : Any = [] for minterm in minterms: UpperCAmelCase : Any = '' for _ in range(lowerCAmelCase__ ): UpperCAmelCase : List[str] = str(minterm % 2 ) + string minterm //= 2 temp.append(lowerCAmelCase__ ) return temp def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCAmelCase : List[Any] = list(lowerCAmelCase__ ) UpperCAmelCase : Any = list(lowerCAmelCase__ ) UpperCAmelCase : List[str] = 0 for i in range(len(lowerCAmelCase__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCAmelCase : List[str] = [] UpperCAmelCase : str = [0] * len(lowerCAmelCase__ ) for i in range(len(chart[0] ) ): UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : Optional[int] = -1 for j in range(len(lowerCAmelCase__ ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : Tuple = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(lowerCAmelCase__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowerCAmelCase__ ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : List[str] = -1 UpperCAmelCase : Tuple = 0 for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase : Optional[int] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : str = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowerCAmelCase__ ) ): UpperCAmelCase : str = 0 def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCAmelCase : Dict = [[0 for x in range(len(lowerCAmelCase__ ) )] for x in range(len(lowerCAmelCase__ ) )] for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase : List[Any] = prime_implicants[i].count('_' ) for j in range(len(lowerCAmelCase__ ) ): if is_for_table(prime_implicants[i] , binary[j] , lowerCAmelCase__ ): UpperCAmelCase : Optional[int] = 1 return chart def UpperCamelCase( ): '''simple docstring''' UpperCAmelCase : Any = int(input('Enter the no. of variables\n' ) ) UpperCAmelCase : str = [ float(lowerCAmelCase__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] UpperCAmelCase : str = decimal_to_binary(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : List[Any] = check(lowerCAmelCase__ ) print('Prime Implicants are:' ) print(lowerCAmelCase__ ) UpperCAmelCase : Dict = prime_implicant_chart(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Union[str, Any] = selection(lowerCAmelCase__ , lowerCAmelCase__ ) print('Essential Prime Implicants are:' ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
709
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' from collections.abc import Sequence def UpperCamelCase( UpperCAmelCase_ = None ): if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) UpperCAmelCase : Dict = nums[0] for i in range(1 , len(UpperCAmelCase_ ) ): UpperCAmelCase : Tuple = nums[i] UpperCAmelCase : int = max(UpperCAmelCase_ , ans + num , UpperCAmelCase_ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowercase__ : Optional[Any] = int(input("Enter number of elements : ").strip()) lowercase__ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
710
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class A_ ( lowercase_ ): '''simple docstring''' UpperCAmelCase_ : List[str] = '''dpr''' def __init__( self : List[Any] , lowercase_ : int=30_522 , lowercase_ : str=768 , lowercase_ : str=12 , lowercase_ : Any=12 , lowercase_ : Optional[int]=3_072 , lowercase_ : str="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : Any=0.1 , lowercase_ : List[str]=512 , lowercase_ : Union[str, Any]=2 , lowercase_ : Dict=0.02 , lowercase_ : List[str]=1E-12 , lowercase_ : str=0 , lowercase_ : Tuple="absolute" , lowercase_ : int = 0 , **lowercase_ : Union[str, Any] , ) -> List[str]: super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ ) UpperCAmelCase : List[str] = vocab_size UpperCAmelCase : Any = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = type_vocab_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Optional[int] = projection_dim UpperCAmelCase : int = position_embedding_type
711
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
0
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCamelCase( UpperCAmelCase_ ): return EnvironmentCommand() def UpperCamelCase( UpperCAmelCase_ ): return EnvironmentCommand(args.accelerate_config_file ) class A_ ( __UpperCAmelCase ): '''simple docstring''' @staticmethod def UpperCAmelCase_ ( lowercase_ : ArgumentParser ) -> str: UpperCAmelCase : Optional[int] = parser.add_parser('env' ) download_parser.set_defaults(func=lowerCAmelCase_ ) download_parser.add_argument( '--accelerate-config_file' , default=lowerCAmelCase_ , help='The accelerate config file to use for the default values in the launching script.' , ) download_parser.set_defaults(func=lowerCAmelCase_ ) def __init__( self : Any , lowercase_ : Optional[Any] , *lowercase_ : Optional[Any] ) -> Any: UpperCAmelCase : Any = accelerate_config_file def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: UpperCAmelCase : int = 'not installed' if is_safetensors_available(): import safetensors UpperCAmelCase : Dict = safetensors.__version__ elif importlib.util.find_spec('safetensors' ) is not None: import safetensors UpperCAmelCase : Tuple = f"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" UpperCAmelCase : Tuple = 'not installed' UpperCAmelCase : Optional[Any] = 'not found' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file UpperCAmelCase : Dict = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(lowerCAmelCase_ ): UpperCAmelCase : int = load_config_from_file(self._accelerate_config_file ).to_dict() UpperCAmelCase : Optional[Any] = ( '\n'.join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else f"""\t{accelerate_config}""" ) UpperCAmelCase : List[Any] = 'not installed' UpperCAmelCase : List[str] = 'NA' if is_torch_available(): import torch UpperCAmelCase : Optional[Any] = torch.__version__ UpperCAmelCase : List[Any] = torch.cuda.is_available() UpperCAmelCase : Tuple = 'not installed' UpperCAmelCase : List[str] = 'NA' if is_tf_available(): import tensorflow as tf UpperCAmelCase : Optional[int] = tf.__version__ try: # deprecated in v2.1 UpperCAmelCase : List[Any] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool UpperCAmelCase : List[Any] = bool(tf.config.list_physical_devices('GPU' ) ) UpperCAmelCase : List[Any] = 'not installed' UpperCAmelCase : str = 'not installed' UpperCAmelCase : Dict = 'not installed' UpperCAmelCase : Tuple = 'NA' if is_flax_available(): import flax import jax import jaxlib UpperCAmelCase : int = flax.__version__ UpperCAmelCase : List[Any] = jax.__version__ UpperCAmelCase : List[Any] = jaxlib.__version__ UpperCAmelCase : int = jax.lib.xla_bridge.get_backend().platform UpperCAmelCase : Tuple = { '`transformers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Huggingface_hub version': huggingface_hub.__version__, 'Safetensors version': f"""{safetensors_version}""", 'Accelerate version': f"""{accelerate_version}""", 'Accelerate config': f"""{accelerate_config_str}""", 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Tensorflow version (GPU?)': f"""{tf_version} ({tf_cuda_available})""", 'Flax version (CPU?/GPU?/TPU?)': f"""{flax_version} ({jax_backend})""", 'Jax version': f"""{jax_version}""", 'JaxLib version': f"""{jaxlib_version}""", 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(lowerCAmelCase_ ) ) return info @staticmethod def UpperCAmelCase_ ( lowercase_ : Union[str, Any] ) -> Tuple: return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
712
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
0
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=True , UpperCAmelCase_="pt" ): UpperCAmelCase : int = {'''add_prefix_space''': True} if isinstance(a_ , a_ ) and not line.startswith(' ' ) else {} UpperCAmelCase : str = padding_side return tokenizer( [line] , max_length=a_ , padding='max_length' if pad_to_max_length else None , truncation=a_ , return_tensors=a_ , add_special_tokens=a_ , **a_ , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , ): UpperCAmelCase : Tuple = input_ids.ne(a_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class A_ ( _UpperCamelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]="train" , lowercase_ : Any=None , lowercase_ : int=None , lowercase_ : Tuple=None , lowercase_ : List[Any]="" , ) -> Optional[int]: super().__init__() UpperCAmelCase : Optional[int] = Path(_UpperCAmelCase ).joinpath(type_path + '.source' ) UpperCAmelCase : Union[str, Any] = Path(_UpperCAmelCase ).joinpath(type_path + '.target' ) UpperCAmelCase : List[str] = self.get_char_lens(self.src_file ) UpperCAmelCase : Optional[int] = max_source_length UpperCAmelCase : Dict = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" UpperCAmelCase : List[Any] = tokenizer UpperCAmelCase : List[Any] = prefix if n_obs is not None: UpperCAmelCase : str = self.src_lens[:n_obs] UpperCAmelCase : List[str] = src_lang UpperCAmelCase : Optional[int] = tgt_lang def __len__( self : Dict ) -> str: return len(self.src_lens ) def __getitem__( self : Tuple , lowercase_ : List[str] ) -> int: UpperCAmelCase : Optional[int] = index + 1 # linecache starts at 1 UpperCAmelCase : Optional[int] = self.prefix + linecache.getline(str(self.src_file ) , _UpperCAmelCase ).rstrip('\n' ) UpperCAmelCase : str = linecache.getline(str(self.tgt_file ) , _UpperCAmelCase ).rstrip('\n' ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _UpperCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right UpperCAmelCase : List[Any] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _UpperCAmelCase ) else self.tokenizer ) UpperCAmelCase : List[str] = self.tokenizer.generator if isinstance(self.tokenizer , _UpperCAmelCase ) else self.tokenizer UpperCAmelCase : Tuple = encode_line(_UpperCAmelCase , _UpperCAmelCase , self.max_source_length , 'right' ) UpperCAmelCase : int = encode_line(_UpperCAmelCase , _UpperCAmelCase , self.max_target_length , 'right' ) UpperCAmelCase : List[str] = source_inputs['''input_ids'''].squeeze() UpperCAmelCase : Optional[int] = target_inputs['''input_ids'''].squeeze() UpperCAmelCase : str = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCAmelCase_ ( lowercase_ : List[str] ) -> Any: return [len(_UpperCAmelCase ) for x in Path(_UpperCAmelCase ).open().readlines()] def UpperCAmelCase_ ( self : int , lowercase_ : Union[str, Any] ) -> Tuple: UpperCAmelCase : List[str] = torch.stack([x['input_ids'] for x in batch] ) UpperCAmelCase : Any = torch.stack([x['attention_mask'] for x in batch] ) UpperCAmelCase : Optional[int] = torch.stack([x['decoder_input_ids'] for x in batch] ) UpperCAmelCase : List[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _UpperCAmelCase ) else self.tokenizer.pad_token_id ) UpperCAmelCase : str = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _UpperCAmelCase ) else self.tokenizer.pad_token_id ) UpperCAmelCase : Dict = trim_batch(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase : Dict = trim_batch(_UpperCAmelCase , _UpperCAmelCase , attention_mask=_UpperCAmelCase ) UpperCAmelCase : Optional[Any] = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch lowercase__ = getLogger(__name__) def UpperCamelCase( UpperCAmelCase_ ): return list(itertools.chain.from_iterable(a_ ) ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Any = get_git_info() save_json(a_ , os.path.join(a_ , 'git_log.json' ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=4 , **UpperCAmelCase_ ): with open(a_ , 'w' ) as f: json.dump(a_ , a_ , indent=a_ , **a_ ) def UpperCamelCase( UpperCAmelCase_ ): with open(a_ ) as f: return json.load(a_ ) def UpperCamelCase( ): UpperCAmelCase : Dict = git.Repo(search_parent_directories=a_ ) UpperCAmelCase : Optional[Any] = { '''repo_id''': str(a_ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return list(map(a_ , a_ ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): with open(a_ , 'wb' ) as f: return pickle.dump(a_ , a_ ) def UpperCamelCase( UpperCAmelCase_ ): def remove_articles(UpperCAmelCase_ ): return re.sub(R'\b(a|an|the)\b' , ' ' , a_ ) def white_space_fix(UpperCAmelCase_ ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase_ ): UpperCAmelCase : Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(a_ ) ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = normalize_answer(a_ ).split() UpperCAmelCase : str = normalize_answer(a_ ).split() UpperCAmelCase : Optional[Any] = Counter(a_ ) & Counter(a_ ) UpperCAmelCase : int = sum(common.values() ) if num_same == 0: return 0 UpperCAmelCase : str = 1.0 * num_same / len(a_ ) UpperCAmelCase : Any = 1.0 * num_same / len(a_ ) UpperCAmelCase : List[str] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return normalize_answer(a_ ) == normalize_answer(a_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): assert len(a_ ) == len(a_ ) UpperCAmelCase : Dict = 0 for hypo, pred in zip(a_ , a_ ): em += exact_match_score(a_ , a_ ) if len(a_ ) > 0: em /= len(a_ ) return {"em": em} def UpperCamelCase( UpperCAmelCase_ ): return model_prefix.startswith('rag' ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : str = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead UpperCAmelCase : Union[str, Any] = '''dropout_rate''' for p in extra_params: if getattr(a_ , a_ , a_ ): if not hasattr(a_ , a_ ) and not hasattr(a_ , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(a_ ) ) delattr(a_ , a_ ) continue UpperCAmelCase : Union[str, Any] = p if hasattr(a_ , a_ ) else equivalent_param[p] setattr(a_ , a_ , getattr(a_ , a_ ) ) delattr(a_ , a_ ) return hparams, config
713
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = TFXLMRobertaModel.from_pretrained('jplu/tf-xlm-roberta-base' ) UpperCAmelCase : Optional[Any] = { 'input_ids': tf.convert_to_tensor([[0, 2_646, 10_269, 83, 99_942, 2]] , dtype=tf.intaa ), # "My dog is cute" 'attention_mask': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } UpperCAmelCase : int = model(_A )['last_hidden_state'] UpperCAmelCase : Any = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , _A ) # compare the actual values for a slice. UpperCAmelCase : str = tf.convert_to_tensor( [ [ [0.068_1762, 0.1089_4451, 0.0677_2504], [-0.0642_3668, 0.0236_6615, 0.0432_9344], [-0.0605_7295, 0.0997_4135, -0.0007_0584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
714
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
0
lowercase__ = [0, 2, 4, 6, 8] lowercase__ = [1, 3, 5, 7, 9] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 UpperCAmelCase : Optional[Any] = 0 for digit in range(10 ): UpperCAmelCase : Dict = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , UpperCAmelCase__ , UpperCAmelCase__ ) return result UpperCAmelCase : Union[str, Any] = 0 for digita in range(10 ): UpperCAmelCase : int = digita if (remainder + digita) % 2 == 0: UpperCAmelCase : List[Any] = ODD_DIGITS else: UpperCAmelCase : str = EVEN_DIGITS for digita in other_parity_digits: UpperCAmelCase : int = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , UpperCAmelCase__ , UpperCAmelCase__ , ) return result def UpperCamelCase( UpperCAmelCase_ = 9 ): UpperCAmelCase : List[str] = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(UpperCAmelCase__ , 0 , [0] * length , UpperCAmelCase__ ) return result if __name__ == "__main__": print(f'''{solution() = }''')
715
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
0
'''simple docstring''' from functools import lru_cache def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = 2 UpperCAmelCase : str = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_UpperCamelCase ) if n > 1: factors.add(_UpperCamelCase ) return factors @lru_cache def UpperCamelCase( UpperCAmelCase_ ): return len(unique_prime_factors(_UpperCamelCase ) ) def UpperCamelCase( UpperCAmelCase_ ): return len(set(_UpperCamelCase ) ) in (0, 1) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : int = 2 while True: # Increment each value of a generated range UpperCAmelCase : Dict = [base + i for i in range(_UpperCamelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCAmelCase : List[Any] = [upf_len(_UpperCamelCase ) for x in group] checker.append(_UpperCamelCase ) # If all numbers in the list are equal, return the group variable. if equality(_UpperCamelCase ): return group # Increment our base variable by 1 base += 1 def UpperCamelCase( UpperCAmelCase_ = 4 ): UpperCAmelCase : Union[str, Any] = run(_UpperCamelCase ) return results[0] if len(_UpperCamelCase ) else None if __name__ == "__main__": print(solution())
716
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( __UpperCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : List[str] ) -> Optional[Any]: warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
717
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = "pegasus" UpperCAmelCase_ : int = ["past_key_values"] UpperCAmelCase_ : Union[str, Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , lowercase_ : Dict=50_265 , lowercase_ : Tuple=1_024 , lowercase_ : str=12 , lowercase_ : Dict=4_096 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=12 , lowercase_ : str=4_096 , lowercase_ : str=16 , lowercase_ : Dict=0.0 , lowercase_ : Any=0.0 , lowercase_ : Dict=True , lowercase_ : Union[str, Any]=True , lowercase_ : Dict="gelu" , lowercase_ : int=1_024 , lowercase_ : Dict=0.1 , lowercase_ : Any=0.0 , lowercase_ : int=0.0 , lowercase_ : Optional[int]=0.02 , lowercase_ : List[str]=0 , lowercase_ : Tuple=False , lowercase_ : List[Any]=0 , lowercase_ : List[str]=1 , lowercase_ : Tuple=1 , **lowercase_ : List[Any] , ) -> Optional[Any]: UpperCAmelCase : Tuple = vocab_size UpperCAmelCase : int = max_position_embeddings UpperCAmelCase : Optional[int] = d_model UpperCAmelCase : Dict = encoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Union[str, Any] = encoder_attention_heads UpperCAmelCase : Any = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = decoder_layers UpperCAmelCase : Optional[int] = decoder_attention_heads UpperCAmelCase : Any = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Optional[int] = activation_dropout UpperCAmelCase : Union[str, Any] = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Any = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : Optional[Any] = use_cache UpperCAmelCase : str = encoder_layers UpperCAmelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , forced_eos_token_id=lowerCamelCase__ , **lowerCamelCase__ , ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: return self.encoder_attention_heads @property def UpperCAmelCase_ ( self : Any ) -> int: return self.d_model
718
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class A_ ( UpperCamelCase_ ): '''simple docstring''' def UpperCAmelCase_ ( self : int ) -> List[str]: UpperCAmelCase : Any = SMALL_MODEL_IDENTIFIER UpperCAmelCase : List[str] = '''pt''' UpperCAmelCase : Optional[Any] = '''tf''' def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Tuple ) -> List[Any]: UpperCAmelCase : Optional[Any] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : int , lowercase_ : Union[str, Any] ) -> Dict: UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained(self.test_model , from_pt=lowercase_ ) model_tf.save_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: UpperCAmelCase : str = '''mock_framework''' # Framework provided - return whatever the user provides UpperCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowercase_ ) UpperCAmelCase : int = FeaturesManager.determine_framework(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowercase_ ) UpperCAmelCase : str = FeaturesManager.determine_framework(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowercase_ ) UpperCAmelCase : Tuple = FeaturesManager.determine_framework(lowercase_ ) self.assertEqual(lowercase_ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowercase_ ) UpperCAmelCase : Tuple = FeaturesManager.determine_framework(lowercase_ ) self.assertEqual(lowercase_ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(lowercase_ ): UpperCAmelCase : List[str] = FeaturesManager.determine_framework(lowercase_ ) def UpperCAmelCase_ ( self : str ) -> str: UpperCAmelCase : int = MagicMock(return_value=lowercase_ ) with patch('transformers.onnx.features.is_tf_available' , lowercase_ ): UpperCAmelCase : int = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase_ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow UpperCAmelCase : Tuple = MagicMock(return_value=lowercase_ ) with patch('transformers.onnx.features.is_torch_available' , lowercase_ ): UpperCAmelCase : Optional[int] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase_ , self.framework_tf ) # Both in environment -> use PyTorch UpperCAmelCase : Tuple = MagicMock(return_value=lowercase_ ) UpperCAmelCase : Union[str, Any] = MagicMock(return_value=lowercase_ ) with patch('transformers.onnx.features.is_tf_available' , lowercase_ ), patch( 'transformers.onnx.features.is_torch_available' , lowercase_ ): UpperCAmelCase : List[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase_ , self.framework_pt ) # Both not in environment -> raise error UpperCAmelCase : int = MagicMock(return_value=lowercase_ ) UpperCAmelCase : List[str] = MagicMock(return_value=lowercase_ ) with patch('transformers.onnx.features.is_tf_available' , lowercase_ ), patch( 'transformers.onnx.features.is_torch_available' , lowercase_ ): with self.assertRaises(lowercase_ ): UpperCAmelCase : str = FeaturesManager.determine_framework(self.test_model )
719
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowercase__ = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[str] = """bloom""" UpperCAmelCase_ : Any = ["""past_key_values"""] UpperCAmelCase_ : Dict = { """num_hidden_layers""": """n_layer""", """num_attention_heads""": """n_head""", } def __init__( self : str , lowercase_ : Optional[Any]=250_880 , lowercase_ : str=64 , lowercase_ : Any=2 , lowercase_ : Tuple=8 , lowercase_ : Optional[int]=1E-5 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : List[str]=True , lowercase_ : List[str]=1 , lowercase_ : Any=2 , lowercase_ : Optional[Any]=False , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[Any]=0.0 , lowercase_ : List[Any]=1 , lowercase_ : str=False , **lowercase_ : Union[str, Any] , ) -> str: UpperCAmelCase : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase : Any = kwargs.pop('n_embed' , lowercase_ ) UpperCAmelCase : int = hidden_size if n_embed is None else n_embed UpperCAmelCase : Dict = n_layer UpperCAmelCase : Union[str, Any] = n_head UpperCAmelCase : str = layer_norm_epsilon UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : List[str] = use_cache UpperCAmelCase : int = pretraining_tp UpperCAmelCase : Dict = apply_residual_connection_post_layernorm UpperCAmelCase : Any = hidden_dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : str = bos_token_id UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : List[str] = slow_but_exact super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = version.parse("""1.12""" ) def __init__( self : Any , lowercase_ : PretrainedConfig , lowercase_ : str = "default" , lowercase_ : List[PatchingSpec] = None , lowercase_ : bool = False , ) -> Any: super().__init__(lowercase_ , task=lowercase_ , patching_specs=lowercase_ , use_past=lowercase_ ) if not getattr(self._config , 'pad_token_id' , lowercase_ ): # TODO: how to do that better? UpperCAmelCase : Union[str, Any] = 0 @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Any = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowercase_ , direction='inputs' , inverted_values_shape=lowercase_ ) UpperCAmelCase : Union[str, Any] = {0: 'batch', 1: 'past_sequence + sequence'} else: UpperCAmelCase : Dict = {0: 'batch', 1: 'sequence'} return common_inputs @property def UpperCAmelCase_ ( self : str ) -> int: return self._config.n_layer @property def UpperCAmelCase_ ( self : Dict ) -> int: return self._config.n_head @property def UpperCAmelCase_ ( self : str ) -> float: return 1E-3 def UpperCAmelCase_ ( self : List[Any] , lowercase_ : "PreTrainedTokenizer" , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = super(lowercase_ , self ).generate_dummy_inputs( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) # We need to order the input in the way they appears in the forward() UpperCAmelCase : Union[str, Any] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCAmelCase , UpperCAmelCase : Optional[int] = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCAmelCase : Tuple = seqlen + 2 UpperCAmelCase : List[str] = self._config.hidden_size // self.num_attention_heads UpperCAmelCase : Optional[Any] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) UpperCAmelCase : int = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) UpperCAmelCase : Any = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(self.num_layers ) ] UpperCAmelCase : Any = common_inputs['attention_mask'] if self.use_past: UpperCAmelCase : Optional[int] = ordered_inputs['attention_mask'].dtype UpperCAmelCase : List[str] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowercase_ , lowercase_ , dtype=lowercase_ )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase_ ( self : List[Any] ) -> int: return 13
721
