code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) lowercase__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowercase__ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): for attribute in key.split('.' ): UpperCAmelCase : Tuple = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) if weight_type is not None: UpperCAmelCase : List[str] = getattr(UpperCAmelCase_ , UpperCAmelCase_ ).shape else: UpperCAmelCase : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_g": UpperCAmelCase : Union[str, Any] = value elif weight_type == "weight_v": UpperCAmelCase : str = value elif weight_type == "bias": UpperCAmelCase : str = value else: UpperCAmelCase : str = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = [] UpperCAmelCase : Optional[int] = fairseq_model.state_dict() UpperCAmelCase : List[str] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight UpperCAmelCase : Dict = None for name, value in fairseq_dict.items(): UpperCAmelCase : List[Any] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCAmelCase : Any = True elif name.split('.' )[0] == "proj": UpperCAmelCase : List[Any] = fairseq_model.proj UpperCAmelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: UpperCAmelCase : int = name.split(UpperCAmelCase_ )[0].split('.' )[-2] UpperCAmelCase : Union[str, Any] = mapped_key.replace('*' , UpperCAmelCase_ ) if "weight_g" in name: UpperCAmelCase : Optional[Any] = 'weight_g' elif "weight_v" in name: UpperCAmelCase : Any = 'weight_v' elif "bias" in name: UpperCAmelCase : Dict = 'bias' elif "weight" in name: UpperCAmelCase : Optional[int] = 'weight' else: UpperCAmelCase : Union[str, Any] = None set_recursively(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) continue if not is_used: unused_weights.append(UpperCAmelCase_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : str = full_name.split('conv_layers.' )[-1] UpperCAmelCase : Optional[Any] = name.split('.' ) UpperCAmelCase : List[str] = int(items[0] ) UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = emb.weight.shape UpperCAmelCase : List[str] = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ , bias=UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = emb.weight.data return lin_layer def UpperCamelCase( UpperCAmelCase_ ): with open(UpperCAmelCase_ , 'r' , encoding='utf-8' ) as f: UpperCAmelCase : Dict = f.readlines() UpperCAmelCase : List[str] = [line.split(' ' )[0] for line in lines] UpperCAmelCase : int = len(UpperCAmelCase_ ) UpperCAmelCase : int = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(UpperCAmelCase_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = SpeechaTextaConfig.from_pretrained( UpperCAmelCase_ , vocab_size=UpperCAmelCase_ , decoder_layers=UpperCAmelCase_ , do_stable_layer_norm=UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ) UpperCAmelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) UpperCAmelCase : Optional[Any] = model[0].eval() # set weights for wav2vec2 encoder UpperCAmelCase : Any = WavaVecaModel(UpperCAmelCase_ ) UpperCAmelCase : str = recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase_ ) UpperCAmelCase : int = SpeechaTextaForCausalLM(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase_ ) # set output linear layer unexpected_keys.remove('embed_out' ) UpperCAmelCase : str = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) UpperCAmelCase : List[str] = SpeechEncoderDecoderModel(encoder=UpperCAmelCase_ , decoder=UpperCAmelCase_ ) UpperCAmelCase : Any = False # add projection layer UpperCAmelCase : Optional[Any] = nn.Parameter(projection_layer.weight ) UpperCAmelCase : List[str] = nn.Parameter(projection_layer.bias ) UpperCAmelCase : Tuple = create_vocab_dict(UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'vocab.json' ) , 'w' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = SpeechaTextaTokenizer(os.path.join(UpperCAmelCase_ , 'vocab.json' ) ) tokenizer.save_pretrained(UpperCAmelCase_ ) UpperCAmelCase : str = hf_wavavec.config.to_dict() UpperCAmelCase : int = tokenizer.pad_token_id UpperCAmelCase : str = tokenizer.bos_token_id UpperCAmelCase : Union[str, Any] = tokenizer.eos_token_id UpperCAmelCase : Any = 'speech_to_text_2' UpperCAmelCase : Any = 'wav2vec2' UpperCAmelCase : str = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase_ ) hf_wavavec.save_pretrained(UpperCAmelCase_ ) feature_extractor.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") lowercase__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
717
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
0
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = FlaxAutoencoderKL @property def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: UpperCAmelCase : Dict = 4 UpperCAmelCase : Dict = 3 UpperCAmelCase : List[Any] = (32, 32) UpperCAmelCase : Dict = jax.random.PRNGKey(0 ) UpperCAmelCase : int = jax.random.uniform(lowercase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : Tuple = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } UpperCAmelCase : str = self.dummy_input return init_dict, inputs_dict
718
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter lowercase__ = True except ImportError: lowercase__ = False lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase( UpperCAmelCase_ ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class A_ ( _snake_case ): '''simple docstring''' @staticmethod def UpperCAmelCase_ ( lowercase_ : ArgumentParser ) -> List[Any]: UpperCAmelCase : Union[str, Any] = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' , action='store_true' , help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' , type=lowercase_ , help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' , type=lowercase_ , help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=lowercase_ ) def __init__( self : List[Any] , lowercase_ : bool , lowercase_ : str , lowercase_ : Any=None , *lowercase_ : List[Any] ) -> Optional[int]: UpperCAmelCase : Optional[int] = testing UpperCAmelCase : Union[str, Any] = testing_file UpperCAmelCase : Optional[Any] = path def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCAmelCase : str = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(lowercase_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) UpperCAmelCase : List[str] = ( Path(lowercase_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCAmelCase : List[Any] = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(lowercase_ ) ) else: with open(self._testing_file , 'r' ) as configuration_file: UpperCAmelCase : Dict = json.load(lowercase_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowercase_ , extra_context=lowercase_ , ) UpperCAmelCase : str = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' , 'r' ) as configuration_file: UpperCAmelCase : Any = json.load(lowercase_ ) UpperCAmelCase : Optional[Any] = configuration['lowercase_modelname'] UpperCAmelCase : Union[str, Any] = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(f"""{directory}/configuration.json""" ) UpperCAmelCase : Tuple = 'PyTorch' in generate_tensorflow_pytorch_and_flax UpperCAmelCase : List[str] = 'TensorFlow' in generate_tensorflow_pytorch_and_flax UpperCAmelCase : List[Any] = 'Flax' in generate_tensorflow_pytorch_and_flax UpperCAmelCase : Tuple = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(lowercase_ , exist_ok=lowercase_ ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=lowercase_ ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , 'w' ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(lowercase_ : Tuple ): with open(lowercase_ , 'r' ) as f: UpperCAmelCase : Any = f.readlines() with open(lowercase_ , 'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowercase_ ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowercase_ : str , lowercase_ : str , lowercase_ : List[str] ): # Create temp file UpperCAmelCase : Tuple = mkstemp() UpperCAmelCase : Dict = False with fdopen(lowercase_ , 'w' ) as new_file: with open(lowercase_ ) as old_file: for line in old_file: new_file.write(lowercase_ ) if line_to_copy_below in line: UpperCAmelCase : Union[str, Any] = True for line_to_copy in lines_to_copy: new_file.write(lowercase_ ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(lowercase_ , lowercase_ ) # Remove original file remove(lowercase_ ) # Move new file move(lowercase_ , lowercase_ ) def skip_units(lowercase_ : int ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowercase_ : Optional[Any] ): with open(lowercase_ ) as datafile: UpperCAmelCase : Dict = [] UpperCAmelCase : Optional[int] = False UpperCAmelCase : str = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCAmelCase : List[str] = line.split('"' )[1] UpperCAmelCase : Tuple = skip_units(lowercase_ ) elif "# Below: " in line and "##" not in line: UpperCAmelCase : str = line.split('"' )[1] UpperCAmelCase : Union[str, Any] = skip_units(lowercase_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : str = [] elif "# Replace with" in line and "##" not in line: UpperCAmelCase : Tuple = [] elif "##" not in line: lines_to_copy.append(lowercase_ ) remove(lowercase_ ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(lowercase_ )
719
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_snake_case ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = field(default="""image-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) UpperCAmelCase_ : ClassVar[Features] = Features({"""image""": Image()} ) UpperCAmelCase_ : ClassVar[Features] = Features({"""labels""": ClassLabel} ) UpperCAmelCase_ : str = "image" UpperCAmelCase_ : str = "labels" def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Dict ) -> Optional[Any]: if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) UpperCAmelCase : int = copy.deepcopy(self ) UpperCAmelCase : str = self.label_schema.copy() UpperCAmelCase : Optional[int] = features[self.label_column] UpperCAmelCase : int = label_schema return task_template @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
721
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : Dict = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """gpt_bigcode""" UpperCAmelCase_ : List[Any] = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Optional[Any] , lowercase_ : Dict=50_257 , lowercase_ : Optional[Any]=1_024 , lowercase_ : str=768 , lowercase_ : List[Any]=12 , lowercase_ : List[Any]=12 , lowercase_ : int=None , lowercase_ : List[Any]="gelu_pytorch_tanh" , lowercase_ : Optional[int]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Any=1E-5 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : List[Any]=True , lowercase_ : Tuple=True , lowercase_ : Optional[int]=50_256 , lowercase_ : Tuple=50_256 , lowercase_ : List[str]=True , lowercase_ : Any=True , lowercase_ : str=True , **lowercase_ : int , ) -> Optional[int]: UpperCAmelCase : List[str] = vocab_size UpperCAmelCase : Optional[int] = n_positions UpperCAmelCase : Tuple = n_embd UpperCAmelCase : Any = n_layer UpperCAmelCase : str = n_head UpperCAmelCase : Dict = n_inner UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Optional[Any] = resid_pdrop UpperCAmelCase : Tuple = embd_pdrop UpperCAmelCase : int = attn_pdrop UpperCAmelCase : Tuple = layer_norm_epsilon UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = scale_attn_weights UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : Tuple = attention_softmax_in_fpaa UpperCAmelCase : List[Any] = scale_attention_softmax_in_fpaa UpperCAmelCase : Optional[int] = multi_query UpperCAmelCase : List[str] = bos_token_id UpperCAmelCase : Any = eos_token_id super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
700
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
0
'''simple docstring''' from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
701
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
0
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
702
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase__ = TypeVar("T") class A_ ( Generic[T] ): '''simple docstring''' UpperCAmelCase_ : deque[T] # Cache store of keys UpperCAmelCase_ : set[T] # References of the keys in cache UpperCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : List[Any] , lowercase_ : int ) -> None: UpperCAmelCase : Any = deque() UpperCAmelCase : Dict = set() if not n: UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCAmelCase : str = n def UpperCAmelCase_ ( self : List[str] , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Union[str, Any] ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 0 UpperCAmelCase : Any = len(UpperCAmelCase_ ) # No of vertices in graph UpperCAmelCase : int = [0] * n UpperCAmelCase : List[str] = [False] * n def dfs(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = True UpperCAmelCase : List[str] = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , id_ ) UpperCAmelCase : List[str] = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge UpperCAmelCase : Union[str, Any] = min(low[at] , low[to] ) UpperCAmelCase : list[tuple[int, int]] = [] for i in range(UpperCAmelCase_ ): if not visited[i]: dfs(UpperCAmelCase_ , -1 , UpperCAmelCase_ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase__ = { "gpt-neox-20b": 2048, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowercase_ : Any=None , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : List[Any]="<|endoftext|>" , lowercase_ : List[str]="<|endoftext|>" , lowercase_ : Any="<|endoftext|>" , lowercase_ : List[str]=False , **lowercase_ : Union[str, Any] , ) -> str: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(lowercase_ , pre_tok_state.pop('type' ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase : Any = add_prefix_space def UpperCAmelCase_ ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]: UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
695
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black lowercase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowercase__ = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: UpperCAmelCase : Any = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) UpperCAmelCase : Tuple = self.diffusers_dir shutil.copy( os.path.join(lowercase_ , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: UpperCAmelCase : Optional[Any] = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : str=None ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: UpperCAmelCase : Optional[Any] = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result UpperCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) UpperCAmelCase : Union[str, Any] = black.format_str(lowercase_ , mode=lowercase_ ) UpperCAmelCase : List[str] = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(lowercase_ , 'w' , newline='\n' ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , 'r' ) as f: self.assertTrue(f.read() , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> List[Any]: UpperCAmelCase : List[Any] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Any: # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , lowercase_ ) , ) # Copy consistency with a really long name UpperCAmelCase : Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , lowercase_ , overwrite_result=re.sub('DDPM' , 'Test' , lowercase_ ) , )
704
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
0
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = XLMTokenizer UpperCAmelCase_ : int = False def UpperCAmelCase_ ( self : Dict ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCAmelCase : Dict = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase : Any = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(lowercase_ ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(lowercase_ ) ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : Optional[int] ) -> str: UpperCAmelCase : List[Any] = 'lower newer' UpperCAmelCase : Optional[int] = 'lower newer' return input_text, output_text def UpperCAmelCase_ ( self : Any ) -> Optional[int]: UpperCAmelCase : Tuple = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase : Tuple = 'lower' UpperCAmelCase : Tuple = ['low', 'er</w>'] UpperCAmelCase : Tuple = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase : Any = tokens + ['<unk>'] UpperCAmelCase : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) @slow def UpperCAmelCase_ ( self : Any ) -> List[str]: UpperCAmelCase : Optional[Any] = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' ) UpperCAmelCase : Any = tokenizer.encode('sequence builders' , add_special_tokens=lowercase_ ) UpperCAmelCase : List[str] = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase_ ) UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(lowercase_ ) UpperCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
705
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class A_ ( _snake_case ): UpperCAmelCase_ : torch.FloatTensor UpperCAmelCase_ : Optional[torch.FloatTensor] = None def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_=0.999 , UpperCAmelCase_="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCAmelCase_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCAmelCase_ ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCAmelCase : Optional[Any] = [] for i in range(UpperCAmelCase_ ): UpperCAmelCase : int = i / num_diffusion_timesteps UpperCAmelCase : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCAmelCase_ ) / alpha_bar_fn(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) return torch.tensor(UpperCAmelCase_ , dtype=torch.floataa ) class A_ ( _snake_case , _snake_case ): @register_to_config def __init__( self : List[Any] , lowercase_ : int = 1_000 , lowercase_ : str = "fixed_small_log" , lowercase_ : bool = True , lowercase_ : Optional[float] = 1.0 , lowercase_ : str = "epsilon" , lowercase_ : str = "squaredcos_cap_v2" , ) -> List[str]: if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' ) UpperCAmelCase : Optional[Any] = betas_for_alpha_bar(lowercase_ ) UpperCAmelCase : Optional[Any] = 1.0 - self.betas UpperCAmelCase : Any = torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase : List[str] = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase : Optional[Any] = 1.0 # setable values UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Optional[Any] = torch.from_numpy(np.arange(0 , lowercase_ )[::-1].copy() ) UpperCAmelCase : str = variance_type def UpperCAmelCase_ ( self : int , lowercase_ : torch.FloatTensor , lowercase_ : Optional[int] = None ) -> torch.FloatTensor: return sample def UpperCAmelCase_ ( self : List[Any] , lowercase_ : int , lowercase_ : Union[str, torch.device] = None ) -> str: UpperCAmelCase : List[Any] = num_inference_steps UpperCAmelCase : Dict = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase : List[str] = (np.arange(0 , lowercase_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase : Dict = torch.from_numpy(lowercase_ ).to(lowercase_ ) def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] , lowercase_ : Union[str, Any]=None , lowercase_ : List[str]=None , lowercase_ : str=None ) -> str: if prev_timestep is None: UpperCAmelCase : int = t - 1 UpperCAmelCase : Optional[int] = self.alphas_cumprod[t] UpperCAmelCase : Optional[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase : Any = 1 - alpha_prod_t UpperCAmelCase : Any = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase : Dict = self.betas[t] else: UpperCAmelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase : List[str] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase : Dict = torch.log(torch.clamp(lowercase_ , min=1E-20 ) ) UpperCAmelCase : int = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase : int = variance.log() UpperCAmelCase : str = beta.log() UpperCAmelCase : Tuple = (predicted_variance + 1) / 2 UpperCAmelCase : Dict = frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase_ ( self : Any , lowercase_ : torch.FloatTensor , lowercase_ : int , lowercase_ : torch.FloatTensor , lowercase_ : Optional[int] = None , lowercase_ : Any=None , lowercase_ : bool = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: UpperCAmelCase : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase : Union[str, Any] = torch.split(lowercase_ , sample.shape[1] , dim=1 ) else: UpperCAmelCase : str = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase : List[str] = t - 1 UpperCAmelCase : Any = self.alphas_cumprod[t] UpperCAmelCase : Tuple = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase : str = 1 - alpha_prod_t UpperCAmelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase : List[str] = self.betas[t] UpperCAmelCase : str = self.alphas[t] else: UpperCAmelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase : Any = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase : str = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase : Optional[Any] = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" ' for the UnCLIPScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase : int = torch.clamp( lowercase_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : Optional[int] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase : List[Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase : List[Any] = 0 if t > 0: UpperCAmelCase : Tuple = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowercase_ , device=model_output.device ) UpperCAmelCase : List[str] = self._get_variance( lowercase_ , predicted_variance=lowercase_ , prev_timestep=lowercase_ , ) if self.variance_type == "fixed_small_log": UpperCAmelCase : str = variance elif self.variance_type == "learned_range": UpperCAmelCase : List[str] = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" ' for the UnCLIPScheduler.' ) UpperCAmelCase : List[str] = variance * variance_noise UpperCAmelCase : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowercase_ , pred_original_sample=lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : torch.FloatTensor , lowercase_ : torch.FloatTensor , lowercase_ : torch.IntTensor , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples UpperCAmelCase : List[Any] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase : List[Any] = timesteps.to(original_samples.device ) UpperCAmelCase : Tuple = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase : Optional[int] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase : Dict = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase : Dict = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase : int = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase : List[Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
706
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase__ = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase( UpperCAmelCase_="no" , UpperCAmelCase_ = default_json_config_file , UpperCAmelCase_ = False ): UpperCAmelCase : Any = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCAmelCase : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCAmelCase : Dict = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase : Dict = torch.cuda.device_count() UpperCAmelCase : List[Any] = num_gpus UpperCAmelCase : List[Any] = False if num_gpus > 1: UpperCAmelCase : Tuple = 'MULTI_GPU' else: UpperCAmelCase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase : Optional[int] = torch.xpu.device_count() UpperCAmelCase : Optional[int] = num_xpus UpperCAmelCase : Any = False if num_xpus > 1: UpperCAmelCase : Tuple = 'MULTI_XPU' else: UpperCAmelCase : str = 'NO' elif is_npu_available(): UpperCAmelCase : Optional[int] = torch.npu.device_count() UpperCAmelCase : str = num_npus UpperCAmelCase : int = False if num_npus > 1: UpperCAmelCase : int = 'MULTI_NPU' else: UpperCAmelCase : List[str] = 'NO' else: UpperCAmelCase : str = 0 UpperCAmelCase : int = True UpperCAmelCase : str = 1 UpperCAmelCase : str = 'NO' UpperCAmelCase : Any = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = parser.add_parser('default' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '--config_file' , default=UpperCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=UpperCAmelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
695
0
'''simple docstring''' import string def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = '' for i in sequence: UpperCAmelCase : Any = ord(UpperCAmelCase_ ) if 65 <= extract <= 90: output += chr(1_55 - extract ) elif 97 <= extract <= 1_22: output += chr(2_19 - extract ) else: output += i return output def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = string.ascii_letters UpperCAmelCase : Any = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(UpperCAmelCase_ )] if c in letters else c for c in sequence ) def UpperCamelCase( ): from timeit import timeit print('Running performance benchmarks...' ) UpperCAmelCase : Any = 'from string import printable ; from __main__ import atbash, atbash_slow' print(F"""> atbash_slow(): {timeit("atbash_slow(printable)" , setup=UpperCAmelCase_ )} seconds""" ) print(F"""> atbash(): {timeit("atbash(printable)" , setup=UpperCAmelCase_ )} seconds""" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
707
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
0
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , ): if config_name_or_path is None: UpperCAmelCase : Any = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: UpperCAmelCase : Tuple = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: UpperCAmelCase : Union[str, Any] = question_encoder_name_or_path UpperCAmelCase : Dict = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. UpperCAmelCase : List[str] = RagConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : Dict = AutoConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : Tuple = AutoConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : Dict = gen_config UpperCAmelCase : Any = question_encoder_config UpperCAmelCase : str = model_class.from_pretrained_question_encoder_generator( UpperCAmelCase_ , UpperCAmelCase_ , config=UpperCAmelCase_ ) rag_model.save_pretrained(UpperCAmelCase_ ) # Sanity check. model_class.from_pretrained(UpperCAmelCase_ ) # Save tokenizers. UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) lowercase__ = parser.parse_args() lowercase__ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
708
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase__ = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : str UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[str] = None @dataclass(frozen=_snake_case ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[Union[int, float]] = None UpperCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : List[str] , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = None , lowercase_ : List[str]=False , lowercase_ : bool = False , ) -> Optional[Any]: UpperCAmelCase : Dict = hans_processors[task]() UpperCAmelCase : List[Any] = os.path.join( lowercase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(lowercase_ ) , lowercase_ , ) , ) UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase : Tuple = torch.load(lowercase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase : int = ( processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) ) logger.info('Training examples: %s' , len(lowercase_ ) ) UpperCAmelCase : Dict = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) logger.info('Saving features into cached file %s' , lowercase_ ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> str: return len(self.features ) def __getitem__( self : Dict , lowercase_ : Dict ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' UpperCAmelCase_ : List[InputFeatures] def __init__( self : Tuple , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : str , lowercase_ : Optional[int] = 128 , lowercase_ : int=False , lowercase_ : bool = False , ) -> Union[str, Any]: UpperCAmelCase : int = hans_processors[task]() UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple = label_list[2], label_list[1] UpperCAmelCase : Any = label_list UpperCAmelCase : str = processor.get_dev_examples(lowercase_ ) if evaluate else processor.get_train_examples(lowercase_ ) UpperCAmelCase : int = hans_convert_examples_to_features(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(lowercase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( lowercase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return self.dataset def __len__( self : Tuple ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return self.label_list class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : int , lowercase_ : Optional[int] ) -> Any: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowercase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for i, line in enumerate(lowercase_ ): if i == 0: continue UpperCAmelCase : Tuple = '%s-%s' % (set_type, line[0]) UpperCAmelCase : Tuple = line[5] UpperCAmelCase : Dict = line[6] UpperCAmelCase : Optional[Any] = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase : Optional[Any] = line[0] examples.append(InputExample(guid=lowercase_ , text_a=lowercase_ , text_b=lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) return examples def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCAmelCase : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase : int = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase : Any = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features lowercase__ = { "hans": 3, } lowercase__ = { "hans": HansProcessor, }
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): '''simple docstring''' if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) UpperCAmelCase : List[Any] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 UpperCAmelCase : Optional[int] = 1 if upper_limit > 0: UpperCAmelCase : int = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(UpperCAmelCase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("\n********* Catalan Numbers Using Dynamic Programming ************\n") print("\n*** Enter -1 at any time to quit ***") print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="") try: while True: lowercase__ = int(input().strip()) if N < 0: print("\n********* Goodbye!! ************") break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("Try another upper limit for the sequence: ", end="") except (NameError, ValueError): print("\n********* Invalid input, goodbye! ************\n") import doctest doctest.testmod()
709
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : List[str] , lowercase_ : List[Any] ) -> Union[str, Any]: UpperCAmelCase : int = 3 UpperCAmelCase : Optional[int] = 250 UpperCAmelCase : Any = ids_tensor((batch_size, length) , lowercase_ ) UpperCAmelCase : Optional[int] = torch.ones((batch_size, length) , device=lowercase_ , dtype=torch.float ) / length return input_ids, scores def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: UpperCAmelCase : Any = self._get_tensors(5 ) UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase : Any = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = MaxLengthCriteria(max_length=10 ) UpperCAmelCase : Optional[int] = self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase : Any = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase : Union[str, Any] = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def UpperCAmelCase_ ( self : Dict ) -> str: UpperCAmelCase : List[str] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase : List[Any] = self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase : List[Any] = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase : int = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase : List[str] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: UpperCAmelCase : Dict = self._get_tensors(5 ) UpperCAmelCase : Union[str, Any] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase : int = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowercase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase : Optional[Any] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowercase_ ) , 1 )
710
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
0
'''simple docstring''' from scipy.stats import pearsonr import datasets lowercase__ = "\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n" lowercase__ = "\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results['pearsonr'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n ['p-value', 'pearsonr']\n >>> print(round(results['pearsonr'], 2))\n -0.74\n >>> print(round(results['p-value'], 2))\n 0.15\n" lowercase__ = "\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def UpperCAmelCase_ ( self : str , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[str]=False ) -> Optional[int]: if return_pvalue: UpperCAmelCase : List[str] = pearsonr(lowercase_ , lowercase_ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowercase_ , lowercase_ )[0] )}
711
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = """blip_2_vision_model""" def __init__( self : List[str] , lowercase_ : int=1_408 , lowercase_ : Tuple=6_144 , lowercase_ : Dict=39 , lowercase_ : Optional[int]=16 , lowercase_ : str=224 , lowercase_ : Any=14 , lowercase_ : int="gelu" , lowercase_ : int=0.0_0001 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=1E-10 , lowercase_ : List[str]=True , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowercase_ ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = patch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = qkv_bias @classmethod def UpperCAmelCase_ ( cls : List[str] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip_2_qformer""" def __init__( self : Tuple , lowercase_ : Union[str, Any]=30_522 , lowercase_ : int=768 , lowercase_ : Dict=12 , lowercase_ : Dict=12 , lowercase_ : int=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[int]=2 , lowercase_ : str=1_408 , **lowercase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : Any = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": UpperCAmelCase : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """blip-2""" UpperCAmelCase_ : Any = True def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : Dict=32 , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) if vision_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: UpperCAmelCase : int = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: UpperCAmelCase : Dict = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) UpperCAmelCase : str = BlipaVisionConfig(**lowercase_ ) UpperCAmelCase : str = BlipaQFormerConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**lowercase_ ) UpperCAmelCase : Optional[int] = self.text_config.tie_word_embeddings UpperCAmelCase : Dict = self.text_config.is_encoder_decoder UpperCAmelCase : Tuple = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Union[str, Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls : Dict , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[Any] , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
695
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ = "▁" lowercase__ = {"vocab_file": "spiece.model"} lowercase__ = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } lowercase__ = { "google/pegasus-xsum": 512, } lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase_ : int = VOCAB_FILES_NAMES UpperCAmelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : Any , lowercase_ : int , lowercase_ : Optional[Any]="<pad>" , lowercase_ : Dict="</s>" , lowercase_ : int="<unk>" , lowercase_ : Optional[int]="<mask_2>" , lowercase_ : str="<mask_1>" , lowercase_ : List[str]=None , lowercase_ : List[Any]=103 , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : Union[str, Any] , ) -> None: UpperCAmelCase : Any = offset if additional_special_tokens is not None: if not isinstance(lowercase_ , lowercase_ ): raise TypeError( f"""additional_special_tokens should be of type {type(lowercase_ )}, but is""" f""" {type(lowercase_ )}""" ) UpperCAmelCase : Optional[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(lowercase_ ) , self.offset - 1 ) ] if len(set(lowercase_ ) ) != len(lowercase_ ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) UpperCAmelCase : Optional[Any] = additional_special_tokens_extended else: UpperCAmelCase : Dict = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] UpperCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase_ , unk_token=lowercase_ , mask_token=lowercase_ , pad_token=lowercase_ , mask_token_sent=lowercase_ , offset=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase : Dict = mask_token_sent UpperCAmelCase : Any = vocab_file UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) # add special tokens to encoder dict UpperCAmelCase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCAmelCase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def UpperCAmelCase_ ( self : Any ) -> int: return len(self.sp_model ) + self.offset def UpperCAmelCase_ ( self : str ) -> Dict[str, int]: UpperCAmelCase : List[str] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : Tuple = self.__dict__.copy() UpperCAmelCase : Optional[int] = None return state def __setstate__( self : List[str] , lowercase_ : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : str ) -> List[str]: return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCAmelCase_ ( self : Any , lowercase_ : str ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCAmelCase : Union[str, Any] = self.sp_model.piece_to_id(lowercase_ ) return sp_id + self.offset def UpperCAmelCase_ ( self : List[str] , lowercase_ : int ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCAmelCase : int = self.sp_model.IdToPiece(index - self.offset ) return token def UpperCAmelCase_ ( self : int , lowercase_ : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : str = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token UpperCAmelCase : Optional[int] = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def UpperCAmelCase_ ( self : int , lowercase_ : List[str]=False ) -> int: return 1 def UpperCAmelCase_ ( self : Tuple , lowercase_ : List[Any] ) -> Any: UpperCAmelCase : List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def UpperCAmelCase_ ( self : Dict , lowercase_ : List , lowercase_ : Optional[List] = None , lowercase_ : bool = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowercase_ ) elif token_ids_a is None: return self._special_token_mask(lowercase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCAmelCase_ ( self : Dict , lowercase_ : Tuple , lowercase_ : Any=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase_ ( self : List[str] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Union[str, Any] = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: UpperCAmelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
712
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
0