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = SwinConfig(image_size=1_92 ) if "base" in model_name: UpperCAmelCase : Optional[int] = 6 UpperCAmelCase : str = 1_28 UpperCAmelCase : Union[str, Any] = (2, 2, 18, 2) UpperCAmelCase : Union[str, Any] = (4, 8, 16, 32) elif "large" in model_name: UpperCAmelCase : List[str] = 12 UpperCAmelCase : Tuple = 1_92 UpperCAmelCase : Dict = (2, 2, 18, 2) UpperCAmelCase : List[Any] = (6, 12, 24, 48) else: raise ValueError('Model not supported, only supports base and large variants' ) UpperCAmelCase : List[Any] = window_size UpperCAmelCase : Dict = embed_dim UpperCAmelCase : int = depths UpperCAmelCase : Union[str, Any] = num_heads return config def UpperCamelCase( UpperCAmelCase_ ): if "encoder.mask_token" in name: UpperCAmelCase : List[Any] = name.replace('encoder.mask_token' , 'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: UpperCAmelCase : str = name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: UpperCAmelCase : Any = name.replace('encoder.patch_embed.norm' , 'embeddings.norm' ) if "attn.proj" in name: UpperCAmelCase : Any = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCAmelCase : int = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCAmelCase : Any = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCAmelCase : str = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCAmelCase : List[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCAmelCase : Optional[Any] = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": UpperCAmelCase : List[Any] = 'layernorm.weight' if name == "encoder.norm.bias": UpperCAmelCase : List[Any] = 'layernorm.bias' if "decoder" in name: pass else: UpperCAmelCase : Optional[Any] = 'swin.' + name return name def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): for key in orig_state_dict.copy().keys(): UpperCAmelCase : List[Any] = orig_state_dict.pop(UpperCAmelCase_ ) if "attn_mask" in key: pass elif "qkv" in key: UpperCAmelCase : Optional[int] = key.split('.' ) UpperCAmelCase : List[Any] = int(key_split[2] ) UpperCAmelCase : Any = int(key_split[4] ) UpperCAmelCase : int = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase : Any = val[:dim, :] UpperCAmelCase : Optional[Any] = val[ dim : dim * 2, : ] UpperCAmelCase : Optional[int] = val[-dim:, :] else: UpperCAmelCase : List[Any] = val[ :dim ] UpperCAmelCase : Optional[Any] = val[ dim : dim * 2 ] UpperCAmelCase : List[Any] = val[ -dim: ] else: UpperCAmelCase : Optional[int] = val return orig_state_dict def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' )['model'] UpperCAmelCase : List[str] = get_swin_config(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = SwinForMaskedImageModeling(UpperCAmelCase_ ) model.eval() UpperCAmelCase : List[str] = convert_state_dict(UpperCAmelCase_ , UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) UpperCAmelCase : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCAmelCase : Tuple = ViTImageProcessor(size={'height': 1_92, 'width': 1_92} ) UpperCAmelCase : Dict = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) UpperCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ) with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**UpperCAmelCase_ ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(UpperCAmelCase_ ) if push_to_hub: print(F"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(F"""microsoft/{model_name}""" ) image_processor.push_to_hub(F"""microsoft/{model_name}""" ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowercase__ : Dict = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
700
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
0
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase__ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def UpperCamelCase( UpperCAmelCase_ = "mumbai" ): UpperCAmelCase : Any = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): UpperCAmelCase : Any = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() UpperCAmelCase : Optional[Any] = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
701
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = ["""pixel_values"""] def __init__( self : int , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : float = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , **lowercase_ : str , ) -> None: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = size if size is not None else {'shortest_edge': 384} UpperCAmelCase : Optional[int] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) UpperCAmelCase : str = do_resize UpperCAmelCase : str = size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase : Optional[int] = crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase : Union[str, Any] = resample UpperCAmelCase : Optional[int] = do_rescale UpperCAmelCase : Dict = rescale_factor UpperCAmelCase : str = do_normalize UpperCAmelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : float , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Tuple , ) -> np.ndarray: UpperCAmelCase : List[str] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(f"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) UpperCAmelCase : Optional[int] = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase : List[Any] = int(shortest_edge / crop_pct ) UpperCAmelCase : Optional[int] = get_resize_output_image_size(lowercase_ , size=lowercase_ , default_to_square=lowercase_ ) UpperCAmelCase : List[str] = resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowercase_ , size=(shortest_edge, shortest_edge) , data_format=lowercase_ , **lowercase_ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowercase_ , size=(shortest_edge, shortest_edge) , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : str , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : float = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : Union[str, Any] , ) -> PIL.Image.Image: UpperCAmelCase : Dict = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : int = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase : Optional[Any] = resample if resample is not None else self.resample UpperCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : List[Any] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase : Optional[int] = image_std if image_std is not None else self.image_std UpperCAmelCase : Union[str, Any] = size if size is not None else self.size UpperCAmelCase : Optional[Any] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) UpperCAmelCase : str = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCAmelCase : int = [to_numpy_array(lowercase_ ) for image in images] if do_resize: UpperCAmelCase : str = [self.resize(image=lowercase_ , size=lowercase_ , crop_pct=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: UpperCAmelCase : List[Any] = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: UpperCAmelCase : str = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] UpperCAmelCase : Optional[Any] = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] UpperCAmelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
702
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
0
'''simple docstring''' import json import sys def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): with open(UpperCAmelCase_ , encoding='utf-8' ) as f: UpperCAmelCase : Optional[Any] = json.load(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = results[benchmark_name] UpperCAmelCase : List[str] = benchmark_name.split('/' )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) UpperCAmelCase : Union[str, Any] = '| metric |' UpperCAmelCase : List[Any] = '|--------|' UpperCAmelCase : int = '| new / old (diff) |' for metric_name in sorted(UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = benchmark_res[metric_name] UpperCAmelCase : List[Any] = metric_vals['new'] UpperCAmelCase : Any = metric_vals.get('old' , UpperCAmelCase_ ) UpperCAmelCase : int = metric_vals.get('diff' , UpperCAmelCase_ ) UpperCAmelCase : Dict = F""" {new_val:f}""" if isinstance(UpperCAmelCase_ , (int, float) ) else 'None' if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(UpperCAmelCase_ , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(UpperCAmelCase_ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(UpperCAmelCase_ ) ) if __name__ == "__main__": lowercase__ = sys.argv[1] lowercase__ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
703
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black lowercase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowercase__ = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: UpperCAmelCase : Union[str, Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) UpperCAmelCase : int = self.transformer_dir shutil.copy( os.path.join(lowercase_ , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : Optional[Any] = 'src/transformers' shutil.rmtree(self.transformer_dir ) def UpperCAmelCase_ ( self : int , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Union[str, Any]=None ) -> Tuple: UpperCAmelCase : List[str] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: UpperCAmelCase : Optional[int] = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result UpperCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) UpperCAmelCase : Union[str, Any] = black.format_str(lowercase_ , mode=lowercase_ ) UpperCAmelCase : str = os.path.join(self.transformer_dir , 'new_code.py' ) with open(lowercase_ , 'w' , newline='\n' ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , 'r' ) as f: self.assertTrue(f.read() , lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: UpperCAmelCase : int = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Tuple ) -> List[str]: # Base copy consistency self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , lowercase_ ) , ) # Copy consistency with a really long name UpperCAmelCase : Optional[int] = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , f"""{long_class_name}LMPredictionHead""" , re.sub('Bert' , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , lowercase_ , overwrite_result=re.sub('Bert' , 'TestModel' , lowercase_ ) , ) def UpperCAmelCase_ ( self : Dict ) -> Any: UpperCAmelCase : Dict = check_copies.LOCALIZED_READMES['README_zh-hans.md'] UpperCAmelCase : Tuple = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) UpperCAmelCase : Dict = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) UpperCAmelCase : Optional[int] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) UpperCAmelCase : List[str] = check_copies.convert_to_localized_md( lowercase_ , lowercase_ , localized_readme['format_model_list'] ) self.assertFalse(lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) UpperCAmelCase : Optional[int] = check_copies.convert_to_localized_md( lowercase_ , lowercase_ , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowercase_ ) UpperCAmelCase : str = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) UpperCAmelCase : Union[str, Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) UpperCAmelCase : Union[str, Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) UpperCAmelCase : Union[str, Any] = check_copies.convert_to_localized_md( lowercase_ , lowercase_ , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(lowercase_ , lowercase_ )
704
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
705
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
0
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) lowercase__ = logging.getLogger(__name__) lowercase__ = {"facebook/bart-base": BartForConditionalGeneration} lowercase__ = {"facebook/bart-base": BartTokenizer} def UpperCamelCase( ): UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=UpperCAmelCase_ , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=UpperCAmelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCAmelCase_ , ) parser.add_argument( '--config_name' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=UpperCAmelCase_ , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='Where to store the final ONNX file.' ) UpperCAmelCase : Tuple = parser.parse_args() return args def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_="cpu" ): UpperCAmelCase : List[Any] = model_dict[model_name].from_pretrained(UpperCAmelCase_ ).to(UpperCAmelCase_ ) UpperCAmelCase : str = tokenizer_dict[model_name].from_pretrained(UpperCAmelCase_ ) if model_name in ["facebook/bart-base"]: UpperCAmelCase : Tuple = 0 UpperCAmelCase : Tuple = None UpperCAmelCase : Dict = 0 return huggingface_model, tokenizer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): model.eval() UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = torch.jit.script(BARTBeamSearchGenerator(UpperCAmelCase_ ) ) with torch.no_grad(): UpperCAmelCase : Optional[Any] = 'My friends are cool but they eat too many carbs.' UpperCAmelCase : Any = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors='pt' ).to(model.device ) UpperCAmelCase : Optional[Any] = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=UpperCAmelCase_ , max_length=UpperCAmelCase_ , early_stopping=UpperCAmelCase_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( UpperCAmelCase_ , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , UpperCAmelCase_ , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=UpperCAmelCase_ , ) logger.info('Model exported to {}'.format(UpperCAmelCase_ ) ) UpperCAmelCase : List[str] = remove_dup_initializers(os.path.abspath(UpperCAmelCase_ ) ) logger.info('Deduplicated and optimized model written to {}'.format(UpperCAmelCase_ ) ) UpperCAmelCase : List[Any] = onnxruntime.InferenceSession(UpperCAmelCase_ ) UpperCAmelCase : Any = ort_sess.run( UpperCAmelCase_ , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(UpperCAmelCase_ ), 'max_length': np.array(UpperCAmelCase_ ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def UpperCamelCase( ): UpperCAmelCase : Optional[Any] = parse_args() UpperCAmelCase : Union[str, Any] = 5 UpperCAmelCase : Dict = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() UpperCAmelCase : Union[str, Any] = torch.device(args.device ) UpperCAmelCase : Tuple = load_model_tokenizer(args.model_name_or_path , UpperCAmelCase_ ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(UpperCAmelCase_ ) if args.max_length: UpperCAmelCase : Dict = args.max_length if args.num_beams: UpperCAmelCase : Tuple = args.num_beams if args.output_file_path: UpperCAmelCase : Tuple = args.output_file_path else: UpperCAmelCase : int = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
706
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """deformable_detr""" UpperCAmelCase_ : str = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Union[str, Any] , lowercase_ : List[Any]=True , lowercase_ : str=None , lowercase_ : int=3 , lowercase_ : List[Any]=300 , lowercase_ : List[str]=1_024 , lowercase_ : Tuple=6 , lowercase_ : Union[str, Any]=1_024 , lowercase_ : Optional[Any]=8 , lowercase_ : List[Any]=6 , lowercase_ : Any=1_024 , lowercase_ : List[Any]=8 , lowercase_ : Tuple=0.0 , lowercase_ : int=True , lowercase_ : int="relu" , lowercase_ : Union[str, Any]=256 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.0 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Tuple=0.02 , lowercase_ : Optional[Any]=1.0 , lowercase_ : Optional[int]=True , lowercase_ : List[str]=False , lowercase_ : Any="sine" , lowercase_ : Dict="resnet50" , lowercase_ : List[str]=True , lowercase_ : Dict=False , lowercase_ : List[Any]=4 , lowercase_ : List[Any]=4 , lowercase_ : Union[str, Any]=4 , lowercase_ : Optional[Any]=False , lowercase_ : Tuple=300 , lowercase_ : Tuple=False , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=5 , lowercase_ : Union[str, Any]=2 , lowercase_ : List[Any]=1 , lowercase_ : Dict=1 , lowercase_ : Dict=5 , lowercase_ : str=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : List[str]=0.25 , lowercase_ : Union[str, Any]=False , **lowercase_ : List[str] , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) UpperCAmelCase : List[Any] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Optional[int] = backbone_config.get('model_type' ) UpperCAmelCase : Any = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[str] = config_class.from_dict(lowercase_ ) UpperCAmelCase : Any = use_timm_backbone UpperCAmelCase : int = backbone_config UpperCAmelCase : Any = num_channels UpperCAmelCase : Optional[int] = num_queries UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : Optional[Any] = d_model UpperCAmelCase : Any = encoder_ffn_dim UpperCAmelCase : int = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = decoder_layers UpperCAmelCase : List[Any] = decoder_attention_heads UpperCAmelCase : Any = dropout UpperCAmelCase : Dict = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : List[Any] = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : Union[str, Any] = init_xavier_std UpperCAmelCase : Optional[Any] = encoder_layerdrop UpperCAmelCase : Tuple = auxiliary_loss UpperCAmelCase : Tuple = position_embedding_type UpperCAmelCase : Tuple = backbone UpperCAmelCase : Optional[int] = use_pretrained_backbone UpperCAmelCase : Tuple = dilation # deformable attributes UpperCAmelCase : Union[str, Any] = num_feature_levels UpperCAmelCase : Optional[int] = encoder_n_points UpperCAmelCase : str = decoder_n_points UpperCAmelCase : str = two_stage UpperCAmelCase : int = two_stage_num_proposals UpperCAmelCase : Tuple = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher UpperCAmelCase : List[str] = class_cost UpperCAmelCase : List[str] = bbox_cost UpperCAmelCase : str = giou_cost # Loss coefficients UpperCAmelCase : List[str] = mask_loss_coefficient UpperCAmelCase : Union[str, Any] = dice_loss_coefficient UpperCAmelCase : List[str] = bbox_loss_coefficient UpperCAmelCase : List[str] = giou_loss_coefficient UpperCAmelCase : Union[str, Any] = eos_coefficient UpperCAmelCase : Optional[int] = focal_alpha UpperCAmelCase : Union[str, Any] = disable_custom_kernels super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: return self.encoder_attention_heads @property def UpperCAmelCase_ ( self : int ) -> int: return self.d_model def UpperCAmelCase_ ( self : int ) -> List[Any]: UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCAmelCase : Optional[Any] = self.backbone_config.to_dict() UpperCAmelCase : List[Any] = self.__class__.model_type return output
707
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
0
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase__ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """maskformer""" UpperCAmelCase_ : Optional[Any] = {"""hidden_size""": """mask_feature_size"""} UpperCAmelCase_ : Optional[int] = ["""resnet""", """swin"""] UpperCAmelCase_ : Optional[Any] = ["""detr"""] def __init__( self : str , lowercase_ : int = 256 , lowercase_ : int = 256 , lowercase_ : float = 0.1 , lowercase_ : bool = False , lowercase_ : Optional[Dict] = None , lowercase_ : Optional[Dict] = None , lowercase_ : float = 0.02 , lowercase_ : float = 1.0 , lowercase_ : float = 1.0 , lowercase_ : float = 1.0 , lowercase_ : float = 20.0 , lowercase_ : Optional[bool] = None , **lowercase_ : Optional[Any] , ) -> Tuple: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCAmelCase : Tuple = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Optional[int] = backbone_config.pop('model_type' ) UpperCAmelCase : Tuple = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : Dict = config_class.from_dict(lowercase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCAmelCase : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported UpperCAmelCase : List[Any] = ( decoder_config.pop('model_type' ) if isinstance(lowercase_ , lowercase_ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Dict = CONFIG_MAPPING[decoder_type] UpperCAmelCase : List[str] = config_class.from_dict(lowercase_ ) UpperCAmelCase : Any = backbone_config UpperCAmelCase : Optional[int] = decoder_config # main feature dimension for the model UpperCAmelCase : str = fpn_feature_size UpperCAmelCase : List[Any] = mask_feature_size # initializer UpperCAmelCase : Tuple = init_std UpperCAmelCase : int = init_xavier_std # Hungarian matcher && loss UpperCAmelCase : str = cross_entropy_weight UpperCAmelCase : Union[str, Any] = dice_weight UpperCAmelCase : Any = mask_weight UpperCAmelCase : Tuple = use_auxiliary_loss UpperCAmelCase : Any = no_object_weight UpperCAmelCase : str = output_auxiliary_logits UpperCAmelCase : Tuple = self.decoder_config.encoder_attention_heads UpperCAmelCase : int = self.decoder_config.num_hidden_layers super().__init__(**lowercase_ ) @classmethod def UpperCAmelCase_ ( cls : Optional[int] , lowercase_ : PretrainedConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] ) -> int: return cls( backbone_config=lowercase_ , decoder_config=lowercase_ , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[int] ) -> Dict[str, any]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[Any] = self.backbone_config.to_dict() UpperCAmelCase : Dict = self.decoder_config.to_dict() UpperCAmelCase : Optional[int] = self.__class__.model_type return output
708
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = LongformerTokenizer UpperCAmelCase_ : Any = True UpperCAmelCase_ : List[Any] = LongformerTokenizerFast UpperCAmelCase_ : int = True def UpperCAmelCase_ ( self : Any ) -> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase : List[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] UpperCAmelCase : Any = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase : Dict = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCAmelCase : Optional[Any] = {'unk_token': '<unk>'} UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase_ ) ) def UpperCAmelCase_ ( self : Any , **lowercase_ : List[str] ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase_ ( self : Tuple , **lowercase_ : Optional[Any] ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : Optional[int] ) -> List[str]: UpperCAmelCase : Dict = 'lower newer' UpperCAmelCase : Any = 'lower newer' return input_text, output_text def UpperCAmelCase_ ( self : Any ) -> int: UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase : Tuple = 'lower newer' UpperCAmelCase : Optional[int] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] UpperCAmelCase : Optional[Any] = tokenizer.tokenize(lowercase_ ) # , add_prefix_space=True) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase : List[Any] = tokens + [tokenizer.unk_token] UpperCAmelCase : List[str] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Dict = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=lowercase_ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=lowercase_ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: UpperCAmelCase : int = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) UpperCAmelCase : Dict = tokenizer.encode('sequence builders' , add_special_tokens=lowercase_ ) UpperCAmelCase : str = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase_ ) UpperCAmelCase : str = tokenizer.encode( 'sequence builders' , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) UpperCAmelCase : Any = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowercase_ ) UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCAmelCase_ ( self : Any ) -> str: UpperCAmelCase : Dict = self.get_tokenizer() UpperCAmelCase : List[Any] = 'Encode this sequence.' UpperCAmelCase : List[Any] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments UpperCAmelCase : Any = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) UpperCAmelCase : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) UpperCAmelCase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase_ , lowercase_ ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) UpperCAmelCase : Optional[Any] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) # Testing spaces after special tokens UpperCAmelCase : Any = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ )} ) # mask token has a left space UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(lowercase_ ) UpperCAmelCase : int = 'Encode <mask> sequence' UpperCAmelCase : Optional[Any] = 'Encode <mask>sequence' UpperCAmelCase : Dict = tokenizer.encode(lowercase_ ) UpperCAmelCase : str = encoded.index(lowercase_ ) UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase_ , lowercase_ ) UpperCAmelCase : List[str] = tokenizer.encode(lowercase_ ) UpperCAmelCase : List[str] = encoded.index(lowercase_ ) UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> int: pass def UpperCAmelCase_ ( self : str ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase : Optional[int] = 'A, <mask> AllenNLP sentence.' UpperCAmelCase : List[Any] = tokenizer_r.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) UpperCAmelCase : List[str] = tokenizer_p.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) UpperCAmelCase : Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) UpperCAmelCase : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowercase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCAmelCase : Any = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCAmelCase : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , lowercase_ ) self.assertEqual(post_processor_state['add_prefix_space'] , lowercase_ ) self.assertEqual(post_processor_state['trim_offsets'] , lowercase_ ) def UpperCAmelCase_ ( self : str ) -> str: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase : int = f"""{text_of_1_token} {text_of_1_token}""" UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCAmelCase : Union[str, Any] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCAmelCase : Any = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCAmelCase : Union[str, Any] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ), len(lowercase_ ) + 1 + len(lowercase_ )) , ) UpperCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCAmelCase : List[str] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ), len(lowercase_ ) + 1 + len(lowercase_ )) , ) UpperCAmelCase : Dict = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCAmelCase : Dict = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ) + 1, 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCAmelCase : Tuple = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ), 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCAmelCase : List[Any] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ), 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , )
709
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ = "cpu" , UpperCAmelCase_ = None ): UpperCAmelCase : Dict = torch.load(UpperCAmelCase_ , map_location=UpperCAmelCase_ ) for k, v in tqdm(state_dict.items() ): if not isinstance(UpperCAmelCase_ , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) UpperCAmelCase : str = v.half() if save_path is None: # overwrite src_path UpperCAmelCase : str = src_path torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": fire.Fire(convert)
710
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
0
'''simple docstring''' lowercase__ = {str(digit): digit**5 for digit in range(10)} def UpperCamelCase( UpperCAmelCase_ ) -> int: return sum(DIGITS_FIFTH_POWER[digit] for digit in str(UpperCAmelCase_ ) ) def UpperCamelCase( ) -> Optional[int]: return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(UpperCAmelCase_ ) ) if __name__ == "__main__": print(solution())
711
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
0
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = DownBlockaD # noqa F405 UpperCAmelCase_ : Any = """down""" def UpperCAmelCase_ ( self : str ) -> Any: UpperCAmelCase : Any = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : int = ResnetDownsampleBlockaD # noqa F405 UpperCAmelCase_ : int = """down""" def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: UpperCAmelCase : Optional[int] = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = AttnDownBlockaD # noqa F405 UpperCAmelCase_ : str = """down""" def UpperCAmelCase_ ( self : int ) -> Tuple: UpperCAmelCase : List[Any] = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = CrossAttnDownBlockaD # noqa F405 UpperCAmelCase_ : List[Any] = """down""" def UpperCAmelCase_ ( self : Dict ) -> Tuple: UpperCAmelCase : Optional[int] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : Any = 32 return init_dict, inputs_dict def UpperCAmelCase_ ( self : Dict ) -> List[Any]: UpperCAmelCase : Tuple = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : int = SimpleCrossAttnDownBlockaD # noqa F405 UpperCAmelCase_ : List[Any] = """down""" @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: return super().get_dummy_input(include_encoder_hidden_states=lowercase_ ) def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Optional[int] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : int = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Union[str, Any] = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = SkipDownBlockaD # noqa F405 UpperCAmelCase_ : Optional[Any] = """down""" @property def UpperCAmelCase_ ( self : Dict ) -> List[Any]: return super().get_dummy_input(include_skip_sample=lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[int] = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Any = AttnSkipDownBlockaD # noqa F405 UpperCAmelCase_ : List[str] = """down""" @property def UpperCAmelCase_ ( self : List[str] ) -> Tuple: return super().get_dummy_input(include_skip_sample=lowercase_ ) def UpperCAmelCase_ ( self : str ) -> int: UpperCAmelCase : int = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = DownEncoderBlockaD # noqa F405 UpperCAmelCase_ : Union[str, Any] = """down""" @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: return super().get_dummy_input(include_temb=lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: UpperCAmelCase : Tuple = { 'in_channels': 32, 'out_channels': 32, } UpperCAmelCase : Tuple = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase : int = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = AttnDownEncoderBlockaD # noqa F405 UpperCAmelCase_ : Optional[int] = """down""" @property def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: return super().get_dummy_input(include_temb=lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: UpperCAmelCase : str = { 'in_channels': 32, 'out_channels': 32, } UpperCAmelCase : Dict = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self : str ) -> int: UpperCAmelCase : Any = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = UNetMidBlockaD # noqa F405 UpperCAmelCase_ : Optional[int] = """mid""" def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[Any] = { 'in_channels': 32, 'temb_channels': 128, } UpperCAmelCase : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self : Any ) -> str: UpperCAmelCase : Optional[int] = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = UNetMidBlockaDCrossAttn # noqa F405 UpperCAmelCase_ : Union[str, Any] = """mid""" def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: UpperCAmelCase : List[str] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : List[Any] = 32 return init_dict, inputs_dict def UpperCAmelCase_ ( self : str ) -> str: UpperCAmelCase : str = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = UNetMidBlockaDSimpleCrossAttn # noqa F405 UpperCAmelCase_ : Any = """mid""" @property def UpperCAmelCase_ ( self : List[str] ) -> Tuple: return super().get_dummy_input(include_encoder_hidden_states=lowercase_ ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: UpperCAmelCase : Any = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : Any = 32 return init_dict, inputs_dict def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = UpBlockaD # noqa F405 UpperCAmelCase_ : List[str] = """up""" @property def UpperCAmelCase_ ( self : Any ) -> str: return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: UpperCAmelCase : List[Any] = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[str] = ResnetUpsampleBlockaD # noqa F405 UpperCAmelCase_ : List[Any] = """up""" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Optional[int] = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : int = CrossAttnUpBlockaD # noqa F405 UpperCAmelCase_ : Tuple = """up""" @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def UpperCAmelCase_ ( self : List[str] ) -> Any: UpperCAmelCase : Optional[Any] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : List[Any] = 32 return init_dict, inputs_dict def UpperCAmelCase_ ( self : Tuple ) -> int: UpperCAmelCase : int = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = SimpleCrossAttnUpBlockaD # noqa F405 UpperCAmelCase_ : Union[str, Any] = """up""" @property def UpperCAmelCase_ ( self : List[Any] ) -> Any: return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ , include_encoder_hidden_states=lowercase_ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: UpperCAmelCase : Dict = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : str = 32 return init_dict, inputs_dict def UpperCAmelCase_ ( self : List[Any] ) -> Dict: UpperCAmelCase : Any = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = AttnUpBlockaD # noqa F405 UpperCAmelCase_ : str = """up""" @property def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def UpperCAmelCase_ ( self : Any ) -> List[Any]: UpperCAmelCase : List[str] = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Any = SkipUpBlockaD # noqa F405 UpperCAmelCase_ : Union[str, Any] = """up""" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[int] = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[str] = AttnSkipUpBlockaD # noqa F405 UpperCAmelCase_ : Union[str, Any] = """up""" @property def UpperCAmelCase_ ( self : Tuple ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def UpperCAmelCase_ ( self : int ) -> str: UpperCAmelCase : str = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = UpDecoderBlockaD # noqa F405 UpperCAmelCase_ : str = """up""" @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: return super().get_dummy_input(include_temb=lowercase_ ) def UpperCAmelCase_ ( self : str ) -> int: UpperCAmelCase : Any = {'in_channels': 32, 'out_channels': 32} UpperCAmelCase : str = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self : Any ) -> Dict: UpperCAmelCase : Union[str, Any] = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(lowercase_ ) class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = AttnUpDecoderBlockaD # noqa F405 UpperCAmelCase_ : Union[str, Any] = """up""" @property def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: return super().get_dummy_input(include_temb=lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : List[Any] = {'in_channels': 32, 'out_channels': 32} UpperCAmelCase : Any = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Tuple = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(lowercase_ )
712
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
0
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: UpperCAmelCase : Union[str, Any] = inspect.getfile(accelerate.test_utils ) UpperCAmelCase : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) UpperCAmelCase : Dict = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase : str = f""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() UpperCAmelCase : List[Any] = [sys.executable] + distributed_args execute_subprocess_async(lowercase_ , env=os.environ.copy() )
713
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
0
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ) -> Any: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ) -> List[Any]: if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ) -> List[str]: return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
714
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
0
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def UpperCamelCase( ): UpperCAmelCase : Union[str, Any] = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) UpperCAmelCase : Tuple = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(UpperCAmelCase_ ) DownloadCommand.register_subcommand(UpperCAmelCase_ ) EnvironmentCommand.register_subcommand(UpperCAmelCase_ ) RunCommand.register_subcommand(UpperCAmelCase_ ) ServeCommand.register_subcommand(UpperCAmelCase_ ) UserCommands.register_subcommand(UpperCAmelCase_ ) AddNewModelCommand.register_subcommand(UpperCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(UpperCAmelCase_ ) LfsCommands.register_subcommand(UpperCAmelCase_ ) PTtoTFCommand.register_subcommand(UpperCAmelCase_ ) # Let's go UpperCAmelCase : str = parser.parse_args() if not hasattr(UpperCAmelCase_ , 'func' ): parser.print_help() exit(1 ) # Run UpperCAmelCase : Union[str, Any] = args.func(UpperCAmelCase_ ) service.run() if __name__ == "__main__": main()
715
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
0
'''simple docstring''' import argparse from collections import defaultdict def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(UpperCAmelCase_ , 'r' ) as f: UpperCAmelCase : Optional[Any] = f.readlines() UpperCAmelCase : List[Any] = F"""class {class_name}(""" UpperCAmelCase : Optional[int] = F"""{4 * " "}def {test_name}(""" UpperCAmelCase : Optional[int] = F"""{8 * " "}{correct_line.split()[0]}""" UpperCAmelCase : str = F"""{16 * " "}{correct_line.split()[0]}""" UpperCAmelCase : List[Any] = False UpperCAmelCase : Optional[Any] = False UpperCAmelCase : List[Any] = False UpperCAmelCase : Any = False UpperCAmelCase : int = 0 UpperCAmelCase : Any = 0 UpperCAmelCase : Dict = [] for line in lines: if line.startswith(UpperCAmelCase_ ): UpperCAmelCase : List[Any] = True elif in_class and line.startswith(UpperCAmelCase_ ): UpperCAmelCase : int = True elif in_class and in_func and (line.startswith(UpperCAmelCase_ ) or line.startswith(UpperCAmelCase_ )): UpperCAmelCase : List[Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: UpperCAmelCase : List[str] = True if in_class and in_func and in_line: if ")" not in line: continue else: UpperCAmelCase : str = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) UpperCAmelCase : Union[str, Any] = False else: new_lines.append(UpperCAmelCase_ ) with open(UpperCAmelCase_ , 'w' ) as f: for line in new_lines: f.write(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_=None ): if fail is not None: with open(UpperCAmelCase_ , 'r' ) as f: UpperCAmelCase : Optional[Any] = {l.strip() for l in f.readlines()} else: UpperCAmelCase : Tuple = None with open(UpperCAmelCase_ , 'r' ) as f: UpperCAmelCase : List[Any] = f.readlines() UpperCAmelCase : Optional[int] = defaultdict(UpperCAmelCase_ ) for line in correct_lines: UpperCAmelCase : str = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) lowercase__ = parser.parse_args() main(args.correct_filename, args.fail_filename)
716
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
0
'''simple docstring''' lowercase__ = 8.3144598 def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if temperature < 0: raise Exception('Temperature cannot be less than 0 K' ) if molar_mass <= 0: raise Exception('Molar mass cannot be less than or equal to 0 kg/mol' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example lowercase__ = 300 lowercase__ = 28 lowercase__ = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
717
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
0
from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
718
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
719
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
0
'''simple docstring''' import math def UpperCamelCase( UpperCAmelCase_ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase( UpperCAmelCase_ = 1_00_01 ): try: UpperCAmelCase : str = int(UpperCAmelCase_ ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) UpperCAmelCase : list[int] = [] UpperCAmelCase : Dict = 2 while len(UpperCAmelCase_ ) < nth: if is_prime(UpperCAmelCase_ ): primes.append(UpperCAmelCase_ ) num += 1 else: num += 1 return primes[len(UpperCAmelCase_ ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
720
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
0
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
721
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
700
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
701
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
0
'''simple docstring''' from __future__ import annotations class A_ : '''simple docstring''' def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Union[str, Any] = data UpperCAmelCase : Node | None = None UpperCAmelCase : Node | None = None def UpperCamelCase( UpperCAmelCase_ ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def UpperCamelCase( UpperCAmelCase_ ): return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def UpperCamelCase( UpperCAmelCase_ ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def UpperCamelCase( ): # Main function for testing. UpperCAmelCase : Optional[Any] = Node(1 ) UpperCAmelCase : Tuple = Node(2 ) UpperCAmelCase : List[str] = Node(3 ) UpperCAmelCase : Any = Node(4 ) UpperCAmelCase : Union[str, Any] = Node(5 ) UpperCAmelCase : Any = Node(6 ) UpperCAmelCase : Union[str, Any] = Node(7 ) UpperCAmelCase : List[Any] = Node(8 ) UpperCAmelCase : Tuple = Node(9 ) print(is_full_binary_tree(UpperCAmelCase_ ) ) print(depth_of_tree(UpperCAmelCase_ ) ) print('Tree is: ' ) display(UpperCAmelCase_ ) if __name__ == "__main__": main()
702
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
0
'''simple docstring''' import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowercase__ = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } lowercase__ = logging.WARNING def UpperCamelCase( ): UpperCAmelCase : Tuple = os.getenv('DATASETS_VERBOSITY' , UpperCAmelCase_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def UpperCamelCase( ): return __name__.split('.' )[0] def UpperCamelCase( ): return logging.getLogger(_get_library_name() ) def UpperCamelCase( ): # Apply our default configuration to the library root logger. UpperCAmelCase : List[Any] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def UpperCamelCase( ): UpperCAmelCase : Tuple = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def UpperCamelCase( UpperCAmelCase_ = None ): if name is None: UpperCAmelCase : List[Any] = _get_library_name() return logging.getLogger(UpperCAmelCase_ ) def UpperCamelCase( ): return _get_library_root_logger().getEffectiveLevel() def UpperCamelCase( UpperCAmelCase_ ): _get_library_root_logger().setLevel(UpperCAmelCase_ ) def UpperCamelCase( ): return set_verbosity(UpperCAmelCase_ ) def UpperCamelCase( ): return set_verbosity(UpperCAmelCase_ ) def UpperCamelCase( ): return set_verbosity(UpperCAmelCase_ ) def UpperCamelCase( ): return set_verbosity(UpperCAmelCase_ ) def UpperCamelCase( ): UpperCAmelCase : int = False def UpperCamelCase( ): UpperCAmelCase : Union[str, Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class A_ : '''simple docstring''' def __init__( self : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Any ) -> Optional[int]: # pylint: disable=unused-argument UpperCAmelCase : List[Any] = args[0] if args else None def __iter__( self : Tuple ) -> str: return iter(self._iterator ) def __getattr__( self : List[str] , lowercase_ : Union[str, Any] ) -> str: def empty_fn(*lowercase_ : Union[str, Any] , **lowercase_ : Tuple ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : str ) -> Union[str, Any]: return self def __exit__( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Tuple ) -> str: return lowercase__ = True class A_ : '''simple docstring''' def __call__( self : Optional[int] , *lowercase_ : Tuple , lowercase_ : List[str]=False , **lowercase_ : Dict ) -> Union[str, Any]: if _tqdm_active and not disable: return tqdm_lib.tqdm(*lowercase_ , **lowercase_ ) else: return EmptyTqdm(*lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , *lowercase_ : int , **lowercase_ : Any ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowercase__ = _tqdm_cls() def UpperCamelCase( ): global _tqdm_active return bool(_tqdm_active ) def UpperCamelCase( ): global _tqdm_active UpperCAmelCase : Dict = True def UpperCamelCase( ): global _tqdm_active UpperCAmelCase : Any = False
703
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = ["""sentencepiece"""] def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> List[Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = ["""sentencepiece"""] def __init__( self : int , *lowercase_ : Optional[Any] , **lowercase_ : Tuple ) -> int: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Any = ["""sentencepiece"""] def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[str] ) -> Union[str, Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : str = ["""sentencepiece"""] def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : List[str] ) -> Union[str, Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = ["""sentencepiece"""] def __init__( self : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : Tuple ) -> Optional[int]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : str = ["""sentencepiece"""] def __init__( self : Any , *lowercase_ : Dict , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : str = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *lowercase_ : Optional[int] , **lowercase_ : int ) -> Dict: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = ["""sentencepiece"""] def __init__( self : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : List[Any] ) -> Tuple: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = ["""sentencepiece"""] def __init__( self : str , *lowercase_ : Any , **lowercase_ : List[str] ) -> Any: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = ["""sentencepiece"""] def __init__( self : str , *lowercase_ : Dict , **lowercase_ : str ) -> int: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : int = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[Any] ) -> Optional[Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : str = ["""sentencepiece"""] def __init__( self : Dict , *lowercase_ : List[Any] , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = ["""sentencepiece"""] def __init__( self : int , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> Optional[Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : str = ["""sentencepiece"""] def __init__( self : Any , *lowercase_ : Any , **lowercase_ : Any ) -> int: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = ["""sentencepiece"""] def __init__( self : Tuple , *lowercase_ : Dict , **lowercase_ : Union[str, Any] ) -> List[str]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : int = ["""sentencepiece"""] def __init__( self : Optional[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Any ) -> Dict: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : int = ["""sentencepiece"""] def __init__( self : Optional[Any] , *lowercase_ : str , **lowercase_ : Tuple ) -> List[str]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : int = ["""sentencepiece"""] def __init__( self : Any , *lowercase_ : Dict , **lowercase_ : int ) -> str: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = ["""sentencepiece"""] def __init__( self : int , *lowercase_ : List[Any] , **lowercase_ : Union[str, Any] ) -> Dict: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : str = ["""sentencepiece"""] def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : int ) -> str: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : List[str] = ["""sentencepiece"""] def __init__( self : str , *lowercase_ : Any , **lowercase_ : int ) -> str: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *lowercase_ : Any , **lowercase_ : Dict ) -> str: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = ["""sentencepiece"""] def __init__( self : int , *lowercase_ : Optional[Any] , **lowercase_ : str ) -> Union[str, Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = ["""sentencepiece"""] def __init__( self : int , *lowercase_ : Any , **lowercase_ : Dict ) -> Optional[int]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = ["""sentencepiece"""] def __init__( self : List[Any] , *lowercase_ : int , **lowercase_ : Optional[Any] ) -> Union[str, Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : List[str] = ["""sentencepiece"""] def __init__( self : Any , *lowercase_ : int , **lowercase_ : List[str] ) -> Tuple: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = ["""sentencepiece"""] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : List[Any] ) -> Optional[int]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : str = ["""sentencepiece"""] def __init__( self : Optional[int] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> Dict: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *lowercase_ : str , **lowercase_ : Dict ) -> List[Any]: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = ["""sentencepiece"""] def __init__( self : Dict , *lowercase_ : Optional[Any] , **lowercase_ : str ) -> Any: requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = ["""sentencepiece"""] def __init__( self : Optional[Any] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Optional[int]: requires_backends(self , ['sentencepiece'] )
704
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
705
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A_ ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): UpperCAmelCase_ : List[Any] = StableDiffusionInpaintPipeline UpperCAmelCase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase_ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase_ : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase_ : Optional[Any] = frozenset([] ) def UpperCAmelCase_ ( self : List[Any] ) -> str: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , ) UpperCAmelCase : Optional[Any] = PNDMScheduler(skip_prk_steps=lowercase_ ) torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) UpperCAmelCase : Optional[Any] = CLIPTextModel(lowercase_ ) UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : List[str] , lowercase_ : Tuple=0 ) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase : Tuple = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((64, 64) ) UpperCAmelCase : Dict = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((64, 64) ) if str(lowercase_ ).startswith('mps' ): UpperCAmelCase : int = torch.manual_seed(lowercase_ ) else: UpperCAmelCase : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCAmelCase_ ( self : List[str] ) -> str: UpperCAmelCase : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Union[str, Any] = self.get_dummy_components() UpperCAmelCase : List[str] = StableDiffusionInpaintPipeline(**lowercase_ ) UpperCAmelCase : List[str] = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Dict = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase : Union[str, Any] = sd_pipe(**lowercase_ ).images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[Any] = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) UpperCAmelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) UpperCAmelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) UpperCAmelCase : int = 'stabilityai/stable-diffusion-2-inpainting' UpperCAmelCase : Any = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() UpperCAmelCase : Optional[Any] = 'Face of a yellow cat, high resolution, sitting on a park bench' UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : Any = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) UpperCAmelCase : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def UpperCAmelCase_ ( self : Tuple ) -> int: UpperCAmelCase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) UpperCAmelCase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) UpperCAmelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) UpperCAmelCase : List[str] = 'stabilityai/stable-diffusion-2-inpainting' UpperCAmelCase : Tuple = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() UpperCAmelCase : Optional[Any] = 'Face of a yellow cat, high resolution, sitting on a park bench' UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) UpperCAmelCase : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) UpperCAmelCase : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) UpperCAmelCase : Dict = 'stabilityai/stable-diffusion-2-inpainting' UpperCAmelCase : List[str] = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' ) UpperCAmelCase : Optional[int] = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase : List[str] = 'Face of a yellow cat, high resolution, sitting on a park bench' UpperCAmelCase : Dict = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , ) UpperCAmelCase : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