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Dict = test_results.split(' ' ) UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : Tuple = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase : Union[str, Any] = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(UpperCAmelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = {} UpperCAmelCase : Any = None UpperCAmelCase : Dict = False for line in failures_short_lines.split('\n' ): if re.search(R'_ \[doctest\]' , UpperCAmelCase_ ): UpperCAmelCase : Tuple = True UpperCAmelCase : List[Any] = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): UpperCAmelCase : Dict = line UpperCAmelCase : Optional[Any] = False return failures class A_ : '''simple docstring''' def __init__( self : List[Any] , lowercase_ : str , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Tuple = title UpperCAmelCase : Union[str, Any] = doc_test_results['time_spent'].split(',' )[0] UpperCAmelCase : str = doc_test_results['success'] UpperCAmelCase : Any = doc_test_results['failures'] UpperCAmelCase : int = self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase : int = doc_test_results @property def UpperCAmelCase_ ( self : int ) -> str: UpperCAmelCase : int = [self._time_spent] UpperCAmelCase : Optional[int] = 0 for time in time_spent: UpperCAmelCase : Optional[Any] = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(lowercase_ ) == 1: UpperCAmelCase : str = [0, 0, time_parts[0]] UpperCAmelCase : Union[str, Any] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_600 + minutes * 60 + seconds UpperCAmelCase : Tuple = total_secs // 3_600, (total_secs % 3_600) // 60, total_secs % 60 return f"""{int(lowercase_ )}h{int(lowercase_ )}m{int(lowercase_ )}s""" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": f"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( f"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" f""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def UpperCAmelCase_ ( self : str ) -> Dict: UpperCAmelCase : int = 40 UpperCAmelCase : Union[str, Any] = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(lowercase_ , lowercase_ )} UpperCAmelCase : Union[str, Any] = '' for category, failures in category_failures.items(): if len(lowercase_ ) == 0: continue if report != "": report += "\n\n" report += f"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(lowercase_ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"""The following examples had failures:\n\n\n{report}\n""", }, } @property def UpperCAmelCase_ ( self : List[str] ) -> str: UpperCAmelCase : Optional[int] = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(lowercase_ ) @staticmethod def UpperCAmelCase_ ( ) -> Dict: UpperCAmelCase : Optional[int] = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(lowercase_ )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=lowercase_ , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) UpperCAmelCase : Dict = f"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else 'All tests passed.' UpperCAmelCase : int = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=lowercase_ , ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : int ) -> str: UpperCAmelCase : Tuple = '' for key, value in failures.items(): UpperCAmelCase : int = value[:200] + ' [Truncated]' if len(lowercase_ ) > 250 else value failures_text += f"""*{key}*\n_{value}_\n\n""" UpperCAmelCase : Any = job_name UpperCAmelCase : Any = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: UpperCAmelCase : Optional[Any] = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) UpperCAmelCase : Union[str, Any] = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) UpperCAmelCase : Optional[Any] = sorted(self.doc_test_results.items() , key=lambda lowercase_ : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): UpperCAmelCase : Dict = f"""*Num failures* :{len(job_result["failed"] )} \n""" UpperCAmelCase : Optional[Any] = job_result['failures'] UpperCAmelCase : Any = self.get_reply_blocks(lowercase_ , lowercase_ , lowercase_ , text=lowercase_ ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f"""Results for {job}""" , blocks=lowercase_ , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def UpperCamelCase( ): UpperCAmelCase : int = os.environ['GITHUB_RUN_ID'] UpperCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" UpperCAmelCase : Dict = requests.get(UpperCAmelCase_ ).json() UpperCAmelCase : Dict = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) UpperCAmelCase : Union[str, Any] = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = requests.get(url + F"""&page={i + 2}""" ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , UpperCAmelCase_ ) return {} def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = {} if os.path.exists(UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = os.listdir(UpperCAmelCase_ ) for file in files: try: with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , encoding='utf-8' ) as f: UpperCAmelCase : Optional[Any] = f.read() except UnicodeDecodeError as e: raise ValueError(F"""Could not open {os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )}.""" ) from e return _artifact def UpperCamelCase( ): class A_ : '''simple docstring''' def __init__( self : List[str] , lowercase_ : str ) -> Dict: UpperCAmelCase : List[Any] = name UpperCAmelCase : Tuple = [] def __str__( self : Any ) -> Dict: return self.name def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : str ) -> List[Any]: self.paths.append({'name': self.name, 'path': path} ) UpperCAmelCase : Dict[str, Artifact] = {} UpperCAmelCase : Union[str, Any] = filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase : Tuple = directory if artifact_name not in _available_artifacts: UpperCAmelCase : Optional[int] = Artifact(UpperCAmelCase_ ) _available_artifacts[artifact_name].add_path(UpperCAmelCase_ ) return _available_artifacts if __name__ == "__main__": lowercase__ = get_job_links() lowercase__ = retrieve_available_artifacts() lowercase__ = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' lowercase__ = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job lowercase__ = github_actions_job_links.get("run_doctests") lowercase__ = available_artifacts["doc_tests_gpu_test_reports"].paths[0] lowercase__ = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: lowercase__ , lowercase__ , lowercase__ = handle_test_results(artifact["stats"]) lowercase__ = failed lowercase__ = success lowercase__ = time_spent[1:-1] + ", " lowercase__ = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): lowercase__ = line.replace("FAILED ", "") lowercase__ = line.split()[0].replace("\n", "") if "::" in line: lowercase__ , lowercase__ = line.split("::") else: lowercase__ , lowercase__ = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): lowercase__ = docs[file_regex] doc_test_results[category]["failed"].append(test) lowercase__ = all_failures[test] if test in all_failures else "N/A" lowercase__ = failure break lowercase__ = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
713
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """pix2struct_text_model""" UpperCAmelCase_ : Union[str, Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[int] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , lowercase_ : str=50_244 , lowercase_ : Tuple=768 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]=2_048 , lowercase_ : Optional[Any]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=128 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=1E-6 , lowercase_ : Union[str, Any]=1.0 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0 , lowercase_ : Any=False , lowercase_ : List[Any]=0 , lowercase_ : Tuple=1 , lowercase_ : List[str]=False , lowercase_ : List[Any]=True , **lowercase_ : Union[str, Any] , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = d_kv UpperCAmelCase : Any = d_ff UpperCAmelCase : List[str] = num_layers UpperCAmelCase : str = num_heads UpperCAmelCase : List[Any] = relative_attention_num_buckets UpperCAmelCase : Tuple = relative_attention_max_distance UpperCAmelCase : str = dropout_rate UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : int = initializer_factor UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Union[str, Any] = decoder_start_token_id # for backwards compatibility UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = """pix2struct_vision_model""" def __init__( self : str , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=768 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Tuple=64 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int="gelu_new" , lowercase_ : List[Any]=1E-6 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : str=1E-10 , lowercase_ : Dict=1.0 , lowercase_ : int=4_096 , lowercase_ : Tuple=32 , lowercase_ : Any=128 , **lowercase_ : Any , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Any = patch_embed_hidden_size UpperCAmelCase : Optional[int] = d_ff UpperCAmelCase : Dict = dropout_rate UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = initializer_factor UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = dense_act_fn UpperCAmelCase : Dict = seq_len UpperCAmelCase : Optional[int] = relative_attention_num_buckets UpperCAmelCase : Union[str, Any] = relative_attention_max_distance UpperCAmelCase : str = d_kv @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCAmelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """pix2struct""" UpperCAmelCase_ : Dict = True def __init__( self : Union[str, Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : List[str]=0.02 , lowercase_ : str=False , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , **lowercase_ : Optional[Any] , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: UpperCAmelCase : Optional[int] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCAmelCase : Optional[Any] = PixaStructTextConfig(**lowercase_ ) UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig(**lowercase_ ) UpperCAmelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCAmelCase : str = self.text_config.pad_token_id UpperCAmelCase : Optional[int] = self.text_config.eos_token_id UpperCAmelCase : Union[str, Any] = initializer_factor UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : int = self.initializer_range UpperCAmelCase : str = is_vqa @classmethod def UpperCAmelCase_ ( cls : Tuple , lowercase_ : PixaStructTextConfig , lowercase_ : PixaStructVisionConfig , **lowercase_ : str ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : Dict = self.vision_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
695
0
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase__ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def UpperCamelCase( UpperCAmelCase_ ) -> List[Any]: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model UpperCAmelCase : List[Any] = list(s_dict.keys() ) for key in keys: UpperCAmelCase : List[str] = R'.*/layers_(\d+)' UpperCAmelCase : List[Any] = key if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = re.sub(R'layers_(\d+)' , R'block/\1/layer' , UpperCAmelCase_ ) UpperCAmelCase : List[Any] = R'(encoder|decoder)\/' if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Dict = re.match(UpperCAmelCase_ , UpperCAmelCase_ ).groups() if groups[0] == "encoder": UpperCAmelCase : Optional[Any] = re.sub(R'/mlp/' , R'/1/mlp/' , UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , UpperCAmelCase_ ) elif groups[0] == "decoder": UpperCAmelCase : Any = re.sub(R'/mlp/' , R'/2/mlp/' , UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , UpperCAmelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: UpperCAmelCase : Optional[int] = new_key.replace(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"""{key} -> {new_key}""" ) UpperCAmelCase : Optional[int] = s_dict.pop(UpperCAmelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase : Union[str, Any] = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase : List[str] = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: UpperCAmelCase : str = s_dict[key].shape[0] UpperCAmelCase : List[str] = s_dict[key] for idx in range(UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = expert_weihts[idx] print(F"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(UpperCAmelCase_ ) return s_dict lowercase__ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ) -> Any: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase_ , 'r' ) as f: UpperCAmelCase : Any = f.read() UpperCAmelCase : Union[str, Any] = re.findall(R'(.*) = ([0-9.]*)' , UpperCAmelCase_ ) UpperCAmelCase : Dict = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": UpperCAmelCase : Optional[Any] = float(UpperCAmelCase_ ) if '.' in value else int(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = re.findall(R'(.*activations) = \(\'(.*)\',\)' , UpperCAmelCase_ )[0] UpperCAmelCase : Tuple = str(activation[1] ) UpperCAmelCase : Dict = num_experts UpperCAmelCase : Any = SwitchTransformersConfig(**UpperCAmelCase_ ) return config def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_="./" , UpperCAmelCase_=8 ) -> str: # Initialise PyTorch model print(F"""Loading flax weights from : {flax_checkpoint_path}""" ) UpperCAmelCase : Union[str, Any] = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) if gin_file is not None: UpperCAmelCase : Optional[int] = convert_gin_to_config(UpperCAmelCase_ , UpperCAmelCase_ ) else: UpperCAmelCase : int = SwitchTransformersConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : Dict = SwitchTransformersForConditionalGeneration(UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = flax_params['target'] UpperCAmelCase : Tuple = flatten_dict(UpperCAmelCase_ , sep='/' ) UpperCAmelCase : List[str] = rename_keys(UpperCAmelCase_ ) UpperCAmelCase : Dict = unflatten_dict(UpperCAmelCase_ , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase__ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
714
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
0
def UpperCamelCase( ): return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowercase__ = generate_large_matrix() lowercase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCamelCase( UpperCAmelCase_ ): assert all(row == sorted(UpperCAmelCase_ , reverse=UpperCAmelCase_ ) for row in grid ) assert all(list(UpperCAmelCase_ ) == sorted(UpperCAmelCase_ , reverse=UpperCAmelCase_ ) for col in zip(*UpperCAmelCase_ ) ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : int = 0 UpperCAmelCase : List[Any] = len(UpperCAmelCase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: UpperCAmelCase : List[str] = (left + right) // 2 UpperCAmelCase : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: UpperCAmelCase : Optional[int] = mid + 1 else: UpperCAmelCase : List[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = 0 UpperCAmelCase : int = len(grid[0] ) for i in range(len(UpperCAmelCase_ ) ): UpperCAmelCase : List[str] = find_negative_index(grid[i][:bound] ) total += bound return (len(UpperCAmelCase_ ) * len(grid[0] )) - total def UpperCamelCase( UpperCAmelCase_ ): return len([number for row in grid for number in row if number < 0] ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = 0 for row in grid: for i, number in enumerate(UpperCAmelCase_ ): if number < 0: total += len(UpperCAmelCase_ ) - i break return total def UpperCamelCase( ): from timeit import timeit print('Running benchmarks' ) UpperCAmelCase : int = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): UpperCAmelCase : Tuple = timeit(F"""{func}(grid=grid)""" , setup=UpperCAmelCase_ , number=5_00 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
715
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if dataset.ndim != value_array.ndim: UpperCAmelCase : str = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCAmelCase : List[str] = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase_ ) UpperCAmelCase : str = [] for value in value_array: UpperCAmelCase : Optional[Any] = euclidean(UpperCAmelCase_ , dataset[0] ) UpperCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: UpperCAmelCase : List[str] = temp_dist UpperCAmelCase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
695
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): # Return True if there is node that has not iterated. UpperCAmelCase : Dict = [False] * len(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = [] queue.append(UpperCAmelCase_ ) UpperCAmelCase : int = True while queue: UpperCAmelCase : Any = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = True UpperCAmelCase : List[Any] = u return visited[t] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): # This array is filled by BFS and to store path UpperCAmelCase : str = [-1] * (len(UpperCAmelCase_ )) UpperCAmelCase : Optional[int] = 0 while bfs(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = float('Inf' ) UpperCAmelCase : Optional[int] = sink while s != source: # Find the minimum value in select path UpperCAmelCase : Optional[int] = min(UpperCAmelCase_ , graph[parent[s]][s] ) UpperCAmelCase : Dict = parent[s] max_flow += path_flow UpperCAmelCase : Optional[int] = sink while v != source: UpperCAmelCase : Any = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase : Dict = parent[v] return max_flow lowercase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowercase__ , lowercase__ = 0, 5 print(ford_fulkerson(graph, source, sink))
716
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("fixtures") lowercase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : Optional[Any] = 0 def UpperCAmelCase_ ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase_ ( self : int ) -> Tuple: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
695
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = """megatron-bert""" def __init__( self : List[Any] , lowercase_ : Tuple=29_056 , lowercase_ : Any=1_024 , lowercase_ : int=24 , lowercase_ : Optional[int]=16 , lowercase_ : List[str]=4_096 , lowercase_ : str="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[Any]=2 , lowercase_ : Any=0.02 , lowercase_ : str=1E-12 , lowercase_ : Any=0 , lowercase_ : Tuple="absolute" , lowercase_ : Tuple=True , **lowercase_ : Any , ) -> Any: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase : Dict = vocab_size UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Any = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : List[Any] = layer_norm_eps UpperCAmelCase : Dict = position_embedding_type UpperCAmelCase : List[str] = use_cache
717
'''simple docstring''' from datetime import datetime import requests def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCAmelCase : List[str] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": lowercase__ = input("Enter Video/IGTV url: ").strip() lowercase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
695
0
import math def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return math.pow(UpperCAmelCase_ , 2 ) - a def UpperCamelCase( UpperCAmelCase_ ): return 2 * x def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = 2.0 while start <= a: UpperCAmelCase : str = math.pow(UpperCAmelCase_ , 2 ) return start def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ = 99_99 , UpperCAmelCase_ = 0.00_0000_0000_0001 ): if a < 0: raise ValueError('math domain error' ) UpperCAmelCase : int = get_initial_point(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ): UpperCAmelCase : Any = value UpperCAmelCase : List[Any] = value - fx(UpperCAmelCase_ , UpperCAmelCase_ ) / fx_derivative(UpperCAmelCase_ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
718
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10**9 ): UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
695
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = UnCLIPImageVariationPipeline UpperCAmelCase_ : Any = IMAGE_VARIATION_PARAMS - {"""height""", """width""", """guidance_scale"""} UpperCAmelCase_ : List[Any] = IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase_ : str = [ """generator""", """return_dict""", """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] UpperCAmelCase_ : Dict = False @property def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: return 32 @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: return 32 @property def UpperCAmelCase_ ( self : Any ) -> Optional[int]: return self.time_input_dim @property def UpperCAmelCase_ ( self : Dict ) -> Tuple: return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: return 100 @property def UpperCAmelCase_ ( self : str ) -> List[Any]: UpperCAmelCase : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: torch.manual_seed(0 ) UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(lowercase_ ) @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(lowercase_ ) @property def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } UpperCAmelCase : List[Any] = UnCLIPTextProjModel(**lowercase_ ) return model @property def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : List[str] = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } UpperCAmelCase : List[Any] = UNetaDConditionModel(**lowercase_ ) return model @property def UpperCAmelCase_ ( self : Any ) -> Any: return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def UpperCAmelCase_ ( self : str ) -> Tuple: torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) UpperCAmelCase : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def UpperCAmelCase_ ( self : Any ) -> Any: UpperCAmelCase : Tuple = self.dummy_decoder UpperCAmelCase : List[Any] = self.dummy_text_proj UpperCAmelCase : str = self.dummy_text_encoder UpperCAmelCase : List[Any] = self.dummy_tokenizer UpperCAmelCase : Any = self.dummy_super_res_first UpperCAmelCase : Optional[Any] = self.dummy_super_res_last UpperCAmelCase : Any = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) UpperCAmelCase : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) UpperCAmelCase : Union[str, Any] = CLIPImageProcessor(crop_size=32 , size=32 ) UpperCAmelCase : Union[str, Any] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def UpperCAmelCase_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : Any=0 , lowercase_ : Union[str, Any]=True ) -> List[str]: UpperCAmelCase : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) if str(lowercase_ ).startswith('mps' ): UpperCAmelCase : Dict = torch.manual_seed(lowercase_ ) else: UpperCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) if pil_image: UpperCAmelCase : Tuple = input_image * 0.5 + 0.5 UpperCAmelCase : Union[str, Any] = input_image.clamp(0 , 1 ) UpperCAmelCase : Optional[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase : str = DiffusionPipeline.numpy_to_pil(lowercase_ )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def UpperCAmelCase_ ( self : str ) -> Any: UpperCAmelCase : Any = 'cpu' UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : Optional[int] = self.pipeline_class(**lowercase_ ) UpperCAmelCase : Optional[int] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : int = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : int = pipe(**lowercase_ ) UpperCAmelCase : str = output.images UpperCAmelCase : Dict = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : List[Any] = pipe( **lowercase_ , return_dict=lowercase_ , )[0] UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Optional[Any] = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Dict ) -> str: UpperCAmelCase : Dict = 'cpu' UpperCAmelCase : Any = self.get_dummy_components() UpperCAmelCase : List[Any] = self.pipeline_class(**lowercase_ ) UpperCAmelCase : Tuple = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : Union[str, Any] = pipe(**lowercase_ ) UpperCAmelCase : List[Any] = output.images UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : List[str] = pipe( **lowercase_ , return_dict=lowercase_ , )[0] UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Dict = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : List[Any] ) -> int: UpperCAmelCase : List[Any] = 'cpu' UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : int = self.pipeline_class(**lowercase_ ) UpperCAmelCase : Tuple = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Any = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : List[Any] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] UpperCAmelCase : List[Any] = pipe(**lowercase_ ) UpperCAmelCase : Tuple = output.images UpperCAmelCase : str = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : Optional[int] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] UpperCAmelCase : Dict = pipe( **lowercase_ , return_dict=lowercase_ , )[0] UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) UpperCAmelCase : int = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : Dict = torch.device('cpu' ) class A_ : '''simple docstring''' UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : List[Any] = self.pipeline_class(**lowercase_ ) UpperCAmelCase : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.Generator(device=lowercase_ ).manual_seed(0 ) UpperCAmelCase : Tuple = pipe.decoder.dtype UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[Any] = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) UpperCAmelCase : Any = pipe.prepare_latents( lowercase_ , dtype=lowercase_ , device=lowercase_ , generator=lowercase_ , latents=lowercase_ , scheduler=DummyScheduler() ) UpperCAmelCase : List[str] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) UpperCAmelCase : List[Any] = pipe.prepare_latents( lowercase_ , dtype=lowercase_ , device=lowercase_ , generator=lowercase_ , latents=lowercase_ , scheduler=DummyScheduler() ) UpperCAmelCase : List[str] = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) UpperCAmelCase : Any = pipe( **lowercase_ , decoder_latents=lowercase_ , super_res_latents=lowercase_ ).images UpperCAmelCase : int = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) # Don't pass image, instead pass embedding UpperCAmelCase : Any = pipeline_inputs.pop('image' ) UpperCAmelCase : List[str] = pipe.image_encoder(lowercase_ ).image_embeds UpperCAmelCase : str = pipe( **lowercase_ , decoder_latents=lowercase_ , super_res_latents=lowercase_ , image_embeddings=lowercase_ , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : Any = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor UpperCAmelCase : Tuple = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , expected_max_diff=lowercase_ ) @skip_mps def UpperCAmelCase_ ( self : str ) -> List[str]: UpperCAmelCase : Dict = torch_device == 'cpu' UpperCAmelCase : Optional[int] = True UpperCAmelCase : Tuple = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , additional_params_copy_to_batched_inputs=lowercase_ , ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes UpperCAmelCase : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=lowercase_ , additional_params_copy_to_batched_inputs=lowercase_ , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=lowercase_ ) @skip_mps def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCAmelCase_ ( self : Any ) -> Dict: return super().test_save_load_local() @skip_mps def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: return super().test_save_load_optional_components() @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : int ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: UpperCAmelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) UpperCAmelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) UpperCAmelCase : List[Any] = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) UpperCAmelCase : Dict = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCAmelCase : Dict = pipeline( lowercase_ , generator=lowercase_ , output_type='np' , ) UpperCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ , 15 )
719
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Any ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Tuple = DDIMScheduler() UpperCAmelCase : Optional[Any] = self.dummy_vq_model UpperCAmelCase : str = LDMPipeline(unet=lowercase_ , vqvae=lowercase_ , scheduler=lowercase_ ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' ).images UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ldm(generator=lowercase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCAmelCase : Tuple = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase_ ) ldm.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=lowercase_ , num_inference_steps=5 , output_type='numpy' ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCAmelCase : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
695
0
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : jnp.ndarray UpperCAmelCase_ : jnp.ndarray class A_ ( nn.Module ): '''simple docstring''' UpperCAmelCase_ : int UpperCAmelCase_ : Tuple[int] = (16, 32, 96, 256) UpperCAmelCase_ : jnp.dtype = jnp.floataa def UpperCAmelCase_ ( self : Optional[Any] ) -> int: UpperCAmelCase : Any = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCAmelCase : Optional[Any] = [] for i in range(len(self.block_out_channels ) - 1 ): UpperCAmelCase : Optional[int] = self.block_out_channels[i] UpperCAmelCase : Dict = self.block_out_channels[i + 1] UpperCAmelCase : Tuple = nn.Conv( lowercase_ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowercase_ ) UpperCAmelCase : Optional[int] = nn.Conv( lowercase_ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowercase_ ) UpperCAmelCase : Tuple = blocks UpperCAmelCase : Optional[Any] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : str , lowercase_ : List[Any] ) -> Dict: UpperCAmelCase : Optional[Any] = self.conv_in(lowercase_ ) UpperCAmelCase : str = nn.silu(lowercase_ ) for block in self.blocks: UpperCAmelCase : int = block(lowercase_ ) UpperCAmelCase : Tuple = nn.silu(lowercase_ ) UpperCAmelCase : Tuple = self.conv_out(lowercase_ ) return embedding @flax_register_to_config class A_ ( nn.Module , _snake_case , _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = 32 UpperCAmelCase_ : int = 4 UpperCAmelCase_ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase_ : Union[bool, Tuple[bool]] = False UpperCAmelCase_ : Tuple[int] = (320, 640, 1_280, 1_280) UpperCAmelCase_ : int = 2 UpperCAmelCase_ : Union[int, Tuple[int]] = 8 UpperCAmelCase_ : Optional[Union[int, Tuple[int]]] = None UpperCAmelCase_ : int = 1_280 UpperCAmelCase_ : float = 0.0 UpperCAmelCase_ : bool = False UpperCAmelCase_ : jnp.dtype = jnp.floataa UpperCAmelCase_ : bool = True UpperCAmelCase_ : int = 0 UpperCAmelCase_ : str = "rgb" UpperCAmelCase_ : Tuple[int] = (16, 32, 96, 256) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : jax.random.KeyArray ) -> FrozenDict: # init input tensors UpperCAmelCase : Tuple = (1, self.in_channels, self.sample_size, self.sample_size) UpperCAmelCase : Tuple = jnp.zeros(lowercase_ , dtype=jnp.floataa ) UpperCAmelCase : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) UpperCAmelCase : Union[str, Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) UpperCAmelCase : Optional[int] = (1, 3, self.sample_size * 8, self.sample_size * 8) UpperCAmelCase : str = jnp.zeros(lowercase_ , dtype=jnp.floataa ) UpperCAmelCase : Tuple = jax.random.split(lowercase_ ) UpperCAmelCase : Dict = {'params': params_rng, 'dropout': dropout_rng} return self.init(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )["params"] def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : Any = self.block_out_channels UpperCAmelCase : Tuple = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCAmelCase : List[Any] = self.num_attention_heads or self.attention_head_dim # input UpperCAmelCase : Optional[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCAmelCase : List[Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) UpperCAmelCase : Optional[int] = FlaxTimestepEmbedding(lowercase_ , dtype=self.dtype ) UpperCAmelCase : int = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) UpperCAmelCase : List[Any] = self.only_cross_attention if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Optional[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : List[Any] = (num_attention_heads,) * len(self.down_block_types ) # down UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[int] = block_out_channels[0] UpperCAmelCase : str = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_ ) for i, down_block_type in enumerate(self.down_block_types ): UpperCAmelCase : Union[str, Any] = output_channel UpperCAmelCase : Union[str, Any] = block_out_channels[i] UpperCAmelCase : Dict = i == len(lowercase_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCAmelCase : str = FlaxCrossAttnDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: UpperCAmelCase : Tuple = FlaxDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowercase_ ) for _ in range(self.layers_per_block ): UpperCAmelCase : Any = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_ ) if not is_final_block: UpperCAmelCase : Any = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_ ) UpperCAmelCase : int = down_blocks UpperCAmelCase : Dict = controlnet_down_blocks # mid UpperCAmelCase : Union[str, Any] = block_out_channels[-1] UpperCAmelCase : Any = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase_ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) UpperCAmelCase : Optional[Any] = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Union[str, Any] , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : float = 1.0 , lowercase_ : bool = True , lowercase_ : bool = False , ) -> Union[FlaxControlNetOutput, Tuple]: UpperCAmelCase : str = self.controlnet_conditioning_channel_order if channel_order == "bgr": UpperCAmelCase : Any = jnp.flip(lowercase_ , axis=1 ) # 1. time if not isinstance(lowercase_ , jnp.ndarray ): UpperCAmelCase : Any = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowercase_ , jnp.ndarray ) and len(timesteps.shape ) == 0: UpperCAmelCase : Optional[Any] = timesteps.astype(dtype=jnp.floataa ) UpperCAmelCase : Any = jnp.expand_dims(lowercase_ , 0 ) UpperCAmelCase : Any = self.time_proj(lowercase_ ) UpperCAmelCase : List[Any] = self.time_embedding(lowercase_ ) # 2. pre-process UpperCAmelCase : Dict = jnp.transpose(lowercase_ , (0, 2, 3, 1) ) UpperCAmelCase : Optional[int] = self.conv_in(lowercase_ ) UpperCAmelCase : Optional[int] = jnp.transpose(lowercase_ , (0, 2, 3, 1) ) UpperCAmelCase : Any = self.controlnet_cond_embedding(lowercase_ ) sample += controlnet_cond # 3. down UpperCAmelCase : List[str] = (sample,) for down_block in self.down_blocks: if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : int = down_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train ) else: UpperCAmelCase : Union[str, Any] = down_block(lowercase_ , lowercase_ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid UpperCAmelCase : Tuple = self.mid_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train ) # 5. contronet blocks UpperCAmelCase : Optional[int] = () for down_block_res_sample, controlnet_block in zip(lowercase_ , self.controlnet_down_blocks ): UpperCAmelCase : Tuple = controlnet_block(lowercase_ ) controlnet_down_block_res_samples += (down_block_res_sample,) UpperCAmelCase : Union[str, Any] = controlnet_down_block_res_samples UpperCAmelCase : List[str] = self.controlnet_mid_block(lowercase_ ) # 6. scaling UpperCAmelCase : Dict = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase_ , mid_block_res_sample=lowercase_ )
720
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
721
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """autoformer""" UpperCAmelCase_ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "student_t" , lowercase_ : str = "nll" , lowercase_ : int = 1 , lowercase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowercase_ : bool = True , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : Optional[List[int]] = None , lowercase_ : Optional[List[int]] = None , lowercase_ : int = 64 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 100 , lowercase_ : float = 0.02 , lowercase_ : bool = True , lowercase_ : Union[str, Any]=True , lowercase_ : int = 10 , lowercase_ : int = 25 , lowercase_ : int = 3 , **lowercase_ : str , ) -> Dict: # time series specific configuration UpperCAmelCase : int = prediction_length UpperCAmelCase : Optional[Any] = context_length if context_length is not None else prediction_length UpperCAmelCase : List[Any] = distribution_output UpperCAmelCase : Tuple = loss UpperCAmelCase : Dict = input_size UpperCAmelCase : Dict = num_time_features UpperCAmelCase : Tuple = lags_sequence UpperCAmelCase : str = scaling UpperCAmelCase : Optional[int] = num_dynamic_real_features UpperCAmelCase : List[str] = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : int = cardinality else: UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase : Any = embedding_dimension else: UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Dict = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : List[Any] = d_model UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : str = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : int = dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : str = encoder_layerdrop UpperCAmelCase : Union[str, Any] = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Union[str, Any] = use_cache # Autoformer UpperCAmelCase : Any = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self : List[str] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Any = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'ViTImageProcessor' lowerCamelCase__ : Dict = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : Optional[Any] = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: lowerCamelCase__ : Dict = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if visual_prompt is not None: lowerCamelCase__ : Any = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : Tuple = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if visual_prompt is not None and images is not None: lowerCamelCase__ : Any = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCamelCase__ : Optional[int] = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.', lowerCamelCase_, ) return self.image_processor_class @property def a__ (self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.', lowerCamelCase_, ) return self.image_processor
696
"""simple docstring""" from ..utils import DummyObject, requires_backends class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] ) class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] )
696
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = False while is_sorted is False: # Until all the indices are traversed keep looping lowerCamelCase__ : Dict = True for i in range(0 , len(_lowerCamelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowerCamelCase__ , lowerCamelCase__ : str = input_list[i + 1], input_list[i] # swapping if elements not in order lowerCamelCase__ : List[Any] = False for i in range(1 , len(_lowerCamelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowerCamelCase__ , lowerCamelCase__ : Tuple = input_list[i + 1], input_list[i] # swapping if elements not in order lowerCamelCase__ : Optional[int] = False return input_list if __name__ == "__main__": print("Enter list to be sorted") A_ : Any = [int(x) for x in input().split()] # inputing elements of the list in one line A_ : Tuple = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
696
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = 0 while number > 0: lowerCamelCase__ : List[str] = number % 10 sum_of_digits += last_digit lowerCamelCase__ : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase_ ( _lowerCamelCase = 100 ): lowerCamelCase__ : Union[str, Any] = factorial(_lowerCamelCase ) lowerCamelCase__ : List[Any] = split_and_add(_lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
696