706
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
0
'''simple docstring''' lowercase__ = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
707
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): def update_area_of_max_square(UpperCAmelCase_ , UpperCAmelCase_ ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 UpperCAmelCase : Union[str, Any] = update_area_of_max_square(UpperCAmelCase_ , col + 1 ) UpperCAmelCase : Union[str, Any] = update_area_of_max_square(row + 1 , col + 1 ) UpperCAmelCase : List[Any] = update_area_of_max_square(row + 1 , UpperCAmelCase_ ) if mat[row][col]: UpperCAmelCase : Any = 1 + min([right, diagonal, down] ) UpperCAmelCase : Dict = max(largest_square_area[0] , UpperCAmelCase_ ) return sub_problem_sol else: return 0 UpperCAmelCase : str = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): def update_area_of_max_square_using_dp_array( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] UpperCAmelCase : Union[str, Any] = update_area_of_max_square_using_dp_array(UpperCAmelCase_ , col + 1 , UpperCAmelCase_ ) UpperCAmelCase : List[str] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = update_area_of_max_square_using_dp_array(row + 1 , UpperCAmelCase_ , UpperCAmelCase_ ) if mat[row][col]: UpperCAmelCase : str = 1 + min([right, diagonal, down] ) UpperCAmelCase : Optional[int] = max(largest_square_area[0] , UpperCAmelCase_ ) UpperCAmelCase : List[str] = sub_problem_sol return sub_problem_sol else: return 0 UpperCAmelCase : Dict = [0] UpperCAmelCase : Optional[Any] = [[-1] * cols for _ in range(UpperCAmelCase_ )] update_area_of_max_square_using_dp_array(0 , 0 , UpperCAmelCase_ ) return largest_square_area[0] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = [[0] * (cols + 1) for _ in range(rows + 1 )] UpperCAmelCase : Optional[int] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): UpperCAmelCase : Dict = dp_array[row][col + 1] UpperCAmelCase : Optional[Any] = dp_array[row + 1][col + 1] UpperCAmelCase : Tuple = dp_array[row + 1][col] if mat[row][col] == 1: UpperCAmelCase : Tuple = 1 + min(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : List[str] = max(dp_array[row][col] , UpperCAmelCase_ ) else: UpperCAmelCase : List[Any] = 0 return largest_square_area def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : str = [0] * (cols + 1) UpperCAmelCase : List[str] = [0] * (cols + 1) UpperCAmelCase : Optional[int] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): UpperCAmelCase : List[Any] = current_row[col + 1] UpperCAmelCase : List[Any] = next_row[col + 1] UpperCAmelCase : Union[str, Any] = next_row[col] if mat[row][col] == 1: UpperCAmelCase : Any = 1 + min(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : List[str] = max(current_row[col] , UpperCAmelCase_ ) else: UpperCAmelCase : List[str] = 0 UpperCAmelCase : Any = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
708
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """trajectory_transformer""" UpperCAmelCase_ : Any = ["""past_key_values"""] UpperCAmelCase_ : Any = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[Any] , lowercase_ : List[Any]=100 , lowercase_ : Dict=5 , lowercase_ : Optional[int]=1 , lowercase_ : int=1 , lowercase_ : int=249 , lowercase_ : Any=6 , lowercase_ : Tuple=17 , lowercase_ : Dict=25 , lowercase_ : List[Any]=4 , lowercase_ : Tuple=4 , lowercase_ : Dict=128 , lowercase_ : List[str]=0.1 , lowercase_ : int=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : int=0.0006 , lowercase_ : int=512 , lowercase_ : int=0.02 , lowercase_ : Dict=1E-12 , lowercase_ : List[str]=1 , lowercase_ : Union[str, Any]=True , lowercase_ : Tuple=1 , lowercase_ : Any=50_256 , lowercase_ : Optional[Any]=50_256 , **lowercase_ : Any , ) -> int: UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : Optional[Any] = action_weight UpperCAmelCase : Tuple = reward_weight UpperCAmelCase : Union[str, Any] = value_weight UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : Tuple = block_size UpperCAmelCase : Optional[int] = action_dim UpperCAmelCase : Tuple = observation_dim UpperCAmelCase : Any = transition_dim UpperCAmelCase : Dict = learning_rate UpperCAmelCase : Any = n_layer UpperCAmelCase : str = n_head UpperCAmelCase : Optional[int] = n_embd UpperCAmelCase : List[str] = embd_pdrop UpperCAmelCase : Union[str, Any] = attn_pdrop UpperCAmelCase : str = resid_pdrop UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Dict = layer_norm_eps UpperCAmelCase : Optional[Any] = kaiming_initializer_range UpperCAmelCase : Union[str, Any] = use_cache super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
709
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = (EulerDiscreteScheduler,) UpperCAmelCase_ : Dict = 10 def UpperCAmelCase_ ( self : Optional[int] , **lowercase_ : int ) -> str: UpperCAmelCase : int = { 'num_train_timesteps': 1_100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**lowercase_ ) return config def UpperCAmelCase_ ( self : Any ) -> str: for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> Any: for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : List[str] = self.scheduler_classes[0] UpperCAmelCase : Tuple = self.get_scheduler_config() UpperCAmelCase : Any = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Any = torch.manual_seed(0 ) UpperCAmelCase : Dict = self.dummy_model() UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : Tuple = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Optional[int] = scheduler.scale_model_input(lowercase_ , lowercase_ ) UpperCAmelCase : List[str] = model(lowercase_ , lowercase_ ) UpperCAmelCase : Union[str, Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ) UpperCAmelCase : List[str] = output.prev_sample UpperCAmelCase : Tuple = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def UpperCAmelCase_ ( self : List[Any] ) -> int: UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase : Union[str, Any] = self.get_scheduler_config(prediction_type='v_prediction' ) UpperCAmelCase : List[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = self.dummy_model() UpperCAmelCase : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : List[str] = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : List[str] = scheduler.scale_model_input(lowercase_ , lowercase_ ) UpperCAmelCase : Any = model(lowercase_ , lowercase_ ) UpperCAmelCase : str = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ) UpperCAmelCase : Dict = output.prev_sample UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 0.0002 ) < 1E-2 assert abs(result_mean.item() - 2.2676E-06 ) < 1E-3 def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : List[Any] = self.scheduler_classes[0] UpperCAmelCase : List[str] = self.get_scheduler_config() UpperCAmelCase : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowercase_ ) UpperCAmelCase : Dict = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = self.dummy_model() UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase : Optional[int] = sample.to(lowercase_ ) for t in scheduler.timesteps: UpperCAmelCase : int = scheduler.scale_model_input(lowercase_ , lowercase_ ) UpperCAmelCase : Optional[Any] = model(lowercase_ , lowercase_ ) UpperCAmelCase : Any = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ) UpperCAmelCase : Tuple = output.prev_sample UpperCAmelCase : Tuple = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase : str = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def UpperCAmelCase_ ( self : Dict ) -> List[str]: UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase : Optional[int] = self.get_scheduler_config() UpperCAmelCase : Optional[int] = scheduler_class(**lowercase_ , use_karras_sigmas=lowercase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : Dict = self.dummy_model() UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase : Optional[int] = sample.to(lowercase_ ) for t in scheduler.timesteps: UpperCAmelCase : int = scheduler.scale_model_input(lowercase_ , lowercase_ ) UpperCAmelCase : Union[str, Any] = model(lowercase_ , lowercase_ ) UpperCAmelCase : List[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ) UpperCAmelCase : Dict = output.prev_sample UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase : List[str] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1E-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1E-3
710
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
0
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor lowercase__ = logging.getLogger(__name__) lowercase__ = 50 # max width of layer names lowercase__ = 70 # max width of quantizer names def UpperCamelCase( UpperCAmelCase_ ) -> Optional[Any]: UpperCAmelCase : List[Any] = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=UpperCAmelCase_ , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=UpperCAmelCase_ , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=UpperCAmelCase_ , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=UpperCAmelCase_ , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=UpperCAmelCase_ , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=UpperCAmelCase_ , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def UpperCamelCase( UpperCAmelCase_ ) -> Dict: if args.calibrator == "max": UpperCAmelCase : Tuple = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) UpperCAmelCase : List[str] = 'histogram' elif args.calibrator == "mse": UpperCAmelCase : List[str] = 'histogram' else: raise ValueError(F"""Invalid calibrator {args.calibrator}""" ) UpperCAmelCase : Optional[Any] = QuantDescriptor(num_bits=args.aprec , calib_method=UpperCAmelCase_ ) UpperCAmelCase : List[str] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(UpperCAmelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=False , UpperCAmelCase_=False ) -> Optional[Any]: logger.info('Configuring Model for Quantization' ) logger.info(F"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(UpperCAmelCase_ , ['embeddings'] , which='weight' , _disabled=UpperCAmelCase_ ) if args.quant_disable: set_quantizer_by_name(UpperCAmelCase_ , [''] , _disabled=UpperCAmelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(UpperCAmelCase_ , args.quant_disable_keyword , _disabled=UpperCAmelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(UpperCAmelCase_ , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=UpperCAmelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(UpperCAmelCase_ , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=UpperCAmelCase_ ) if args.recalibrate_weights: recalibrate_weights(UpperCAmelCase_ ) if args.fuse_qkv: fuse_qkv(UpperCAmelCase_ , UpperCAmelCase_ ) if args.clip_gelu: clip_gelu(UpperCAmelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ ) -> List[str]: logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"""{name:80}: {module}""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ) -> Optional[Any]: logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ) -> Union[str, Any]: def fusea(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): for mod in [qq, qk, qv]: if not hasattr(UpperCAmelCase_ , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return UpperCAmelCase : Optional[Any] = qq._amax.detach().item() UpperCAmelCase : str = qk._amax.detach().item() UpperCAmelCase : List[str] = qv._amax.detach().item() UpperCAmelCase : Union[str, Any] = max(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) qq._amax.fill_(UpperCAmelCase_ ) qk._amax.fill_(UpperCAmelCase_ ) qv._amax.fill_(UpperCAmelCase_ ) logger.info(F""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ) -> Dict: for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): UpperCAmelCase : Dict = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=UpperCAmelCase_ ) UpperCAmelCase : Tuple = mod._input_quantizer._amax.data.detach().item() logger.info(F"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def UpperCamelCase( UpperCAmelCase_ ) -> List[Any]: for name, mod in model.named_modules(): if hasattr(UpperCAmelCase_ , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: UpperCAmelCase : Optional[int] = mod.weight.shape[0] UpperCAmelCase : Tuple = mod._weight_quantizer._amax.detach() UpperCAmelCase : Any = torch.ones(UpperCAmelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(F"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def UpperCamelCase( UpperCAmelCase_ ) -> List[str]: for name, mod in model.named_modules(): if hasattr(UpperCAmelCase_ , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCAmelCase : List[str] = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCAmelCase : List[str] = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCAmelCase : List[str] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=UpperCAmelCase_ , keepdims=UpperCAmelCase_ ).detach() logger.info(F"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) UpperCAmelCase : Any = amax def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_=25 , UpperCAmelCase_=1_80 , UpperCAmelCase_=None ) -> str: if ignore is None: UpperCAmelCase : Union[str, Any] = [] elif not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = [ignore] UpperCAmelCase : Tuple = 0 for name, mod in model.named_modules(): if not hasattr(UpperCAmelCase_ , 'weight' ): continue UpperCAmelCase : Dict = max(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) for name, mod in model.named_modules(): UpperCAmelCase : Tuple = getattr(UpperCAmelCase_ , '_input_quantizer' , UpperCAmelCase_ ) UpperCAmelCase : str = getattr(UpperCAmelCase_ , '_weight_quantizer' , UpperCAmelCase_ ) if not hasattr(UpperCAmelCase_ , 'weight' ): continue if type(UpperCAmelCase_ ) in ignore: continue if [True for s in ignore if type(UpperCAmelCase_ ) is str and s in name]: continue UpperCAmelCase : List[str] = F"""Act:{input_q.extra_repr()}""" UpperCAmelCase : Optional[int] = F"""Wgt:{weight_q.extra_repr()}""" UpperCAmelCase : Union[str, Any] = F"""{name:{name_width}} {act_str} {wgt_str}""" if len(UpperCAmelCase_ ) <= line_width: logger.info(UpperCAmelCase_ ) else: logger.info(F"""{name:{name_width}} {act_str}""" ) logger.info(F"""{" ":{name_width}} {wgt_str}""" ) def UpperCamelCase( UpperCAmelCase_ ) -> List[str]: UpperCAmelCase : Dict = 0 for name, mod in model.named_modules(): if isinstance(UpperCAmelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(F"""{name:80} {mod}""" ) count += 1 print(F"""{count} TensorQuantizers found in model""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Optional[int]: UpperCAmelCase : Dict = getattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if quantizer_mod is not None: assert hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: logger.warning(F"""{name} has no {quantizer}""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_="both" , **UpperCAmelCase_ ) -> Union[str, Any]: UpperCAmelCase : Tuple = F"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += F""" {k}={v}""" if which in ["input", "both"]: set_quantizer(UpperCAmelCase_ , UpperCAmelCase_ , '_input_quantizer' , UpperCAmelCase_ , UpperCAmelCase_ ) if which in ["weight", "both"]: set_quantizer(UpperCAmelCase_ , UpperCAmelCase_ , '_weight_quantizer' , UpperCAmelCase_ , UpperCAmelCase_ ) logger.info(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) -> Tuple: for name, mod in model.named_modules(): if hasattr(UpperCAmelCase_ , '_input_quantizer' ) or hasattr(UpperCAmelCase_ , '_weight_quantizer' ): for n in names: if re.search(UpperCAmelCase_ , UpperCAmelCase_ ): set_quantizers(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) elif name.endswith('_quantizer' ): for n in names: if re.search(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[Any] = F"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += F""" {k}={v}""" setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) logger.info(UpperCAmelCase_ )
711
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
0
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCamelCase( ): UpperCAmelCase : Union[str, Any] = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg' UpperCAmelCase : Optional[int] = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ).convert('RGB' ) return image def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') ) # fmt: on return rename_keys def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = dct.pop(UpperCAmelCase_ ) UpperCAmelCase : List[str] = val def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase : Optional[Any] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) UpperCAmelCase : str = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict UpperCAmelCase : str = torch.cat((q_bias, torch.zeros_like(UpperCAmelCase_ , requires_grad=UpperCAmelCase_ ), v_bias) ) UpperCAmelCase : Tuple = qkv_bias def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = 3_64 if 'coco' in model_name else 2_24 UpperCAmelCase : Optional[int] = InstructBlipVisionConfig(image_size=UpperCAmelCase_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: UpperCAmelCase : List[Any] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase : List[str] = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: UpperCAmelCase : List[str] = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=3_20_01 ).to_dict() elif "vicuna-13b" in model_name: UpperCAmelCase : int = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=3_20_01 ).to_dict() else: raise ValueError('Model name not supported' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 UpperCAmelCase : Tuple = InstructBlipQFormerConfig(vocab_size=3_05_23 ).to_dict() UpperCAmelCase : List[str] = InstructBlipConfig(vision_config=UpperCAmelCase_ , text_config=UpperCAmelCase_ , qformer_config=UpperCAmelCase_ ) return config, image_size @torch.no_grad() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=False ): UpperCAmelCase : Dict = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' ) qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} ) if "t5" in model_name: UpperCAmelCase : Optional[Any] = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) UpperCAmelCase : Any = LlamaTokenizerFast.from_pretrained( 'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' ) tokenizer.add_special_tokens({'pad_token': '[PAD]'} ) UpperCAmelCase : Dict = get_blipa_config(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = InstructBlipForConditionalGeneration(UpperCAmelCase_ ).eval() UpperCAmelCase : Optional[Any] = { 'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'), 'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'), 'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'), 'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'), } UpperCAmelCase : Tuple = model_name_to_original[model_name] # load original model print('Loading original model...' ) UpperCAmelCase : Tuple = 'cuda:1' if torch.cuda.is_available() else 'cpu' UpperCAmelCase : Dict = 'cuda:2' if torch.cuda.is_available() else 'cpu' UpperCAmelCase : Tuple = load_model_and_preprocess( name=UpperCAmelCase_ , model_type=UpperCAmelCase_ , is_eval=UpperCAmelCase_ , device=UpperCAmelCase_ ) original_model.eval() print('Done!' ) # update state dict keys UpperCAmelCase : Any = original_model.state_dict() UpperCAmelCase : Tuple = create_rename_keys(UpperCAmelCase_ ) for src, dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase : Optional[Any] = state_dict.pop(UpperCAmelCase_ ) if key.startswith('Qformer.bert' ): UpperCAmelCase : Dict = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: UpperCAmelCase : Optional[Any] = key.replace('self' , 'attention' ) if "llm_proj" in key: UpperCAmelCase : Dict = key.replace('llm_proj' , 'language_projection' ) if "t5_proj" in key: UpperCAmelCase : Tuple = key.replace('t5_proj' , 'language_projection' ) if key.startswith('llm_model' ): UpperCAmelCase : str = key.replace('llm_model' , 'language_model' ) if key.startswith('t5' ): UpperCAmelCase : List[Any] = key.replace('t5' , 'language' ) UpperCAmelCase : int = val # read in qv biases read_in_q_v_bias(UpperCAmelCase_ , UpperCAmelCase_ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = load_demo_image() UpperCAmelCase : Optional[Any] = 'What is unusual about this image?' # create processor UpperCAmelCase : Optional[Any] = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=UpperCAmelCase_ , image_std=UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = InstructBlipProcessor( image_processor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , qformer_tokenizer=UpperCAmelCase_ , ) UpperCAmelCase : List[Any] = processor(images=UpperCAmelCase_ , text=UpperCAmelCase_ , return_tensors='pt' ).to(UpperCAmelCase_ ) # make sure processor creates exact same pixel values UpperCAmelCase : Any = vis_processors['eval'](UpperCAmelCase_ ).unsqueeze(0 ).to(UpperCAmelCase_ ) UpperCAmelCase : Tuple = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , UpperCAmelCase_ ) original_model.to(UpperCAmelCase_ ) hf_model.to(UpperCAmelCase_ ) with torch.no_grad(): if "vicuna" in model_name: UpperCAmelCase : Dict = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits UpperCAmelCase : List[Any] = hf_model(**UpperCAmelCase_ ).logits else: UpperCAmelCase : int = original_model( {'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits UpperCAmelCase : List[Any] = tokenizer('\n' , return_tensors='pt' ).input_ids.to(UpperCAmelCase_ ) UpperCAmelCase : Tuple = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_00 ) UpperCAmelCase : Optional[Any] = hf_model(**UpperCAmelCase_ , labels=UpperCAmelCase_ ).logits print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape UpperCAmelCase : int = 1E-4 if 'vicuna' in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , UpperCAmelCase_ , atol=UpperCAmelCase_ ) print('Looks ok!' ) print('Generating with original model...' ) UpperCAmelCase : Tuple = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('Generating with HF model...' ) UpperCAmelCase : Any = hf_model.generate( **UpperCAmelCase_ , do_sample=UpperCAmelCase_ , num_beams=5 , max_length=2_56 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? UpperCAmelCase : Any = 2 print('Original generation:' , UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = processor.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) UpperCAmelCase : List[Any] = [text.strip() for text in output_text] print('HF generation:' , UpperCAmelCase_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCAmelCase_ ) hf_model.save_pretrained(UpperCAmelCase_ ) if push_to_hub: processor.push_to_hub(F"""Salesforce/{model_name}""" ) hf_model.push_to_hub(F"""Salesforce/{model_name}""" ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() lowercase__ = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) lowercase__ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
712