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ShapEPipeline lowerCamelCase__ : str = ['prompt'] lowerCamelCase__ : int = ['prompt'] lowerCamelCase__ : Dict = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowerCamelCase__ : Optional[int] = False @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return self.time_input_dim * 4 @property def a__ (self ): '''simple docstring''' return 8 @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=3_7, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, ) return CLIPTextModelWithProjection(lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Dict = { 'num_attention_heads': 2, 'attention_head_dim': 1_6, 'embedding_dim': self.time_input_dim, 'num_embeddings': 3_2, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } lowerCamelCase__ : Dict = PriorTransformer(**lowerCamelCase_ ) return model @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = { 'param_shapes': ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 1_2, 'background': ( 0.1, 0.1, 0.1, ), } lowerCamelCase__ : List[str] = ShapERenderer(**lowerCamelCase_ ) return model def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.dummy_prior lowerCamelCase__ : List[str] = self.dummy_text_encoder lowerCamelCase__ : Dict = self.dummy_tokenizer lowerCamelCase__ : List[Any] = self.dummy_renderer lowerCamelCase__ : Optional[int] = HeunDiscreteScheduler( beta_schedule='exp', num_train_timesteps=1_0_2_4, prediction_type='sample', use_karras_sigmas=lowerCamelCase_, clip_sample=lowerCamelCase_, clip_sample_range=1.0, ) lowerCamelCase__ : Any = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : List[Any] = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Tuple = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Tuple = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 3_2, 'output_type': 'np', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = 'cpu' lowerCamelCase__ : Tuple = self.get_dummy_components() lowerCamelCase__ : Dict = self.pipeline_class(**lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCamelCase__ : Optional[Any] = output.images[0] lowerCamelCase__ : str = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) lowerCamelCase__ : Optional[int] = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ (self ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = torch_device == 'cpu' lowerCamelCase__ : Optional[int] = True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=lowerCamelCase_, relax_max_difference=lowerCamelCase_, ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_dummy_components() lowerCamelCase__ : Optional[Any] = self.pipeline_class(**lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = 2 lowerCamelCase__ : Optional[int] = self.get_dummy_inputs(lowerCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: lowerCamelCase__ : List[str] = batch_size * [inputs[key]] lowerCamelCase__ : List[str] = pipe(**lowerCamelCase_, num_images_per_prompt=lowerCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) lowerCamelCase__ : Any = ShapEPipeline.from_pretrained('openai/shap-e' ) lowerCamelCase__ : Any = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) lowerCamelCase__ : Tuple = pipe( 'a shark', generator=lowerCamelCase_, guidance_scale=15.0, num_inference_steps=6_4, frame_size=6_4, output_type='np', ).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(lowerCamelCase_, lowerCamelCase_ )
696
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ : Dict = "pt" elif is_tf_available(): A_ : Union[str, Any] = "tf" else: A_ : List[str] = "jax" class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = PerceiverTokenizer lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ (self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=2_0, lowerCamelCase_=5 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [] for i in range(len(lowerCamelCase_ ) ): try: lowerCamelCase__ : Any = tokenizer.decode([i], clean_up_tokenization_spaces=lowerCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase__ : Any = list(filter(lambda lowerCamelCase_ : re.match(r'^[ a-zA-Z]+$', t[1] ), lowerCamelCase_ ) ) lowerCamelCase__ : Union[str, Any] = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=lowerCamelCase_ ), lowerCamelCase_ ) ) if max_length is not None and len(lowerCamelCase_ ) > max_length: lowerCamelCase__ : int = toks[:max_length] if min_length is not None and len(lowerCamelCase_ ) < min_length and len(lowerCamelCase_ ) > 0: while len(lowerCamelCase_ ) < min_length: lowerCamelCase__ : Dict = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : int = [t[0] for t in toks] # Ensure consistency lowerCamelCase__ : Optional[int] = tokenizer.decode(lowerCamelCase_, clean_up_tokenization_spaces=lowerCamelCase_ ) if " " not in output_txt and len(lowerCamelCase_ ) > 1: lowerCamelCase__ : List[Any] = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=lowerCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=lowerCamelCase_ ) ) if with_prefix_space: lowerCamelCase__ : Optional[Any] = ' ' + output_txt lowerCamelCase__ : List[Any] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) return output_txt, output_ids def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = 'Unicode €.' lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_ ) lowerCamelCase__ : Dict = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : int = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]Unicode €.[SEP]' ) lowerCamelCase__ : List[str] = tokenizer('e è é ê ë' ) lowerCamelCase__ : Dict = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : Any = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ), '[CLS]e è é ê ë[SEP]' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCamelCase__ : List[Any] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) if FRAMEWORK != "jax": lowerCamelCase__ : List[str] = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase__ : int = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertEqual((2, 3_8), batch.input_ids.shape ) self.assertEqual((2, 3_8), batch.attention_mask.shape ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.perceiver_tokenizer lowerCamelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCamelCase__ : List[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids', lowerCamelCase_ ) self.assertIn('attention_mask', lowerCamelCase_ ) self.assertNotIn('decoder_input_ids', lowerCamelCase_ ) self.assertNotIn('decoder_attention_mask', lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : int = [ 'Summary of the text.', 'Another summary.', ] lowerCamelCase__ : str = tokenizer( text_target=lowerCamelCase_, max_length=3_2, padding='max_length', truncation=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertEqual(3_2, targets['input_ids'].shape[1] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 4_2 ) # Now let's start the test lowerCamelCase__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : str = ' He is very happy, UNwant\u00E9d,running' lowerCamelCase__ : str = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : str = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) shutil.rmtree(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCamelCase__ : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCamelCase__ : List[str] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : int = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertIn('new_additional_special_token', after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 4_2 ) lowerCamelCase__ : List[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_, model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length, 4_3 ) shutil.rmtree(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : Optional[Any] = json.load(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : List[str] = json.load(lowerCamelCase_ ) lowerCamelCase__ : Any = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] lowerCamelCase__ : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCamelCase__ : List[str] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ : Dict = tokenizer_class.from_pretrained( lowerCamelCase_, ) self.assertIn( 'an_additional_special_token', tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token', lstrip=lowerCamelCase_ )] lowerCamelCase__ : Any = tokenizer_class.from_pretrained( lowerCamelCase_, additional_special_tokens=lowerCamelCase_, ) self.assertIn('a_new_additional_special_token', tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ), '�' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_tokenizers(fast=lowerCamelCase_, do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Tuple = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] lowerCamelCase__ : List[str] = tokenizer.convert_tokens_to_string(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ )
696
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : Optional[int] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = 'megatron-bert' def __init__(self, lowerCamelCase_=2_9_0_5_6, lowerCamelCase_=1_0_2_4, lowerCamelCase_=2_4, lowerCamelCase_=1_6, lowerCamelCase_=4_0_9_6, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=1e-12, lowerCamelCase_=0, lowerCamelCase_="absolute", lowerCamelCase_=True, **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : List[Any] = vocab_size lowerCamelCase__ : Any = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : List[str] = num_attention_heads lowerCamelCase__ : Tuple = hidden_act lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : List[Any] = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : Union[str, Any] = layer_norm_eps lowerCamelCase__ : Optional[Any] = position_embedding_type lowerCamelCase__ : Optional[int] = use_cache
696
"""simple docstring""" from math import pi, sqrt, tan def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCamelCase__ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_lowerCamelCase , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCamelCase__ : Dict = (sidea + sidea + sidea) / 2 lowerCamelCase__ : str = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
696
1
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer lowerCamelCase__ : str = flax_key_tuple[:-1] + ('weight',) lowerCamelCase__ : int = torch.permute(_lowerCamelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCamelCase ): # linear layer lowerCamelCase__ : str = flax_key_tuple[:-1] + ('weight',) lowerCamelCase__ : List[Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowerCamelCase__ : Dict = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if "metadata" in layer: lowerCamelCase__ : List[Any] = layer.split('metadata' ) lowerCamelCase__ : List[Any] = ''.join(split_layer[0] )[:-1] lowerCamelCase__ : Tuple = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: lowerCamelCase__ : Optional[Any] = layer.split('kvstore' ) lowerCamelCase__ : List[Any] = ''.join(split_layer[0] )[:-1] lowerCamelCase__ : List[Any] = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: lowerCamelCase__ : Tuple = layer.split('/' ) lowerCamelCase__ : Dict = '/'.join(split_layer[:-1] ) lowerCamelCase__ : str = (split_layer[-1],) if "kvstore/path" in layer: lowerCamelCase__ : str = f'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: lowerCamelCase__ : str = 'file' else: lowerCamelCase__ : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = rename_keys(_lowerCamelCase ) lowerCamelCase__ : List[str] = {} for k, v in current_block.items(): lowerCamelCase__ : List[str] = v lowerCamelCase__ : Optional[Any] = new_current_block torch.save(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ): lowerCamelCase__ : List[Any] = convert_file_size_to_int(_lowerCamelCase ) lowerCamelCase__ : int = [] lowerCamelCase__ : Any = {} lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : Tuple = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: lowerCamelCase__ : Optional[int] = serialization.msgpack_restore(fp.read() )['optimizer']['target'] lowerCamelCase__ : Optional[int] = flatten_dict(_lowerCamelCase , sep='/' ) lowerCamelCase__ : Dict = {} for layer in checkpoint_info.keys(): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = get_key_and_tensorstore_dict( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if curr_real_layer_name in all_layers: lowerCamelCase__ : Union[str, Any] = content else: lowerCamelCase__ : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file lowerCamelCase__ : List[str] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() lowerCamelCase__ : int = torch.tensor(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts lowerCamelCase__ , lowerCamelCase__ : Optional[int] = rename_base_flax_keys(tuple(key.split('/' ) ) , _lowerCamelCase ) lowerCamelCase__ : List[Any] = '/'.join(_lowerCamelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: lowerCamelCase__ : Any = os.path.join( _lowerCamelCase , weights_name.replace('.bin' , f'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) rename_and_save_block(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block lowerCamelCase__ : List[str] = {} lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = raw_weights.to(getattr(_lowerCamelCase , _lowerCamelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block lowerCamelCase__ : Any = os.path.join(_lowerCamelCase , weights_name.replace('.bin' , f'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) rename_and_save_block(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCamelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index lowerCamelCase__ : Tuple = {} lowerCamelCase__ : str = {} for idx, shard in enumerate(_lowerCamelCase ): lowerCamelCase__ : Optional[Any] = weights_name.replace( '.bin' , f'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) # len(sharded_state_dicts):05d} lowerCamelCase__ : int = os.path.join(_lowerCamelCase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) lowerCamelCase__ : str = shard for key in shard: lowerCamelCase__ : Tuple = shard_file # Add the metadata lowerCamelCase__ : Union[str, Any] = {'total_size': total_size} lowerCamelCase__ : Dict = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , 'w' , encoding='utf-8' ) as f: lowerCamelCase__ : Any = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + '\n' f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": A_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) A_ : List[Any] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowerCamelCase_ ( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer lowerCamelCase__ : List[str] = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) lowerCamelCase__ : Tuple = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) lowerCamelCase__ : Optional[int] = TaTokenizer.from_pretrained('t5-small' ) lowerCamelCase__ : Optional[int] = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' lowerCamelCase__ : str = tokenizer(_lowerCamelCase , return_tensors='pt' ).input_ids lowerCamelCase__ : Tuple = model.generate(_lowerCamelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
696
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : str = use_input_mask lowerCamelCase__ : Optional[Any] = use_token_type_ids lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : Union[str, Any] = type_sequence_label_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : Union[str, Any] = num_choices lowerCamelCase__ : List[str] = scope lowerCamelCase__ : Dict = vocab_size - 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = self.get_config() return config, input_ids, input_mask, token_labels def a__ (self ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[Any] = True return config, input_ids, input_mask, token_labels def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = GPTNeoXModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = True lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : Optional[Any] = GPTNeoXForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = self.num_labels lowerCamelCase__ : Optional[int] = GPTNeoXForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[Any] = GPTNeoXForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Tuple = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : List[str] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : str = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : List[Any] = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and lowerCamelCase__ : Tuple = torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : Tuple = torch.cat([input_mask, next_mask], dim=-1 ) lowerCamelCase__ : List[str] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, output_hidden_states=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = output_from_no_past['hidden_states'][0] lowerCamelCase__ : Optional[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_, output_hidden_states=lowerCamelCase_, )['hidden_states'][0] # select random slice lowerCamelCase__ : Dict = ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-3 ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = config_and_inputs lowerCamelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : int = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase__ : Dict = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = GPTNeoXModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=6_4, num_attention_heads=8 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def a__ (self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = ids_tensor([1, 1_0], config.vocab_size ) lowerCamelCase__ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Any = GPTNeoXModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() lowerCamelCase__ : List[Any] = original_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Optional[int] = {'type': scaling_type, 'factor': 10.0} lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() lowerCamelCase__ : Tuple = scaled_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: lowerCamelCase__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer('My favorite food is', return_tensors='pt' ).to(lowerCamelCase_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCamelCase__ : Dict = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' lowerCamelCase__ : Dict = model.generate(**lowerCamelCase_, do_sample=lowerCamelCase_, max_new_tokens=2_0 ) lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ )[0] self.assertEqual(lowerCamelCase_, lowerCamelCase_ )
696
1
"""simple docstring""" from math import pi, sqrt, tan def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCamelCase__ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_lowerCamelCase , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCamelCase__ : Dict = (sidea + sidea + sidea) / 2 lowerCamelCase__ : str = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
696
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : Dict = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. A_ : List[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A_ : Union[str, Any] = spec.loader.load_module() A_ : int = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A_ : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") A_ : str = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCamelCase__ : Dict = False # source code of `config_class` lowerCamelCase__ : str = inspect.getsource(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = _re_checkpoint.findall(_lowerCamelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCamelCase__ , lowerCamelCase__ : Optional[int] = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase__ : Any = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: lowerCamelCase__ : Any = True break lowerCamelCase__ : Dict = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ : Optional[Any] = '\n'.join(sorted(_lowerCamelCase ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
696
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : Dict = logging.get_logger(__name__) A_ : Optional[Any] = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class a_ ( snake_case_ , snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = 'bit' lowerCamelCase__ : Union[str, Any] = ['preactivation', 'bottleneck'] lowerCamelCase__ : List[Any] = ['SAME', 'VALID'] def __init__(self, lowerCamelCase_=3, lowerCamelCase_=6_4, lowerCamelCase_=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8], lowerCamelCase_=[3, 4, 6, 3], lowerCamelCase_="preactivation", lowerCamelCase_="relu", lowerCamelCase_=None, lowerCamelCase_=3_2, lowerCamelCase_=0.0, lowerCamelCase_=False, lowerCamelCase_=3_2, lowerCamelCase_=1, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: lowerCamelCase__ : Optional[int] = global_padding.upper() else: raise ValueError(f'''Padding strategy {global_padding} not supported''' ) lowerCamelCase__ : Optional[Any] = num_channels lowerCamelCase__ : Any = embedding_size lowerCamelCase__ : Union[str, Any] = hidden_sizes lowerCamelCase__ : Optional[Any] = depths lowerCamelCase__ : List[str] = layer_type lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : Union[str, Any] = global_padding lowerCamelCase__ : Optional[int] = num_groups lowerCamelCase__ : List[Any] = drop_path_rate lowerCamelCase__ : List[str] = embedding_dynamic_padding lowerCamelCase__ : Union[str, Any] = output_stride lowerCamelCase__ : Dict = width_factor lowerCamelCase__ : Union[str, Any] = ['stem'] + [f'''stage{idx}''' for idx in range(1, len(lowerCamelCase_ ) + 1 )] lowerCamelCase__ , lowerCamelCase__ : Optional[int] = get_aligned_output_features_output_indices( out_features=lowerCamelCase_, out_indices=lowerCamelCase_, stage_names=self.stage_names )
696
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase = 100 ): lowerCamelCase__ : int = 0 lowerCamelCase__ : Optional[Any] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f"{solution() = }")
696
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A_ : Optional[int] = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A_ : List[str] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) A_ : Tuple = BeautifulSoup(res.text, "html.parser") A_ : Dict = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f"https://google.com{link.get('href')}")
696
1
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = torch.exp(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = torch.sum(_lowerCamelCase , dim=1 ) # sum of exp(x_i) lowerCamelCase__ : Any = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowerCamelCase ) - B / A class a_ ( nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' super().__init__() lowerCamelCase__ : int = config.output_attentions lowerCamelCase__ : str = config.output_hidden_states lowerCamelCase__ : List[Any] = nn.ModuleList([BertLayer(lowerCamelCase_ ) for _ in range(config.num_hidden_layers )] ) lowerCamelCase__ : Dict = nn.ModuleList([BertHighway(lowerCamelCase_ ) for _ in range(config.num_hidden_layers )] ) lowerCamelCase__ : str = [-1 for _ in range(config.num_hidden_layers )] def a__ (self, lowerCamelCase_ ): '''simple docstring''' if (type(lowerCamelCase_ ) is float) or (type(lowerCamelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): lowerCamelCase__ : str = x else: lowerCamelCase__ : str = x def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def a__ (self, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Dict = () lowerCamelCase__ : int = () lowerCamelCase__ : Dict = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: lowerCamelCase__ : Tuple = all_hidden_states + (hidden_states,) lowerCamelCase__ : Any = layer_module( lowerCamelCase_, lowerCamelCase_, head_mask[i], lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : str = layer_outputs[0] if self.output_attentions: lowerCamelCase__ : int = all_attentions + (layer_outputs[1],) lowerCamelCase__ : Union[str, Any] = (hidden_states,) if self.output_hidden_states: lowerCamelCase__ : Optional[Any] = current_outputs + (all_hidden_states,) if self.output_attentions: lowerCamelCase__ : str = current_outputs + (all_attentions,) lowerCamelCase__ : str = self.highway[i](lowerCamelCase_ ) # logits, pooled_output if not self.training: lowerCamelCase__ : Optional[int] = highway_exit[0] lowerCamelCase__ : List[str] = entropy(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy lowerCamelCase__ : List[str] = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: lowerCamelCase__ : Tuple = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(lowerCamelCase_, i + 1 ) else: lowerCamelCase__ : Tuple = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: lowerCamelCase__ : int = all_hidden_states + (hidden_states,) lowerCamelCase__ : Optional[Any] = (hidden_states,) if self.output_hidden_states: lowerCamelCase__ : Any = outputs + (all_hidden_states,) if self.output_attentions: lowerCamelCase__ : int = outputs + (all_attentions,) lowerCamelCase__ : Optional[Any] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( 'The Bert Model transformer with early exiting (DeeBERT). ' , snake_case_ , ) class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_ ) lowerCamelCase__ : str = config lowerCamelCase__ : Dict = BertEmbeddings(lowerCamelCase_ ) lowerCamelCase__ : Any = DeeBertEncoder(lowerCamelCase_ ) lowerCamelCase__ : Tuple = BertPooler(lowerCamelCase_ ) self.init_weights() def a__ (self ): '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def a__ (self ): '''simple docstring''' return self.embeddings.word_embeddings def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = value def a__ (self, lowerCamelCase_ ): '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(lowerCamelCase_ ) @add_start_docstrings_to_model_forward(lowerCamelCase_ ) def a__ (self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, ): '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCamelCase__ : Optional[Any] = input_ids.size() elif inputs_embeds is not None: lowerCamelCase__ : int = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCamelCase__ : Dict = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCamelCase__ : str = torch.ones(lowerCamelCase_, device=lowerCamelCase_ ) if encoder_attention_mask is None: lowerCamelCase__ : Any = torch.ones(lowerCamelCase_, device=lowerCamelCase_ ) if token_type_ids is None: lowerCamelCase__ : Tuple = torch.zeros(lowerCamelCase_, dtype=torch.long, device=lowerCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCamelCase__ : torch.Tensor = self.get_extended_attention_mask(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: lowerCamelCase__ : List[str] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: lowerCamelCase__ : int = encoder_attention_mask[:, None, None, :] lowerCamelCase__ : Tuple = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility lowerCamelCase__ : Union[str, Any] = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCamelCase__ : Optional[int] = self.get_head_mask(lowerCamelCase_, self.config.num_hidden_layers ) lowerCamelCase__ : Tuple = self.embeddings( input_ids=lowerCamelCase_, position_ids=lowerCamelCase_, token_type_ids=lowerCamelCase_, inputs_embeds=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = self.encoder( lowerCamelCase_, attention_mask=lowerCamelCase_, head_mask=lowerCamelCase_, encoder_hidden_states=lowerCamelCase_, encoder_attention_mask=lowerCamelCase_, ) lowerCamelCase__ : List[str] = encoder_outputs[0] lowerCamelCase__ : Tuple = self.pooler(lowerCamelCase_ ) lowerCamelCase__ : List[str] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = message lowerCamelCase__ : Tuple = exit_layer # start from 1! class a_ ( nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' super().__init__() lowerCamelCase__ : Optional[Any] = BertPooler(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCamelCase__ : Optional[Any] = nn.Linear(config.hidden_size, config.num_labels ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = encoder_outputs[0] lowerCamelCase__ : Union[str, Any] = self.pooler(lowerCamelCase_ ) # "return" pooler_output # BertModel lowerCamelCase__ : Optional[Any] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification lowerCamelCase__ : List[Any] = bmodel_output[1] lowerCamelCase__ : str = self.dropout(lowerCamelCase_ ) lowerCamelCase__ : Tuple = self.classifier(lowerCamelCase_ ) return logits, pooled_output @add_start_docstrings( 'Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ' , snake_case_ , ) class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = config.num_labels lowerCamelCase__ : Dict = config.num_hidden_layers lowerCamelCase__ : Any = DeeBertModel(lowerCamelCase_ ) lowerCamelCase__ : Dict = nn.Dropout(config.hidden_dropout_prob ) lowerCamelCase__ : List[Any] = nn.Linear(config.hidden_size, self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCamelCase_ ) def a__ (self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=-1, lowerCamelCase_=False, ): '''simple docstring''' lowerCamelCase__ : List[str] = self.num_layers try: lowerCamelCase__ : int = self.bert( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, position_ids=lowerCamelCase_, head_mask=lowerCamelCase_, inputs_embeds=lowerCamelCase_, ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits lowerCamelCase__ : Optional[Any] = outputs[1] lowerCamelCase__ : List[Any] = self.dropout(lowerCamelCase_ ) lowerCamelCase__ : Dict = self.classifier(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowerCamelCase__ : int = e.message lowerCamelCase__ : List[Any] = e.exit_layer lowerCamelCase__ : Optional[int] = outputs[0] if not self.training: lowerCamelCase__ : Dict = entropy(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : Optional[int] = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowerCamelCase__ : List[str] = MSELoss() lowerCamelCase__ : Union[str, Any] = loss_fct(logits.view(-1 ), labels.view(-1 ) ) else: lowerCamelCase__ : List[Any] = CrossEntropyLoss() lowerCamelCase__ : Union[str, Any] = loss_fct(logits.view(-1, self.num_labels ), labels.view(-1 ) ) # work with highway exits lowerCamelCase__ : Optional[int] = [] for highway_exit in outputs[-1]: lowerCamelCase__ : str = highway_exit[0] if not self.training: highway_logits_all.append(lowerCamelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowerCamelCase__ : Union[str, Any] = MSELoss() lowerCamelCase__ : Any = loss_fct(highway_logits.view(-1 ), labels.view(-1 ) ) else: lowerCamelCase__ : Tuple = CrossEntropyLoss() lowerCamelCase__ : Optional[Any] = loss_fct(highway_logits.view(-1, self.num_labels ), labels.view(-1 ) ) highway_losses.append(lowerCamelCase_ ) if train_highway: lowerCamelCase__ : Dict = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowerCamelCase__ : Tuple = (loss,) + outputs if not self.training: lowerCamelCase__ : Any = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowerCamelCase__ : Optional[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
696
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCamelCase__ : Tuple = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_, cache_dir=lowerCamelCase_ ) lowerCamelCase__ : List[str] = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_, os.listdir(lowerCamelCase_ )[0], 'snapshots' ) )] lowerCamelCase__ : Optional[int] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[int] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Any = 4 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : List[Any] = num_samples * [prompt] lowerCamelCase__ : Optional[int] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : int = replicate(lowerCamelCase_ ) lowerCamelCase__ : Any = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : int = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1_514_745 ) < 1e-3 assert np.abs(np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 49_947.875 ) < 5e-1 lowerCamelCase__ : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase_ ) == num_samples def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='flax', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : int = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[str] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : List[str] = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = shard(lowerCamelCase_ ) lowerCamelCase__ : str = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05_652_401) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_383_808.2) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Union[str, Any] = 5_0 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : Tuple = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Any = replicate(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa ) lowerCamelCase__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Union[str, Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] = 5_0 lowerCamelCase__ : Tuple = jax.device_count() lowerCamelCase__ : Optional[int] = num_samples * [prompt] lowerCamelCase__ : str = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Optional[int] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : List[str] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = FlaxDDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', set_alpha_to_one=lowerCamelCase_, steps_offset=1, ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, scheduler=lowerCamelCase_, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : List[str] = scheduler.create_state() lowerCamelCase__ : int = scheduler_state lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : Optional[Any] = jax.device_count() lowerCamelCase__ : Any = num_samples * [prompt] lowerCamelCase__ : Any = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Dict = shard(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045_043_945) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_347_693.5) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : int = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : str = jax.random.split(jax.random.PRNGKey(0 ), lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Dict = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Tuple = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : int = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention lowerCamelCase__ , lowerCamelCase__ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, use_memory_efficient_attention=lowerCamelCase_, ) lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : Any = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Any = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
696
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : Any = logging.get_logger(__name__) A_ : Tuple = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class a_ ( snake_case_ , snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = 'swin' lowerCamelCase__ : Any = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self, lowerCamelCase_=2_2_4, lowerCamelCase_=4, lowerCamelCase_=3, lowerCamelCase_=9_6, lowerCamelCase_=[2, 2, 6, 2], lowerCamelCase_=[3, 6, 1_2, 2_4], lowerCamelCase_=7, lowerCamelCase_=4.0, lowerCamelCase_=True, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_=0.1, lowerCamelCase_="gelu", lowerCamelCase_=False, lowerCamelCase_=0.02, lowerCamelCase_=1e-5, lowerCamelCase_=3_2, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : List[Any] = image_size lowerCamelCase__ : Tuple = patch_size lowerCamelCase__ : Optional[int] = num_channels lowerCamelCase__ : str = embed_dim lowerCamelCase__ : Union[str, Any] = depths lowerCamelCase__ : List[Any] = len(lowerCamelCase_ ) lowerCamelCase__ : List[str] = num_heads lowerCamelCase__ : Tuple = window_size lowerCamelCase__ : List[Any] = mlp_ratio lowerCamelCase__ : Optional[int] = qkv_bias lowerCamelCase__ : List[str] = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : Optional[int] = drop_path_rate lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : List[Any] = use_absolute_embeddings lowerCamelCase__ : List[str] = layer_norm_eps lowerCamelCase__ : int = initializer_range lowerCamelCase__ : int = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ : Dict = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) lowerCamelCase__ : str = ['stem'] + [f'''stage{idx}''' for idx in range(1, len(lowerCamelCase_ ) + 1 )] lowerCamelCase__ , lowerCamelCase__ : List[Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase_, out_indices=lowerCamelCase_, stage_names=self.stage_names ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = version.parse('1.11' ) @property def a__ (self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def a__ (self ): '''simple docstring''' return 1e-4
696
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = 1_0_0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = True, ): '''simple docstring''' if audio_length_in_s is None: lowerCamelCase__ : str = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase__ : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase__ : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCamelCase__ : Dict = int(lowerCamelCase_ ) if sample_size % down_scale_factor != 0: lowerCamelCase__ : Union[str, Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ' process.' ) lowerCamelCase__ : Optional[Any] = int(lowerCamelCase_ ) lowerCamelCase__ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase__ : Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase_, lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ : Union[str, Any] = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_, device=self.device, dtype=lowerCamelCase_ ) # set step values self.scheduler.set_timesteps(lowerCamelCase_, device=audio.device ) lowerCamelCase__ : int = self.scheduler.timesteps.to(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase__ : List[Any] = self.unet(lowerCamelCase_, lowerCamelCase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase__ : List[str] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample lowerCamelCase__ : Union[str, Any] = audio.clamp(-1, 1 ).float().cpu().numpy() lowerCamelCase__ : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase_ )
696
1
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder A_ : Any = "__DUMMY_TRANSFORMERS_USER__" A_ : Tuple = "Dummy User" A_ : str = "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" A_ : List[str] = "https://hub-ci.huggingface.co" A_ : Optional[int] = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" A_ : int = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" A_ : Any = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def lowerCamelCase_ ( _lowerCamelCase ): monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_ ( _lowerCamelCase ): monkeypatch.setattr('datasets.config.HF_ENDPOINT' , _lowerCamelCase ) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_ ( _lowerCamelCase ): monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): HfFolder.save_token(_lowerCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope='session' ) def lowerCamelCase_ ( ): return HfApi(endpoint=_lowerCamelCase ) @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[int] = HfFolder.get_token() HfFolder.save_token(_lowerCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_lowerCamelCase ) @pytest.fixture def lowerCamelCase_ ( _lowerCamelCase ): def _cleanup_repo(_lowerCamelCase ): hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type='dataset' ) return _cleanup_repo @pytest.fixture def lowerCamelCase_ ( _lowerCamelCase ): @contextmanager def _temporary_repo(_lowerCamelCase ): try: yield repo_id finally: cleanup_repo(_lowerCamelCase ) return _temporary_repo @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = f'''repo_txt_data-{int(time.time() * 10e3 )}''' lowerCamelCase__ : Any = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type='dataset' , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo='data/text_data.txt' , repo_id=_lowerCamelCase , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = f'''repo_zipped_txt_data-{int(time.time() * 10e3 )}''' lowerCamelCase__ : int = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type='dataset' , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo='data.zip' , repo_id=_lowerCamelCase , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = f'''repo_zipped_img_data-{int(time.time() * 10e3 )}''' lowerCamelCase__ : Union[str, Any] = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type='dataset' , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo='data.zip' , repo_id=_lowerCamelCase , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): return hf_private_dataset_repo_zipped_img_data_
696
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(lowerCamelCase_ ) ) vocab_file.flush() lowerCamelCase__ : Tuple = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCamelCase__ : Optional[Any] = BertModel(BertConfig(vocab_size=len(lowerCamelCase_ ) ) ) model.save_pretrained(lowerCamelCase_ ) self._test_export(lowerCamelCase_, 'pt', 1_2, lowerCamelCase_ ) @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Optional[Any] = self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Any = quantize(Path(lowerCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Any = self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = quantize(lowerCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowerCamelCase__ : str = Path(lowerCamelCase_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ) return path except Exception as e: self.fail(lowerCamelCase_ ) @require_torch @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : str = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'pt' ) @require_tf @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import TFBertModel lowerCamelCase__ : Dict = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Optional[int] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'tf' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = FeatureExtractionPipeline(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = infer_shapes(lowerCamelCase_, lowerCamelCase_ ) # Assert all variables are present self.assertEqual(len(lowerCamelCase_ ), len(lowerCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3], lowerCamelCase_ ) self.assertSequenceEqual(variable_names[3:], lowerCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name], {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'], {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'], {0: 'batch'} ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['input_ids', 'attention_mask', 'token_type_ids'] lowerCamelCase__ : Optional[int] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowerCamelCase__ , lowerCamelCase__ : str = ensure_valid_input(FuncContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase_ ), 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase_ ), set(lowerCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase_, (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCamelCase__ , lowerCamelCase__ : Any = ensure_valid_input(FuncNonContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase_ ), 1 ) self.assertEqual(len(lowerCamelCase_ ), 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0], tokens['input_ids'] ) self.assertEqual(ordered_input_names[0], 'input_ids' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ), '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx', generated.as_posix() )
696
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_lowerCamelCase ) * abs(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
696
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase__ : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : str = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ : Any = False @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return self.time_input_dim @property def a__ (self ): '''simple docstring''' return self.time_input_dim * 4 @property def a__ (self ): '''simple docstring''' return 1_0_0 @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase__ : int = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def a__ (self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.dummy_unet lowerCamelCase__ : List[Any] = self.dummy_movq lowerCamelCase__ : Tuple = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase__ : Optional[Any] = DDIMScheduler(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image lowerCamelCase__ : Any = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase__ : Optional[Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint lowerCamelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : int = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = 'cpu' lowerCamelCase__ : List[Any] = self.get_dummy_components() lowerCamelCase__ : List[Any] = self.pipeline_class(**lowerCamelCase_ ) lowerCamelCase__ : Dict = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : str = pipe( **self.get_dummy_inputs(lowerCamelCase_ ), return_dict=lowerCamelCase_, )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : List[str] = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase__ : Any = init_image.resize((5_1_2, 5_1_2) ) lowerCamelCase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase__ : Any = torch.from_numpy(np.array(lowerCamelCase_ ) ).float() / 255.0 lowerCamelCase__ : Optional[int] = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowerCamelCase__ : Union[str, Any] = 'A robot, 4k photo' lowerCamelCase__ : Any = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth', torch_dtype=torch.floataa ) lowerCamelCase__ : int = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = pipe_prior( lowerCamelCase_, image=lowerCamelCase_, strength=0.85, generator=lowerCamelCase_, negative_prompt='', ).to_tuple() lowerCamelCase__ : Union[str, Any] = pipeline( image=lowerCamelCase_, image_embeds=lowerCamelCase_, negative_image_embeds=lowerCamelCase_, hint=lowerCamelCase_, generator=lowerCamelCase_, num_inference_steps=1_0_0, height=5_1_2, width=5_1_2, strength=0.5, output_type='np', ) lowerCamelCase__ : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase_, lowerCamelCase_ )
696
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase = 3 , _lowerCamelCase = 7 , _lowerCamelCase = 100_0000 ): lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = 1 for current_denominator in range(1 , limit + 1 ): lowerCamelCase__ : Optional[int] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: lowerCamelCase__ : List[str] = current_numerator lowerCamelCase__ : Optional[int] = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_00_00_00))
696
"""simple docstring""" A_ : List[str] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
696
1
"""simple docstring""" import math from numpy import inf from scipy.integrate import quad def lowerCamelCase_ ( _lowerCamelCase ): if num <= 0: raise ValueError('math domain error' ) return quad(_lowerCamelCase , 0 , _lowerCamelCase , args=(_lowerCamelCase) )[0] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return math.pow(_lowerCamelCase , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
696
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 A_ : Optional[int] = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ = 1_4 ): '''simple docstring''' if group not in primes: raise ValueError('Unsupported Group' ) lowerCamelCase__ : int = primes[group]['prime'] lowerCamelCase__ : Optional[int] = primes[group]['generator'] lowerCamelCase__ : Any = int(hexlify(urandom(3_2 ) ), base=1_6 ) def a__ (self ): '''simple docstring''' return hex(self.__private_key )[2:] def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = pow(self.generator, self.__private_key, self.prime ) return hex(lowerCamelCase_ )[2:] def a__ (self, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase_, (self.prime - 1) // 2, self.prime ) == 1 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = int(lowerCamelCase_, base=1_6 ) if not self.is_valid_public_key(lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Tuple = pow(lowerCamelCase_, self.__private_key, self.prime ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase_, (prime - 1) // 2, lowerCamelCase_ ) == 1 ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 1_4 ): '''simple docstring''' lowerCamelCase__ : Dict = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[Any] = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[str] = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase_, lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Dict = pow(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
696
1
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path A_ : Tuple = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def lowerCamelCase_ ( _lowerCamelCase=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=snake_case_ ) ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = None lowerCamelCase__ : Optional[Any] = None def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' with TemporaryDirectory() as tmp_dir: lowerCamelCase__ : Optional[int] = dataset_module_factory(lowerCamelCase_, cache_dir=lowerCamelCase_ ) lowerCamelCase__ : Any = import_main_class(dataset_module.module_path, dataset=lowerCamelCase_ ) lowerCamelCase__ : DatasetBuilder = builder_cls( cache_dir=lowerCamelCase_, config_name=lowerCamelCase_, hash=dataset_module.hash, ) lowerCamelCase__ : str = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowerCamelCase_ ).replace(os.sep, '/' ), config.DATASET_INFO_FILENAME, ] ) lowerCamelCase__ : Optional[Any] = cached_path(lowerCamelCase_, cache_dir=lowerCamelCase_ ) self.assertTrue(os.path.exists(lowerCamelCase_ ) ) @pytest.mark.integration def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' lowerCamelCase__ : List[Any] = dataset_module_factory('wikipedia' , cache_dir=_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = import_main_class(dataset_module.module_path ) lowerCamelCase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCamelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowerCamelCase__ : Optional[int] = None builder_instance.download_and_prepare() lowerCamelCase__ : str = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = dataset_module_factory('wikipedia' , cache_dir=_lowerCamelCase ) lowerCamelCase__ : List[str] = import_main_class(dataset_module.module_path , dataset=_lowerCamelCase ) lowerCamelCase__ : DatasetBuilder = builder_cls( cache_dir=_lowerCamelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) lowerCamelCase__ : List[str] = builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert "train" in ds assert isinstance(ds['train'] , _lowerCamelCase ) assert next(iter(ds['train'] ) )
696
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_lowerCamelCase ) * abs(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
696
1
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Union[List[PIL.Image.Image], np.ndarray] lowerCamelCase__ : Optional[List[bool]] lowerCamelCase__ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
696
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : int = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : Optional[int] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : str = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : Optional[int] = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Tuple = c.n_embd + 1 # int lowerCamelCase__ : Union[str, Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : List[Any] = not c.scale_attn_weights # bool lowerCamelCase__ : List[Any] = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = PretrainedConfig() lowerCamelCase__ : Optional[Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : Any = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : int = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = mock.Mock() lowerCamelCase__ : List[str] = 5_0_0 lowerCamelCase__ : Any = {} lowerCamelCase__ : int = HTTPError lowerCamelCase__ : Optional[Any] = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : str = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : str = ['config.42.0.0.json'] lowerCamelCase__ : Union[str, Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Optional[int] = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Dict = 'v3.0.0' lowerCamelCase__ : List[str] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
696
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : str = len(_lowerCamelCase ) while cur > 1: # Find the maximum number in arr lowerCamelCase__ : str = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCamelCase__ : List[str] = arr[mi::-1] + arr[mi + 1 : len(_lowerCamelCase )] # Reverse whole list lowerCamelCase__ : Any = arr[cur - 1 :: -1] + arr[cur : len(_lowerCamelCase )] cur -= 1 return arr if __name__ == "__main__": A_ : Optional[Any] = input("Enter numbers separated by a comma:\n").strip() A_ : Tuple = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
696
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' super().__init__() lowerCamelCase__ : Dict = value_function lowerCamelCase__ : int = unet lowerCamelCase__ : Union[str, Any] = scheduler lowerCamelCase__ : int = env lowerCamelCase__ : List[Any] = env.get_dataset() lowerCamelCase__ : Dict = {} for key in self.data.keys(): try: lowerCamelCase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowerCamelCase__ : Optional[int] = {} for key in self.data.keys(): try: lowerCamelCase__ : Tuple = self.data[key].std() except: # noqa: E722 pass lowerCamelCase__ : Optional[Any] = env.observation_space.shape[0] lowerCamelCase__ : List[str] = env.action_space.shape[0] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def a__ (self, lowerCamelCase_ ): '''simple docstring''' if type(lowerCamelCase_ ) is dict: return {k: self.to_torch(lowerCamelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase_, device=self.unet.device ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for key, val in cond.items(): lowerCamelCase__ : Optional[Any] = val.clone() return x_in def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = x.shape[0] lowerCamelCase__ : Tuple = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCamelCase__ : Dict = torch.full((batch_size,), lowerCamelCase_, device=self.unet.device, dtype=torch.long ) for _ in range(lowerCamelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCamelCase__ : str = self.value_function(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample lowerCamelCase__ : Union[str, Any] = torch.autograd.grad([y.sum()], [x] )[0] lowerCamelCase__ : Optional[int] = self.scheduler._get_variance(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = torch.exp(0.5 * posterior_variance ) lowerCamelCase__ : Tuple = model_std * grad lowerCamelCase__ : str = 0 lowerCamelCase__ : Dict = x.detach() lowerCamelCase__ : Dict = x + scale * grad lowerCamelCase__ : Optional[int] = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : Tuple = self.unet(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample.permute(0, 2, 1 ) # TODO: verify deprecation of this kwarg lowerCamelCase__ : Optional[Any] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, predict_epsilon=lowerCamelCase_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowerCamelCase__ : Any = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) return x, y def __call__(self, lowerCamelCase_, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=0.1 ): '''simple docstring''' lowerCamelCase__ : Dict = self.normalize(lowerCamelCase_, 'observations' ) lowerCamelCase__ : List[str] = obs[None].repeat(lowerCamelCase_, axis=0 ) lowerCamelCase__ : str = {0: self.to_torch(lowerCamelCase_ )} lowerCamelCase__ : Optional[Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCamelCase__ : List[Any] = randn_tensor(lowerCamelCase_, device=self.unet.device ) lowerCamelCase__ : int = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) # run the diffusion process lowerCamelCase__ , lowerCamelCase__ : List[str] = self.run_diffusion(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # sort output trajectories by value lowerCamelCase__ : Union[str, Any] = y.argsort(0, descending=lowerCamelCase_ ).squeeze() lowerCamelCase__ : List[str] = x[sorted_idx] lowerCamelCase__ : Optional[Any] = sorted_values[:, :, : self.action_dim] lowerCamelCase__ : Union[str, Any] = actions.detach().cpu().numpy() lowerCamelCase__ : Union[str, Any] = self.de_normalize(lowerCamelCase_, key='actions' ) # select the action with the highest value if y is not None: lowerCamelCase__ : str = 0 else: # if we didn't run value guiding, select a random action lowerCamelCase__ : Optional[Any] = np.random.randint(0, lowerCamelCase_ ) lowerCamelCase__ : Tuple = denorm_actions[selected_index, 0] return denorm_actions
696
1
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[int] = prime_factors(_lowerCamelCase ) if is_square_free(_lowerCamelCase ): return -1 if len(_lowerCamelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
696
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : List[str] = analyze_text(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. lowerCamelCase__ : List[Any] = sum(single_char_strings.values() ) # one length string lowerCamelCase__ : str = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCamelCase__ : Tuple = single_char_strings[ch] lowerCamelCase__ : Union[str, Any] = my_str / all_sum my_fir_sum += prob * math.loga(_lowerCamelCase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string lowerCamelCase__ : Dict = sum(two_char_strings.values() ) lowerCamelCase__ : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCamelCase__ : int = cha + cha if sequence in two_char_strings: lowerCamelCase__ : int = two_char_strings[sequence] lowerCamelCase__ : Tuple = int(_lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(_lowerCamelCase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = Counter() # type: ignore lowerCamelCase__ : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase_ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
696
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Dict = len(_lowerCamelCase ) lowerCamelCase__ : Dict = len(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] lowerCamelCase__ : str = True for i in range(_lowerCamelCase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase__ : Optional[int] = True if a[i].islower(): lowerCamelCase__ : List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
696
"""simple docstring""" import os def lowerCamelCase_ ( ): with open(os.path.dirname(_lowerCamelCase ) + '/p022_names.txt' ) as file: lowerCamelCase__ : Union[str, Any] = str(file.readlines()[0] ) lowerCamelCase__ : int = names.replace('"' , '' ).split(',' ) names.sort() lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : str = 0 for i, name in enumerate(_lowerCamelCase ): for letter in name: name_score += ord(_lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowerCamelCase__ : Dict = 0 return total_score if __name__ == "__main__": print(solution())
696
1
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests A_ : int = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user A_ : Optional[int] = BASE_URL + "/user" # https://github.com/settings/tokens A_ : int = os.environ.get("USER_TOKEN", "") def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = { 'Authorization': f'''token {auth_token}''', 'Accept': 'application/vnd.github.v3+json', } return requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"{key}: {value}") else: raise ValueError("'USER_TOKEN' field cannot be empty.")
696
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = 'Speech2TextFeatureExtractor' lowerCamelCase__ : Dict = 'Speech2TextTokenizer' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.feature_extractor lowerCamelCase__ : List[Any] = False def __call__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_, **lowerCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ : Optional[int] = kwargs.pop('raw_speech' ) else: lowerCamelCase__ : int = kwargs.pop('audio', lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = kwargs.pop('sampling_rate', lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('text', lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowerCamelCase__ : List[str] = args[0] lowerCamelCase__ : Any = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ : Union[str, Any] = self.feature_extractor(lowerCamelCase_, *lowerCamelCase_, sampling_rate=lowerCamelCase_, **lowerCamelCase_ ) if text is not None: lowerCamelCase__ : List[Any] = self.tokenizer(lowerCamelCase_, **lowerCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Tuple = encodings['input_ids'] return inputs def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @contextmanager def a__ (self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ : int = True lowerCamelCase__ : List[Any] = self.tokenizer yield lowerCamelCase__ : Optional[int] = self.feature_extractor lowerCamelCase__ : List[Any] = False
696
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def lowerCamelCase_ ( ): lowerCamelCase__ : Union[str, Any] = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=_lowerCamelCase ) lowerCamelCase__ : List[str] = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=_lowerCamelCase ) env_command_parser(subparsers=_lowerCamelCase ) launch_command_parser(subparsers=_lowerCamelCase ) tpu_command_parser(subparsers=_lowerCamelCase ) test_command_parser(subparsers=_lowerCamelCase ) # Let's go lowerCamelCase__ : int = parser.parse_args() if not hasattr(_lowerCamelCase , 'func' ): parser.print_help() exit(1 ) # Run args.func(_lowerCamelCase ) if __name__ == "__main__": main()
696
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : Optional[Any] = use_input_mask lowerCamelCase__ : List[Any] = use_token_type_ids lowerCamelCase__ : List[Any] = use_labels lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : Optional[int] = embedding_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Optional[Any] = num_labels lowerCamelCase__ : Dict = num_choices lowerCamelCase__ : Tuple = scope def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : List[str] = None if self.use_input_mask: lowerCamelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_token_type_ids: lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Any = None lowerCamelCase__ : Union[str, Any] = None if self.use_labels: lowerCamelCase__ : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, embedding_size=self.embedding_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, next_sentence_label=lowerCamelCase_, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, start_positions=lowerCamelCase_, end_positions=lowerCamelCase_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : int = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.num_choices lowerCamelCase__ : Dict = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : int = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : List[str] = config_and_inputs lowerCamelCase__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : int = True def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase_ ) return inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = MobileBertModelTester(self ) lowerCamelCase__ : List[str] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): return torch.tensor( _lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , ) A_ : Tuple = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(lowerCamelCase_ ) lowerCamelCase__ : Tuple = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ )[0] lowerCamelCase__ : Optional[int] = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [ [ [-2.4_736_526e07, 8.2_691_656e04, 1.6_521_838e05], [-5.7_541_704e-01, 3.9_056_022e00, 4.4_011_507e00], [2.6_047_359e00, 1.5_677_652e00, -1.7_324_188e-01], ] ], device=lowerCamelCase_, ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCamelCase__ : Optional[int] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCamelCase__ : Any = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
696
1
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
696
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A_ : str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=1 ): '''simple docstring''' lowerCamelCase__ : Any = tokenizer lowerCamelCase__ : Optional[Any] = dataset lowerCamelCase__ : int = len(lowerCamelCase_ ) if n_tasks is None else n_tasks lowerCamelCase__ : Any = n_copies def __iter__(self ): '''simple docstring''' lowerCamelCase__ : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ : Optional[int] = self.tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = start_length lowerCamelCase__ : List[str] = eof_strings lowerCamelCase__ : List[str] = tokenizer def __call__(self, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ : Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ): lowerCamelCase__ : List[str] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): lowerCamelCase__ : str = batch['ids'].shape[-1] lowerCamelCase__ : int = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times lowerCamelCase__ : Optional[Any] = batch['task_id'].repeat(_lowerCamelCase ) lowerCamelCase__ : List[Any] = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ : List[Any] = generated_tokens.cpu().numpy() lowerCamelCase__ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) lowerCamelCase__ : str = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ : Optional[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase_ ( ): # Setup configuration lowerCamelCase__ : int = HfArgumentParser(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ : Tuple = 'false' if args.num_workers is None: lowerCamelCase__ : List[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ : List[Any] = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ : Optional[int] = tokenizer.eos_token lowerCamelCase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ : Optional[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric lowerCamelCase__ : Any = load_dataset('openai_humaneval' ) lowerCamelCase__ : Optional[int] = load_metric('code_eval' ) lowerCamelCase__ : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ : Optional[int] = args.n_samples // args.batch_size lowerCamelCase__ : Tuple = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ : Union[str, Any] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ : List[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ : str = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: lowerCamelCase__ : List[str] = [] for task in tqdm(range(_lowerCamelCase ) ): lowerCamelCase__ : int = human_eval['test'][task]['test'] lowerCamelCase__ : Union[str, Any] = f'''check({human_eval['test'][task]['entry_point']})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ : Any = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
696
1
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version A_ : Union[str, Any] = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(_lowerCamelCase ) , version.parse(_lowerCamelCase ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = None ): lowerCamelCase__ : Optional[Any] = f'''\n{hint}''' if hint is not None else '' # non-versioned check if re.match(r'^[\w_\-\d]+$' , _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = requirement, None, None else: lowerCamelCase__ : List[str] = re.findall(r'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , _lowerCamelCase ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' f''' got {requirement}''' ) lowerCamelCase__ , lowerCamelCase__ : List[str] = match[0] lowerCamelCase__ : List[Any] = want_full.split(',' ) # there could be multiple requirements lowerCamelCase__ : Any = {} for w in want_range: lowerCamelCase__ : Optional[Any] = re.findall(r'^([\s!=<>]{1,2})(.+)' , _lowerCamelCase ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' f''' but got {requirement}''' ) lowerCamelCase__ , lowerCamelCase__ : List[str] = match[0] lowerCamelCase__ : List[str] = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": lowerCamelCase__ : str = '.'.join([str(_lowerCamelCase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return # check if any version is installed try: lowerCamelCase__ : int = importlib.metadata.version(_lowerCamelCase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(_lowerCamelCase , _lowerCamelCase )
696
"""simple docstring""" from ..utils import DummyObject, requires_backends class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] ) class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] )
696
1
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1e-12 ): lowerCamelCase__ : List[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_lowerCamelCase , axis=1 ) , a_min=_lowerCamelCase ) ).T lowerCamelCase__ : Optional[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_lowerCamelCase , axis=1 ) , a_min=_lowerCamelCase ) ).T return jnp.matmul(_lowerCamelCase , norm_emb_a.T ) class a_ ( nn.Module ): '''simple docstring''' lowerCamelCase__ : CLIPConfig lowerCamelCase__ : jnp.dtype = jnp.floataa def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = FlaxCLIPVisionModule(self.config.vision_config ) lowerCamelCase__ : str = nn.Dense(self.config.projection_dim, use_bias=lowerCamelCase_, dtype=self.dtype ) lowerCamelCase__ : Optional[int] = self.param('concept_embeds', jax.nn.initializers.ones, (1_7, self.config.projection_dim) ) lowerCamelCase__ : Optional[int] = self.param( 'special_care_embeds', jax.nn.initializers.ones, (3, self.config.projection_dim) ) lowerCamelCase__ : List[Any] = self.param('concept_embeds_weights', jax.nn.initializers.ones, (1_7,) ) lowerCamelCase__ : Any = self.param('special_care_embeds_weights', jax.nn.initializers.ones, (3,) ) def __call__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.vision_model(lowerCamelCase_ )[1] lowerCamelCase__ : Optional[Any] = self.visual_projection(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = jax_cosine_distance(lowerCamelCase_, self.special_care_embeds ) lowerCamelCase__ : List[Any] = jax_cosine_distance(lowerCamelCase_, self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowerCamelCase__ : Optional[int] = 0.0 lowerCamelCase__ : Optional[Any] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowerCamelCase__ : Any = jnp.round(lowerCamelCase_, 3 ) lowerCamelCase__ : Union[str, Any] = jnp.any(special_scores > 0, axis=1, keepdims=lowerCamelCase_ ) # Use a lower threshold if an image has any special care concept lowerCamelCase__ : str = is_special_care * 0.01 lowerCamelCase__ : Tuple = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowerCamelCase__ : List[str] = jnp.round(lowerCamelCase_, 3 ) lowerCamelCase__ : int = jnp.any(concept_scores > 0, axis=1 ) return has_nsfw_concepts class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = CLIPConfig lowerCamelCase__ : Any = 'clip_input' lowerCamelCase__ : Optional[int] = FlaxStableDiffusionSafetyCheckerModule def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = 0, lowerCamelCase_ = jnp.floataa, lowerCamelCase_ = True, **lowerCamelCase_, ): '''simple docstring''' if input_shape is None: lowerCamelCase__ : str = (1, 2_2_4, 2_2_4, 3) lowerCamelCase__ : Dict = self.module_class(config=lowerCamelCase_, dtype=lowerCamelCase_, **lowerCamelCase_ ) super().__init__(lowerCamelCase_, lowerCamelCase_, input_shape=lowerCamelCase_, seed=lowerCamelCase_, dtype=lowerCamelCase_, _do_init=_do_init ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : str = jax.random.normal(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : Any = jax.random.split(lowerCamelCase_ ) lowerCamelCase__ : int = {'params': params_rng, 'dropout': dropout_rng} lowerCamelCase__ : str = self.module.init(lowerCamelCase_, lowerCamelCase_ )['params'] return random_params def __call__(self, lowerCamelCase_, lowerCamelCase_ = None, ): '''simple docstring''' lowerCamelCase__ : str = jnp.transpose(lowerCamelCase_, (0, 2, 3, 1) ) return self.module.apply( {'params': params or self.params}, jnp.array(lowerCamelCase_, dtype=jnp.floataa ), rngs={}, )
696
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = 0 while number > 0: lowerCamelCase__ : List[str] = number % 10 sum_of_digits += last_digit lowerCamelCase__ : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase_ ( _lowerCamelCase = 100 ): lowerCamelCase__ : Union[str, Any] = factorial(_lowerCamelCase ) lowerCamelCase__ : List[Any] = split_and_add(_lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
696
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = tempfile.mkdtemp() # fmt: off lowerCamelCase__ : int = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCamelCase__ : Union[str, Any] = dict(zip(lowerCamelCase_, range(len(lowerCamelCase_ ) ) ) ) lowerCamelCase__ : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCamelCase__ : str = {'unk_token': '<unk>'} lowerCamelCase__ : Dict = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ : str = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase_ ) ) lowerCamelCase__ : Union[str, Any] = { 'do_resize': True, 'size': 2_0, 'do_center_crop': True, 'crop_size': 1_8, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCamelCase__ : Tuple = os.path.join(self.tmpdirname, lowerCamelCase_ ) with open(self.image_processor_file, 'w', encoding='utf-8' ) as fp: json.dump(lowerCamelCase_, lowerCamelCase_ ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = [np.random.randint(2_5_5, size=(3, 3_0, 4_0_0), dtype=np.uinta )] lowerCamelCase__ : Tuple = [Image.fromarray(np.moveaxis(lowerCamelCase_, 0, -1 ) ) for x in image_inputs] return image_inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.get_tokenizer() lowerCamelCase__ : Optional[int] = self.get_rust_tokenizer() lowerCamelCase__ : Any = self.get_image_processor() lowerCamelCase__ : Dict = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Dict = CLIPProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, lowerCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer, lowerCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, lowerCamelCase_ ) self.assertIsInstance(processor_fast.image_processor, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = CLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : List[Any] = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) lowerCamelCase__ : Optional[Any] = self.get_image_processor(do_normalize=lowerCamelCase_, padding_value=1.0 ) lowerCamelCase__ : int = CLIPProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCamelCase_, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : Any = self.get_tokenizer() lowerCamelCase__ : List[str] = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = self.prepare_image_inputs() lowerCamelCase__ : int = image_processor(lowerCamelCase_, return_tensors='np' ) lowerCamelCase__ : Optional[Any] = processor(images=lowerCamelCase_, return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : str = self.get_tokenizer() lowerCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = 'lower newer' lowerCamelCase__ : Optional[int] = processor(text=lowerCamelCase_ ) lowerCamelCase__ : Dict = tokenizer(lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_image_processor() lowerCamelCase__ : Tuple = self.get_tokenizer() lowerCamelCase__ : List[Any] = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : str = 'lower newer' lowerCamelCase__ : Optional[Any] = self.prepare_image_inputs() lowerCamelCase__ : Tuple = processor(text=lowerCamelCase_, images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ), ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.get_image_processor() lowerCamelCase__ : Optional[int] = self.get_tokenizer() lowerCamelCase__ : Tuple = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ : Union[str, Any] = processor.batch_decode(lowerCamelCase_ ) lowerCamelCase__ : Tuple = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_image_processor() lowerCamelCase__ : str = self.get_tokenizer() lowerCamelCase__ : int = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : str = 'lower newer' lowerCamelCase__ : List[Any] = self.prepare_image_inputs() lowerCamelCase__ : Dict = processor(text=lowerCamelCase_, images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
696
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ : Dict = "pt" elif is_tf_available(): A_ : Union[str, Any] = "tf" else: A_ : List[str] = "jax" class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = PerceiverTokenizer lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ (self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=2_0, lowerCamelCase_=5 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [] for i in range(len(lowerCamelCase_ ) ): try: lowerCamelCase__ : Any = tokenizer.decode([i], clean_up_tokenization_spaces=lowerCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase__ : Any = list(filter(lambda lowerCamelCase_ : re.match(r'^[ a-zA-Z]+$', t[1] ), lowerCamelCase_ ) ) lowerCamelCase__ : Union[str, Any] = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=lowerCamelCase_ ), lowerCamelCase_ ) ) if max_length is not None and len(lowerCamelCase_ ) > max_length: lowerCamelCase__ : int = toks[:max_length] if min_length is not None and len(lowerCamelCase_ ) < min_length and len(lowerCamelCase_ ) > 0: while len(lowerCamelCase_ ) < min_length: lowerCamelCase__ : Dict = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : int = [t[0] for t in toks] # Ensure consistency lowerCamelCase__ : Optional[int] = tokenizer.decode(lowerCamelCase_, clean_up_tokenization_spaces=lowerCamelCase_ ) if " " not in output_txt and len(lowerCamelCase_ ) > 1: lowerCamelCase__ : List[Any] = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=lowerCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=lowerCamelCase_ ) ) if with_prefix_space: lowerCamelCase__ : Optional[Any] = ' ' + output_txt lowerCamelCase__ : List[Any] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) return output_txt, output_ids def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = 'Unicode €.' lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_ ) lowerCamelCase__ : Dict = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : int = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]Unicode €.[SEP]' ) lowerCamelCase__ : List[str] = tokenizer('e è é ê ë' ) lowerCamelCase__ : Dict = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : Any = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ), '[CLS]e è é ê ë[SEP]' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCamelCase__ : List[Any] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) if FRAMEWORK != "jax": lowerCamelCase__ : List[str] = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase__ : int = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertEqual((2, 3_8), batch.input_ids.shape ) self.assertEqual((2, 3_8), batch.attention_mask.shape ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.perceiver_tokenizer lowerCamelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCamelCase__ : List[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids', lowerCamelCase_ ) self.assertIn('attention_mask', lowerCamelCase_ ) self.assertNotIn('decoder_input_ids', lowerCamelCase_ ) self.assertNotIn('decoder_attention_mask', lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : int = [ 'Summary of the text.', 'Another summary.', ] lowerCamelCase__ : str = tokenizer( text_target=lowerCamelCase_, max_length=3_2, padding='max_length', truncation=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertEqual(3_2, targets['input_ids'].shape[1] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 4_2 ) # Now let's start the test lowerCamelCase__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : str = ' He is very happy, UNwant\u00E9d,running' lowerCamelCase__ : str = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : str = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) shutil.rmtree(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCamelCase__ : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCamelCase__ : List[str] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : int = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertIn('new_additional_special_token', after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 4_2 ) lowerCamelCase__ : List[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_, model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length, 4_3 ) shutil.rmtree(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : Optional[Any] = json.load(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : List[str] = json.load(lowerCamelCase_ ) lowerCamelCase__ : Any = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] lowerCamelCase__ : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCamelCase__ : List[str] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ : Dict = tokenizer_class.from_pretrained( lowerCamelCase_, ) self.assertIn( 'an_additional_special_token', tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token', lstrip=lowerCamelCase_ )] lowerCamelCase__ : Any = tokenizer_class.from_pretrained( lowerCamelCase_, additional_special_tokens=lowerCamelCase_, ) self.assertIn('a_new_additional_special_token', tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ), '�' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_tokenizers(fast=lowerCamelCase_, do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Tuple = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] lowerCamelCase__ : List[str] = tokenizer.convert_tokens_to_string(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ )