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = StableDiffusionPanoramaPipeline UpperCAmelCase_ : Optional[int] = TEXT_TO_IMAGE_PARAMS UpperCAmelCase_ : Any = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase_ : int = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase_ : str = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCAmelCase : Any = DDIMScheduler() torch.manual_seed(0 ) UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCAmelCase : Union[str, Any] = CLIPTextModel(lowercase_ ) UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCAmelCase : Dict = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase_ ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : List[str]=0 ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = torch.manual_seed(lowercase_ ) UpperCAmelCase : Any = { 'prompt': 'a photo of the dolomites', 'generator': generator, # Setting height and width to None to prevent OOMs on CPU. 'height': None, 'width': None, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCAmelCase_ ( self : List[Any] ) -> int: UpperCAmelCase : str = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : str = StableDiffusionPanoramaPipeline(**lowercase_ ) UpperCAmelCase : Optional[Any] = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase : str = sd_pipe(**lowercase_ ).images UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Optional[int] = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : List[str] ) -> Tuple: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: UpperCAmelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : Any = StableDiffusionPanoramaPipeline(**lowercase_ ) UpperCAmelCase : Tuple = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : int = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase : str = 'french fries' UpperCAmelCase : Optional[int] = sd_pipe(**lowercase_ , negative_prompt=lowercase_ ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Optional[int] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : List[Any] ) -> str: UpperCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Dict = self.get_dummy_components() UpperCAmelCase : Optional[int] = StableDiffusionPanoramaPipeline(**lowercase_ ) UpperCAmelCase : List[Any] = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase : Dict = sd_pipe(**lowercase_ , view_batch_size=2 ) UpperCAmelCase : Union[str, Any] = output.images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Union[str, Any] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : str = self.get_dummy_components() UpperCAmelCase : Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' ) UpperCAmelCase : Any = StableDiffusionPanoramaPipeline(**lowercase_ ) UpperCAmelCase : Tuple = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase : Any = sd_pipe(**lowercase_ ).images UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[Any] = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Tuple = self.get_dummy_components() UpperCAmelCase : Union[str, Any] = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , skip_prk_steps=lowercase_ ) UpperCAmelCase : int = StableDiffusionPanoramaPipeline(**lowercase_ ) UpperCAmelCase : Optional[int] = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Dict = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase : Any = sd_pipe(**lowercase_ ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Any = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Any=0 ) -> Tuple: UpperCAmelCase : Dict = torch.manual_seed(lowercase_ ) UpperCAmelCase : Union[str, Any] = { 'prompt': 'a photo of the dolomites', 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCAmelCase_ ( self : Any ) -> Dict: UpperCAmelCase : Dict = 'stabilityai/stable-diffusion-2-base' UpperCAmelCase : Dict = DDIMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' ) UpperCAmelCase : Any = StableDiffusionPanoramaPipeline.from_pretrained(lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() UpperCAmelCase : Dict = self.get_inputs() UpperCAmelCase : Optional[int] = pipe(**lowercase_ ).images UpperCAmelCase : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2_048, 3) UpperCAmelCase : Dict = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : List[str] = StableDiffusionPanoramaPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-base' , safety_checker=lowercase_ ) UpperCAmelCase : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() UpperCAmelCase : Dict = self.get_inputs() UpperCAmelCase : str = pipe(**lowercase_ ).images UpperCAmelCase : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2_048, 3) UpperCAmelCase : List[str] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : Any = 0 def callback_fn(lowercase_ : int , lowercase_ : int , lowercase_ : torch.FloatTensor ) -> None: UpperCAmelCase : Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCAmelCase : Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) UpperCAmelCase : Dict = latents[0, -3:, -3:, -1] UpperCAmelCase : int = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: UpperCAmelCase : Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) UpperCAmelCase : Dict = latents[0, -3:, -3:, -1] UpperCAmelCase : List[Any] = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 UpperCAmelCase : List[Any] = False UpperCAmelCase : int = 'stabilityai/stable-diffusion-2-base' UpperCAmelCase : Optional[Any] = DDIMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' ) UpperCAmelCase : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ ) UpperCAmelCase : Optional[int] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() UpperCAmelCase : Tuple = self.get_inputs() pipe(**lowercase_ , callback=lowercase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase : List[str] = 'stabilityai/stable-diffusion-2-base' UpperCAmelCase : Dict = DDIMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' ) UpperCAmelCase : Any = StableDiffusionPanoramaPipeline.from_pretrained(lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ ) UpperCAmelCase : Dict = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase : Optional[int] = self.get_inputs() UpperCAmelCase : List[Any] = pipe(**lowercase_ ) UpperCAmelCase : Any = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
713
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
0
'''simple docstring''' import re import string import numpy as np import datasets lowercase__ = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" lowercase__ = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" lowercase__ = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self : Any ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self : int , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , lowercase_ : Any=False , lowercase_ : Union[str, Any]=False , lowercase_ : str=False , ) -> int: if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCAmelCase : Optional[int] = np.array([re.sub(lowercase_ , '' , lowercase_ ) for x in predictions] ) UpperCAmelCase : Tuple = np.array([re.sub(lowercase_ , '' , lowercase_ ) for x in references] ) else: UpperCAmelCase : str = np.asarray(lowercase_ ) UpperCAmelCase : List[str] = np.asarray(lowercase_ ) if ignore_case: UpperCAmelCase : Dict = np.char.lower(lowercase_ ) UpperCAmelCase : str = np.char.lower(lowercase_ ) if ignore_punctuation: UpperCAmelCase : Tuple = string.punctuation.maketrans('' , '' , string.punctuation ) UpperCAmelCase : Union[str, Any] = np.char.translate(lowercase_ , table=lowercase_ ) UpperCAmelCase : Optional[int] = np.char.translate(lowercase_ , table=lowercase_ ) if ignore_numbers: UpperCAmelCase : Union[str, Any] = string.digits.maketrans('' , '' , string.digits ) UpperCAmelCase : Tuple = np.char.translate(lowercase_ , table=lowercase_ ) UpperCAmelCase : Any = np.char.translate(lowercase_ , table=lowercase_ ) UpperCAmelCase : Union[str, Any] = predictions == references return {"exact_match": np.mean(lowercase_ ) * 100}
714
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
0
from decimal import Decimal, getcontext from math import ceil, factorial def UpperCamelCase( UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) UpperCAmelCase : Optional[int] = precision UpperCAmelCase : Optional[int] = ceil(precision / 14 ) UpperCAmelCase : List[str] = 42_68_80 * Decimal(1_00_05 ).sqrt() UpperCAmelCase : Any = 1 UpperCAmelCase : str = 13_59_14_09 UpperCAmelCase : List[str] = Decimal(UpperCAmelCase_ ) for k in range(1 , UpperCAmelCase_ ): UpperCAmelCase : int = factorial(6 * k ) // (factorial(3 * k ) * factorial(UpperCAmelCase_ ) ** 3) linear_term += 5_45_14_01_34 exponential_term *= -26_25_37_41_26_40_76_80_00 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowercase__ = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
715
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): if len(UpperCAmelCase_ ) <= 1: return lst UpperCAmelCase : List[str] = 1 while i < len(UpperCAmelCase_ ): if lst[i - 1] <= lst[i]: i += 1 else: UpperCAmelCase : Union[str, Any] = lst[i], lst[i - 1] i -= 1 if i == 0: UpperCAmelCase : List[str] = 1 return lst if __name__ == "__main__": lowercase__ = input("Enter numbers separated by a comma:\n").strip() lowercase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
716
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
0
'''simple docstring''' from __future__ import annotations import time lowercase__ = list[tuple[int, int]] lowercase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class A_ : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : Node | None ) -> Optional[int]: UpperCAmelCase : Optional[int] = pos_x UpperCAmelCase : Tuple = pos_y UpperCAmelCase : List[str] = (pos_y, pos_x) UpperCAmelCase : List[Any] = goal_x UpperCAmelCase : List[str] = goal_y UpperCAmelCase : List[Any] = parent class A_ : '''simple docstring''' def __init__( self : Dict , lowercase_ : tuple[int, int] , lowercase_ : tuple[int, int] ) -> Tuple: UpperCAmelCase : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , lowercase_ ) UpperCAmelCase : str = Node(goal[1] , goal[0] , goal[1] , goal[0] , lowercase_ ) UpperCAmelCase : Union[str, Any] = [self.start] UpperCAmelCase : str = False def UpperCAmelCase_ ( self : Any ) -> Path | None: while self.node_queue: UpperCAmelCase : List[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: UpperCAmelCase : List[Any] = True return self.retrace_path(lowercase_ ) UpperCAmelCase : Any = self.get_successors(lowercase_ ) for node in successors: self.node_queue.append(lowercase_ ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase_ ( self : List[str] , lowercase_ : Node ) -> list[Node]: UpperCAmelCase : List[str] = [] for action in delta: UpperCAmelCase : str = parent.pos_x + action[1] UpperCAmelCase : str = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , lowercase_ ) ) return successors def UpperCAmelCase_ ( self : str , lowercase_ : Node | None ) -> Path: UpperCAmelCase : str = node UpperCAmelCase : Dict = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase : List[Any] = current_node.parent path.reverse() return path class A_ : '''simple docstring''' def __init__( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[Any] ) -> List[str]: UpperCAmelCase : str = BreadthFirstSearch(lowercase_ , lowercase_ ) UpperCAmelCase : Optional[int] = BreadthFirstSearch(lowercase_ , lowercase_ ) UpperCAmelCase : List[str] = False def UpperCAmelCase_ ( self : str ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: UpperCAmelCase : Any = self.fwd_bfs.node_queue.pop(0 ) UpperCAmelCase : Any = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: UpperCAmelCase : Tuple = True return self.retrace_bidirectional_path( lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = current_bwd_node UpperCAmelCase : Tuple = current_fwd_node UpperCAmelCase : Dict = { self.fwd_bfs: self.fwd_bfs.get_successors(lowercase_ ), self.bwd_bfs: self.bwd_bfs.get_successors(lowercase_ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(lowercase_ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase_ ( self : int , lowercase_ : Node , lowercase_ : Node ) -> Path: UpperCAmelCase : Union[str, Any] = self.fwd_bfs.retrace_path(lowercase_ ) UpperCAmelCase : Any = self.bwd_bfs.retrace_path(lowercase_ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase : str = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowercase__ = (0, 0) lowercase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowercase__ = time.time() lowercase__ = BreadthFirstSearch(init, goal) lowercase__ = bfs.search() lowercase__ = time.time() - start_bfs_time print("Unidirectional BFS computation time : ", bfs_time) lowercase__ = time.time() lowercase__ = BidirectionalBreadthFirstSearch(init, goal) lowercase__ = bd_bfs.search() lowercase__ = time.time() - start_bd_bfs_time print("Bidirectional BFS computation time : ", bd_bfs_time)
717
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
0
import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowercase__ = logging.get_logger(__name__) @dataclass class A_ : '''simple docstring''' def __init__( self : Any , lowercase_ : List[Any]=False , lowercase_ : int=False , lowercase_ : str=6.0 , lowercase_ : int=None , lowercase_ : List[str]=False , lowercase_ : Dict=False , lowercase_ : str=None , lowercase_ : Any="fp4" , lowercase_ : Optional[Any]=False , **lowercase_ : Union[str, Any] , ) -> int: UpperCAmelCase : Optional[int] = load_in_abit UpperCAmelCase : Union[str, Any] = load_in_abit UpperCAmelCase : Tuple = llm_inta_threshold UpperCAmelCase : int = llm_inta_skip_modules UpperCAmelCase : str = llm_inta_enable_fpaa_cpu_offload UpperCAmelCase : str = llm_inta_has_fpaa_weight UpperCAmelCase : List[Any] = bnb_abit_quant_type UpperCAmelCase : Optional[int] = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: UpperCAmelCase : Any = torch.floataa elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Optional[Any] = getattr(lowercase_ , lowercase_ ) elif isinstance(lowercase_ , torch.dtype ): UpperCAmelCase : List[Any] = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def UpperCAmelCase_ ( self : int ) -> Tuple: if not isinstance(self.llm_inta_threshold , lowercase_ ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , lowercase_ ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , lowercase_ ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , lowercase_ ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , lowercase_ ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , lowercase_ ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def UpperCAmelCase_ ( self : int ) -> Any: return self.load_in_abit or self.load_in_abit def UpperCAmelCase_ ( self : int ) -> List[str]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]: UpperCAmelCase : int = cls(**lowercase_ ) UpperCAmelCase : Dict = [] for key, value in kwargs.items(): if hasattr(lowercase_ , lowercase_ ): setattr(lowercase_ , lowercase_ , lowercase_ ) to_remove.append(lowercase_ ) for key in to_remove: kwargs.pop(lowercase_ , lowercase_ ) if return_unused_kwargs: return config, kwargs else: return config def UpperCAmelCase_ ( self : Any , lowercase_ : Union[str, os.PathLike] ) -> List[str]: with open(lowercase_ , 'w' , encoding='utf-8' ) as writer: UpperCAmelCase : Tuple = self.to_dict() UpperCAmelCase : int = json.dumps(lowercase_ , indent=2 , sort_keys=lowercase_ ) + '\n' writer.write(lowercase_ ) def UpperCAmelCase_ ( self : List[str] ) -> Dict[str, Any]: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[Any] = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self : Union[str, Any] ) -> Optional[Any]: return f"""{self.__class__.__name__} {self.to_json_string()}""" def UpperCAmelCase_ ( self : int , lowercase_ : bool = True ) -> str: if use_diff is True: UpperCAmelCase : str = self.to_diff_dict() else: UpperCAmelCase : List[str] = self.to_dict() return json.dumps(lowercase_ , indent=2 , sort_keys=lowercase_ ) + "\n" def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: UpperCAmelCase : List[str] = self.to_dict() # get the default config dict UpperCAmelCase : Any = BitsAndBytesConfig().to_dict() UpperCAmelCase : Optional[Any] = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: UpperCAmelCase : Any = value return serializable_config_dict
718
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' from timeit import timeit lowercase__ = { "MALAYALAM": True, "String": False, "rotor": True, "level": True, "A": True, "BB": True, "ABC": False, "amanaplanacanalpanama": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : str = len(UpperCAmelCase_ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[Any] = len(UpperCAmelCase_ ) // 2 UpperCAmelCase : int = len(UpperCAmelCase_ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(UpperCAmelCase_ ) ) def UpperCamelCase( UpperCAmelCase_ ): if len(UpperCAmelCase_ ) <= 2: return True if s[0] == s[len(UpperCAmelCase_ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def UpperCamelCase( UpperCAmelCase_ ): return s == s[::-1] def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = F"""all({name}(key) is value for key, value in test_data.items())""" UpperCAmelCase : Optional[int] = F"""from __main__ import test_data, {name}""" UpperCAmelCase : List[str] = 50_00_00 UpperCAmelCase : List[Any] = timeit(stmt=UpperCAmelCase_ , setup=UpperCAmelCase_ , number=UpperCAmelCase_ ) print(F"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f'''{key:21} {value}''') print("a man a plan a canal panama") # finished 500,000 runs in 0.46793 seconds benchmark_function("is_palindrome_slice") # finished 500,000 runs in 0.85234 seconds benchmark_function("is_palindrome") # finished 500,000 runs in 1.32028 seconds benchmark_function("is_palindrome_recursive") # finished 500,000 runs in 2.08679 seconds benchmark_function("is_palindrome_traversal")
719
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: UpperCAmelCase : int = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained('google/mt5-small' ) UpperCAmelCase : Optional[Any] = tokenizer('Hello there' , return_tensors='tf' ).input_ids UpperCAmelCase : List[Any] = tokenizer('Hi I am' , return_tensors='tf' ).input_ids UpperCAmelCase : Optional[Any] = model(lowercase_ , labels=lowercase_ ).loss UpperCAmelCase : Dict = -tf.math.reduce_mean(lowercase_ ).numpy() UpperCAmelCase : Any = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
720
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
0
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase__ = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=8 ): UpperCAmelCase : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase : int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ ( _snake_case ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : UNetaDConditionModel , lowercase_ : DDPMScheduler , lowercase_ : VQModel , ) -> str: super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase_ ( self : Tuple , lowercase_ : int , lowercase_ : Any , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Tuple ) -> int: if latents is None: UpperCAmelCase : Union[str, Any] = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase : Optional[int] = latents.to(lowercase_ ) UpperCAmelCase : List[Any] = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : int=0 ) -> Optional[int]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase : Optional[int] = torch.device(f"""cuda:{gpu_id}""" ) UpperCAmelCase : Tuple = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : List[Any]=0 ) -> Optional[int]: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) UpperCAmelCase : Optional[int] = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase : Optional[Any] = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self : Union[str, Any] , lowercase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ : int = 512 , lowercase_ : int = 512 , lowercase_ : int = 100 , lowercase_ : float = 4.0 , lowercase_ : int = 1 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ) -> int: UpperCAmelCase : List[str] = self._execution_device UpperCAmelCase : int = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Dict = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Tuple = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase : str = self.scheduler.timesteps UpperCAmelCase : Tuple = self.unet.config.in_channels UpperCAmelCase : Tuple = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : str = {'image_embeds': image_embeds} UpperCAmelCase : str = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase : Any = noise_pred.chunk(2 ) UpperCAmelCase : str = variance_pred.chunk(2 ) UpperCAmelCase : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase : str = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Any = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase : int = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase : Optional[Any] = image * 0.5 + 0.5 UpperCAmelCase : str = image.clamp(0 , 1 ) UpperCAmelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase : Union[str, Any] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
721
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ ): if not nums: return 0 UpperCAmelCase : str = nums[0] UpperCAmelCase : Optional[int] = 0 for num in nums[1:]: UpperCAmelCase : str = ( max_excluding + num, max(UpperCAmelCase_ , UpperCAmelCase_ ), ) return max(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 50 ): UpperCAmelCase : Optional[int] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
701
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
0
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase__ = 16 lowercase__ = 32 def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ = 16 , UpperCAmelCase_ = "bert-base-cased" ): UpperCAmelCase : Any = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : Tuple = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase : Optional[int] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase : Optional[Any] = datasets.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=UpperCAmelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase : Optional[int] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase_ , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(UpperCAmelCase_ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. UpperCAmelCase : Any = DataLoader( tokenized_datasets['train'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) return train_dataloader, eval_dataloader def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): # Initialize accelerator UpperCAmelCase : List[str] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase : Any = config['lr'] UpperCAmelCase : Tuple = int(config['num_epochs'] ) UpperCAmelCase : List[Any] = int(config['seed'] ) UpperCAmelCase : Tuple = int(config['batch_size'] ) UpperCAmelCase : str = args.model_name_or_path set_seed(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = get_dataloaders(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) # Instantiate optimizer UpperCAmelCase : Optional[int] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase : List[str] = optimizer_cls(params=model.parameters() , lr=UpperCAmelCase_ ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase : int = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: UpperCAmelCase : str = 1 UpperCAmelCase : List[str] = (len(UpperCAmelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase : Optional[int] = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase_ , num_warmup_steps=0 , num_training_steps=UpperCAmelCase_ , ) else: UpperCAmelCase : List[Any] = DummyScheduler(UpperCAmelCase_ , total_num_steps=UpperCAmelCase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase : Tuple = accelerator.prepare( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase : Optional[Any] = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase : Optional[int] = 0 # Now we train the model UpperCAmelCase : Union[str, Any] = evaluate.load('glue' , 'mrpc' ) UpperCAmelCase : str = 0 UpperCAmelCase : int = {} for epoch in range(UpperCAmelCase_ , UpperCAmelCase_ ): model.train() for step, batch in enumerate(UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = model(**UpperCAmelCase_ ) UpperCAmelCase : List[Any] = outputs.loss UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCAmelCase : str = 0 for step, batch in enumerate(UpperCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase : Any = model(**UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase : Dict = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCAmelCase_ ) - 1: UpperCAmelCase : List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCAmelCase_ , references=UpperCAmelCase_ , ) UpperCAmelCase : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCAmelCase_ ) UpperCAmelCase : Any = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: UpperCAmelCase : Optional[int] = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase( ): UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=UpperCAmelCase_ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCAmelCase_ , ) parser.add_argument( '--output_dir' , type=UpperCAmelCase_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=UpperCAmelCase_ , default=3 , help='Number of train epochs.' , ) UpperCAmelCase : str = parser.parse_args() UpperCAmelCase : str = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
702
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
0
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowercase__ = logging.get_logger("transformers.models.encodec") lowercase__ = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } lowercase__ = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } lowercase__ = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } lowercase__ = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } lowercase__ = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } lowercase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowercase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowercase__ = [] lowercase__ = [] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): for attribute in key.split('.' ): UpperCAmelCase : str = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) if weight_type is not None: UpperCAmelCase : Optional[Any] = getattr(UpperCAmelCase_ , UpperCAmelCase_ ).shape else: UpperCAmelCase : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_g": UpperCAmelCase : List[str] = value elif weight_type == "weight_v": UpperCAmelCase : Optional[Any] = value elif weight_type == "bias": UpperCAmelCase : Optional[Any] = value elif weight_type == "running_mean": UpperCAmelCase : Dict = value elif weight_type == "running_var": UpperCAmelCase : List[str] = value elif weight_type == "num_batches_tracked": UpperCAmelCase : List[Any] = value elif weight_type == "weight_ih_l0": UpperCAmelCase : Any = value elif weight_type == "weight_hh_l0": UpperCAmelCase : Optional[int] = value elif weight_type == "bias_ih_l0": UpperCAmelCase : List[str] = value elif weight_type == "bias_hh_l0": UpperCAmelCase : List[Any] = value elif weight_type == "weight_ih_l1": UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_hh_l1": UpperCAmelCase : int = value elif weight_type == "bias_ih_l1": UpperCAmelCase : Tuple = value elif weight_type == "bias_hh_l1": UpperCAmelCase : str = value else: UpperCAmelCase : Dict = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase : List[Any] = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Dict = [] if model_name == "encodec_24khz" or "encodec_32khz": UpperCAmelCase : str = MAPPING_24K elif model_name == "encodec_48khz": UpperCAmelCase : List[Any] = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(UpperCAmelCase_ , UpperCAmelCase_ ): logger.info(F"""{name} was ignored""" ) continue UpperCAmelCase : int = False for key, mapped_key in MAPPING.items(): if "*" in key: UpperCAmelCase : Optional[int] = key.split('.*.' ) if prefix in name and suffix in name: UpperCAmelCase : List[Any] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue UpperCAmelCase : Union[str, Any] = True if "*" in mapped_key: UpperCAmelCase : Optional[int] = name.split(UpperCAmelCase_ )[0].split('.' )[-2] UpperCAmelCase : Optional[int] = mapped_key.replace('*' , UpperCAmelCase_ ) if "weight_g" in name: UpperCAmelCase : List[Any] = 'weight_g' elif "weight_v" in name: UpperCAmelCase : Union[str, Any] = 'weight_v' elif "weight_ih_l0" in name: UpperCAmelCase : Any = 'weight_ih_l0' elif "weight_hh_l0" in name: UpperCAmelCase : Union[str, Any] = 'weight_hh_l0' elif "bias_ih_l0" in name: UpperCAmelCase : Union[str, Any] = 'bias_ih_l0' elif "bias_hh_l0" in name: UpperCAmelCase : List[Any] = 'bias_hh_l0' elif "weight_ih_l1" in name: UpperCAmelCase : Union[str, Any] = 'weight_ih_l1' elif "weight_hh_l1" in name: UpperCAmelCase : List[Any] = 'weight_hh_l1' elif "bias_ih_l1" in name: UpperCAmelCase : List[Any] = 'bias_ih_l1' elif "bias_hh_l1" in name: UpperCAmelCase : Union[str, Any] = 'bias_hh_l1' elif "bias" in name: UpperCAmelCase : Optional[int] = 'bias' elif "weight" in name: UpperCAmelCase : Union[str, Any] = 'weight' elif "running_mean" in name: UpperCAmelCase : Any = 'running_mean' elif "running_var" in name: UpperCAmelCase : Optional[int] = 'running_var' elif "num_batches_tracked" in name: UpperCAmelCase : Dict = 'num_batches_tracked' else: UpperCAmelCase : Tuple = None set_recursively(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) continue if not is_used: unused_weights.append(UpperCAmelCase_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None , ): if config_path is not None: UpperCAmelCase : Dict = EncodecConfig.from_pretrained(UpperCAmelCase_ ) else: UpperCAmelCase : List[Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": UpperCAmelCase : str = [8, 5, 4, 4] UpperCAmelCase : str = [2.2] UpperCAmelCase : List[Any] = 64 UpperCAmelCase : Tuple = 3_20_00 UpperCAmelCase : Tuple = 20_48 UpperCAmelCase : Any = False UpperCAmelCase : List[str] = False UpperCAmelCase : Optional[Any] = False elif model_name == "encodec_48khz": UpperCAmelCase : List[Any] = [8, 5, 4, 2] UpperCAmelCase : Union[str, Any] = [3.0, 6.0, 12.0, 24.0] UpperCAmelCase : Dict = 4_80_00 UpperCAmelCase : str = 2 UpperCAmelCase : Dict = False UpperCAmelCase : List[str] = 'time_group_norm' UpperCAmelCase : Any = True UpperCAmelCase : Any = 1.0 UpperCAmelCase : List[Any] = 0.01 else: raise ValueError(F"""Unknown model name: {model_name}""" ) UpperCAmelCase : Dict = EncodecModel(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(UpperCAmelCase_ ) UpperCAmelCase : str = torch.load(UpperCAmelCase_ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights UpperCAmelCase : Dict = original_checkpoint['best_state'] recursively_load_weights(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(UpperCAmelCase_ ) model.push_to_hub(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) lowercase__ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
703
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
0
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan lowercase__ = 6378137.0 lowercase__ = 6356752.314245 lowercase__ = 6378137 def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = (AXIS_A - AXIS_B) / AXIS_A UpperCAmelCase : int = atan((1 - flattening) * tan(radians(UpperCAmelCase_ ) ) ) UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(UpperCAmelCase_ ) ) ) UpperCAmelCase : Dict = radians(UpperCAmelCase_ ) UpperCAmelCase : Any = radians(UpperCAmelCase_ ) # Equation UpperCAmelCase : int = sin((phi_a - phi_a) / 2 ) UpperCAmelCase : Optional[Any] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda UpperCAmelCase : Dict = sqrt(sin_sq_phi + (cos(UpperCAmelCase_ ) * cos(UpperCAmelCase_ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
704
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
0
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = LxmertTokenizer UpperCAmelCase_ : Any = LxmertTokenizerFast UpperCAmelCase_ : int = True UpperCAmelCase_ : int = True def UpperCAmelCase_ ( self : Tuple ) -> List[str]: super().setUp() UpperCAmelCase : List[str] = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCAmelCase_ ( self : Any , lowercase_ : List[str] ) -> Tuple: UpperCAmelCase : Union[str, Any] = 'UNwant\u00E9d,running' UpperCAmelCase : Any = 'unwanted, running' return input_text, output_text def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: UpperCAmelCase : Any = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : Tuple = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowercase_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , [7, 4, 5, 10, 8, 9] ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: if not self.test_rust_tokenizer: return UpperCAmelCase : Any = self.get_tokenizer() UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() UpperCAmelCase : Union[str, Any] = 'I was born in 92000, and this is falsé.' UpperCAmelCase : Dict = tokenizer.tokenize(lowercase_ ) UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase : str = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase : Optional[Any] = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase : str = self.get_rust_tokenizer() UpperCAmelCase : int = tokenizer.encode(lowercase_ ) UpperCAmelCase : int = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ )
705
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): UpperCAmelCase_ : Union[str, Any] = ["""pixel_values"""] def __init__( self : List[Any] , lowercase_ : bool = True , lowercase_ : int = 32 , lowercase_ : Union[str, Any]=PILImageResampling.BILINEAR , lowercase_ : bool = True , **lowercase_ : Optional[Any] , ) -> None: UpperCAmelCase : List[Any] = do_resize UpperCAmelCase : int = do_rescale UpperCAmelCase : Tuple = size_divisor UpperCAmelCase : Any = resample super().__init__(**lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : np.ndarray , lowercase_ : int , lowercase_ : str , lowercase_ : Optional[ChannelDimension] = None , **lowercase_ : Tuple ) -> np.ndarray: UpperCAmelCase : Optional[Any] = get_image_size(lowercase_ ) # Rounds the height and width down to the closest multiple of size_divisor UpperCAmelCase : List[str] = height // size_divisor * size_divisor UpperCAmelCase : Union[str, Any] = width // size_divisor * size_divisor UpperCAmelCase : List[str] = resize(lowercase_ , (new_h, new_w) , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) return image def UpperCAmelCase_ ( self : Dict , lowercase_ : np.ndarray , lowercase_ : float , lowercase_ : Optional[ChannelDimension] = None , **lowercase_ : Optional[Any] ) -> np.ndarray: return rescale(image=lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , lowercase_ : Optional[bool] = None , lowercase_ : Optional[int] = None , lowercase_ : int=None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[Union[TensorType, str]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : List[Any] , ) -> BatchFeature: UpperCAmelCase : Dict = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Dict = size_divisor if size_divisor is not None else self.size_divisor UpperCAmelCase : Tuple = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) UpperCAmelCase : List[Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. UpperCAmelCase : Any = [to_numpy_array(lowercase_ ) for img in images] if do_resize: UpperCAmelCase : Union[str, Any] = [self.resize(lowercase_ , size_divisor=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: UpperCAmelCase : str = [self.rescale(lowercase_ , scale=1 / 255 ) for image in images] UpperCAmelCase : Dict = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] UpperCAmelCase : Tuple = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
706
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
707
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[Any] = PegasusConfig UpperCAmelCase_ : Union[str, Any] = {} UpperCAmelCase_ : Any = """gelu""" def __init__( self : str , lowercase_ : str , lowercase_ : int=13 , lowercase_ : Dict=7 , lowercase_ : Optional[Any]=True , lowercase_ : int=False , lowercase_ : Tuple=99 , lowercase_ : str=32 , lowercase_ : Tuple=2 , lowercase_ : int=4 , lowercase_ : Optional[int]=37 , lowercase_ : Any=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]=40 , lowercase_ : Tuple=2 , lowercase_ : Union[str, Any]=1 , lowercase_ : List[str]=0 , ) -> List[str]: UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : str = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : List[Any] = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : List[str] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : List[str] = attention_probs_dropout_prob UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Any = pad_token_id UpperCAmelCase : Union[str, Any] = bos_token_id def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : Optional[Any] = prepare_pegasus_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Any , lowercase_ : List[Any] ) -> Optional[Any]: UpperCAmelCase : Dict = TFPegasusModel(config=lowercase_ ).get_decoder() UpperCAmelCase : Optional[int] = inputs_dict['input_ids'] UpperCAmelCase : int = input_ids[:1, :] UpperCAmelCase : Dict = inputs_dict['attention_mask'][:1, :] UpperCAmelCase : Optional[Any] = inputs_dict['head_mask'] UpperCAmelCase : Optional[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ , use_cache=lowercase_ ) UpperCAmelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : str = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : str = model(lowercase_ , attention_mask=lowercase_ )[0] UpperCAmelCase : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1E-3 ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , ): if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(UpperCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : Optional[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () UpperCAmelCase_ : Union[str, Any] = (TFPegasusForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase_ : Tuple = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : Union[str, Any] = False def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Dict = TFPegasusModelTester(self ) UpperCAmelCase : Any = ConfigTester(self , config_class=lowercase_ ) def UpperCAmelCase_ ( self : List[str] ) -> Tuple: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) @require_sentencepiece @require_tokenizers @require_tf class A_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[str] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] UpperCAmelCase_ : Optional[Any] = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers UpperCAmelCase_ : Tuple = """google/pegasus-xsum""" @cached_property def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase_ ( self : Dict ) -> str: UpperCAmelCase : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCAmelCase_ ( self : Any , **lowercase_ : str ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = self.translate_src_text(**lowercase_ ) assert self.expected_text == generated_words def UpperCAmelCase_ ( self : Optional[Any] , **lowercase_ : Optional[int] ) -> str: UpperCAmelCase : Any = self.tokenizer(self.src_text , **lowercase_ , padding=lowercase_ , return_tensors='tf' ) UpperCAmelCase : Dict = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase_ , ) UpperCAmelCase : Dict = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase_ ) return generated_words @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: self._assert_generated_batch_equal_expected()
708
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
0
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def UpperCamelCase( UpperCAmelCase_ ): '''simple docstring''' if isinstance(UpperCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_tf class A_ : '''simple docstring''' def UpperCAmelCase_ ( self : Any , lowercase_ : Tuple , lowercase_ : Dict ) -> int: pass def UpperCAmelCase_ ( self : Dict ) -> List[Any]: pass def UpperCAmelCase_ ( self : List[str] ) -> Dict: pass def UpperCAmelCase_ ( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : List[Any]=None , **lowercase_ : List[str] ) -> Optional[Any]: UpperCAmelCase : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) UpperCAmelCase : str = TFVisionTextDualEncoderModel(lowercase_ ) UpperCAmelCase : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Tuple=None , **lowercase_ : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ ) UpperCAmelCase : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=lowercase_ , text_model=lowercase_ ) UpperCAmelCase : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : List[Any]=None , **lowercase_ : Union[str, Any] ) -> Dict: UpperCAmelCase : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = {'vision_model': vision_model, 'text_model': text_model} UpperCAmelCase : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) UpperCAmelCase : Dict = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Union[str, Any]=None , **lowercase_ : List[str] ) -> str: UpperCAmelCase : Any = self.get_vision_text_model(lowercase_ , lowercase_ ) UpperCAmelCase : str = TFVisionTextDualEncoderModel(vision_model=lowercase_ , text_model=lowercase_ ) UpperCAmelCase : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) UpperCAmelCase : Tuple = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) UpperCAmelCase : List[Any] = TFVisionTextDualEncoderModel.from_pretrained(lowercase_ ) UpperCAmelCase : Tuple = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) UpperCAmelCase : str = after_output[0].numpy() UpperCAmelCase : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-5 ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : int=None , **lowercase_ : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ ) UpperCAmelCase : List[Any] = TFVisionTextDualEncoderModel(vision_model=lowercase_ , text_model=lowercase_ ) UpperCAmelCase : List[str] = model( input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ ) UpperCAmelCase : Any = output.vision_model_output.attentions self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase : Optional[int] = to_atuple(vision_model.config.image_size ) UpperCAmelCase : str = to_atuple(vision_model.config.patch_size ) UpperCAmelCase : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCAmelCase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCAmelCase : Any = output.text_model_output.attentions self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float ) -> Tuple: UpperCAmelCase : str = np.abs((a - b) ).max() self.assertLessEqual(lowercase_ , lowercase_ , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def UpperCAmelCase_ ( self : int ) -> Optional[int]: UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase_ ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: UpperCAmelCase : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: UpperCAmelCase : int = self.prepare_config_and_inputs() self.check_save_load(**lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase_ ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: UpperCAmelCase : Tuple = self.get_pretrained_model_and_inputs() UpperCAmelCase : Optional[int] = model_a(**lowercase_ ) UpperCAmelCase : str = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = TFVisionTextDualEncoderModel.from_pretrained(lowercase_ ) UpperCAmelCase : Dict = model_a(**lowercase_ ) UpperCAmelCase : int = after_outputs[0].numpy() UpperCAmelCase : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-5 ) @require_tf class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: UpperCAmelCase : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) UpperCAmelCase : Any = 13 UpperCAmelCase : int = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) UpperCAmelCase : List[str] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) UpperCAmelCase : Optional[int] = random_attention_mask([batch_size, 4] ) UpperCAmelCase : List[str] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Tuple ) -> Any: UpperCAmelCase : Optional[Any] = TFViTModel(lowercase_ , name='vision_model' ) UpperCAmelCase : List[str] = TFBertModel(lowercase_ , name='text_model' ) return vision_model, text_model def UpperCAmelCase_ ( self : List[Any] ) -> str: UpperCAmelCase : int = TFViTModelTester(self ) UpperCAmelCase : Optional[int] = TFBertModelTester(self ) UpperCAmelCase : List[Any] = vit_model_tester.prepare_config_and_inputs() UpperCAmelCase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase : Tuple = vision_config_and_inputs ( UpperCAmelCase ) : List[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. UpperCAmelCase : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) UpperCAmelCase : Optional[Any] = 13 UpperCAmelCase : Tuple = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) UpperCAmelCase : Optional[int] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) UpperCAmelCase : Optional[int] = random_attention_mask([batch_size, 4] ) UpperCAmelCase : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCAmelCase_ ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=None , **lowercase_ : Dict ) -> Tuple: UpperCAmelCase : List[str] = self.get_vision_text_model(lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = TFVisionTextDualEncoderModel(vision_model=lowercase_ , text_model=lowercase_ ) UpperCAmelCase : str = model( input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ ) UpperCAmelCase : Dict = output.vision_model_output.attentions self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase : str = to_atuple(vision_model.config.image_size ) UpperCAmelCase : Optional[int] = to_atuple(vision_model.config.patch_size ) UpperCAmelCase : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCAmelCase : Union[str, Any] = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCAmelCase : Any = output.text_model_output.attentions self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCAmelCase_ ( self : int , lowercase_ : Tuple , lowercase_ : Optional[int] ) -> Dict: UpperCAmelCase : Any = TFDeiTModel(lowercase_ , name='vision_model' ) UpperCAmelCase : List[Any] = TFRobertaModel(lowercase_ , name='text_model' ) return vision_model, text_model def UpperCAmelCase_ ( self : Any ) -> Dict: UpperCAmelCase : Dict = TFDeiTModelTester(self ) UpperCAmelCase : Optional[Any] = TFRobertaModelTester(self ) UpperCAmelCase : int = vit_model_tester.prepare_config_and_inputs() UpperCAmelCase : Optional[int] = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase : Union[str, Any] = vision_config_and_inputs ( UpperCAmelCase ) : Tuple = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : int ) -> Optional[Any]: UpperCAmelCase : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) UpperCAmelCase : List[Any] = 13 UpperCAmelCase : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) UpperCAmelCase : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) UpperCAmelCase : str = random_attention_mask([batch_size, 4] ) UpperCAmelCase : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCAmelCase_ ( self : int , lowercase_ : List[Any] , lowercase_ : List[Any] ) -> Optional[Any]: UpperCAmelCase : List[Any] = TFCLIPVisionModel(lowercase_ , name='vision_model' ) UpperCAmelCase : List[Any] = TFBertModel(lowercase_ , name='text_model' ) return vision_model, text_model def UpperCAmelCase_ ( self : str ) -> int: UpperCAmelCase : str = TFCLIPVisionModelTester(self ) UpperCAmelCase : int = TFBertModelTester(self ) UpperCAmelCase : Optional[int] = clip_model_tester.prepare_config_and_inputs() UpperCAmelCase : Tuple = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase : Tuple = vision_config_and_inputs ( UpperCAmelCase ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self : Any ) -> Any: UpperCAmelCase : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=lowercase_ ) UpperCAmelCase : List[Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) UpperCAmelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCAmelCase : Union[str, Any] = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=lowercase_ , padding=lowercase_ , return_tensors='np' ) UpperCAmelCase : int = model(**lowercase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) UpperCAmelCase : List[Any] = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , lowercase_ , atol=1E-3 ) )
709
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' import os import sys import unittest lowercase__ : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowercase__ : Tuple = os.path.join(git_repo_path, "src", "transformers") lowercase__ : Optional[int] = "\n{0} = None\n" lowercase__ : Optional[Any] = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" lowercase__ : str = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: UpperCAmelCase : Dict = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(lowercase_ ) UpperCAmelCase : Dict = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(lowercase_ , 'tokenizers' ) UpperCAmelCase : str = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(lowercase_ , 'tensorflow_text' ) UpperCAmelCase : Union[str, Any] = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(lowercase_ , 'sentencepiece_and_tokenizers' ) UpperCAmelCase : List[str] = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(lowercase_ , 'sentencepiece_and_tensorflow_text' ) UpperCAmelCase : List[str] = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(lowercase_ , 'sentencepiece_and_tokenizers_and_vision' ) def UpperCAmelCase_ ( self : Any ) -> Dict: UpperCAmelCase : Any = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , lowercase_ ) self.assertIn('tensorflow_text' , lowercase_ ) self.assertIn('sentencepiece_and_tokenizers' , lowercase_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : int = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(lowercase_ , '\nCONSTANT = None\n' ) UpperCAmelCase : Union[str, Any] = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( lowercase_ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) UpperCAmelCase : Union[str, Any] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' UpperCAmelCase : List[Any] = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: UpperCAmelCase : Optional[int] = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' UpperCAmelCase : int = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , lowercase_ )
710
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
0
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> List[str]: # Initialise PyTorch model UpperCAmelCase : Any = RemBertConfig.from_json_file(UpperCAmelCase_ ) print('Building PyTorch model from configuration: {}'.format(str(UpperCAmelCase_ ) ) ) UpperCAmelCase : Union[str, Any] = RemBertModel(UpperCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Save pytorch-model print('Save PyTorch model to {}'.format(UpperCAmelCase_ ) ) torch.save(model.state_dict() , UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase__ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
711
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
0