696
1
"""simple docstring""" import re import string import numpy as np import datasets A_ : Optional[int] = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" A_ : List[str] = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" A_ : int = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def a__ (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('string', id='sequence' ), 'references': datasets.Value('string', id='sequence' ), } ), reference_urls=[], ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=False, lowerCamelCase_=False, lowerCamelCase_=False, ): '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: lowerCamelCase__ : Dict = np.array([re.sub(lowerCamelCase_, '', lowerCamelCase_ ) for x in predictions] ) lowerCamelCase__ : List[Any] = np.array([re.sub(lowerCamelCase_, '', lowerCamelCase_ ) for x in references] ) else: lowerCamelCase__ : int = np.asarray(lowerCamelCase_ ) lowerCamelCase__ : str = np.asarray(lowerCamelCase_ ) if ignore_case: lowerCamelCase__ : Optional[Any] = np.char.lower(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = np.char.lower(lowerCamelCase_ ) if ignore_punctuation: lowerCamelCase__ : Dict = string.punctuation.maketrans('', '', string.punctuation ) lowerCamelCase__ : Any = np.char.translate(lowerCamelCase_, table=lowerCamelCase_ ) lowerCamelCase__ : str = np.char.translate(lowerCamelCase_, table=lowerCamelCase_ ) if ignore_numbers: lowerCamelCase__ : Optional[int] = string.digits.maketrans('', '', string.digits ) lowerCamelCase__ : Union[str, Any] = np.char.translate(lowerCamelCase_, table=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = np.char.translate(lowerCamelCase_, table=lowerCamelCase_ ) lowerCamelCase__ : Any = predictions == references return {"exact_match": np.mean(lowerCamelCase_ ) * 1_0_0}
696
"""simple docstring""" from math import pi, sqrt, tan def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCamelCase__ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_lowerCamelCase , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCamelCase__ : Dict = (sidea + sidea + sidea) / 2 lowerCamelCase__ : str = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
696
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[Any] = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : str = use_input_mask lowerCamelCase__ : Optional[Any] = use_token_type_ids lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : Union[str, Any] = type_sequence_label_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : Union[str, Any] = num_choices lowerCamelCase__ : List[str] = scope lowerCamelCase__ : Dict = vocab_size - 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = self.get_config() return config, input_ids, input_mask, token_labels def a__ (self ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[Any] = True return config, input_ids, input_mask, token_labels def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = GPTNeoXModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = True lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : Optional[Any] = GPTNeoXForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = self.num_labels lowerCamelCase__ : Optional[int] = GPTNeoXForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[Any] = GPTNeoXForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Tuple = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : List[str] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : str = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : List[Any] = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and lowerCamelCase__ : Tuple = torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : Tuple = torch.cat([input_mask, next_mask], dim=-1 ) lowerCamelCase__ : List[str] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, output_hidden_states=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = output_from_no_past['hidden_states'][0] lowerCamelCase__ : Optional[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_, output_hidden_states=lowerCamelCase_, )['hidden_states'][0] # select random slice lowerCamelCase__ : Dict = ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-3 ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = config_and_inputs lowerCamelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : int = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase__ : Dict = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = GPTNeoXModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=6_4, num_attention_heads=8 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def a__ (self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = ids_tensor([1, 1_0], config.vocab_size ) lowerCamelCase__ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Any = GPTNeoXModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() lowerCamelCase__ : List[Any] = original_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Optional[int] = {'type': scaling_type, 'factor': 10.0} lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() lowerCamelCase__ : Tuple = scaled_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: lowerCamelCase__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer('My favorite food is', return_tensors='pt' ).to(lowerCamelCase_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCamelCase__ : Dict = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' lowerCamelCase__ : Dict = model.generate(**lowerCamelCase_, do_sample=lowerCamelCase_, max_new_tokens=2_0 ) lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ )[0] self.assertEqual(lowerCamelCase_, lowerCamelCase_ )
696
1
"""simple docstring""" import numpy # List of input, output pairs A_ : Tuple = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) A_ : List[Any] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) A_ : int = [2, 4, 1, 5] A_ : Optional[int] = len(train_data) A_ : int = 0.009 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase="train" ): return calculate_hypothesis_value(_lowerCamelCase , _lowerCamelCase ) - output( _lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[int] = 0 for i in range(len(_lowerCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=m ): lowerCamelCase__ : List[str] = 0 for i in range(_lowerCamelCase ): if index == -1: summation_value += _error(_lowerCamelCase ) else: summation_value += _error(_lowerCamelCase ) * train_data[i][0][index] return summation_value def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : str = summation_of_cost_derivative(_lowerCamelCase , _lowerCamelCase ) / m return cost_derivative_value def lowerCamelCase_ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase__ : Optional[Any] = 0.000_002 lowerCamelCase__ : str = 0 lowerCamelCase__ : int = 0 while True: j += 1 lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0] for i in range(0 , len(_lowerCamelCase ) ): lowerCamelCase__ : List[Any] = get_cost_derivative(i - 1 ) lowerCamelCase__ : str = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _lowerCamelCase , _lowerCamelCase , atol=_lowerCamelCase , rtol=_lowerCamelCase , ): break lowerCamelCase__ : Tuple = temp_parameter_vector print(('Number of iterations:', j) ) def lowerCamelCase_ ( ): for i in range(len(_lowerCamelCase ) ): print(('Actual output value:', output(_lowerCamelCase , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(_lowerCamelCase , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
696
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : Dict = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. A_ : List[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A_ : Union[str, Any] = spec.loader.load_module() A_ : int = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A_ : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") A_ : str = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCamelCase__ : Dict = False # source code of `config_class` lowerCamelCase__ : str = inspect.getsource(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = _re_checkpoint.findall(_lowerCamelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCamelCase__ , lowerCamelCase__ : Optional[int] = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase__ : Any = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: lowerCamelCase__ : Any = True break lowerCamelCase__ : Dict = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ : Optional[Any] = '\n'.join(sorted(_lowerCamelCase ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
696
1
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A_ : List[Any] = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = ["DPTFeatureExtractor"] A_ : Optional[Any] = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
1
"""simple docstring""" from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = False, lowerCamelCase_ = False, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' super().__init__( features=lowerCamelCase_, cache_dir=lowerCamelCase_, keep_in_memory=lowerCamelCase_, streaming=lowerCamelCase_, num_proc=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : int = Generator( cache_dir=lowerCamelCase_, features=lowerCamelCase_, generator=lowerCamelCase_, gen_kwargs=lowerCamelCase_, **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' if self.streaming: lowerCamelCase__ : Dict = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : str = None self.builder.download_and_prepare( download_config=lowerCamelCase_, download_mode=lowerCamelCase_, verification_mode=lowerCamelCase_, base_path=lowerCamelCase_, num_proc=self.num_proc, ) lowerCamelCase__ : str = self.builder.as_dataset( split='train', verification_mode=lowerCamelCase_, in_memory=self.keep_in_memory ) return dataset
696
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A_ : Optional[int] = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A_ : List[str] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) A_ : Tuple = BeautifulSoup(res.text, "html.parser") A_ : Dict = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f"https://google.com{link.get('href')}")
696
1
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters A_ : Any = (7_20, 12_80) # Height, Width A_ : List[Any] = (0.4, 0.6) # if height or width lower than this scale, drop it. A_ : int = 1 / 1_00 A_ : Dict = "" A_ : List[str] = "" A_ : str = "" A_ : int = 2_50 def lowerCamelCase_ ( ): lowerCamelCase__ , lowerCamelCase__ : Tuple = get_dataset(_lowerCamelCase , _lowerCamelCase ) for index in range(_lowerCamelCase ): lowerCamelCase__ : Dict = random.sample(range(len(_lowerCamelCase ) ) , 4 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = update_image_and_anno( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , filter_scale=_lowerCamelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCamelCase__ : int = random_chars(32 ) lowerCamelCase__ : Optional[Any] = path.split(os.sep )[-1].rsplit('.' , 1 )[0] lowerCamelCase__ : Optional[Any] = f'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(f'''{file_root}.jpg''' , _lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) lowerCamelCase__ : Union[str, Any] = [] for anno in new_annos: lowerCamelCase__ : List[Any] = anno[3] - anno[1] lowerCamelCase__ : Any = anno[4] - anno[2] lowerCamelCase__ : Any = anno[1] + width / 2 lowerCamelCase__ : List[Any] = anno[2] + height / 2 lowerCamelCase__ : List[str] = f'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(_lowerCamelCase ) with open(f'''{file_root}.txt''' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : Dict = [] for label_file in glob.glob(os.path.join(_lowerCamelCase , '*.txt' ) ): lowerCamelCase__ : Union[str, Any] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(_lowerCamelCase ) as in_file: lowerCamelCase__ : List[Any] = in_file.readlines() lowerCamelCase__ : Tuple = os.path.join(_lowerCamelCase , f'''{label_name}.jpg''' ) lowerCamelCase__ : Optional[Any] = [] for obj_list in obj_lists: lowerCamelCase__ : List[Any] = obj_list.rstrip('\n' ).split(' ' ) lowerCamelCase__ : str = float(obj[1] ) - float(obj[3] ) / 2 lowerCamelCase__ : Optional[int] = float(obj[2] ) - float(obj[4] ) / 2 lowerCamelCase__ : Optional[int] = float(obj[1] ) + float(obj[3] ) / 2 lowerCamelCase__ : int = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(_lowerCamelCase ) labels.append(_lowerCamelCase ) return img_paths, labels def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0.0 , ): lowerCamelCase__ : str = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowerCamelCase__ : List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCamelCase__ : Optional[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCamelCase__ : Any = int(scale_x * output_size[1] ) lowerCamelCase__ : Dict = int(scale_y * output_size[0] ) lowerCamelCase__ : int = [] lowerCamelCase__ : Tuple = [] for i, index in enumerate(_lowerCamelCase ): lowerCamelCase__ : Any = all_img_list[index] path_list.append(_lowerCamelCase ) lowerCamelCase__ : Dict = all_annos[index] lowerCamelCase__ : Tuple = cva.imread(_lowerCamelCase ) if i == 0: # top-left lowerCamelCase__ : int = cva.resize(_lowerCamelCase , (divid_point_x, divid_point_y) ) lowerCamelCase__ : Dict = img for bbox in img_annos: lowerCamelCase__ : List[Any] = bbox[1] * scale_x lowerCamelCase__ : str = bbox[2] * scale_y lowerCamelCase__ : Optional[int] = bbox[3] * scale_x lowerCamelCase__ : Any = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowerCamelCase__ : Tuple = cva.resize(_lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) ) lowerCamelCase__ : Optional[int] = img for bbox in img_annos: lowerCamelCase__ : Optional[int] = scale_x + bbox[1] * (1 - scale_x) lowerCamelCase__ : Optional[Any] = bbox[2] * scale_y lowerCamelCase__ : Optional[int] = scale_x + bbox[3] * (1 - scale_x) lowerCamelCase__ : Optional[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowerCamelCase__ : List[str] = cva.resize(_lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) ) lowerCamelCase__ : int = img for bbox in img_annos: lowerCamelCase__ : Any = bbox[1] * scale_x lowerCamelCase__ : Optional[Any] = scale_y + bbox[2] * (1 - scale_y) lowerCamelCase__ : Optional[int] = bbox[3] * scale_x lowerCamelCase__ : str = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowerCamelCase__ : Union[str, Any] = cva.resize( _lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowerCamelCase__ : Optional[int] = img for bbox in img_annos: lowerCamelCase__ : List[Any] = scale_x + bbox[1] * (1 - scale_x) lowerCamelCase__ : Any = scale_y + bbox[2] * (1 - scale_y) lowerCamelCase__ : int = scale_x + bbox[3] * (1 - scale_x) lowerCamelCase__ : Tuple = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowerCamelCase__ : List[Any] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowerCamelCase_ ( _lowerCamelCase ): assert number_char > 1, "The number of character should greater than 1" lowerCamelCase__ : Any = ascii_lowercase + digits return "".join(random.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
696
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCamelCase__ : Tuple = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_, cache_dir=lowerCamelCase_ ) lowerCamelCase__ : List[str] = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_, os.listdir(lowerCamelCase_ )[0], 'snapshots' ) )] lowerCamelCase__ : Optional[int] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[int] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Any = 4 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : List[Any] = num_samples * [prompt] lowerCamelCase__ : Optional[int] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : int = replicate(lowerCamelCase_ ) lowerCamelCase__ : Any = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : int = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1_514_745 ) < 1e-3 assert np.abs(np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 49_947.875 ) < 5e-1 lowerCamelCase__ : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase_ ) == num_samples def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='flax', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : int = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[str] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : List[str] = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = shard(lowerCamelCase_ ) lowerCamelCase__ : str = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05_652_401) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_383_808.2) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Union[str, Any] = 5_0 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : Tuple = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Any = replicate(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa ) lowerCamelCase__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Union[str, Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] = 5_0 lowerCamelCase__ : Tuple = jax.device_count() lowerCamelCase__ : Optional[int] = num_samples * [prompt] lowerCamelCase__ : str = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Optional[int] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : List[str] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = FlaxDDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', set_alpha_to_one=lowerCamelCase_, steps_offset=1, ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, scheduler=lowerCamelCase_, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : List[str] = scheduler.create_state() lowerCamelCase__ : int = scheduler_state lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : Optional[Any] = jax.device_count() lowerCamelCase__ : Any = num_samples * [prompt] lowerCamelCase__ : Any = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Dict = shard(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045_043_945) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_347_693.5) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : int = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : str = jax.random.split(jax.random.PRNGKey(0 ), lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Dict = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Tuple = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : int = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention lowerCamelCase__ , lowerCamelCase__ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, use_memory_efficient_attention=lowerCamelCase_, ) lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : Any = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Any = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
696
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Any = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = 1_0_0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = True, ): '''simple docstring''' if audio_length_in_s is None: lowerCamelCase__ : str = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase__ : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase__ : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCamelCase__ : Dict = int(lowerCamelCase_ ) if sample_size % down_scale_factor != 0: lowerCamelCase__ : Union[str, Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ' process.' ) lowerCamelCase__ : Optional[Any] = int(lowerCamelCase_ ) lowerCamelCase__ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase__ : Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase_, lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ : Union[str, Any] = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_, device=self.device, dtype=lowerCamelCase_ ) # set step values self.scheduler.set_timesteps(lowerCamelCase_, device=audio.device ) lowerCamelCase__ : int = self.scheduler.timesteps.to(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase__ : List[Any] = self.unet(lowerCamelCase_, lowerCamelCase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase__ : List[str] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample lowerCamelCase__ : Union[str, Any] = audio.clamp(-1, 1 ).float().cpu().numpy() lowerCamelCase__ : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase_ )
696
1
"""simple docstring""" import numpy as np from transformers import Pipeline def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = np.max(_lowerCamelCase , axis=-1 , keepdims=_lowerCamelCase ) lowerCamelCase__ : List[Any] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class a_ ( snake_case_ ): '''simple docstring''' def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = {} if "second_text" in kwargs: lowerCamelCase__ : Tuple = kwargs['second_text'] return preprocess_kwargs, {}, {} def a__ (self, lowerCamelCase_, lowerCamelCase_=None ): '''simple docstring''' return self.tokenizer(lowerCamelCase_, text_pair=lowerCamelCase_, return_tensors=self.framework ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.model(**lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = model_outputs.logits[0].numpy() lowerCamelCase__ : List[str] = softmax(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = np.argmax(lowerCamelCase_ ) lowerCamelCase__ : str = self.model.config.idalabel[best_class] lowerCamelCase__ : List[str] = probabilities[best_class].item() lowerCamelCase__ : Union[str, Any] = logits.tolist() return {"label": label, "score": score, "logits": logits}
696
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(lowerCamelCase_ ) ) vocab_file.flush() lowerCamelCase__ : Tuple = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCamelCase__ : Optional[Any] = BertModel(BertConfig(vocab_size=len(lowerCamelCase_ ) ) ) model.save_pretrained(lowerCamelCase_ ) self._test_export(lowerCamelCase_, 'pt', 1_2, lowerCamelCase_ ) @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Optional[Any] = self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Any = quantize(Path(lowerCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Any = self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = quantize(lowerCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowerCamelCase__ : str = Path(lowerCamelCase_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ) return path except Exception as e: self.fail(lowerCamelCase_ ) @require_torch @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : str = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'pt' ) @require_tf @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import TFBertModel lowerCamelCase__ : Dict = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Optional[int] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'tf' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = FeatureExtractionPipeline(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = infer_shapes(lowerCamelCase_, lowerCamelCase_ ) # Assert all variables are present self.assertEqual(len(lowerCamelCase_ ), len(lowerCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3], lowerCamelCase_ ) self.assertSequenceEqual(variable_names[3:], lowerCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name], {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'], {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'], {0: 'batch'} ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['input_ids', 'attention_mask', 'token_type_ids'] lowerCamelCase__ : Optional[int] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowerCamelCase__ , lowerCamelCase__ : str = ensure_valid_input(FuncContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase_ ), 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase_ ), set(lowerCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase_, (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCamelCase__ , lowerCamelCase__ : Any = ensure_valid_input(FuncNonContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase_ ), 1 ) self.assertEqual(len(lowerCamelCase_ ), 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0], tokens['input_ids'] ) self.assertEqual(ordered_input_names[0], 'input_ids' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ), '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx', generated.as_posix() )
696
1
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : torch.FloatTensor lowerCamelCase__ : Optional[torch.FloatTensor] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=0.999 , _lowerCamelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCamelCase__ : Optional[Any] = [] for i in range(_lowerCamelCase ): lowerCamelCase__ : int = i / num_diffusion_timesteps lowerCamelCase__ : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) ) return torch.tensor(_lowerCamelCase , dtype=torch.floataa ) class a_ ( snake_case_ , snake_case_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = 1 @register_to_config def __init__(self, lowerCamelCase_ = 1_0_0_0, lowerCamelCase_ = 0.0_001, lowerCamelCase_ = 0.02, lowerCamelCase_ = "linear", lowerCamelCase_ = None, lowerCamelCase_ = True, lowerCamelCase_ = True, lowerCamelCase_ = 0, lowerCamelCase_ = "epsilon", lowerCamelCase_ = 1.0, **lowerCamelCase_, ): '''simple docstring''' if kwargs.get('set_alpha_to_one', lowerCamelCase_ ) is not None: lowerCamelCase__ : Union[str, Any] = ( 'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.' ) deprecate('set_alpha_to_one', '1.0.0', lowerCamelCase_, standard_warn=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = kwargs['set_alpha_to_one'] if trained_betas is not None: lowerCamelCase__ : Union[str, Any] = torch.tensor(lowerCamelCase_, dtype=torch.floataa ) elif beta_schedule == "linear": lowerCamelCase__ : Dict = torch.linspace(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCamelCase__ : Optional[int] = ( torch.linspace(beta_start**0.5, beta_end**0.5, lowerCamelCase_, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCamelCase__ : Dict = betas_for_alpha_bar(lowerCamelCase_ ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCamelCase__ : Tuple = 1.0 - self.betas lowerCamelCase__ : Optional[Any] = torch.cumprod(self.alphas, dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. lowerCamelCase__ : Tuple = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution lowerCamelCase__ : List[Any] = 1.0 # setable values lowerCamelCase__ : List[str] = None lowerCamelCase__ : str = torch.from_numpy(np.arange(0, lowerCamelCase_ ).copy().astype(np.intaa ) ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' return sample def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) lowerCamelCase__ : List[str] = num_inference_steps lowerCamelCase__ : Union[str, Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCamelCase__ : List[str] = (np.arange(0, lowerCamelCase_ ) * step_ratio).round().copy().astype(np.intaa ) lowerCamelCase__ : Dict = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) self.timesteps += self.config.steps_offset def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 0.0, lowerCamelCase_ = False, lowerCamelCase_ = None, lowerCamelCase_ = True, ): '''simple docstring''' lowerCamelCase__ : str = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process lowerCamelCase__ : Union[str, Any] = self.alphas_cumprod[timestep] lowerCamelCase__ : Tuple = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) lowerCamelCase__ : Dict = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": lowerCamelCase__ : str = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 lowerCamelCase__ : int = model_output elif self.config.prediction_type == "sample": lowerCamelCase__ : Optional[int] = model_output lowerCamelCase__ : int = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": lowerCamelCase__ : List[str] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output lowerCamelCase__ : Dict = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ' `v_prediction`' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: lowerCamelCase__ : Tuple = pred_original_sample.clamp( -self.config.clip_sample_range, self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Optional[Any] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Optional[int] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCamelCase_, pred_original_sample=lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self.config.num_train_timesteps
696
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase__ : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : str = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ : Any = False @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return self.time_input_dim @property def a__ (self ): '''simple docstring''' return self.time_input_dim * 4 @property def a__ (self ): '''simple docstring''' return 1_0_0 @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase__ : int = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def a__ (self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.dummy_unet lowerCamelCase__ : List[Any] = self.dummy_movq lowerCamelCase__ : Tuple = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase__ : Optional[Any] = DDIMScheduler(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image lowerCamelCase__ : Any = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase__ : Optional[Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint lowerCamelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : int = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = 'cpu' lowerCamelCase__ : List[Any] = self.get_dummy_components() lowerCamelCase__ : List[Any] = self.pipeline_class(**lowerCamelCase_ ) lowerCamelCase__ : Dict = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : str = pipe( **self.get_dummy_inputs(lowerCamelCase_ ), return_dict=lowerCamelCase_, )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : List[str] = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase__ : Any = init_image.resize((5_1_2, 5_1_2) ) lowerCamelCase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase__ : Any = torch.from_numpy(np.array(lowerCamelCase_ ) ).float() / 255.0 lowerCamelCase__ : Optional[int] = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowerCamelCase__ : Union[str, Any] = 'A robot, 4k photo' lowerCamelCase__ : Any = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth', torch_dtype=torch.floataa ) lowerCamelCase__ : int = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = pipe_prior( lowerCamelCase_, image=lowerCamelCase_, strength=0.85, generator=lowerCamelCase_, negative_prompt='', ).to_tuple() lowerCamelCase__ : Union[str, Any] = pipeline( image=lowerCamelCase_, image_embeds=lowerCamelCase_, negative_image_embeds=lowerCamelCase_, hint=lowerCamelCase_, generator=lowerCamelCase_, num_inference_steps=1_0_0, height=5_1_2, width=5_1_2, strength=0.5, output_type='np', ) lowerCamelCase__ : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase_, lowerCamelCase_ )
696
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : List[str] = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = 'canine' def __init__(self, lowerCamelCase_=7_6_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=3_0_7_2, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_6_3_8_4, lowerCamelCase_=1_6, lowerCamelCase_=0.02, lowerCamelCase_=1e-12, lowerCamelCase_=0, lowerCamelCase_=0xE000, lowerCamelCase_=0xE001, lowerCamelCase_=4, lowerCamelCase_=4, lowerCamelCase_=8, lowerCamelCase_=1_6_3_8_4, lowerCamelCase_=1_2_8, **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : str = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : int = attention_probs_dropout_prob lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : Tuple = type_vocab_size lowerCamelCase__ : Dict = layer_norm_eps # Character config: lowerCamelCase__ : Any = downsampling_rate lowerCamelCase__ : Optional[int] = upsampling_kernel_size lowerCamelCase__ : Union[str, Any] = num_hash_functions lowerCamelCase__ : str = num_hash_buckets lowerCamelCase__ : List[str] = local_transformer_stride
696
"""simple docstring""" A_ : List[str] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
696
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : torch.FloatTensor class a_ ( snake_case_ , snake_case_ ): '''simple docstring''' @register_to_config def __init__(self, lowerCamelCase_ = 6_5_5_3_6, lowerCamelCase_ = None, lowerCamelCase_ = 2, lowerCamelCase_ = 2, lowerCamelCase_ = 0, lowerCamelCase_ = "fourier", lowerCamelCase_ = True, lowerCamelCase_ = False, lowerCamelCase_ = 0.0, lowerCamelCase_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"), lowerCamelCase_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"), lowerCamelCase_ = "UNetMidBlock1D", lowerCamelCase_ = None, lowerCamelCase_ = (3_2, 3_2, 6_4), lowerCamelCase_ = None, lowerCamelCase_ = 8, lowerCamelCase_ = 1, lowerCamelCase_ = False, ): '''simple docstring''' super().__init__() lowerCamelCase__ : str = sample_size # time if time_embedding_type == "fourier": lowerCamelCase__ : Dict = GaussianFourierProjection( embedding_size=8, set_W_to_weight=lowerCamelCase_, log=lowerCamelCase_, flip_sin_to_cos=lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCamelCase__ : Dict = Timesteps( block_out_channels[0], flip_sin_to_cos=lowerCamelCase_, downscale_freq_shift=lowerCamelCase_ ) lowerCamelCase__ : str = block_out_channels[0] if use_timestep_embedding: lowerCamelCase__ : Tuple = block_out_channels[0] * 4 lowerCamelCase__ : str = TimestepEmbedding( in_channels=lowerCamelCase_, time_embed_dim=lowerCamelCase_, act_fn=lowerCamelCase_, out_dim=block_out_channels[0], ) lowerCamelCase__ : Optional[int] = nn.ModuleList([] ) lowerCamelCase__ : Any = None lowerCamelCase__ : Optional[int] = nn.ModuleList([] ) lowerCamelCase__ : int = None # down lowerCamelCase__ : Any = in_channels for i, down_block_type in enumerate(lowerCamelCase_ ): lowerCamelCase__ : str = output_channel lowerCamelCase__ : List[str] = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCamelCase__ : Any = i == len(lowerCamelCase_ ) - 1 lowerCamelCase__ : List[str] = get_down_block( lowerCamelCase_, num_layers=lowerCamelCase_, in_channels=lowerCamelCase_, out_channels=lowerCamelCase_, temb_channels=block_out_channels[0], add_downsample=not is_final_block or downsample_each_block, ) self.down_blocks.append(lowerCamelCase_ ) # mid lowerCamelCase__ : Union[str, Any] = get_mid_block( lowerCamelCase_, in_channels=block_out_channels[-1], mid_channels=block_out_channels[-1], out_channels=block_out_channels[-1], embed_dim=block_out_channels[0], num_layers=lowerCamelCase_, add_downsample=lowerCamelCase_, ) # up lowerCamelCase__ : List[str] = list(reversed(lowerCamelCase_ ) ) lowerCamelCase__ : Tuple = reversed_block_out_channels[0] if out_block_type is None: lowerCamelCase__ : List[str] = out_channels else: lowerCamelCase__ : str = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = output_channel lowerCamelCase__ : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase_ ) - 1 else final_upsample_channels ) lowerCamelCase__ : Optional[int] = i == len(lowerCamelCase_ ) - 1 lowerCamelCase__ : Tuple = get_up_block( lowerCamelCase_, num_layers=lowerCamelCase_, in_channels=lowerCamelCase_, out_channels=lowerCamelCase_, temb_channels=block_out_channels[0], add_upsample=not is_final_block, ) self.up_blocks.append(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = output_channel # out lowerCamelCase__ : Dict = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 3_2 ) lowerCamelCase__ : Optional[Any] = get_out_block( out_block_type=lowerCamelCase_, num_groups_out=lowerCamelCase_, embed_dim=block_out_channels[0], out_channels=lowerCamelCase_, act_fn=lowerCamelCase_, fc_dim=block_out_channels[-1] // 4, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = True, ): '''simple docstring''' lowerCamelCase__ : Optional[int] = timestep if not torch.is_tensor(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = torch.tensor([timesteps], dtype=torch.long, device=sample.device ) elif torch.is_tensor(lowerCamelCase_ ) and len(timesteps.shape ) == 0: lowerCamelCase__ : List[str] = timesteps[None].to(sample.device ) lowerCamelCase__ : List[str] = self.time_proj(lowerCamelCase_ ) if self.config.use_timestep_embedding: lowerCamelCase__ : Union[str, Any] = self.time_mlp(lowerCamelCase_ ) else: lowerCamelCase__ : Tuple = timestep_embed[..., None] lowerCamelCase__ : List[str] = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCamelCase__ : Any = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCamelCase__ : List[str] = () for downsample_block in self.down_blocks: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = downsample_block(hidden_states=lowerCamelCase_, temb=lowerCamelCase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCamelCase__ : Optional[Any] = self.mid_block(lowerCamelCase_, lowerCamelCase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCamelCase__ : int = down_block_res_samples[-1:] lowerCamelCase__ : str = down_block_res_samples[:-1] lowerCamelCase__ : Optional[Any] = upsample_block(lowerCamelCase_, res_hidden_states_tuple=lowerCamelCase_, temb=lowerCamelCase_ ) # 5. post-process if self.out_block: lowerCamelCase__ : List[Any] = self.out_block(lowerCamelCase_, lowerCamelCase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase_ )
696