'''simple docstring''' import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A_ ( _snake_case ): '''simple docstring''' def __init__( self : Dict , *lowercase_ : Optional[int] , lowercase_ : Tuple=None , lowercase_ : List[str]=None , **lowercase_ : Tuple ) -> Dict: super().__init__(*lowercase_ , **lowercase_ ) UpperCAmelCase : Tuple = eval_examples UpperCAmelCase : Dict = post_process_function def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Optional[Dataset] = None , lowercase_ : Any=None , lowercase_ : Optional[List[str]] = None , lowercase_ : str = "eval" , **lowercase_ : int , ) -> Dict[str, float]: UpperCAmelCase : Tuple = gen_kwargs.copy() UpperCAmelCase : int = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length' ) is not None else self.args.generation_max_length ) UpperCAmelCase : Tuple = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams' ) is not None else self.args.generation_num_beams ) UpperCAmelCase : Optional[Any] = gen_kwargs UpperCAmelCase : str = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase : Optional[Any] = self.get_eval_dataloader(lowercase_ ) UpperCAmelCase : Dict = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase : Dict = self.compute_metrics UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Tuple = time.time() UpperCAmelCase : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase : str = eval_loop( lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: UpperCAmelCase : Union[str, Any] = compute_metrics UpperCAmelCase : Optional[int] = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase : int = self.post_process_function(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): UpperCAmelCase : List[Any] = metrics.pop(lowercase_ ) metrics.update(output.metrics ) else: UpperCAmelCase : Union[str, Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase : List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_ ) return metrics def UpperCAmelCase_ ( self : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Optional[int]=None , lowercase_ : str = "test" , **lowercase_ : int ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = gen_kwargs.copy() UpperCAmelCase : List[Any] = self.get_test_dataloader(lowercase_ ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase : List[Any] = self.compute_metrics UpperCAmelCase : Dict = None UpperCAmelCase : str = time.time() UpperCAmelCase : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase : Optional[int] = eval_loop( lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: UpperCAmelCase : Dict = compute_metrics UpperCAmelCase : Optional[int] = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase : List[str] = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict' ) UpperCAmelCase : Tuple = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): UpperCAmelCase : Optional[int] = metrics.pop(lowercase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_ )
712
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
0
'''simple docstring''' import math def UpperCamelCase( UpperCAmelCase_ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase( UpperCAmelCase_ = 0.1 ): UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(UpperCAmelCase_ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
713
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
0
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ) -> int: UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ) -> str: UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ) -> Any: UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ) -> Any: UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ) -> Optional[int]: UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ) -> Any: UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ) -> Dict: UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
714
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
0
from __future__ import annotations import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = F"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(UpperCAmelCase_ ).json() def UpperCamelCase( UpperCAmelCase_ = 10 ): UpperCAmelCase : str = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' UpperCAmelCase : List[str] = requests.get(UpperCAmelCase_ ).json()[:max_stories] return [get_hackernews_story(UpperCAmelCase_ ) for story_id in story_ids] def UpperCamelCase( UpperCAmelCase_ = 10 ): UpperCAmelCase : Tuple = hackernews_top_stories(UpperCAmelCase_ ) return "\n".join('* [{title}]({url})'.format(**UpperCAmelCase_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
715
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Any = """deberta-v2""" def __init__( self : Any , lowercase_ : List[str]=128_100 , lowercase_ : Optional[Any]=1_536 , lowercase_ : Tuple=24 , lowercase_ : Optional[int]=24 , lowercase_ : List[str]=6_144 , lowercase_ : List[Any]="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : Optional[Any]=0 , lowercase_ : Optional[int]=0.02 , lowercase_ : List[str]=1E-7 , lowercase_ : List[Any]=False , lowercase_ : List[str]=-1 , lowercase_ : Dict=0 , lowercase_ : List[str]=True , lowercase_ : Optional[int]=None , lowercase_ : List[str]=0 , lowercase_ : Optional[int]="gelu" , **lowercase_ : Optional[Any] , ) -> Dict: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = intermediate_size UpperCAmelCase : Dict = hidden_act UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : Tuple = type_vocab_size UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : Optional[int] = relative_attention UpperCAmelCase : Union[str, Any] = max_relative_positions UpperCAmelCase : Tuple = pad_token_id UpperCAmelCase : Optional[int] = position_biased_input # Backwards compatibility if type(lowercase_ ) == str: UpperCAmelCase : Optional[Any] = [x.strip() for x in pos_att_type.lower().split('|' )] UpperCAmelCase : Union[str, Any] = pos_att_type UpperCAmelCase : int = vocab_size UpperCAmelCase : List[Any] = layer_norm_eps UpperCAmelCase : int = kwargs.get('pooler_hidden_size' , lowercase_ ) UpperCAmelCase : str = pooler_dropout UpperCAmelCase : Any = pooler_hidden_act class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def UpperCAmelCase_ ( self : Optional[Any] ) -> int: return 12 def UpperCAmelCase_ ( self : str , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 3 , lowercase_ : int = 40 , lowercase_ : int = 40 , lowercase_ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: UpperCAmelCase : Any = super().generate_dummy_inputs(preprocessor=lowercase_ , framework=lowercase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
716
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase__ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase__ = 250004 lowercase__ = 250020 @require_sentencepiece @require_tokenizers class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = MBartaaTokenizer UpperCAmelCase_ : int = MBartaaTokenizerFast UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : str = True def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = MBartaaTokenizer(lowercase_ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : str = '<s>' UpperCAmelCase : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: UpperCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(lowercase_ ) , 1_054 ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1_054 ) def UpperCAmelCase_ ( self : Any ) -> Any: UpperCAmelCase : List[Any] = MBartaaTokenizer(lowercase_ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=lowercase_ ) UpperCAmelCase : Tuple = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase : Union[str, Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) UpperCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: # fmt: off UpperCAmelCase : Dict = {'input_ids': [[250_004, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [250_004, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250_004, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase : List[Any] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase : int = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase : str = tempfile.mkdtemp() UpperCAmelCase : Union[str, Any] = tokenizer_r.save_pretrained(lowercase_ ) UpperCAmelCase : Optional[Any] = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) UpperCAmelCase : Optional[Any] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way UpperCAmelCase : Tuple = tokenizer_r.from_pretrained(lowercase_ ) UpperCAmelCase : Tuple = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=True UpperCAmelCase : Dict = tempfile.mkdtemp() UpperCAmelCase : int = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) UpperCAmelCase : Union[str, Any] = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way UpperCAmelCase : Tuple = tokenizer_r.from_pretrained(lowercase_ ) UpperCAmelCase : str = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=False UpperCAmelCase : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase : Optional[int] = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) UpperCAmelCase : Optional[int] = tokenizer_p.save_pretrained(lowercase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase : str = tokenizer_r.from_pretrained(lowercase_ ) UpperCAmelCase : Tuple = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """facebook/mbart-large-50-one-to-many-mmt""" UpperCAmelCase_ : Optional[int] = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCAmelCase_ : Any = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCAmelCase_ : int = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2] @classmethod def UpperCAmelCase_ ( cls : List[str] ) -> Any: UpperCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) UpperCAmelCase : Any = 1 return cls def UpperCAmelCase_ ( self : int ) -> List[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 250_020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 250_038 ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: UpperCAmelCase : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: self.assertIn(lowercase_ , self.tokenizer.all_special_ids ) UpperCAmelCase : str = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] UpperCAmelCase : Dict = self.tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) UpperCAmelCase : Optional[int] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertNotIn(self.tokenizer.eos_token , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> int: UpperCAmelCase : Any = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , lowercase_ ) UpperCAmelCase : str = 10 UpperCAmelCase : List[str] = self.tokenizer(lowercase_ , max_length=lowercase_ , truncation=lowercase_ ).input_ids[0] self.assertEqual(ids[0] , lowercase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowercase_ ) , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [250_053, 250_001] ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: UpperCAmelCase : Tuple = tempfile.mkdtemp() UpperCAmelCase : List[str] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = MBartaaTokenizer.from_pretrained(lowercase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase_ ) @require_torch def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase : Any = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase_ , return_tensors='pt' ) UpperCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: UpperCAmelCase : List[str] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) UpperCAmelCase : Dict = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCAmelCase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , padding=lowercase_ , truncation=lowercase_ , max_length=3 , return_tensors='pt' ) UpperCAmelCase : Optional[int] = self.tokenizer( text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=10 , return_tensors='pt' ) UpperCAmelCase : List[str] = targets['input_ids'] UpperCAmelCase : List[Any] = shift_tokens_right(lowercase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: UpperCAmelCase : Any = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(lowercase_ ) , { # en_XX, A, test, EOS 'input_ids': [[250_004, 62, 3_034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250_001, } , )
717
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase__ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
718
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """data2vec-vision""" def __init__( self : int , lowercase_ : List[str]=768 , lowercase_ : Dict=12 , lowercase_ : int=12 , lowercase_ : str=3_072 , lowercase_ : Optional[int]="gelu" , lowercase_ : Any=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.02 , lowercase_ : int=1E-12 , lowercase_ : int=224 , lowercase_ : Dict=16 , lowercase_ : List[Any]=3 , lowercase_ : Union[str, Any]=False , lowercase_ : Dict=False , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : int=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : Tuple=True , lowercase_ : Optional[int]=[3, 5, 7, 11] , lowercase_ : str=[1, 2, 3, 6] , lowercase_ : Any=True , lowercase_ : List[str]=0.4 , lowercase_ : List[str]=256 , lowercase_ : int=1 , lowercase_ : str=False , lowercase_ : str=255 , **lowercase_ : Dict , ) -> Optional[Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Tuple = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : str = image_size UpperCAmelCase : Tuple = patch_size UpperCAmelCase : Union[str, Any] = num_channels UpperCAmelCase : Dict = use_mask_token UpperCAmelCase : int = use_absolute_position_embeddings UpperCAmelCase : Optional[int] = use_relative_position_bias UpperCAmelCase : Optional[Any] = use_shared_relative_position_bias UpperCAmelCase : Union[str, Any] = layer_scale_init_value UpperCAmelCase : Optional[int] = drop_path_rate UpperCAmelCase : Dict = use_mean_pooling # decode head attributes (semantic segmentation) UpperCAmelCase : Optional[Any] = out_indices UpperCAmelCase : List[Any] = pool_scales # auxiliary head attributes (semantic segmentation) UpperCAmelCase : Optional[int] = use_auxiliary_head UpperCAmelCase : Optional[Any] = auxiliary_loss_weight UpperCAmelCase : str = auxiliary_channels UpperCAmelCase : Any = auxiliary_num_convs UpperCAmelCase : int = auxiliary_concat_input UpperCAmelCase : Union[str, Any] = semantic_loss_ignore_index class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = version.parse("""1.11""" ) @property def UpperCAmelCase_ ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCAmelCase_ ( self : int ) -> float: return 1E-4
719
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
0
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } lowercase__ = {"allegro/herbert-base-cased": 514} lowercase__ = {} class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = VOCAB_FILES_NAMES UpperCAmelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Optional[int] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Union[str, Any] = HerbertTokenizer def __init__( self : Optional[Any] , lowercase_ : List[Any]=None , lowercase_ : Tuple=None , lowercase_ : Tuple=None , lowercase_ : List[str]="<s>" , lowercase_ : Optional[Any]="<unk>" , lowercase_ : Any="<pad>" , lowercase_ : Tuple="<mask>" , lowercase_ : Dict="</s>" , **lowercase_ : str , ) -> Dict: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , cls_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , sep_token=lowercase_ , **lowercase_ , ) def UpperCAmelCase_ ( self : int , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : int = [self.cls_token_id] UpperCAmelCase : Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Any , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1] def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : List[str] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : int = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ )
720
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
0
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
721
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
0
'''simple docstring''' from jiwer import compute_measures import datasets lowercase__ : Tuple = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" lowercase__ : List[str] = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" lowercase__ : List[str] = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[int] ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Tuple=None , lowercase_ : str=None , lowercase_ : Optional[int]=False ) -> str: if concatenate_texts: return compute_measures(lowercase_ , lowercase_ )["wer"] else: UpperCAmelCase : int = 0 UpperCAmelCase : List[str] = 0 for prediction, reference in zip(lowercase_ , lowercase_ ): UpperCAmelCase : List[str] = compute_measures(lowercase_ , lowercase_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
700
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase : Tuple = tempfile.mkdtemp() UpperCAmelCase : List[Any] = BlipImageProcessor() UpperCAmelCase : str = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel' ) UpperCAmelCase : Optional[Any] = BlipProcessor(lowercase_ , lowercase_ ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self : List[Any] , **lowercase_ : int ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).tokenizer def UpperCAmelCase_ ( self : int , **lowercase_ : Union[str, Any] ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: UpperCAmelCase : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase : str = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: UpperCAmelCase : List[Any] = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCAmelCase : str = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) UpperCAmelCase : List[str] = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Any: UpperCAmelCase : List[Any] = self.get_image_processor() UpperCAmelCase : List[str] = self.get_tokenizer() UpperCAmelCase : int = BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) UpperCAmelCase : str = self.prepare_image_inputs() UpperCAmelCase : Dict = image_processor(lowercase_ , return_tensors='np' ) UpperCAmelCase : Optional[Any] = processor(images=lowercase_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: UpperCAmelCase : Optional[Any] = self.get_image_processor() UpperCAmelCase : List[Any] = self.get_tokenizer() UpperCAmelCase : Optional[int] = BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) UpperCAmelCase : Tuple = 'lower newer' UpperCAmelCase : Tuple = processor(text=lowercase_ ) UpperCAmelCase : List[Any] = tokenizer(lowercase_ , return_token_type_ids=lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase_ ( self : int ) -> List[Any]: UpperCAmelCase : Union[str, Any] = self.get_image_processor() UpperCAmelCase : Optional[int] = self.get_tokenizer() UpperCAmelCase : str = BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) UpperCAmelCase : List[str] = 'lower newer' UpperCAmelCase : Any = self.prepare_image_inputs() UpperCAmelCase : List[Any] = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : str = self.get_image_processor() UpperCAmelCase : Any = self.get_tokenizer() UpperCAmelCase : Optional[Any] = BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) UpperCAmelCase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase : List[str] = processor.batch_decode(lowercase_ ) UpperCAmelCase : str = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = self.get_image_processor() UpperCAmelCase : Union[str, Any] = self.get_tokenizer() UpperCAmelCase : Dict = BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) UpperCAmelCase : Optional[int] = 'lower newer' UpperCAmelCase : List[str] = self.prepare_image_inputs() UpperCAmelCase : Optional[Any] = processor(text=lowercase_ , images=lowercase_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
701
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
0
'''simple docstring''' import numpy # List of input, output pairs lowercase__ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowercase__ = (((515, 22, 13), 555), ((61, 35, 49), 150)) lowercase__ = [2, 4, 1, 5] lowercase__ = len(train_data) lowercase__ = 0.009 def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_="train" ): return calculate_hypothesis_value(UpperCAmelCase_ , UpperCAmelCase_ ) - output( UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : int = 0 for i in range(len(UpperCAmelCase_ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_=m ): UpperCAmelCase : Dict = 0 for i in range(UpperCAmelCase_ ): if index == -1: summation_value += _error(UpperCAmelCase_ ) else: summation_value += _error(UpperCAmelCase_ ) * train_data[i][0][index] return summation_value def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = summation_of_cost_derivative(UpperCAmelCase_ , UpperCAmelCase_ ) / m return cost_derivative_value def UpperCamelCase( ): global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase : List[str] = 0.00_0002 UpperCAmelCase : str = 0 UpperCAmelCase : str = 0 while True: j += 1 UpperCAmelCase : Any = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase_ ) ): UpperCAmelCase : List[Any] = get_cost_derivative(i - 1 ) UpperCAmelCase : Union[str, Any] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase_ , UpperCAmelCase_ , atol=UpperCAmelCase_ , rtol=UpperCAmelCase_ , ): break UpperCAmelCase : List[Any] = temp_parameter_vector print(('Number of iterations:', j) ) def UpperCamelCase( ): for i in range(len(UpperCAmelCase_ ) ): print(('Actual output value:', output(UpperCAmelCase_ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase_ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
702
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
703
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
0
'''simple docstring''' from maths.prime_factors import prime_factors def UpperCamelCase( UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = F"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCAmelCase_ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(UpperCAmelCase_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
704
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
705
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
0
'''simple docstring''' import pytest lowercase__ = "__dummy_dataset1__" lowercase__ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def UpperCamelCase( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = dataset_loading_script_name UpperCAmelCase : Tuple = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=UpperCAmelCase_ ) UpperCAmelCase : Any = script_dir / F"""{script_name}.py""" with open(UpperCAmelCase_ , 'w' ) as f: f.write(UpperCAmelCase_ ) return str(UpperCAmelCase_ )
706
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase__ = { "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
707
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """wavlm""" def __init__( self : Tuple , lowercase_ : List[str]=32 , lowercase_ : Union[str, Any]=768 , lowercase_ : Dict=12 , lowercase_ : Any=12 , lowercase_ : List[Any]=3_072 , lowercase_ : str="gelu" , lowercase_ : Dict=0.1 , lowercase_ : Dict=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : str=1E-5 , lowercase_ : Optional[Any]="group" , lowercase_ : int="gelu" , lowercase_ : Any=(512, 512, 512, 512, 512, 512, 512) , lowercase_ : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : Optional[int]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=128 , lowercase_ : Union[str, Any]=16 , lowercase_ : Tuple=320 , lowercase_ : Tuple=800 , lowercase_ : Dict=False , lowercase_ : Optional[Any]=True , lowercase_ : List[Any]=0.05 , lowercase_ : Tuple=10 , lowercase_ : Dict=2 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : str=320 , lowercase_ : Optional[Any]=2 , lowercase_ : List[Any]=0.1 , lowercase_ : str=100 , lowercase_ : List[Any]=256 , lowercase_ : List[str]=256 , lowercase_ : int=0.1 , lowercase_ : int="mean" , lowercase_ : Any=False , lowercase_ : str=False , lowercase_ : str=256 , lowercase_ : Dict=(512, 512, 512, 512, 1_500) , lowercase_ : Union[str, Any]=(5, 3, 3, 1, 1) , lowercase_ : Any=(1, 2, 3, 1, 1) , lowercase_ : Any=512 , lowercase_ : Any=80 , lowercase_ : Union[str, Any]=0 , lowercase_ : Any=1 , lowercase_ : Optional[int]=2 , lowercase_ : List[Any]=False , lowercase_ : List[Any]=3 , lowercase_ : Tuple=2 , lowercase_ : Union[str, Any]=3 , lowercase_ : Any=None , **lowercase_ : Dict , ) -> Optional[int]: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : List[str] = feat_extract_norm UpperCAmelCase : List[str] = feat_extract_activation UpperCAmelCase : Any = list(lowercase_ ) UpperCAmelCase : int = list(lowercase_ ) UpperCAmelCase : List[str] = list(lowercase_ ) UpperCAmelCase : Optional[int] = conv_bias UpperCAmelCase : Optional[int] = num_buckets UpperCAmelCase : Optional[int] = max_bucket_distance UpperCAmelCase : Tuple = num_conv_pos_embeddings UpperCAmelCase : Optional[int] = num_conv_pos_embedding_groups UpperCAmelCase : List[str] = len(self.conv_dim ) UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : str = num_attention_heads UpperCAmelCase : Optional[int] = hidden_dropout UpperCAmelCase : Optional[int] = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : int = feat_proj_dropout UpperCAmelCase : Any = final_dropout UpperCAmelCase : Any = layerdrop UpperCAmelCase : Dict = layer_norm_eps UpperCAmelCase : Optional[int] = initializer_range UpperCAmelCase : Tuple = num_ctc_classes UpperCAmelCase : int = vocab_size UpperCAmelCase : str = do_stable_layer_norm UpperCAmelCase : Tuple = use_weighted_layer_sum UpperCAmelCase : List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Tuple = apply_spec_augment UpperCAmelCase : Optional[int] = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Optional[int] = mask_time_min_masks UpperCAmelCase : Tuple = mask_feature_prob UpperCAmelCase : Dict = mask_feature_length # parameters for pretraining with codevector quantized representations UpperCAmelCase : Union[str, Any] = num_codevectors_per_group UpperCAmelCase : str = num_codevector_groups UpperCAmelCase : Any = contrastive_logits_temperature UpperCAmelCase : Dict = num_negatives UpperCAmelCase : Optional[Any] = codevector_dim UpperCAmelCase : Optional[int] = proj_codevector_dim UpperCAmelCase : Tuple = diversity_loss_weight # ctc loss UpperCAmelCase : List[str] = ctc_loss_reduction UpperCAmelCase : Optional[int] = ctc_zero_infinity # adapter UpperCAmelCase : Dict = add_adapter UpperCAmelCase : Optional[Any] = adapter_kernel_size UpperCAmelCase : Dict = adapter_stride UpperCAmelCase : Optional[Any] = num_adapter_layers UpperCAmelCase : Tuple = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : str = list(lowercase_ ) UpperCAmelCase : Optional[Any] = list(lowercase_ ) UpperCAmelCase : List[Any] = list(lowercase_ ) UpperCAmelCase : Optional[Any] = xvector_output_dim @property def UpperCAmelCase_ ( self : str ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