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 A_ : Optional[int] = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ = 1_4 ): '''simple docstring''' if group not in primes: raise ValueError('Unsupported Group' ) lowerCamelCase__ : int = primes[group]['prime'] lowerCamelCase__ : Optional[int] = primes[group]['generator'] lowerCamelCase__ : Any = int(hexlify(urandom(3_2 ) ), base=1_6 ) def a__ (self ): '''simple docstring''' return hex(self.__private_key )[2:] def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = pow(self.generator, self.__private_key, self.prime ) return hex(lowerCamelCase_ )[2:] def a__ (self, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase_, (self.prime - 1) // 2, self.prime ) == 1 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = int(lowerCamelCase_, base=1_6 ) if not self.is_valid_public_key(lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Tuple = pow(lowerCamelCase_, self.__private_key, self.prime ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase_, (prime - 1) // 2, lowerCamelCase_ ) == 1 ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 1_4 ): '''simple docstring''' lowerCamelCase__ : Dict = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[Any] = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[str] = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase_, lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Dict = pow(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
696
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : Dict = { "configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "GraphormerForGraphClassification", "GraphormerModel", "GraphormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_lowerCamelCase ) * abs(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
696
1
"""simple docstring""" import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=1_0_2_4, lowerCamelCase_=1_0_2_4, lowerCamelCase_=3.6 ): '''simple docstring''' lowerCamelCase__ : str = tokenizer lowerCamelCase__ : Any = tokenizer.bos_token_id lowerCamelCase__ : Dict = dataset lowerCamelCase__ : Dict = seq_length lowerCamelCase__ : int = seq_length * chars_per_token * num_of_sequences def __iter__(self ): '''simple docstring''' lowerCamelCase__ : List[Any] = iter(self.dataset ) lowerCamelCase__ : int = True while more_examples: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(lowerCamelCase_ )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: lowerCamelCase__ : Union[str, Any] = False break lowerCamelCase__ : Union[str, Any] = tokenizer(lowerCamelCase_, truncation=lowerCamelCase_ )['input_ids'] lowerCamelCase__ : Dict = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0, len(lowerCamelCase_ ), self.seq_length ): lowerCamelCase__ : List[Any] = all_token_ids[i : i + self.seq_length] if len(lowerCamelCase_ ) == self.seq_length: yield torch.tensor(lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = {'streaming': True} lowerCamelCase__ : Optional[Any] = load_dataset(args.dataset_name , split='train' , **_lowerCamelCase ) lowerCamelCase__ : int = ConstantLengthDataset(_lowerCamelCase , _lowerCamelCase , seq_length=args.seq_length ) lowerCamelCase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=args.batch_size ) return eval_dataloader def lowerCamelCase_ ( _lowerCamelCase ): model.eval() lowerCamelCase__ : int = [] for step, batch in enumerate(_lowerCamelCase ): with torch.no_grad(): lowerCamelCase__ : int = model(_lowerCamelCase , labels=_lowerCamelCase ) lowerCamelCase__ : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowerCamelCase__ : Any = torch.mean(torch.cat(_lowerCamelCase ) ) try: lowerCamelCase__ : Dict = torch.exp(_lowerCamelCase ) except OverflowError: lowerCamelCase__ : Optional[Any] = float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator A_ : Optional[int] = Accelerator() # Parse configuration A_ : Any = HfArgumentParser(EvaluationArguments) A_ : Dict = parser.parse_args() set_seed(args.seed) # Logging A_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) # Load model and tokenizer A_ : str = AutoModelForCausalLM.from_pretrained(args.model_ckpt) A_ : int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader A_ : List[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. A_, A_ : Any = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("Evaluating and saving model after training") A_, A_ : Optional[Any] = evaluate(args) logger.info(f"loss/eval: {eval_loss}, perplexity: {perplexity}")
696
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : int = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : Optional[int] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : str = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : Optional[int] = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Tuple = c.n_embd + 1 # int lowerCamelCase__ : Union[str, Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : List[Any] = not c.scale_attn_weights # bool lowerCamelCase__ : List[Any] = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = PretrainedConfig() lowerCamelCase__ : Optional[Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : Any = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : int = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = mock.Mock() lowerCamelCase__ : List[str] = 5_0_0 lowerCamelCase__ : Any = {} lowerCamelCase__ : int = HTTPError lowerCamelCase__ : Optional[Any] = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : str = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : str = ['config.42.0.0.json'] lowerCamelCase__ : Union[str, Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Optional[int] = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Dict = 'v3.0.0' lowerCamelCase__ : List[str] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
696
1
"""simple docstring""" from __future__ import annotations A_ : int = "#" class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' lowerCamelCase__ : dict = {} def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self._trie for char in text: if char not in trie: lowerCamelCase__ : Dict = {} lowerCamelCase__ : Optional[Any] = trie[char] lowerCamelCase__ : List[str] = True def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = self._trie for char in prefix: if char in trie: lowerCamelCase__ : Optional[Any] = trie[char] else: return [] return self._elements(lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [] for c, v in d.items(): lowerCamelCase__ : List[str] = [' '] if c == END else [(c + s) for s in self._elements(lowerCamelCase_ )] result.extend(lowerCamelCase_ ) return tuple(lowerCamelCase_ ) A_ : List[Any] = Trie() A_ : int = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : str = trie.find_word(_lowerCamelCase ) return tuple(string + word for word in suffixes ) def lowerCamelCase_ ( ): print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
696
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' super().__init__() lowerCamelCase__ : Dict = value_function lowerCamelCase__ : int = unet lowerCamelCase__ : Union[str, Any] = scheduler lowerCamelCase__ : int = env lowerCamelCase__ : List[Any] = env.get_dataset() lowerCamelCase__ : Dict = {} for key in self.data.keys(): try: lowerCamelCase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowerCamelCase__ : Optional[int] = {} for key in self.data.keys(): try: lowerCamelCase__ : Tuple = self.data[key].std() except: # noqa: E722 pass lowerCamelCase__ : Optional[Any] = env.observation_space.shape[0] lowerCamelCase__ : List[str] = env.action_space.shape[0] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def a__ (self, lowerCamelCase_ ): '''simple docstring''' if type(lowerCamelCase_ ) is dict: return {k: self.to_torch(lowerCamelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase_, device=self.unet.device ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for key, val in cond.items(): lowerCamelCase__ : Optional[Any] = val.clone() return x_in def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = x.shape[0] lowerCamelCase__ : Tuple = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCamelCase__ : Dict = torch.full((batch_size,), lowerCamelCase_, device=self.unet.device, dtype=torch.long ) for _ in range(lowerCamelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCamelCase__ : str = self.value_function(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample lowerCamelCase__ : Union[str, Any] = torch.autograd.grad([y.sum()], [x] )[0] lowerCamelCase__ : Optional[int] = self.scheduler._get_variance(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = torch.exp(0.5 * posterior_variance ) lowerCamelCase__ : Tuple = model_std * grad lowerCamelCase__ : str = 0 lowerCamelCase__ : Dict = x.detach() lowerCamelCase__ : Dict = x + scale * grad lowerCamelCase__ : Optional[int] = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : Tuple = self.unet(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample.permute(0, 2, 1 ) # TODO: verify deprecation of this kwarg lowerCamelCase__ : Optional[Any] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, predict_epsilon=lowerCamelCase_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowerCamelCase__ : Any = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) return x, y def __call__(self, lowerCamelCase_, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=0.1 ): '''simple docstring''' lowerCamelCase__ : Dict = self.normalize(lowerCamelCase_, 'observations' ) lowerCamelCase__ : List[str] = obs[None].repeat(lowerCamelCase_, axis=0 ) lowerCamelCase__ : str = {0: self.to_torch(lowerCamelCase_ )} lowerCamelCase__ : Optional[Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCamelCase__ : List[Any] = randn_tensor(lowerCamelCase_, device=self.unet.device ) lowerCamelCase__ : int = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) # run the diffusion process lowerCamelCase__ , lowerCamelCase__ : List[str] = self.run_diffusion(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # sort output trajectories by value lowerCamelCase__ : Union[str, Any] = y.argsort(0, descending=lowerCamelCase_ ).squeeze() lowerCamelCase__ : List[str] = x[sorted_idx] lowerCamelCase__ : Optional[Any] = sorted_values[:, :, : self.action_dim] lowerCamelCase__ : Union[str, Any] = actions.detach().cpu().numpy() lowerCamelCase__ : Union[str, Any] = self.de_normalize(lowerCamelCase_, key='actions' ) # select the action with the highest value if y is not None: lowerCamelCase__ : str = 0 else: # if we didn't run value guiding, select a random action lowerCamelCase__ : Optional[Any] = np.random.randint(0, lowerCamelCase_ ) lowerCamelCase__ : Tuple = denorm_actions[selected_index, 0] return denorm_actions
696
1
"""simple docstring""" from ....utils import logging A_ : List[str] = logging.get_logger(__name__) class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=2_0_4_8 ): '''simple docstring''' lowerCamelCase__ : Tuple = config.__dict__ lowerCamelCase__ : List[str] = modal_hidden_size if num_labels: lowerCamelCase__ : List[str] = num_labels
696
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : List[str] = analyze_text(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. lowerCamelCase__ : List[Any] = sum(single_char_strings.values() ) # one length string lowerCamelCase__ : str = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCamelCase__ : Tuple = single_char_strings[ch] lowerCamelCase__ : Union[str, Any] = my_str / all_sum my_fir_sum += prob * math.loga(_lowerCamelCase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string lowerCamelCase__ : Dict = sum(two_char_strings.values() ) lowerCamelCase__ : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCamelCase__ : int = cha + cha if sequence in two_char_strings: lowerCamelCase__ : int = two_char_strings[sequence] lowerCamelCase__ : Tuple = int(_lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(_lowerCamelCase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = Counter() # type: ignore lowerCamelCase__ : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase_ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
696
1
"""simple docstring""" A_ : List[str] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
696
"""simple docstring""" import os def lowerCamelCase_ ( ): with open(os.path.dirname(_lowerCamelCase ) + '/p022_names.txt' ) as file: lowerCamelCase__ : Union[str, Any] = str(file.readlines()[0] ) lowerCamelCase__ : int = names.replace('"' , '' ).split(',' ) names.sort() lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : str = 0 for i, name in enumerate(_lowerCamelCase ): for letter in name: name_score += ord(_lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowerCamelCase__ : Dict = 0 return total_score if __name__ == "__main__": print(solution())
696
1
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params A_ : List[str] = getLogger(__name__) A_ : str = "cuda" if torch.cuda.is_available() else "cpu" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 8 , _lowerCamelCase = DEFAULT_DEVICE , _lowerCamelCase=False , _lowerCamelCase="summarization" , _lowerCamelCase=None , **_lowerCamelCase , ): lowerCamelCase__ : str = Path(_lowerCamelCase ).open('w' , encoding='utf-8' ) lowerCamelCase__ : Any = str(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_lowerCamelCase ).to(_lowerCamelCase ) if fpaa: lowerCamelCase__ : Optional[Any] = model.half() lowerCamelCase__ : str = AutoTokenizer.from_pretrained(_lowerCamelCase ) logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. lowerCamelCase__ : List[Any] = time.time() # update config with task specific params use_task_specific_params(_lowerCamelCase , _lowerCamelCase ) if prefix is None: lowerCamelCase__ : Any = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(_lowerCamelCase , _lowerCamelCase ) ) ): lowerCamelCase__ : Optional[int] = [prefix + text for text in examples_chunk] lowerCamelCase__ : str = tokenizer(_lowerCamelCase , return_tensors='pt' , truncation=_lowerCamelCase , padding='longest' ).to(_lowerCamelCase ) lowerCamelCase__ : Dict = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCamelCase , ) lowerCamelCase__ : str = tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() lowerCamelCase__ : Union[str, Any] = int(time.time() - start_time ) # seconds lowerCamelCase__ : Any = len(_lowerCamelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase_ ( ): return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def lowerCamelCase_ ( _lowerCamelCase=True ): lowerCamelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument('model_name' , type=_lowerCamelCase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=_lowerCamelCase , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=_lowerCamelCase , help='where to save summaries' ) parser.add_argument('--reference_path' , type=_lowerCamelCase , required=_lowerCamelCase , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=_lowerCamelCase , required=_lowerCamelCase , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=_lowerCamelCase , required=_lowerCamelCase , default=_lowerCamelCase , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=_lowerCamelCase , required=_lowerCamelCase , default=_lowerCamelCase , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=_lowerCamelCase , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=_lowerCamelCase , default=8 , required=_lowerCamelCase , help='batch size' ) parser.add_argument( '--n_obs' , type=_lowerCamelCase , default=-1 , required=_lowerCamelCase , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=_lowerCamelCase , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate lowerCamelCase__ , lowerCamelCase__ : Tuple = parser.parse_known_args() lowerCamelCase__ : Tuple = parse_numeric_n_bool_cl_kwargs(_lowerCamelCase ) if parsed_args and verbose: print(f'''parsed the following generate kwargs: {parsed_args}''' ) lowerCamelCase__ : Any = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: lowerCamelCase__ : Optional[int] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCamelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) lowerCamelCase__ : Any = generate_summaries_or_translations( _lowerCamelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCamelCase , ) if args.reference_path is None: return {} # Compute scores lowerCamelCase__ : List[str] = calculate_bleu if 'translation' in args.task else calculate_rouge lowerCamelCase__ : Optional[Any] = [x.rstrip() for x in open(args.save_path ).readlines()] lowerCamelCase__ : int = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCamelCase )] lowerCamelCase__ : dict = score_fn(_lowerCamelCase , _lowerCamelCase ) scores.update(_lowerCamelCase ) if args.dump_args: scores.update(_lowerCamelCase ) if args.info: lowerCamelCase__ : List[str] = args.info if verbose: print(_lowerCamelCase ) if args.score_path is not None: json.dump(_lowerCamelCase , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
696
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = 'Speech2TextFeatureExtractor' lowerCamelCase__ : Dict = 'Speech2TextTokenizer' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.feature_extractor lowerCamelCase__ : List[Any] = False def __call__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_, **lowerCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ : Optional[int] = kwargs.pop('raw_speech' ) else: lowerCamelCase__ : int = kwargs.pop('audio', lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = kwargs.pop('sampling_rate', lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('text', lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowerCamelCase__ : List[str] = args[0] lowerCamelCase__ : Any = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ : Union[str, Any] = self.feature_extractor(lowerCamelCase_, *lowerCamelCase_, sampling_rate=lowerCamelCase_, **lowerCamelCase_ ) if text is not None: lowerCamelCase__ : List[Any] = self.tokenizer(lowerCamelCase_, **lowerCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Tuple = encodings['input_ids'] return inputs def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @contextmanager def a__ (self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ : int = True lowerCamelCase__ : List[Any] = self.tokenizer yield lowerCamelCase__ : Optional[int] = self.feature_extractor lowerCamelCase__ : List[Any] = False
696
1
"""simple docstring""" from bisect import bisect from itertools import accumulate def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = sorted(zip(_lowerCamelCase , _lowerCamelCase ) , key=lambda _lowerCamelCase : x[0] / x[1] , reverse=_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ : str = [i[0] for i in r], [i[1] for i in r] lowerCamelCase__ : Optional[Any] = list(accumulate(_lowerCamelCase ) ) lowerCamelCase__ : int = bisect(_lowerCamelCase , _lowerCamelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
696
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : Optional[Any] = use_input_mask lowerCamelCase__ : List[Any] = use_token_type_ids lowerCamelCase__ : List[Any] = use_labels lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : Optional[int] = embedding_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Optional[Any] = num_labels lowerCamelCase__ : Dict = num_choices lowerCamelCase__ : Tuple = scope def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : List[str] = None if self.use_input_mask: lowerCamelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_token_type_ids: lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Any = None lowerCamelCase__ : Union[str, Any] = None if self.use_labels: lowerCamelCase__ : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, embedding_size=self.embedding_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, next_sentence_label=lowerCamelCase_, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, start_positions=lowerCamelCase_, end_positions=lowerCamelCase_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : int = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.num_choices lowerCamelCase__ : Dict = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : int = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : List[str] = config_and_inputs lowerCamelCase__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : int = True def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase_ ) return inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = MobileBertModelTester(self ) lowerCamelCase__ : List[str] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): return torch.tensor( _lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , ) A_ : Tuple = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(lowerCamelCase_ ) lowerCamelCase__ : Tuple = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ )[0] lowerCamelCase__ : Optional[int] = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [ [ [-2.4_736_526e07, 8.2_691_656e04, 1.6_521_838e05], [-5.7_541_704e-01, 3.9_056_022e00, 4.4_011_507e00], [2.6_047_359e00, 1.5_677_652e00, -1.7_324_188e-01], ] ], device=lowerCamelCase_, ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCamelCase__ : Optional[int] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCamelCase__ : Any = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
696
1
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = int(np.ceil((x_end - xa) / step_size ) ) lowerCamelCase__ : List[str] = np.zeros((n + 1,) ) lowerCamelCase__ : str = ya lowerCamelCase__ : Any = xa for k in range(_lowerCamelCase ): lowerCamelCase__ : Optional[Any] = y[k] + step_size * ode_func(_lowerCamelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
696
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A_ : str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=1 ): '''simple docstring''' lowerCamelCase__ : Any = tokenizer lowerCamelCase__ : Optional[Any] = dataset lowerCamelCase__ : int = len(lowerCamelCase_ ) if n_tasks is None else n_tasks lowerCamelCase__ : Any = n_copies def __iter__(self ): '''simple docstring''' lowerCamelCase__ : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ : Optional[int] = self.tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = start_length lowerCamelCase__ : List[str] = eof_strings lowerCamelCase__ : List[str] = tokenizer def __call__(self, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ : Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ): lowerCamelCase__ : List[str] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): lowerCamelCase__ : str = batch['ids'].shape[-1] lowerCamelCase__ : int = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times lowerCamelCase__ : Optional[Any] = batch['task_id'].repeat(_lowerCamelCase ) lowerCamelCase__ : List[Any] = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ : List[Any] = generated_tokens.cpu().numpy() lowerCamelCase__ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) lowerCamelCase__ : str = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ : Optional[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase_ ( ): # Setup configuration lowerCamelCase__ : int = HfArgumentParser(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ : Tuple = 'false' if args.num_workers is None: lowerCamelCase__ : List[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ : List[Any] = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ : Optional[int] = tokenizer.eos_token lowerCamelCase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ : Optional[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric lowerCamelCase__ : Any = load_dataset('openai_humaneval' ) lowerCamelCase__ : Optional[int] = load_metric('code_eval' ) lowerCamelCase__ : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ : Optional[int] = args.n_samples // args.batch_size lowerCamelCase__ : Tuple = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ : Union[str, Any] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ : List[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ : str = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: lowerCamelCase__ : List[str] = [] for task in tqdm(range(_lowerCamelCase ) ): lowerCamelCase__ : int = human_eval['test'][task]['test'] lowerCamelCase__ : Union[str, Any] = f'''check({human_eval['test'][task]['entry_point']})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ : Any = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
696
1
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') lowerCamelCase__ : Optional[int] = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) lowerCamelCase__ : List[str] = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): lowerCamelCase__ : Optional[Any] = name.replace(_lowerCamelCase , _lowerCamelCase ) return f'''bert/{name}''' def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) lowerCamelCase__ : Tuple = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowerCamelCase__ : List[Any] = to_tf_var_name(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowerCamelCase__ : Optional[Any] = torch_tensor.T lowerCamelCase__ : int = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = session.run(_lowerCamelCase ) print(f'''Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}''' ) lowerCamelCase__ : Tuple = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace('-' , '_' ) + '.ckpt' ) ) def lowerCamelCase_ ( _lowerCamelCase=None ): lowerCamelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument('--model_name' , type=_lowerCamelCase , required=_lowerCamelCase , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=_lowerCamelCase , required=_lowerCamelCase , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=_lowerCamelCase , required=_lowerCamelCase , help='Directory in which to save tensorflow model' ) lowerCamelCase__ : List[str] = parser.parse_args(_lowerCamelCase ) lowerCamelCase__ : int = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
696
"""simple docstring""" from ..utils import DummyObject, requires_backends class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] ) class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] )
696
1
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable A_ : Optional[Any] = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["GPTNeoXTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXForCausalLM", "GPTNeoXForQuestionAnswering", "GPTNeoXForSequenceClassification", "GPTNeoXForTokenClassification", "GPTNeoXLayer", "GPTNeoXModel", "GPTNeoXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys A_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = 0 while number > 0: lowerCamelCase__ : List[str] = number % 10 sum_of_digits += last_digit lowerCamelCase__ : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase_ ( _lowerCamelCase = 100 ): lowerCamelCase__ : Union[str, Any] = factorial(_lowerCamelCase ) lowerCamelCase__ : List[Any] = split_and_add(_lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
696
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Union[str, Any] = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ : Dict = "pt" elif is_tf_available(): A_ : Union[str, Any] = "tf" else: A_ : List[str] = "jax" class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = PerceiverTokenizer lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ (self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=2_0, lowerCamelCase_=5 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [] for i in range(len(lowerCamelCase_ ) ): try: lowerCamelCase__ : Any = tokenizer.decode([i], clean_up_tokenization_spaces=lowerCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase__ : Any = list(filter(lambda lowerCamelCase_ : re.match(r'^[ a-zA-Z]+$', t[1] ), lowerCamelCase_ ) ) lowerCamelCase__ : Union[str, Any] = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=lowerCamelCase_ ), lowerCamelCase_ ) ) if max_length is not None and len(lowerCamelCase_ ) > max_length: lowerCamelCase__ : int = toks[:max_length] if min_length is not None and len(lowerCamelCase_ ) < min_length and len(lowerCamelCase_ ) > 0: while len(lowerCamelCase_ ) < min_length: lowerCamelCase__ : Dict = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : int = [t[0] for t in toks] # Ensure consistency lowerCamelCase__ : Optional[int] = tokenizer.decode(lowerCamelCase_, clean_up_tokenization_spaces=lowerCamelCase_ ) if " " not in output_txt and len(lowerCamelCase_ ) > 1: lowerCamelCase__ : List[Any] = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=lowerCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=lowerCamelCase_ ) ) if with_prefix_space: lowerCamelCase__ : Optional[Any] = ' ' + output_txt lowerCamelCase__ : List[Any] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) return output_txt, output_ids def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = 'Unicode €.' lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_ ) lowerCamelCase__ : Dict = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : int = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]Unicode €.[SEP]' ) lowerCamelCase__ : List[str] = tokenizer('e è é ê ë' ) lowerCamelCase__ : Dict = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : Any = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ), '[CLS]e è é ê ë[SEP]' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCamelCase__ : List[Any] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) if FRAMEWORK != "jax": lowerCamelCase__ : List[str] = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase__ : int = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertEqual((2, 3_8), batch.input_ids.shape ) self.assertEqual((2, 3_8), batch.attention_mask.shape ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.perceiver_tokenizer lowerCamelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCamelCase__ : List[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids', lowerCamelCase_ ) self.assertIn('attention_mask', lowerCamelCase_ ) self.assertNotIn('decoder_input_ids', lowerCamelCase_ ) self.assertNotIn('decoder_attention_mask', lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : int = [ 'Summary of the text.', 'Another summary.', ] lowerCamelCase__ : str = tokenizer( text_target=lowerCamelCase_, max_length=3_2, padding='max_length', truncation=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertEqual(3_2, targets['input_ids'].shape[1] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 4_2 ) # Now let's start the test lowerCamelCase__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : str = ' He is very happy, UNwant\u00E9d,running' lowerCamelCase__ : str = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : str = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) shutil.rmtree(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCamelCase__ : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCamelCase__ : List[str] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : int = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertIn('new_additional_special_token', after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 4_2 ) lowerCamelCase__ : List[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_, model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length, 4_3 ) shutil.rmtree(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : Optional[Any] = json.load(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : List[str] = json.load(lowerCamelCase_ ) lowerCamelCase__ : Any = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] lowerCamelCase__ : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCamelCase__ : List[str] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ : Dict = tokenizer_class.from_pretrained( lowerCamelCase_, ) self.assertIn( 'an_additional_special_token', tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token', lstrip=lowerCamelCase_ )] lowerCamelCase__ : Any = tokenizer_class.from_pretrained( lowerCamelCase_, additional_special_tokens=lowerCamelCase_, ) self.assertIn('a_new_additional_special_token', tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ), '�' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_tokenizers(fast=lowerCamelCase_, do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Tuple = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] lowerCamelCase__ : List[str] = tokenizer.convert_tokens_to_string(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ )
696
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = botoa.client('iam' ) lowerCamelCase__ : Any = { 'Version': '2012-10-17', 'Statement': [ {'Effect': 'Allow', 'Principal': {'Service': 'sagemaker.amazonaws.com'}, 'Action': 'sts:AssumeRole'} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=_lowerCamelCase , AssumeRolePolicyDocument=json.dumps(_lowerCamelCase , indent=2 ) ) lowerCamelCase__ : Optional[int] = { 'Version': '2012-10-17', 'Statement': [ { 'Effect': 'Allow', 'Action': [ 'sagemaker:*', 'ecr:GetDownloadUrlForLayer', 'ecr:BatchGetImage', 'ecr:BatchCheckLayerAvailability', 'ecr:GetAuthorizationToken', 'cloudwatch:PutMetricData', 'cloudwatch:GetMetricData', 'cloudwatch:GetMetricStatistics', 'cloudwatch:ListMetrics', 'logs:CreateLogGroup', 'logs:CreateLogStream', 'logs:DescribeLogStreams', 'logs:PutLogEvents', 'logs:GetLogEvents', 's3:CreateBucket', 's3:ListBucket', 's3:GetBucketLocation', 's3:GetObject', 's3:PutObject', ], 'Resource': '*', } ], } # attach policy to role iam_client.put_role_policy( RoleName=_lowerCamelCase , PolicyName=f'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(_lowerCamelCase , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f'''role {role_name} already exists. Using existing one''' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[int] = botoa.client('iam' ) return iam_client.get_role(RoleName=_lowerCamelCase )["Role"]["Arn"] def lowerCamelCase_ ( ): lowerCamelCase__ : List[str] = _ask_options( 'How do you want to authorize?' , ['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '] , _lowerCamelCase , ) lowerCamelCase__ : int = None if credentials_configuration == 0: lowerCamelCase__ : Union[str, Any] = _ask_field('Enter your AWS Profile name: [default] ' , default='default' ) lowerCamelCase__ : List[Any] = aws_profile else: print( 'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,' '`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' ) lowerCamelCase__ : Tuple = _ask_field('AWS Access Key ID: ' ) lowerCamelCase__ : Union[str, Any] = aws_access_key_id lowerCamelCase__ : List[str] = _ask_field('AWS Secret Access Key: ' ) lowerCamelCase__ : Optional[int] = aws_secret_access_key lowerCamelCase__ : str = _ask_field('Enter your AWS Region: [us-east-1]' , default='us-east-1' ) lowerCamelCase__ : Any = aws_region lowerCamelCase__ : Union[str, Any] = _ask_options( 'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?' , ['Provide IAM Role name', 'Create new IAM role using credentials'] , _lowerCamelCase , ) if role_management == 0: lowerCamelCase__ : Union[str, Any] = _ask_field('Enter your IAM role name: ' ) else: lowerCamelCase__ : Optional[Any] = 'accelerate_sagemaker_execution_role' print(f'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = _ask_field( 'Do you want to use custom Docker image? [yes/NO]: ' , _convert_yes_no_to_bool , default=_lowerCamelCase , error_message='Please enter yes or no.' , ) lowerCamelCase__ : int = None if is_custom_docker_image: lowerCamelCase__ : List[Any] = _ask_field('Enter your Docker image: ' , lambda _lowerCamelCase : str(_lowerCamelCase ).lower() ) lowerCamelCase__ : Optional[Any] = _ask_field( 'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ' , _convert_yes_no_to_bool , default=_lowerCamelCase , error_message='Please enter yes or no.' , ) lowerCamelCase__ : Optional[int] = None if is_sagemaker_inputs_enabled: lowerCamelCase__ : Dict = _ask_field( 'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ' , lambda _lowerCamelCase : str(_lowerCamelCase ).lower() , ) lowerCamelCase__ : str = _ask_field( 'Do you want to enable SageMaker metrics? [yes/NO]: ' , _convert_yes_no_to_bool , default=_lowerCamelCase , error_message='Please enter yes or no.' , ) lowerCamelCase__ : Tuple = None if is_sagemaker_metrics_enabled: lowerCamelCase__ : Union[str, Any] = _ask_field( 'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ' , lambda _lowerCamelCase : str(_lowerCamelCase ).lower() , ) lowerCamelCase__ : Tuple = _ask_options( 'What is the distributed mode?' , ['No distributed training', 'Data parallelism'] , _convert_sagemaker_distributed_mode , ) lowerCamelCase__ : List[str] = {} lowerCamelCase__ : Union[str, Any] = _ask_field( 'Do you wish to optimize your script with torch dynamo?[yes/NO]:' , _convert_yes_no_to_bool , default=_lowerCamelCase , error_message='Please enter yes or no.' , ) if use_dynamo: lowerCamelCase__ : Tuple = 'dynamo_' lowerCamelCase__ : Optional[int] = _ask_options( 'Which dynamo backend would you like to use?' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) lowerCamelCase__ : List[Any] = _ask_field( 'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ' , _convert_yes_no_to_bool , default=_lowerCamelCase , error_message='Please enter yes or no.' , ) if use_custom_options: lowerCamelCase__ : List[Any] = _ask_options( 'Which mode do you want to use?' , _lowerCamelCase , lambda _lowerCamelCase : TORCH_DYNAMO_MODES[int(_lowerCamelCase )] , default='default' , ) lowerCamelCase__ : Optional[int] = _ask_field( 'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ' , _convert_yes_no_to_bool , default=_lowerCamelCase , error_message='Please enter yes or no.' , ) lowerCamelCase__ : Any = _ask_field( 'Do you want to enable dynamic shape tracing? [yes/NO]: ' , _convert_yes_no_to_bool , default=_lowerCamelCase , error_message='Please enter yes or no.' , ) lowerCamelCase__ : Optional[Any] = 'Which EC2 instance type you want to use for your training?' if distributed_type != SageMakerDistributedType.NO: lowerCamelCase__ : Optional[int] = _ask_options( _lowerCamelCase , _lowerCamelCase , lambda _lowerCamelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_lowerCamelCase )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" lowerCamelCase__ : Tuple = _ask_field(_lowerCamelCase , lambda _lowerCamelCase : str(_lowerCamelCase ).lower() , default='ml.p3.2xlarge' ) lowerCamelCase__ : Optional[Any] = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): lowerCamelCase__ : List[str] = _ask_field( 'How many machines do you want use? [1]: ' , _lowerCamelCase , default=1 , ) lowerCamelCase__ : Tuple = _ask_options( 'Do you wish to use FP16 or BF16 (mixed precision)?' , ['no', 'fp16', 'bf16', 'fp8'] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( 'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' ) return SageMakerConfig( image_uri=_lowerCamelCase , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=_lowerCamelCase , use_cpu=_lowerCamelCase , dynamo_config=_lowerCamelCase , eca_instance_type=_lowerCamelCase , profile=_lowerCamelCase , region=_lowerCamelCase , iam_role_name=_lowerCamelCase , mixed_precision=_lowerCamelCase , num_machines=_lowerCamelCase , sagemaker_inputs_file=_lowerCamelCase , sagemaker_metrics_file=_lowerCamelCase , )
696
"""simple docstring""" from math import pi, sqrt, tan def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCamelCase__ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_lowerCamelCase , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCamelCase__ : Dict = (sidea + sidea + sidea) / 2 lowerCamelCase__ : str = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
696
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = StableDiffusionXLImgaImgPipeline lowerCamelCase__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} lowerCamelCase__ : Any = PipelineTesterMixin.required_optional_params - {'latents'} lowerCamelCase__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=lowerCamelCase_, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=8_0, cross_attention_dim=6_4, ) lowerCamelCase__ : Optional[int] = EulerDiscreteScheduler( beta_start=0.00_085, beta_end=0.012, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', ) torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = AutoencoderKL( block_out_channels=[3_2, 6_4], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=1_2_8, ) torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=3_2, intermediate_size=3_7, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, hidden_act='gelu', projection_dim=3_2, ) lowerCamelCase__ : Optional[Any] = CLIPTextModel(lowerCamelCase_ ) lowerCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = CLIPTextModelWithProjection(lowerCamelCase_ ) lowerCamelCase__ : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : int = floats_tensor((1, 3, 3_2, 3_2), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : str = image / 2 + 0.5 if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : str = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : str = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : Optional[int] = self.get_dummy_components() lowerCamelCase__ : Optional[Any] = StableDiffusionXLImgaImgPipeline(**lowerCamelCase_ ) lowerCamelCase__ : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : str = self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = sd_pipe(**lowerCamelCase_ ).images lowerCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase__ : Tuple = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ (self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def a__ (self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_dummy_components() lowerCamelCase__ : Tuple = StableDiffusionXLImgaImgPipeline(**lowerCamelCase_ ) lowerCamelCase__ : List[str] = sd_pipe.to(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) # forward without prompt embeds lowerCamelCase__ : Tuple = self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = 3 * ['this is a negative prompt'] lowerCamelCase__ : Optional[Any] = negative_prompt lowerCamelCase__ : Any = 3 * [inputs['prompt']] lowerCamelCase__ : int = sd_pipe(**lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCamelCase__ : List[Any] = self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : Any = 3 * ['this is a negative prompt'] lowerCamelCase__ : Any = 3 * [inputs.pop('prompt' )] ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Optional[int] = sd_pipe.encode_prompt(lowerCamelCase_, negative_prompt=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = sd_pipe( **lowerCamelCase_, prompt_embeds=lowerCamelCase_, negative_prompt_embeds=lowerCamelCase_, pooled_prompt_embeds=lowerCamelCase_, negative_pooled_prompt_embeds=lowerCamelCase_, ) lowerCamelCase__ : Any = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self, lowerCamelCase_, lowerCamelCase_="cpu", lowerCamelCase_=torch.floataa, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = np.random.RandomState(lowerCamelCase_ ).standard_normal((1, 4, 6_4, 6_4) ) lowerCamelCase__ : Tuple = torch.from_numpy(lowerCamelCase_ ).to(device=lowerCamelCase_, dtype=lowerCamelCase_ ) lowerCamelCase__ : Dict = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.get_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = pipe(**lowerCamelCase_ ).images lowerCamelCase__ : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Optional[int] = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
696
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : str = use_input_mask lowerCamelCase__ : Optional[Any] = use_token_type_ids lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : Union[str, Any] = type_sequence_label_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : Union[str, Any] = num_choices lowerCamelCase__ : List[str] = scope lowerCamelCase__ : Dict = vocab_size - 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = self.get_config() return config, input_ids, input_mask, token_labels def a__ (self ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[Any] = True return config, input_ids, input_mask, token_labels def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = GPTNeoXModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = True lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : Optional[Any] = GPTNeoXForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = self.num_labels lowerCamelCase__ : Optional[int] = GPTNeoXForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[Any] = GPTNeoXForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Tuple = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : List[str] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : str = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : List[Any] = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and lowerCamelCase__ : Tuple = torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : Tuple = torch.cat([input_mask, next_mask], dim=-1 ) lowerCamelCase__ : List[str] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, output_hidden_states=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = output_from_no_past['hidden_states'][0] lowerCamelCase__ : Optional[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_, output_hidden_states=lowerCamelCase_, )['hidden_states'][0] # select random slice lowerCamelCase__ : Dict = ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-3 ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = config_and_inputs lowerCamelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : int = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase__ : Dict = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = GPTNeoXModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=6_4, num_attention_heads=8 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def a__ (self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = ids_tensor([1, 1_0], config.vocab_size ) lowerCamelCase__ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Any = GPTNeoXModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() lowerCamelCase__ : List[Any] = original_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Optional[int] = {'type': scaling_type, 'factor': 10.0} lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() lowerCamelCase__ : Tuple = scaled_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: lowerCamelCase__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer('My favorite food is', return_tensors='pt' ).to(lowerCamelCase_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCamelCase__ : Dict = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' lowerCamelCase__ : Dict = model.generate(**lowerCamelCase_, do_sample=lowerCamelCase_, max_new_tokens=2_0 ) lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ )[0] self.assertEqual(lowerCamelCase_, lowerCamelCase_ )
696
1
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ : Union[str, Any] = logging.get_logger() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True ): print(f'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": lowerCamelCase__ : List[str] = timm.create_model('levit_128s' , pretrained=_lowerCamelCase ) else: lowerCamelCase__ : Dict = timm.create_model('levit_128' , pretrained=_lowerCamelCase ) if hidden_sizes == 192: lowerCamelCase__ : Optional[int] = timm.create_model('levit_192' , pretrained=_lowerCamelCase ) if hidden_sizes == 256: lowerCamelCase__ : Dict = timm.create_model('levit_256' , pretrained=_lowerCamelCase ) if hidden_sizes == 384: lowerCamelCase__ : List[str] = timm.create_model('levit_384' , pretrained=_lowerCamelCase ) from_model.eval() lowerCamelCase__ : int = LevitForImageClassificationWithTeacher(_lowerCamelCase ).eval() lowerCamelCase__ : Optional[int] = OrderedDict() lowerCamelCase__ : Optional[Any] = from_model.state_dict() lowerCamelCase__ : int = list(from_model.state_dict().keys() ) lowerCamelCase__ : List[str] = list(our_model.state_dict().keys() ) print(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for i in range(len(_lowerCamelCase ) ): lowerCamelCase__ : Optional[int] = weights[og_keys[i]] our_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : List[Any] = torch.randn((2, 3, 224, 224) ) lowerCamelCase__ : Any = from_model(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = our_model(_lowerCamelCase ).logits assert torch.allclose(_lowerCamelCase , _lowerCamelCase ), "The model logits don't match the original one." lowerCamelCase__ : Optional[int] = name print(_lowerCamelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowerCamelCase__ : Any = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f'''Pushed {checkpoint_name}''' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = True ): lowerCamelCase__ : Tuple = 'imagenet-1k-id2label.json' lowerCamelCase__ : Dict = 1000 lowerCamelCase__ : str = (1, num_labels) lowerCamelCase__ : List[str] = 'huggingface/label-files' lowerCamelCase__ : List[str] = num_labels lowerCamelCase__ : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Union[str, Any] = idalabel lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : List[str] = partial(_lowerCamelCase , num_labels=_lowerCamelCase , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase ) lowerCamelCase__ : Dict = { 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } lowerCamelCase__ : List[str] = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , _lowerCamelCase , names_to_config[model_name] , _lowerCamelCase , _lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, expected_shape if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,", ) parser.add_argument( "--pytorch_dump_folder_path", default="levit-dump-folder/", type=Path, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) A_ : Tuple = parser.parse_args() A_ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
696
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : Dict = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. A_ : List[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A_ : Union[str, Any] = spec.loader.load_module() A_ : int = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A_ : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") A_ : str = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCamelCase__ : Dict = False # source code of `config_class` lowerCamelCase__ : str = inspect.getsource(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = _re_checkpoint.findall(_lowerCamelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCamelCase__ , lowerCamelCase__ : Optional[int] = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase__ : Any = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: lowerCamelCase__ : Any = True break lowerCamelCase__ : Dict = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ : Optional[Any] = '\n'.join(sorted(_lowerCamelCase ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
696
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer A_ : List[Any] = logging.get_logger(__name__) A_ : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A_ : List[Any] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } A_ : Dict = {"mobilebert-uncased": 5_12} A_ : int = {} class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase__ : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : int = MobileBertTokenizer def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=True, lowerCamelCase_="[UNK]", lowerCamelCase_="[SEP]", lowerCamelCase_="[PAD]", lowerCamelCase_="[CLS]", lowerCamelCase_="[MASK]", lowerCamelCase_=True, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' super().__init__( lowerCamelCase_, tokenizer_file=lowerCamelCase_, do_lower_case=lowerCamelCase_, unk_token=lowerCamelCase_, sep_token=lowerCamelCase_, pad_token=lowerCamelCase_, cls_token=lowerCamelCase_, mask_token=lowerCamelCase_, tokenize_chinese_chars=lowerCamelCase_, strip_accents=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase', lowerCamelCase_ ) != do_lower_case or normalizer_state.get('strip_accents', lowerCamelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars', lowerCamelCase_ ) != tokenize_chinese_chars ): lowerCamelCase__ : Optional[Any] = getattr(lowerCamelCase_, normalizer_state.pop('type' ) ) lowerCamelCase__ : Optional[int] = do_lower_case lowerCamelCase__ : Tuple = strip_accents lowerCamelCase__ : str = tokenize_chinese_chars lowerCamelCase__ : int = normalizer_class(**lowerCamelCase_ ) lowerCamelCase__ : str = do_lower_case def a__ (self, lowerCamelCase_, lowerCamelCase_=None ): '''simple docstring''' lowerCamelCase__ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Dict = [self.sep_token_id] lowerCamelCase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : List[Any] = self._tokenizer.model.save(lowerCamelCase_, name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
696
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError('check_bouncy() accepts only integer arguments' ) lowerCamelCase__ : List[Any] = str(_lowerCamelCase ) lowerCamelCase__ : str = ''.join(sorted(_lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def lowerCamelCase_ ( _lowerCamelCase = 99 ): if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = 1 while True: if check_bouncy(_lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
696
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A_ : Optional[int] = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A_ : List[str] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) A_ : Tuple = BeautifulSoup(res.text, "html.parser") A_ : Dict = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f"https://google.com{link.get('href')}")
696
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[Any] = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = ["ConditionalDetrFeatureExtractor"] A_ : str = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCamelCase__ : Tuple = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_, cache_dir=lowerCamelCase_ ) lowerCamelCase__ : List[str] = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_, os.listdir(lowerCamelCase_ )[0], 'snapshots' ) )] lowerCamelCase__ : Optional[int] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[int] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Any = 4 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : List[Any] = num_samples * [prompt] lowerCamelCase__ : Optional[int] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : int = replicate(lowerCamelCase_ ) lowerCamelCase__ : Any = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : int = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1_514_745 ) < 1e-3 assert np.abs(np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 49_947.875 ) < 5e-1 lowerCamelCase__ : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase_ ) == num_samples def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='flax', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : int = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[str] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : List[str] = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = shard(lowerCamelCase_ ) lowerCamelCase__ : str = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05_652_401) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_383_808.2) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Union[str, Any] = 5_0 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : Tuple = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Any = replicate(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa ) lowerCamelCase__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Union[str, Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] = 5_0 lowerCamelCase__ : Tuple = jax.device_count() lowerCamelCase__ : Optional[int] = num_samples * [prompt] lowerCamelCase__ : str = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Optional[int] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : List[str] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = FlaxDDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', set_alpha_to_one=lowerCamelCase_, steps_offset=1, ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, scheduler=lowerCamelCase_, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : List[str] = scheduler.create_state() lowerCamelCase__ : int = scheduler_state lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : Optional[Any] = jax.device_count() lowerCamelCase__ : Any = num_samples * [prompt] lowerCamelCase__ : Any = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Dict = shard(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045_043_945) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_347_693.5) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : int = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : str = jax.random.split(jax.random.PRNGKey(0 ), lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Dict = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Tuple = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : int = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention lowerCamelCase__ , lowerCamelCase__ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, use_memory_efficient_attention=lowerCamelCase_, ) lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : Any = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Any = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
696
1
"""simple docstring""" A_ : Optional[Any] = "Alexander Joslin" import operator as op from .stack import Stack def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCamelCase__ : Stack[int] = Stack() lowerCamelCase__ : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowerCamelCase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowerCamelCase ) elif i == ")": # RULE 4 lowerCamelCase__ : Optional[Any] = operator_stack.peek() operator_stack.pop() lowerCamelCase__ : Union[str, Any] = operand_stack.peek() operand_stack.pop() lowerCamelCase__ : List[Any] = operand_stack.peek() operand_stack.pop() lowerCamelCase__ : int = operators[opr](_lowerCamelCase , _lowerCamelCase ) operand_stack.push(_lowerCamelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A_ : Optional[int] = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
696
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = 1_0_0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = True, ): '''simple docstring''' if audio_length_in_s is None: lowerCamelCase__ : str = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase__ : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase__ : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCamelCase__ : Dict = int(lowerCamelCase_ ) if sample_size % down_scale_factor != 0: lowerCamelCase__ : Union[str, Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ' process.' ) lowerCamelCase__ : Optional[Any] = int(lowerCamelCase_ ) lowerCamelCase__ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase__ : Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase_, lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ : Union[str, Any] = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_, device=self.device, dtype=lowerCamelCase_ ) # set step values self.scheduler.set_timesteps(lowerCamelCase_, device=audio.device ) lowerCamelCase__ : int = self.scheduler.timesteps.to(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase__ : List[Any] = self.unet(lowerCamelCase_, lowerCamelCase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase__ : List[str] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample lowerCamelCase__ : Union[str, Any] = audio.clamp(-1, 1 ).float().cpu().numpy() lowerCamelCase__ : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase_ )
696
1
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ : Dict = "pt" elif is_tf_available(): A_ : Union[str, Any] = "tf" else: A_ : List[str] = "jax" class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = PerceiverTokenizer lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ (self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=2_0, lowerCamelCase_=5 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [] for i in range(len(lowerCamelCase_ ) ): try: lowerCamelCase__ : Any = tokenizer.decode([i], clean_up_tokenization_spaces=lowerCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase__ : Any = list(filter(lambda lowerCamelCase_ : re.match(r'^[ a-zA-Z]+$', t[1] ), lowerCamelCase_ ) ) lowerCamelCase__ : Union[str, Any] = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=lowerCamelCase_ ), lowerCamelCase_ ) ) if max_length is not None and len(lowerCamelCase_ ) > max_length: lowerCamelCase__ : int = toks[:max_length] if min_length is not None and len(lowerCamelCase_ ) < min_length and len(lowerCamelCase_ ) > 0: while len(lowerCamelCase_ ) < min_length: lowerCamelCase__ : Dict = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : int = [t[0] for t in toks] # Ensure consistency lowerCamelCase__ : Optional[int] = tokenizer.decode(lowerCamelCase_, clean_up_tokenization_spaces=lowerCamelCase_ ) if " " not in output_txt and len(lowerCamelCase_ ) > 1: lowerCamelCase__ : List[Any] = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=lowerCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=lowerCamelCase_ ) ) if with_prefix_space: lowerCamelCase__ : Optional[Any] = ' ' + output_txt lowerCamelCase__ : List[Any] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) return output_txt, output_ids def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = 'Unicode €.' lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_ ) lowerCamelCase__ : Dict = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : int = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]Unicode €.[SEP]' ) lowerCamelCase__ : List[str] = tokenizer('e è é ê ë' ) lowerCamelCase__ : Dict = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : Any = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ), '[CLS]e è é ê ë[SEP]' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCamelCase__ : List[Any] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) if FRAMEWORK != "jax": lowerCamelCase__ : List[str] = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase__ : int = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertEqual((2, 3_8), batch.input_ids.shape ) self.assertEqual((2, 3_8), batch.attention_mask.shape ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.perceiver_tokenizer lowerCamelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCamelCase__ : List[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids', lowerCamelCase_ ) self.assertIn('attention_mask', lowerCamelCase_ ) self.assertNotIn('decoder_input_ids', lowerCamelCase_ ) self.assertNotIn('decoder_attention_mask', lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : int = [ 'Summary of the text.', 'Another summary.', ] lowerCamelCase__ : str = tokenizer( text_target=lowerCamelCase_, max_length=3_2, padding='max_length', truncation=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertEqual(3_2, targets['input_ids'].shape[1] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 4_2 ) # Now let's start the test lowerCamelCase__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : str = ' He is very happy, UNwant\u00E9d,running' lowerCamelCase__ : str = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : str = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) shutil.rmtree(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCamelCase__ : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCamelCase__ : List[str] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : int = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertIn('new_additional_special_token', after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 4_2 ) lowerCamelCase__ : List[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_, model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length, 4_3 ) shutil.rmtree(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : Optional[Any] = json.load(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : List[str] = json.load(lowerCamelCase_ ) lowerCamelCase__ : Any = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] lowerCamelCase__ : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCamelCase__ : List[str] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ : Dict = tokenizer_class.from_pretrained( lowerCamelCase_, ) self.assertIn( 'an_additional_special_token', tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token', lstrip=lowerCamelCase_ )] lowerCamelCase__ : Any = tokenizer_class.from_pretrained( lowerCamelCase_, additional_special_tokens=lowerCamelCase_, ) self.assertIn('a_new_additional_special_token', tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ), '�' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_tokenizers(fast=lowerCamelCase_, do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Tuple = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] lowerCamelCase__ : List[str] = tokenizer.convert_tokens_to_string(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ )
696
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(lowerCamelCase_ ) ) vocab_file.flush() lowerCamelCase__ : Tuple = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCamelCase__ : Optional[Any] = BertModel(BertConfig(vocab_size=len(lowerCamelCase_ ) ) ) model.save_pretrained(lowerCamelCase_ ) self._test_export(lowerCamelCase_, 'pt', 1_2, lowerCamelCase_ ) @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Optional[Any] = self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Any = quantize(Path(lowerCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Any = self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = quantize(lowerCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowerCamelCase__ : str = Path(lowerCamelCase_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ) return path except Exception as e: self.fail(lowerCamelCase_ ) @require_torch @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : str = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'pt' ) @require_tf @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import TFBertModel lowerCamelCase__ : Dict = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Optional[int] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'tf' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = FeatureExtractionPipeline(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = infer_shapes(lowerCamelCase_, lowerCamelCase_ ) # Assert all variables are present self.assertEqual(len(lowerCamelCase_ ), len(lowerCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3], lowerCamelCase_ ) self.assertSequenceEqual(variable_names[3:], lowerCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name], {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'], {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'], {0: 'batch'} ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['input_ids', 'attention_mask', 'token_type_ids'] lowerCamelCase__ : Optional[int] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowerCamelCase__ , lowerCamelCase__ : str = ensure_valid_input(FuncContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase_ ), 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase_ ), set(lowerCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase_, (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCamelCase__ , lowerCamelCase__ : Any = ensure_valid_input(FuncNonContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase_ ), 1 ) self.assertEqual(len(lowerCamelCase_ ), 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0], tokens['input_ids'] ) self.assertEqual(ordered_input_names[0], 'input_ids' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ), '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx', generated.as_posix() )
696
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A_ : Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") A_ : List[Any] = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) A_ : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a_ : '''simple docstring''' lowerCamelCase__ : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) lowerCamelCase__ : Optional[str] = field( default=snake_case_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCamelCase__ : Optional[str] = field( default=snake_case_ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) lowerCamelCase__ : Optional[str] = field(default=snake_case_ , metadata={'help': 'A folder containing the training data.'} ) lowerCamelCase__ : Optional[str] = field(default=snake_case_ , metadata={'help': 'A folder containing the validation data.'} ) lowerCamelCase__ : Optional[float] = field( default=0.1_5 , metadata={'help': 'Percent to split off of train for validation.'} ) lowerCamelCase__ : int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) lowerCamelCase__ : float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = {} if self.train_dir is not None: lowerCamelCase__ : List[str] = self.train_dir if self.validation_dir is not None: lowerCamelCase__ : Dict = self.validation_dir lowerCamelCase__ : Union[str, Any] = data_files if data_files else None @dataclass class a_ : '''simple docstring''' lowerCamelCase__ : str = field( default=snake_case_ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) lowerCamelCase__ : Optional[str] = field( default=snake_case_ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(snake_case_ )} , ) lowerCamelCase__ : Optional[str] = field( default=snake_case_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase__ : Optional[str] = field( default=snake_case_ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) lowerCamelCase__ : Optional[str] = field( default=snake_case_ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) lowerCamelCase__ : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCamelCase__ : str = field(default=snake_case_ , metadata={'help': 'Name or path of preprocessor config.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={'help': 'Stride to use for the encoder.'} , ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_=1_9_2, lowerCamelCase_=3_2, lowerCamelCase_=4, lowerCamelCase_=0.6 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = input_size lowerCamelCase__ : Optional[int] = mask_patch_size lowerCamelCase__ : Union[str, Any] = model_patch_size lowerCamelCase__ : List[Any] = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('Input size must be divisible by mask patch size' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('Mask patch size must be divisible by model patch size' ) lowerCamelCase__ : List[str] = self.input_size // self.mask_patch_size lowerCamelCase__ : Optional[int] = self.mask_patch_size // self.model_patch_size lowerCamelCase__ : Tuple = self.rand_size**2 lowerCamelCase__ : Any = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__(self ): '''simple docstring''' lowerCamelCase__ : Dict = np.random.permutation(self.token_count )[: self.mask_count] lowerCamelCase__ : Dict = np.zeros(self.token_count, dtype=lowerCamelCase_ ) lowerCamelCase__ : Dict = 1 lowerCamelCase__ : List[str] = mask.reshape((self.rand_size, self.rand_size) ) lowerCamelCase__ : str = mask.repeat(self.scale, axis=0 ).repeat(self.scale, axis=1 ) return torch.tensor(mask.flatten() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = torch.stack([example['pixel_values'] for example in examples] ) lowerCamelCase__ : Optional[Any] = torch.stack([example['mask'] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def lowerCamelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase__ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mim' , _lowerCamelCase , _lowerCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase__ : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(_lowerCamelCase ) transformers.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowerCamelCase__ : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. lowerCamelCase__ : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCamelCase__ : Optional[int] = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _lowerCamelCase ) and data_args.train_val_split > 0.0: lowerCamelCase__ : List[Any] = ds['train'].train_test_split(data_args.train_val_split ) lowerCamelCase__ : List[str] = split['train'] lowerCamelCase__ : Optional[Any] = split['test'] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__ : Optional[int] = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowerCamelCase__ : Tuple = AutoConfig.from_pretrained(model_args.config_name_or_path , **_lowerCamelCase ) elif model_args.model_name_or_path: lowerCamelCase__ : Optional[int] = AutoConfig.from_pretrained(model_args.model_name_or_path , **_lowerCamelCase ) else: lowerCamelCase__ : Dict = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(_lowerCamelCase , 'decoder_type' ): lowerCamelCase__ : Optional[int] = 'simmim' # adapt config lowerCamelCase__ : Optional[Any] = model_args.image_size if model_args.image_size is not None else config.image_size lowerCamelCase__ : Any = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowerCamelCase__ : Any = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { 'image_size': model_args.image_size, 'patch_size': model_args.patch_size, 'encoder_stride': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowerCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **_lowerCamelCase ) elif model_args.model_name_or_path: lowerCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **_lowerCamelCase ) else: lowerCamelCase__ : Optional[Any] = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowerCamelCase__ : int = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowerCamelCase__ : Optional[Any] = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) lowerCamelCase__ : Dict = AutoModelForMaskedImageModeling.from_config(_lowerCamelCase ) if training_args.do_train: lowerCamelCase__ : List[Any] = ds['train'].column_names else: lowerCamelCase__ : str = ds['validation'].column_names if data_args.image_column_name is not None: lowerCamelCase__ : List[Any] = data_args.image_column_name elif "image" in column_names: lowerCamelCase__ : Dict = 'image' elif "img" in column_names: lowerCamelCase__ : Optional[int] = 'img' else: lowerCamelCase__ : Union[str, Any] = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowerCamelCase__ : int = Compose( [ Lambda(lambda _lowerCamelCase : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowerCamelCase__ : Dict = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(_lowerCamelCase ): lowerCamelCase__ : str = [transforms(_lowerCamelCase ) for image in examples[image_column_name]] lowerCamelCase__ : str = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: lowerCamelCase__ : int = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_lowerCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: lowerCamelCase__ : Any = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_lowerCamelCase ) # Initialize our trainer lowerCamelCase__ : str = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_lowerCamelCase , data_collator=_lowerCamelCase , ) # Training if training_args.do_train: lowerCamelCase__ : str = None if training_args.resume_from_checkpoint is not None: lowerCamelCase__ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__ : Tuple = last_checkpoint lowerCamelCase__ : str = trainer.train(resume_from_checkpoint=_lowerCamelCase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase__ : Optional[int] = trainer.evaluate() trainer.log_metrics('eval' , _lowerCamelCase ) trainer.save_metrics('eval' , _lowerCamelCase ) # Write model card and (optionally) push to hub lowerCamelCase__ : Dict = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'masked-image-modeling', 'dataset': data_args.dataset_name, 'tags': ['masked-image-modeling'], } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCamelCase ) else: trainer.create_model_card(**_lowerCamelCase ) if __name__ == "__main__": main()
696
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase__ : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : str = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ : Any = False @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return self.time_input_dim @property def a__ (self ): '''simple docstring''' return self.time_input_dim * 4 @property def a__ (self ): '''simple docstring''' return 1_0_0 @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase__ : int = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def a__ (self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.dummy_unet lowerCamelCase__ : List[Any] = self.dummy_movq lowerCamelCase__ : Tuple = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase__ : Optional[Any] = DDIMScheduler(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image lowerCamelCase__ : Any = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase__ : Optional[Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint lowerCamelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : int = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = 'cpu' lowerCamelCase__ : List[Any] = self.get_dummy_components() lowerCamelCase__ : List[Any] = self.pipeline_class(**lowerCamelCase_ ) lowerCamelCase__ : Dict = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : str = pipe( **self.get_dummy_inputs(lowerCamelCase_ ), return_dict=lowerCamelCase_, )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : List[str] = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase__ : Any = init_image.resize((5_1_2, 5_1_2) ) lowerCamelCase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase__ : Any = torch.from_numpy(np.array(lowerCamelCase_ ) ).float() / 255.0 lowerCamelCase__ : Optional[int] = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowerCamelCase__ : Union[str, Any] = 'A robot, 4k photo' lowerCamelCase__ : Any = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth', torch_dtype=torch.floataa ) lowerCamelCase__ : int = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = pipe_prior( lowerCamelCase_, image=lowerCamelCase_, strength=0.85, generator=lowerCamelCase_, negative_prompt='', ).to_tuple() lowerCamelCase__ : Union[str, Any] = pipeline( image=lowerCamelCase_, image_embeds=lowerCamelCase_, negative_image_embeds=lowerCamelCase_, hint=lowerCamelCase_, generator=lowerCamelCase_, num_inference_steps=1_0_0, height=5_1_2, width=5_1_2, strength=0.5, output_type='np', ) lowerCamelCase__ : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase_, lowerCamelCase_ )
696
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): # Return True if there is node that has not iterated. lowerCamelCase__ : Optional[Any] = [False] * len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = [] queue.append(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = True while queue: lowerCamelCase__ : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) lowerCamelCase__ : Dict = True lowerCamelCase__ : Optional[Any] = u return visited[t] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): # This array is filled by BFS and to store path lowerCamelCase__ : str = [-1] * (len(_lowerCamelCase )) lowerCamelCase__ : str = 0 while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = float('Inf' ) lowerCamelCase__ : int = sink while s != source: # Find the minimum value in select path lowerCamelCase__ : int = min(_lowerCamelCase , graph[parent[s]][s] ) lowerCamelCase__ : Tuple = parent[s] max_flow += path_flow lowerCamelCase__ : int = sink while v != source: lowerCamelCase__ : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCamelCase__ : Dict = parent[v] return max_flow A_ : Union[str, Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] A_, A_ : Dict = 0, 5 print(ford_fulkerson(graph, source, sink))