708
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json"} lowercase__ = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowercase__ = {"mgp-str": 27} class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : str , lowercase_ : Tuple , lowercase_ : List[Any]="[GO]" , lowercase_ : List[Any]="[GO]" , lowercase_ : str="[s]" , lowercase_ : List[str]="[GO]" , **lowercase_ : int ) -> Optional[int]: super().__init__( unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding='utf-8' ) as vocab_handle: UpperCAmelCase : Any = json.load(lowercase_ ) UpperCAmelCase : Tuple = {v: k for k, v in self.vocab.items()} @property def UpperCAmelCase_ ( self : Any ) -> int: return len(self.vocab ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: return dict(self.vocab , **self.added_tokens_encoder ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[Any]: UpperCAmelCase : str = [] for s in text: char_tokens.extend(lowercase_ ) return char_tokens def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Optional[int] ) -> Optional[Any]: return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) ) def UpperCAmelCase_ ( self : int , lowercase_ : Union[str, Any] ) -> Optional[int]: return self.decoder.get(lowercase_ ) def UpperCAmelCase_ ( self : int , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error('Vocabulary path ({}) should be a directory'.format(lowercase_ ) ) return UpperCAmelCase : Any = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(lowercase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + '\n' ) return (vocab_file,)
709
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : Optional[int] = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """openai-gpt""" UpperCAmelCase_ : Union[str, Any] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , lowercase_ : Union[str, Any]=40_478 , lowercase_ : Tuple=512 , lowercase_ : List[str]=768 , lowercase_ : int=12 , lowercase_ : Any=12 , lowercase_ : Optional[int]="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : str=0.1 , lowercase_ : Dict=0.1 , lowercase_ : str=1E-5 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : Tuple="cls_index" , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=None , lowercase_ : Dict=True , lowercase_ : Any=0.1 , **lowercase_ : Union[str, Any] , ) -> Union[str, Any]: UpperCAmelCase : int = vocab_size UpperCAmelCase : Tuple = n_positions UpperCAmelCase : int = n_embd UpperCAmelCase : Optional[Any] = n_layer UpperCAmelCase : List[Any] = n_head UpperCAmelCase : List[str] = afn UpperCAmelCase : int = resid_pdrop UpperCAmelCase : Optional[int] = embd_pdrop UpperCAmelCase : Optional[Any] = attn_pdrop UpperCAmelCase : Optional[Any] = layer_norm_epsilon UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Union[str, Any] = summary_type UpperCAmelCase : int = summary_use_proj UpperCAmelCase : Any = summary_activation UpperCAmelCase : List[str] = summary_first_dropout UpperCAmelCase : Optional[Any] = summary_proj_to_labels super().__init__(**lowercase_ )
710
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
0
'''simple docstring''' import argparse from collections import defaultdict import yaml lowercase__ = "docs/source/en/_toctree.yml" def UpperCamelCase( UpperCAmelCase_ ) -> Any: UpperCAmelCase : List[str] = defaultdict(UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : List[str] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(UpperCAmelCase_ ) UpperCAmelCase : Any = new_doc_list UpperCAmelCase : List[str] = [key for key, value in counts.items() if value > 1] UpperCAmelCase : Dict = [] for duplicate_key in duplicates: UpperCAmelCase : Any = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(UpperCAmelCase_ ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) UpperCAmelCase : int = sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(UpperCAmelCase_ ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(UpperCAmelCase_ ) # Sort return overview_doc def UpperCamelCase( UpperCAmelCase_=False ) -> Dict: with open(UpperCAmelCase_ , encoding='utf-8' ) as f: UpperCAmelCase : Optional[Any] = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase : List[str] = content[api_idx]['sections'] # Then to the model doc UpperCAmelCase : str = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 UpperCAmelCase : int = api_doc[scheduler_idx]['sections'] UpperCAmelCase : Tuple = clean_doc_toc(UpperCAmelCase_ ) UpperCAmelCase : List[str] = False if new_scheduler_doc != scheduler_doc: UpperCAmelCase : int = True if overwrite: UpperCAmelCase : Optional[Any] = new_scheduler_doc if diff: if overwrite: UpperCAmelCase : Optional[int] = api_doc with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(UpperCAmelCase_ , allow_unicode=UpperCAmelCase_ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def UpperCamelCase( UpperCAmelCase_=False ) -> Union[str, Any]: with open(UpperCAmelCase_ , encoding='utf-8' ) as f: UpperCAmelCase : List[str] = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase : str = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase : int = content[api_idx]['sections'] # Then to the model doc UpperCAmelCase : Union[str, Any] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 UpperCAmelCase : Optional[int] = False UpperCAmelCase : Union[str, Any] = api_doc[pipeline_idx]['sections'] UpperCAmelCase : List[Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: UpperCAmelCase : int = pipeline_doc['section'] UpperCAmelCase : List[str] = clean_doc_toc(UpperCAmelCase_ ) if overwrite: UpperCAmelCase : List[str] = new_sub_pipeline_doc new_pipeline_docs.append(UpperCAmelCase_ ) # sort overall pipeline doc UpperCAmelCase : Optional[Any] = clean_doc_toc(UpperCAmelCase_ ) if new_pipeline_docs != pipeline_docs: UpperCAmelCase : Any = True if overwrite: UpperCAmelCase : str = new_pipeline_docs if diff: if overwrite: UpperCAmelCase : Tuple = api_doc with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(UpperCAmelCase_ , allow_unicode=UpperCAmelCase_ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowercase__ = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
711
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
0
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline lowercase__ = "path-to-your-trained-model" lowercase__ = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda") lowercase__ = "A photo of sks dog in a bucket" lowercase__ = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png")
712
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class A_ : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Any , lowercase_ : Union[str, Any]=13 , lowercase_ : int=7 , lowercase_ : Union[str, Any]=False , lowercase_ : Optional[int]=True , lowercase_ : int=False , lowercase_ : List[Any]=True , lowercase_ : List[str]=33 , lowercase_ : Tuple=32 , lowercase_ : Dict=5 , lowercase_ : List[Any]=4 , lowercase_ : Union[str, Any]=37 , lowercase_ : Any="gelu" , lowercase_ : int=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : List[str]=16 , lowercase_ : Union[str, Any]=2 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : Optional[Any]=3 , lowercase_ : Dict=4 , lowercase_ : Optional[int]=None , ) -> Optional[Any]: UpperCAmelCase : Any = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : int = is_training UpperCAmelCase : Optional[Any] = use_input_mask UpperCAmelCase : List[str] = use_token_type_ids UpperCAmelCase : List[Any] = use_labels UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : List[str] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : List[str] = max_position_embeddings UpperCAmelCase : str = type_vocab_size UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : Optional[int] = initializer_range UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : int = num_choices UpperCAmelCase : Any = scope def UpperCAmelCase_ ( self : Tuple ) -> Tuple: UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_input_mask: UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict = None UpperCAmelCase : Optional[Any] = None UpperCAmelCase : List[str] = None if self.use_labels: UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Tuple ) -> Any: UpperCAmelCase : Tuple = EsmModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : Dict = model(lowercase_ , attention_mask=lowercase_ ) UpperCAmelCase : Dict = model(lowercase_ ) UpperCAmelCase : Tuple = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self : int , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : List[str] ) -> Any: UpperCAmelCase : List[Any] = EsmForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Optional[Any] ) -> List[Any]: UpperCAmelCase : Optional[Any] = self.num_labels UpperCAmelCase : Union[str, Any] = EsmForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : List[Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : Dict ) -> Any: UpperCAmelCase : int = self.prepare_config_and_inputs() ( UpperCAmelCase ) : str = config_and_inputs UpperCAmelCase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : int = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase_ : Tuple = () UpperCAmelCase_ : Any = ( { """feature-extraction""": EsmModel, """fill-mask""": EsmForMaskedLM, """text-classification""": EsmForSequenceClassification, """token-classification""": EsmForTokenClassification, """zero-shot""": EsmForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase_ : List[str] = True def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: UpperCAmelCase : Union[str, Any] = EsmModelTester(self ) UpperCAmelCase : Any = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Optional[int] ) -> int: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> str: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : str = type self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> List[str]: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def UpperCAmelCase_ ( self : int ) -> List[str]: for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[int] = EsmModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] UpperCAmelCase : Union[str, Any] = EsmEmbeddings(config=lowercase_ ) UpperCAmelCase : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) UpperCAmelCase : List[str] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) UpperCAmelCase : Dict = create_position_ids_from_input_ids(lowercase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(lowercase_ , lowercase_ ) ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()[0] UpperCAmelCase : Optional[int] = EsmEmbeddings(config=lowercase_ ) UpperCAmelCase : List[Any] = torch.empty(2 , 4 , 30 ) UpperCAmelCase : Optional[Any] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] UpperCAmelCase : Optional[Any] = torch.as_tensor([expected_single_positions, expected_single_positions] ) UpperCAmelCase : int = embeddings.create_position_ids_from_inputs_embeds(lowercase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(lowercase_ , lowercase_ ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: pass @unittest.skip('Esm does not support embedding resizing' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: pass @require_torch class A_ ( _snake_case ): '''simple docstring''' @slow def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: with torch.no_grad(): UpperCAmelCase : List[str] = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() UpperCAmelCase : Union[str, Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase : List[Any] = model(lowercase_ )[0] UpperCAmelCase : Union[str, Any] = 33 UpperCAmelCase : Optional[Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , lowercase_ ) UpperCAmelCase : List[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) ) @slow def UpperCAmelCase_ ( self : str ) -> Optional[int]: with torch.no_grad(): UpperCAmelCase : List[Any] = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() UpperCAmelCase : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCAmelCase : Tuple = model(lowercase_ )[0] # compare the actual values for a slice. UpperCAmelCase : List[str] = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) )
713
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
0
'''simple docstring''' from collections import namedtuple lowercase__ = namedtuple("from_to", "from_ to") lowercase__ = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1000), "kilolitre": from_to(1, 1), "gallon": from_to(0.00454, 264.172), "cubicyard": from_to(0.76455, 1.30795), "cubicfoot": from_to(0.028, 35.3147), "cup": from_to(0.000236588, 4226.75), } def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Optional[Any]: if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ', '.join(UpperCAmelCase_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ', '.join(UpperCAmelCase_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
714
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
0
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A_ ( _snake_case ): '''simple docstring''' def __init__( self : Dict , *lowercase_ : List[str] , lowercase_ : Optional[int]=None , lowercase_ : Optional[Any]=None , **lowercase_ : Any ) -> Optional[int]: super().__init__(*lowercase_ , **lowercase_ ) UpperCAmelCase : Any = eval_examples UpperCAmelCase : Tuple = post_process_function def UpperCAmelCase_ ( self : List[Any] , lowercase_ : List[Any]=None , lowercase_ : Dict=None , lowercase_ : Optional[int]=None , lowercase_ : str = "eval" ) -> Any: UpperCAmelCase : int = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase : List[str] = self.get_eval_dataloader(lowercase_ ) UpperCAmelCase : int = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase : List[str] = self.compute_metrics UpperCAmelCase : List[Any] = None UpperCAmelCase : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase : List[str] = time.time() try: UpperCAmelCase : List[str] = eval_loop( lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: UpperCAmelCase : Any = compute_metrics UpperCAmelCase : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase : Dict = self.post_process_function(lowercase_ , lowercase_ , output.predictions ) UpperCAmelCase : Optional[int] = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): UpperCAmelCase : Tuple = metrics.pop(lowercase_ ) metrics.update(output.metrics ) else: UpperCAmelCase : Optional[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase : Union[str, Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_ ) return metrics def UpperCAmelCase_ ( self : Tuple , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : str=None , lowercase_ : str = "test" ) -> Optional[int]: UpperCAmelCase : Dict = self.get_test_dataloader(lowercase_ ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase : List[Any] = self.compute_metrics UpperCAmelCase : Any = None UpperCAmelCase : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase : Union[str, Any] = time.time() try: UpperCAmelCase : int = eval_loop( lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: UpperCAmelCase : Dict = compute_metrics UpperCAmelCase : Dict = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase : Optional[Any] = self.post_process_function(lowercase_ , lowercase_ , output.predictions , 'predict' ) UpperCAmelCase : Tuple = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): UpperCAmelCase : Optional[Any] = metrics.pop(lowercase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_ )
715
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
0
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowercase__ = sys.version_info >= (3, 10) def UpperCamelCase( UpperCAmelCase_=None , UpperCAmelCase_=None ): return field(default_factory=lambda: default , metadata=UpperCAmelCase_ ) @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : int UpperCAmelCase_ : float UpperCAmelCase_ : str UpperCAmelCase_ : bool @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : int = 42 UpperCAmelCase_ : str = field(default="""toto""" , metadata={"""help""": """help message"""} ) @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = True UpperCAmelCase_ : Optional[bool] = None class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """titi""" UpperCAmelCase_ : int = """toto""" class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """titi""" UpperCAmelCase_ : Dict = """toto""" UpperCAmelCase_ : Dict = 42 @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : BasicEnum = "toto" def UpperCAmelCase_ ( self : List[Any] ) -> Dict: UpperCAmelCase : Tuple = BasicEnum(self.foo ) @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : MixedTypeEnum = "toto" def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: UpperCAmelCase : Union[str, Any] = MixedTypeEnum(self.foo ) @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Optional[float] = field(default=_snake_case , metadata={"""help""": """help message"""} ) UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[List[str]] = list_field(default=[] ) UpperCAmelCase_ : Optional[List[int]] = list_field(default=[] ) @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] = list_field(default=[] ) UpperCAmelCase_ : List[int] = list_field(default=[1, 2, 3] ) UpperCAmelCase_ : List[str] = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) UpperCAmelCase_ : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] = field() UpperCAmelCase_ : str = field() UpperCAmelCase_ : BasicEnum = field() def UpperCAmelCase_ ( self : str ) -> Dict: UpperCAmelCase : Tuple = BasicEnum(self.required_enum ) @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : int UpperCAmelCase_ : "BasicEnum" = field() UpperCAmelCase_ : "Optional[bool]" = None UpperCAmelCase_ : "str" = field(default="""toto""" , metadata={"""help""": """help message"""} ) UpperCAmelCase_ : "List[str]" = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = True UpperCAmelCase_ : bool | None = None @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : int | None = None UpperCAmelCase_ : float | None = field(default=_snake_case , metadata={"""help""": """help message"""} ) UpperCAmelCase_ : str | None = None UpperCAmelCase_ : list[str] | None = list_field(default=[] ) UpperCAmelCase_ : list[int] | None = list_field(default=[] ) class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : argparse.ArgumentParser , lowercase_ : argparse.ArgumentParser ) -> int: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): UpperCAmelCase : Optional[Any] = {k: v for k, v in vars(lowercase_ ).items() if k != 'container'} UpperCAmelCase : List[Any] = {k: v for k, v in vars(lowercase_ ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , lowercase_ ) and yy.get('choices' , lowercase_ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](lowercase_ ) , yy['type'](lowercase_ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: UpperCAmelCase : Dict = HfArgumentParser(lowercase_ ) UpperCAmelCase : List[Any] = argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_ ) expected.add_argument('--bar' , type=lowercase_ , required=lowercase_ ) expected.add_argument('--baz' , type=lowercase_ , required=lowercase_ ) expected.add_argument('--flag' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?' ) self.argparsersEqual(lowercase_ , lowercase_ ) UpperCAmelCase : Dict = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] (UpperCAmelCase ) : Union[str, Any] = parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_ ) self.assertFalse(example.flag ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : List[str] = HfArgumentParser(lowercase_ ) UpperCAmelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=lowercase_ ) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message' ) self.argparsersEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Tuple: UpperCAmelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?' ) expected.add_argument('--baz' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=lowercase_ , dest='baz' ) expected.add_argument('--opt' , type=lowercase_ , default=lowercase_ ) UpperCAmelCase : List[Any] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_ ) for dataclass_type in dataclass_types: UpperCAmelCase : str = HfArgumentParser(lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = parser.parse_args([] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) UpperCAmelCase : Optional[Any] = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) UpperCAmelCase : Union[str, Any] = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) UpperCAmelCase : Tuple = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) UpperCAmelCase : List[Any] = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) def UpperCAmelCase_ ( self : Any ) -> Any: UpperCAmelCase : Optional[Any] = HfArgumentParser(lowercase_ ) UpperCAmelCase : List[str] = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(lowercase_ , lowercase_ ) UpperCAmelCase : List[str] = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) UpperCAmelCase : Any = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) UpperCAmelCase : Optional[Any] = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) UpperCAmelCase : Dict = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) UpperCAmelCase : List[Any] = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) UpperCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def UpperCAmelCase_ ( self : List[str] ) -> int: @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : Literal["titi", "toto", 42] = "toto" UpperCAmelCase : Dict = HfArgumentParser(lowercase_ ) UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(lowercase_ , lowercase_ ) UpperCAmelCase : Any = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) UpperCAmelCase : List[Any] = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) UpperCAmelCase : Union[str, Any] = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: UpperCAmelCase : List[str] = HfArgumentParser(lowercase_ ) UpperCAmelCase : Dict = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=lowercase_ ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=lowercase_ ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_ ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) UpperCAmelCase : int = parser.parse_args([] ) self.assertEqual( lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) UpperCAmelCase : Optional[Any] = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument('--foo' , default=lowercase_ , type=lowercase_ ) expected.add_argument('--bar' , default=lowercase_ , type=lowercase_ , help='help message' ) expected.add_argument('--baz' , default=lowercase_ , type=lowercase_ ) expected.add_argument('--ces' , nargs='+' , default=[] , type=lowercase_ ) expected.add_argument('--des' , nargs='+' , default=[] , type=lowercase_ ) UpperCAmelCase : str = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_ ) for dataclass_type in dataclass_types: UpperCAmelCase : Union[str, Any] = HfArgumentParser(lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) UpperCAmelCase : Optional[Any] = parser.parse_args([] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[] ) ) UpperCAmelCase : List[Any] = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: UpperCAmelCase : Tuple = HfArgumentParser(lowercase_ ) UpperCAmelCase : Tuple = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=lowercase_ , required=lowercase_ ) expected.add_argument('--required_str' , type=lowercase_ , required=lowercase_ ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=lowercase_ , ) self.argparsersEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: UpperCAmelCase : Union[str, Any] = HfArgumentParser(lowercase_ ) UpperCAmelCase : int = argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_ ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=lowercase_ , ) expected.add_argument('--opt' , type=lowercase_ , default=lowercase_ ) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : str = HfArgumentParser(lowercase_ ) UpperCAmelCase : str = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } UpperCAmelCase : str = parser.parse_dict(lowercase_ )[0] UpperCAmelCase : Union[str, Any] = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: UpperCAmelCase : Tuple = HfArgumentParser(lowercase_ ) UpperCAmelCase : List[str] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = HfArgumentParser(lowercase_ ) UpperCAmelCase : Optional[int] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Union[str, Any] = os.path.join(lowercase_ , 'temp_json' ) os.mkdir(lowercase_ ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(lowercase_ , lowercase_ ) UpperCAmelCase : str = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] UpperCAmelCase : Tuple = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: UpperCAmelCase : Dict = HfArgumentParser(lowercase_ ) UpperCAmelCase : List[Any] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Dict = os.path.join(lowercase_ , 'temp_yaml' ) os.mkdir(lowercase_ ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(lowercase_ , lowercase_ ) UpperCAmelCase : List[str] = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] UpperCAmelCase : Any = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: UpperCAmelCase : Dict = HfArgumentParser(lowercase_ ) self.assertIsNotNone(lowercase_ )
716
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
0