696
"""simple docstring""" A_ : List[str] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
696
1
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ : Union[str, Any] = "▁" A_ : Dict = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = BigBirdTokenizer lowerCamelCase__ : str = BigBirdTokenizerFast lowerCamelCase__ : List[str] = True lowerCamelCase__ : Optional[Any] = True def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : List[Any] = self.tokenizer_class(lowerCamelCase_, keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = '<s>' lowerCamelCase__ : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ), lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ), lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '<unk>' ) self.assertEqual(vocab_keys[1], '<s>' ) self.assertEqual(vocab_keys[-1], '[MASK]' ) self.assertEqual(len(lowerCamelCase_ ), 1_0_0_4 ) def a__ (self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1_0_0_0 ) def a__ (self ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase__ : Dict = self.get_tokenizer() lowerCamelCase__ : List[Any] = self.get_rust_tokenizer() lowerCamelCase__ : Union[str, Any] = 'I was born in 92000, and this is falsé.' lowerCamelCase__ : List[str] = tokenizer.tokenize(lowerCamelCase_ ) lowerCamelCase__ : str = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = rust_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = self.get_rust_tokenizer() lowerCamelCase__ : List[Any] = tokenizer.encode(lowerCamelCase_ ) lowerCamelCase__ : Any = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BigBirdTokenizer(lowerCamelCase_, keep_accents=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCamelCase_, ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ), [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2], ) lowerCamelCase__ : str = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase_, [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ], ) lowerCamelCase__ : Any = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_, [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4], ) lowerCamelCase__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_, [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ], ) @cached_property def a__ (self ): '''simple docstring''' return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = 'Hello World!' lowerCamelCase__ : Any = [6_5, 1_8_5_3_6, 2_2_6_0, 1_0_1, 6_6] self.assertListEqual(lowerCamelCase_, self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) # fmt: off lowerCamelCase__ : Dict = [6_5, 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, 6_6] # noqa: E231 # fmt: on self.assertListEqual(lowerCamelCase_, self.big_tokenizer.encode(lowerCamelCase_ ) ) @require_torch @slow def a__ (self ): '''simple docstring''' import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence lowerCamelCase__ : Any = list(self.big_tokenizer.get_vocab().keys() )[:1_0] lowerCamelCase__ : Tuple = ' '.join(lowerCamelCase_ ) lowerCamelCase__ : Any = self.big_tokenizer.encode_plus(lowerCamelCase_, return_tensors='pt', return_token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Any = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence], return_tensors='pt', return_token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : int = BigBirdConfig(attention_type='original_full' ) lowerCamelCase__ : str = BigBirdModel(lowerCamelCase_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase_ ) model(**lowerCamelCase_ ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) lowerCamelCase__ : Dict = tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids ) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = {'input_ids': [[6_5, 3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4, 6_6], [6_5, 4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6_5, 4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_, model_name='google/bigbird-roberta-base', revision='215c99f1600e06f83acce68422f2035b2b5c3510', )
696
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 A_ : Optional[int] = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ = 1_4 ): '''simple docstring''' if group not in primes: raise ValueError('Unsupported Group' ) lowerCamelCase__ : int = primes[group]['prime'] lowerCamelCase__ : Optional[int] = primes[group]['generator'] lowerCamelCase__ : Any = int(hexlify(urandom(3_2 ) ), base=1_6 ) def a__ (self ): '''simple docstring''' return hex(self.__private_key )[2:] def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = pow(self.generator, self.__private_key, self.prime ) return hex(lowerCamelCase_ )[2:] def a__ (self, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase_, (self.prime - 1) // 2, self.prime ) == 1 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = int(lowerCamelCase_, base=1_6 ) if not self.is_valid_public_key(lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Tuple = pow(lowerCamelCase_, self.__private_key, self.prime ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase_, (prime - 1) // 2, lowerCamelCase_ ) == 1 ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 1_4 ): '''simple docstring''' lowerCamelCase__ : Dict = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[Any] = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[str] = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase_, lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Dict = pow(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
696
1
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = XCLIPTextConfig() # derive patch size from model name lowerCamelCase__ : Tuple = model_name.find('patch' ) lowerCamelCase__ : str = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) lowerCamelCase__ : str = XCLIPVisionConfig(patch_size=_lowerCamelCase , num_frames=_lowerCamelCase ) if "large" in model_name: lowerCamelCase__ : List[Any] = 768 lowerCamelCase__ : List[Any] = 3072 lowerCamelCase__ : Any = 12 lowerCamelCase__ : str = 1024 lowerCamelCase__ : List[Any] = 4096 lowerCamelCase__ : Optional[Any] = 16 lowerCamelCase__ : List[str] = 24 lowerCamelCase__ : Optional[Any] = 768 lowerCamelCase__ : Union[str, Any] = 3072 if model_name == "xclip-large-patch14-16-frames": lowerCamelCase__ : Tuple = 336 lowerCamelCase__ : Tuple = XCLIPConfig.from_text_vision_configs(_lowerCamelCase , _lowerCamelCase ) if "large" in model_name: lowerCamelCase__ : Union[str, Any] = 768 return config def lowerCamelCase_ ( _lowerCamelCase ): # text encoder if name == "token_embedding.weight": lowerCamelCase__ : str = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": lowerCamelCase__ : List[str] = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: lowerCamelCase__ : Union[str, Any] = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: lowerCamelCase__ : Optional[int] = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: lowerCamelCase__ : Dict = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: lowerCamelCase__ : Optional[Any] = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): lowerCamelCase__ : Tuple = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: lowerCamelCase__ : Dict = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: lowerCamelCase__ : Optional[Any] = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": lowerCamelCase__ : List[Any] = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": lowerCamelCase__ : Optional[Any] = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): lowerCamelCase__ : int = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: lowerCamelCase__ : Dict = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: lowerCamelCase__ : Dict = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: lowerCamelCase__ : Union[str, Any] = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: lowerCamelCase__ : str = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: lowerCamelCase__ : Any = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: lowerCamelCase__ : List[Any] = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: lowerCamelCase__ : Union[str, Any] = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": lowerCamelCase__ : Any = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): lowerCamelCase__ : Optional[Any] = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): lowerCamelCase__ : List[str] = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): for key in orig_state_dict.copy().keys(): lowerCamelCase__ : List[Any] = orig_state_dict.pop(_lowerCamelCase ) if "attn.in_proj" in key: lowerCamelCase__ : Any = key.split('.' ) if key.startswith('visual' ): lowerCamelCase__ : str = key_split[3] lowerCamelCase__ : List[Any] = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowerCamelCase__ : Union[str, Any] = val[ :dim, : ] lowerCamelCase__ : str = val[ dim : dim * 2, : ] lowerCamelCase__ : Tuple = val[ -dim:, : ] else: lowerCamelCase__ : int = val[ :dim ] lowerCamelCase__ : str = val[ dim : dim * 2 ] lowerCamelCase__ : int = val[ -dim: ] else: if "weight" in key: lowerCamelCase__ : Any = val[ :dim, : ] lowerCamelCase__ : List[str] = val[ dim : dim * 2, : ] lowerCamelCase__ : Tuple = val[ -dim:, : ] else: lowerCamelCase__ : Any = val[:dim] lowerCamelCase__ : Optional[int] = val[ dim : dim * 2 ] lowerCamelCase__ : Union[str, Any] = val[-dim:] elif key.startswith('mit' ): lowerCamelCase__ : Optional[Any] = key_split[2] lowerCamelCase__ : List[Any] = config.vision_config.mit_hidden_size if "weight" in key: lowerCamelCase__ : List[Any] = val[:dim, :] lowerCamelCase__ : Optional[Any] = val[dim : dim * 2, :] lowerCamelCase__ : Any = val[-dim:, :] else: lowerCamelCase__ : int = val[:dim] lowerCamelCase__ : Dict = val[dim : dim * 2] lowerCamelCase__ : Union[str, Any] = val[-dim:] else: lowerCamelCase__ : Dict = key_split[2] lowerCamelCase__ : Any = config.text_config.hidden_size if "weight" in key: lowerCamelCase__ : int = val[:dim, :] lowerCamelCase__ : Optional[int] = val[ dim : dim * 2, : ] lowerCamelCase__ : Tuple = val[-dim:, :] else: lowerCamelCase__ : Optional[Any] = val[:dim] lowerCamelCase__ : Dict = val[ dim : dim * 2 ] lowerCamelCase__ : List[Any] = val[-dim:] else: lowerCamelCase__ : Tuple = rename_key(_lowerCamelCase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowerCamelCase__ : List[Any] = val.T lowerCamelCase__ : Tuple = val return orig_state_dict def lowerCamelCase_ ( _lowerCamelCase ): if num_frames == 8: lowerCamelCase__ : int = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: lowerCamelCase__ : Optional[int] = 'eating_spaghetti.npy' elif num_frames == 32: lowerCamelCase__ : Union[str, Any] = 'eating_spaghetti_32_frames.npy' lowerCamelCase__ : Tuple = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=_lowerCamelCase , repo_type='dataset' , ) lowerCamelCase__ : Dict = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False ): lowerCamelCase__ : Tuple = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } lowerCamelCase__ : Optional[Any] = model_to_url[model_name] lowerCamelCase__ : Optional[int] = 8 if "16-frames" in model_name: lowerCamelCase__ : List[Any] = 16 elif "shot" in model_name: lowerCamelCase__ : Any = 32 lowerCamelCase__ : Tuple = get_xclip_config(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Optional[Any] = XCLIPModel(_lowerCamelCase ) model.eval() if "drive" in checkpoint_url: lowerCamelCase__ : List[Any] = 'pytorch_model.bin' gdown.cached_download(_lowerCamelCase , _lowerCamelCase , quiet=_lowerCamelCase ) lowerCamelCase__ : int = torch.load(_lowerCamelCase , map_location='cpu' )['model'] else: lowerCamelCase__ : str = torch.hub.load_state_dict_from_url(_lowerCamelCase )['model'] lowerCamelCase__ : str = convert_state_dict(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = XCLIPModel(_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowerCamelCase__ : List[str] = 336 if model_name == 'xclip-large-patch14-16-frames' else 224 lowerCamelCase__ : List[str] = VideoMAEImageProcessor(size=_lowerCamelCase ) lowerCamelCase__ : Dict = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) lowerCamelCase__ : str = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) lowerCamelCase__ : List[Any] = XCLIPProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) lowerCamelCase__ : Any = prepare_video(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=_lowerCamelCase , return_tensors='pt' , padding=_lowerCamelCase ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): lowerCamelCase__ : int = model(**_lowerCamelCase ) # Verify outputs lowerCamelCase__ : List[Any] = outputs.logits_per_video lowerCamelCase__ : Any = logits_per_video.softmax(dim=1 ) print('Probs:' , _lowerCamelCase ) # kinetics-400 if model_name == "xclip-base-patch32": lowerCamelCase__ : List[Any] = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": lowerCamelCase__ : Optional[int] = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": lowerCamelCase__ : Union[str, Any] = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": lowerCamelCase__ : Union[str, Any] = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": lowerCamelCase__ : str = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": lowerCamelCase__ : List[Any] = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowerCamelCase__ : List[str] = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowerCamelCase__ : Tuple = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowerCamelCase__ : int = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowerCamelCase__ : Optional[int] = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowerCamelCase__ : List[str] = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowerCamelCase__ : int = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowerCamelCase__ : Any = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowerCamelCase__ : List[Any] = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowerCamelCase__ : str = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowerCamelCase__ : str = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowerCamelCase__ : Any = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowerCamelCase__ : List[Any] = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(f'''Model name {model_name} not supported''' ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(_lowerCamelCase , organization='nielsr' ) processor.push_to_hub(_lowerCamelCase , organization='nielsr' ) slow_tokenizer.push_to_hub(_lowerCamelCase , organization='nielsr' ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) A_ : Any = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
696
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_lowerCamelCase ) * abs(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
696
1
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : List[Any] = { "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", # See all BART models at https://huggingface.co/models?filter=bart } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = 'bart' lowerCamelCase__ : Dict = ['past_key_values'] lowerCamelCase__ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self, lowerCamelCase_=5_0_2_6_5, lowerCamelCase_=1_0_2_4, lowerCamelCase_=1_2, lowerCamelCase_=4_0_9_6, lowerCamelCase_=1_6, lowerCamelCase_=1_2, lowerCamelCase_=4_0_9_6, lowerCamelCase_=1_6, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_="gelu", lowerCamelCase_=1_0_2_4, lowerCamelCase_=0.1, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_=0.02, lowerCamelCase_=0.0, lowerCamelCase_=False, lowerCamelCase_=True, lowerCamelCase_=3, lowerCamelCase_=1, lowerCamelCase_=0, lowerCamelCase_=2, lowerCamelCase_=True, lowerCamelCase_=2, lowerCamelCase_=2, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Dict = d_model lowerCamelCase__ : Dict = encoder_ffn_dim lowerCamelCase__ : str = encoder_layers lowerCamelCase__ : Any = encoder_attention_heads lowerCamelCase__ : List[str] = decoder_ffn_dim lowerCamelCase__ : int = decoder_layers lowerCamelCase__ : str = decoder_attention_heads lowerCamelCase__ : Optional[Any] = dropout lowerCamelCase__ : Union[str, Any] = attention_dropout lowerCamelCase__ : Any = activation_dropout lowerCamelCase__ : List[str] = activation_function lowerCamelCase__ : List[str] = init_std lowerCamelCase__ : List[Any] = encoder_layerdrop lowerCamelCase__ : Tuple = decoder_layerdrop lowerCamelCase__ : int = classifier_dropout lowerCamelCase__ : str = use_cache lowerCamelCase__ : Optional[Any] = encoder_layers lowerCamelCase__ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=lowerCamelCase_, pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, is_encoder_decoder=lowerCamelCase_, decoder_start_token_id=lowerCamelCase_, forced_eos_token_id=lowerCamelCase_, **lowerCamelCase_, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated', lowerCamelCase_ ): lowerCamelCase__ : str = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' 'The config can simply be saved and uploaded again to be fixed.' ) class a_ ( snake_case_ ): '''simple docstring''' @property def a__ (self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : List[Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: lowerCamelCase__ : Optional[int] = {0: 'batch'} lowerCamelCase__ : Optional[Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowerCamelCase__ : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} lowerCamelCase__ : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_, direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase__ : Dict = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: lowerCamelCase__ , lowerCamelCase__ : Dict = self.num_layers for i in range(lowerCamelCase_ ): lowerCamelCase__ : Tuple = {0: 'batch', 2: 'past_sequence + sequence'} lowerCamelCase__ : Optional[Any] = {0: 'batch', 2: 'past_sequence + sequence'} else: lowerCamelCase__ : Tuple = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def a__ (self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : List[str] = super().outputs else: lowerCamelCase__ : Optional[int] = super(lowerCamelCase_, self ).outputs if self.use_past: lowerCamelCase__ , lowerCamelCase__ : int = self.num_layers for i in range(lowerCamelCase_ ): lowerCamelCase__ : List[str] = {0: 'batch', 2: 'past_sequence + sequence'} lowerCamelCase__ : Any = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def a__ (self, lowerCamelCase_, lowerCamelCase_ = -1, lowerCamelCase_ = -1, lowerCamelCase_ = False, lowerCamelCase_ = None, ): '''simple docstring''' lowerCamelCase__ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # Generate decoder inputs lowerCamelCase__ : str = seq_length if not self.use_past else 1 lowerCamelCase__ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Any = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowerCamelCase__ : int = dict(**lowerCamelCase_, **lowerCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = common_inputs['input_ids'].shape lowerCamelCase__ : Optional[Any] = common_inputs['decoder_input_ids'].shape[1] lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_attention_heads lowerCamelCase__ : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Any = decoder_seq_length + 3 lowerCamelCase__ : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase__ : Optional[Any] = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowerCamelCase_, lowerCamelCase_ )], dim=1 ) lowerCamelCase__ : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.num_layers lowerCamelCase__ : Any = min(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = max(lowerCamelCase_, lowerCamelCase_ ) - min_num_layers lowerCamelCase__ : Optional[int] = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowerCamelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), ) ) # TODO: test this. lowerCamelCase__ : str = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowerCamelCase_, lowerCamelCase_ ): common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) ) return common_inputs def a__ (self, lowerCamelCase_, lowerCamelCase_ = -1, lowerCamelCase_ = -1, lowerCamelCase_ = False, lowerCamelCase_ = None, ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCamelCase__ , lowerCamelCase__ : Any = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowerCamelCase__ : Dict = seqlen + 2 lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.num_layers lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_attention_heads lowerCamelCase__ : int = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : List[str] = common_inputs['attention_mask'].dtype lowerCamelCase__ : List[str] = torch.cat( [common_inputs['attention_mask'], torch.ones(lowerCamelCase_, lowerCamelCase_, dtype=lowerCamelCase_ )], dim=1 ) lowerCamelCase__ : List[Any] = [ (torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) for _ in range(lowerCamelCase_ ) ] return common_inputs def a__ (self, lowerCamelCase_, lowerCamelCase_ = -1, lowerCamelCase_ = -1, lowerCamelCase_ = False, lowerCamelCase_ = None, ): '''simple docstring''' lowerCamelCase__ : Dict = compute_effective_axis_dimension( lowerCamelCase_, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = compute_effective_axis_dimension( lowerCamelCase_, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ : List[Any] = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase__ : Tuple = dict(tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_ ) ) return common_inputs def a__ (self, lowerCamelCase_, lowerCamelCase_ = -1, lowerCamelCase_ = -1, lowerCamelCase_ = False, lowerCamelCase_ = None, ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCamelCase_, batch_size=lowerCamelCase_, seq_length=lowerCamelCase_, is_pair=lowerCamelCase_, framework=lowerCamelCase_ ) elif self.task == "causal-lm": lowerCamelCase__ : List[str] = self._generate_dummy_inputs_for_causal_lm( lowerCamelCase_, batch_size=lowerCamelCase_, seq_length=lowerCamelCase_, is_pair=lowerCamelCase_, framework=lowerCamelCase_ ) else: lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_, batch_size=lowerCamelCase_, seq_length=lowerCamelCase_, is_pair=lowerCamelCase_, framework=lowerCamelCase_ ) return common_inputs def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : str = super()._flatten_past_key_values_(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) else: lowerCamelCase__ : Any = super(lowerCamelCase_, self )._flatten_past_key_values_( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ )
696
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : int = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : Optional[int] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : str = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : Optional[int] = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Tuple = c.n_embd + 1 # int lowerCamelCase__ : Union[str, Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : List[Any] = not c.scale_attn_weights # bool lowerCamelCase__ : List[Any] = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = PretrainedConfig() lowerCamelCase__ : Optional[Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : Any = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : int = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = mock.Mock() lowerCamelCase__ : List[str] = 5_0_0 lowerCamelCase__ : Any = {} lowerCamelCase__ : int = HTTPError lowerCamelCase__ : Optional[Any] = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : str = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : str = ['config.42.0.0.json'] lowerCamelCase__ : Union[str, Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Optional[int] = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Dict = 'v3.0.0' lowerCamelCase__ : List[str] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
696
1
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : str = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase ) lowerCamelCase__ : Any = checkpoints.load_tax_checkpoint(_lowerCamelCase ) lowerCamelCase__ : Dict = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": lowerCamelCase__ : Union[str, Any] = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": lowerCamelCase__ : Optional[int] = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase__ : str = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): lowerCamelCase__ : Any = f'''layers_{str(_lowerCamelCase )}''' # Self-Attention lowerCamelCase__ : Tuple = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] lowerCamelCase__ : str = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] lowerCamelCase__ : int = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] lowerCamelCase__ : Union[str, Any] = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase__ : Union[str, Any] = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization lowerCamelCase__ : List[str] = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: lowerCamelCase__ : Tuple = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] lowerCamelCase__ : List[Any] = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: lowerCamelCase__ : Tuple = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] lowerCamelCase__ : Any = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization lowerCamelCase__ : Dict = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning lowerCamelCase__ : Union[str, Any] = flax_model.params['encoder']['block'][str(_lowerCamelCase )]['layer'] lowerCamelCase__ : Optional[int] = tax_attention_key lowerCamelCase__ : Dict = tax_attention_out lowerCamelCase__ : Union[str, Any] = tax_attention_query lowerCamelCase__ : Dict = tax_attention_value lowerCamelCase__ : str = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase__ : Optional[int] = tax_global_layer_norm if split_mlp_wi: lowerCamelCase__ : Tuple = tax_mlp_wi_a lowerCamelCase__ : Optional[Any] = tax_mlp_wi_a else: lowerCamelCase__ : str = tax_mlp_wi lowerCamelCase__ : str = tax_mlp_wo lowerCamelCase__ : Tuple = tax_mlp_layer_norm lowerCamelCase__ : int = flax_model_encoder_layer_block # Only for layer 0: lowerCamelCase__ : Optional[int] = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T lowerCamelCase__ : Any = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase__ : Optional[Any] = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T lowerCamelCase__ : str = tax_encoder_global_rel_embedding # Assigning lowerCamelCase__ : str = tax_model['target']['encoder']['encoder_norm']['scale'] lowerCamelCase__ : str = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): lowerCamelCase__ : Optional[int] = f'''layers_{str(_lowerCamelCase )}''' # Self-Attention lowerCamelCase__ : Dict = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] lowerCamelCase__ : Dict = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] lowerCamelCase__ : List[Any] = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] lowerCamelCase__ : str = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization lowerCamelCase__ : Union[str, Any] = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention lowerCamelCase__ : Tuple = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] lowerCamelCase__ : int = tax_enc_dec_attention_module['key']['kernel'] lowerCamelCase__ : Dict = tax_enc_dec_attention_module['out']['kernel'] lowerCamelCase__ : int = tax_enc_dec_attention_module['query']['kernel'] lowerCamelCase__ : int = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization lowerCamelCase__ : Dict = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: lowerCamelCase__ : Dict = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] lowerCamelCase__ : int = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: lowerCamelCase__ : str = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] lowerCamelCase__ : Any = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization lowerCamelCase__ : Optional[int] = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning lowerCamelCase__ : Union[str, Any] = flax_model.params['decoder']['block'][str(_lowerCamelCase )]['layer'] lowerCamelCase__ : List[str] = tax_attention_key lowerCamelCase__ : int = tax_attention_out lowerCamelCase__ : Optional[Any] = tax_attention_query lowerCamelCase__ : Union[str, Any] = tax_attention_value lowerCamelCase__ : Union[str, Any] = tax_pre_attention_layer_norm lowerCamelCase__ : Optional[int] = tax_enc_dec_attention_key lowerCamelCase__ : str = tax_enc_dec_attention_out lowerCamelCase__ : Union[str, Any] = tax_enc_dec_attention_query lowerCamelCase__ : Dict = tax_enc_dec_attention_value lowerCamelCase__ : List[str] = tax_cross_layer_norm if split_mlp_wi: lowerCamelCase__ : Optional[int] = tax_mlp_wi_a lowerCamelCase__ : Union[str, Any] = tax_mlp_wi_a else: lowerCamelCase__ : Tuple = tax_mlp_wi lowerCamelCase__ : Dict = tax_mlp_wo lowerCamelCase__ : Any = txa_mlp_layer_norm lowerCamelCase__ : str = flax_model_decoder_layer_block # Decoder Normalization lowerCamelCase__ : str = tax_model['target']['decoder']['decoder_norm']['scale'] lowerCamelCase__ : Dict = txa_decoder_norm # Only for layer 0: lowerCamelCase__ : List[str] = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T lowerCamelCase__ : Dict = tax_decoder_rel_embedding # Token Embeddings lowerCamelCase__ : List[Any] = tax_model['target']['token_embedder']['embedding'] lowerCamelCase__ : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowerCamelCase__ : List[Any] = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(_lowerCamelCase ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) A_ : int = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
696
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' super().__init__() lowerCamelCase__ : Dict = value_function lowerCamelCase__ : int = unet lowerCamelCase__ : Union[str, Any] = scheduler lowerCamelCase__ : int = env lowerCamelCase__ : List[Any] = env.get_dataset() lowerCamelCase__ : Dict = {} for key in self.data.keys(): try: lowerCamelCase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowerCamelCase__ : Optional[int] = {} for key in self.data.keys(): try: lowerCamelCase__ : Tuple = self.data[key].std() except: # noqa: E722 pass lowerCamelCase__ : Optional[Any] = env.observation_space.shape[0] lowerCamelCase__ : List[str] = env.action_space.shape[0] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def a__ (self, lowerCamelCase_ ): '''simple docstring''' if type(lowerCamelCase_ ) is dict: return {k: self.to_torch(lowerCamelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase_, device=self.unet.device ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for key, val in cond.items(): lowerCamelCase__ : Optional[Any] = val.clone() return x_in def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = x.shape[0] lowerCamelCase__ : Tuple = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCamelCase__ : Dict = torch.full((batch_size,), lowerCamelCase_, device=self.unet.device, dtype=torch.long ) for _ in range(lowerCamelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCamelCase__ : str = self.value_function(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample lowerCamelCase__ : Union[str, Any] = torch.autograd.grad([y.sum()], [x] )[0] lowerCamelCase__ : Optional[int] = self.scheduler._get_variance(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = torch.exp(0.5 * posterior_variance ) lowerCamelCase__ : Tuple = model_std * grad lowerCamelCase__ : str = 0 lowerCamelCase__ : Dict = x.detach() lowerCamelCase__ : Dict = x + scale * grad lowerCamelCase__ : Optional[int] = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : Tuple = self.unet(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample.permute(0, 2, 1 ) # TODO: verify deprecation of this kwarg lowerCamelCase__ : Optional[Any] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, predict_epsilon=lowerCamelCase_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowerCamelCase__ : Any = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) return x, y def __call__(self, lowerCamelCase_, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=0.1 ): '''simple docstring''' lowerCamelCase__ : Dict = self.normalize(lowerCamelCase_, 'observations' ) lowerCamelCase__ : List[str] = obs[None].repeat(lowerCamelCase_, axis=0 ) lowerCamelCase__ : str = {0: self.to_torch(lowerCamelCase_ )} lowerCamelCase__ : Optional[Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCamelCase__ : List[Any] = randn_tensor(lowerCamelCase_, device=self.unet.device ) lowerCamelCase__ : int = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) # run the diffusion process lowerCamelCase__ , lowerCamelCase__ : List[str] = self.run_diffusion(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # sort output trajectories by value lowerCamelCase__ : Union[str, Any] = y.argsort(0, descending=lowerCamelCase_ ).squeeze() lowerCamelCase__ : List[str] = x[sorted_idx] lowerCamelCase__ : Optional[Any] = sorted_values[:, :, : self.action_dim] lowerCamelCase__ : Union[str, Any] = actions.detach().cpu().numpy() lowerCamelCase__ : Union[str, Any] = self.de_normalize(lowerCamelCase_, key='actions' ) # select the action with the highest value if y is not None: lowerCamelCase__ : str = 0 else: # if we didn't run value guiding, select a random action lowerCamelCase__ : Optional[Any] = np.random.randint(0, lowerCamelCase_ ) lowerCamelCase__ : Tuple = denorm_actions[selected_index, 0] return denorm_actions
696
1
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=0.999 , _lowerCamelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCamelCase__ : Tuple = [] for i in range(_lowerCamelCase ): lowerCamelCase__ : Any = i / num_diffusion_timesteps lowerCamelCase__ : Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) ) return torch.tensor(_lowerCamelCase , dtype=torch.floataa ) class a_ ( snake_case_ , snake_case_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [e.name for e in KarrasDiffusionSchedulers] lowerCamelCase__ : int = 2 @register_to_config def __init__(self, lowerCamelCase_ = 1_0_0_0, lowerCamelCase_ = 0.00_085, lowerCamelCase_ = 0.012, lowerCamelCase_ = "linear", lowerCamelCase_ = None, lowerCamelCase_ = "epsilon", lowerCamelCase_ = "linspace", lowerCamelCase_ = 0, ): '''simple docstring''' if trained_betas is not None: lowerCamelCase__ : Dict = torch.tensor(lowerCamelCase_, dtype=torch.floataa ) elif beta_schedule == "linear": lowerCamelCase__ : Any = torch.linspace(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCamelCase__ : Any = ( torch.linspace(beta_start**0.5, beta_end**0.5, lowerCamelCase_, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCamelCase__ : int = betas_for_alpha_bar(lowerCamelCase_ ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCamelCase__ : Optional[int] = 1.0 - self.betas lowerCamelCase__ : Optional[int] = torch.cumprod(self.alphas, dim=0 ) # set all values self.set_timesteps(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_=None ): '''simple docstring''' if schedule_timesteps is None: lowerCamelCase__ : Dict = self.timesteps lowerCamelCase__ : List[Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCamelCase__ : Optional[Any] = 1 if len(lowerCamelCase_ ) > 1 else 0 else: lowerCamelCase__ : List[str] = timestep.cpu().item() if torch.is_tensor(lowerCamelCase_ ) else timestep lowerCamelCase__ : List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def a__ (self ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def a__ (self, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : List[str] = self.index_for_timestep(lowerCamelCase_ ) if self.state_in_first_order: lowerCamelCase__ : List[str] = self.sigmas[step_index] else: lowerCamelCase__ : Union[str, Any] = self.sigmas_interpol[step_index] lowerCamelCase__ : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, ): '''simple docstring''' lowerCamelCase__ : Optional[int] = num_inference_steps lowerCamelCase__ : Any = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCamelCase__ : str = np.linspace(0, num_train_timesteps - 1, lowerCamelCase_, dtype=lowerCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCamelCase__ : int = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCamelCase__ : List[Any] = (np.arange(0, lowerCamelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCamelCase__ : Optional[int] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCamelCase__ : Dict = (np.arange(lowerCamelCase_, 0, -step_ratio )).round().copy().astype(lowerCamelCase_ ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) lowerCamelCase__ : str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCamelCase__ : List[str] = torch.from_numpy(np.log(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : int = np.interp(lowerCamelCase_, np.arange(0, len(lowerCamelCase_ ) ), lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCamelCase__ : Union[str, Any] = torch.from_numpy(lowerCamelCase_ ).to(device=lowerCamelCase_ ) # interpolate sigmas lowerCamelCase__ : Any = sigmas.log().lerp(sigmas.roll(1 ).log(), 0.5 ).exp() lowerCamelCase__ : Optional[Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) lowerCamelCase__ : Union[str, Any] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(lowerCamelCase_ ).startswith('mps' ): # mps does not support float64 lowerCamelCase__ : List[Any] = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_, dtype=torch.floataa ) else: lowerCamelCase__ : List[Any] = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) # interpolate timesteps lowerCamelCase__ : Any = self.sigma_to_t(lowerCamelCase_ ).to(lowerCamelCase_, dtype=timesteps.dtype ) lowerCamelCase__ : Dict = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), dim=-1 ).flatten() lowerCamelCase__ : Optional[Any] = torch.cat([timesteps[:1], interleaved_timesteps] ) lowerCamelCase__ : Tuple = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCamelCase__ : Optional[Any] = defaultdict(lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = sigma.log() # get distribution lowerCamelCase__ : Optional[Any] = log_sigma - self.log_sigmas[:, None] # get sigmas range lowerCamelCase__ : List[Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) lowerCamelCase__ : int = low_idx + 1 lowerCamelCase__ : Tuple = self.log_sigmas[low_idx] lowerCamelCase__ : List[Any] = self.log_sigmas[high_idx] # interpolate sigmas lowerCamelCase__ : Any = (low - log_sigma) / (low - high) lowerCamelCase__ : Optional[Any] = w.clamp(0, 1 ) # transform interpolation to time range lowerCamelCase__ : Optional[Any] = (1 - w) * low_idx + w * high_idx lowerCamelCase__ : Tuple = t.view(sigma.shape ) return t @property def a__ (self ): '''simple docstring''' return self.sample is None def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = True, ): '''simple docstring''' lowerCamelCase__ : int = self.index_for_timestep(lowerCamelCase_ ) # advance index counter by 1 lowerCamelCase__ : List[Any] = timestep.cpu().item() if torch.is_tensor(lowerCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCamelCase__ : Union[str, Any] = self.sigmas[step_index] lowerCamelCase__ : Union[str, Any] = self.sigmas_interpol[step_index + 1] lowerCamelCase__ : str = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method lowerCamelCase__ : Union[str, Any] = self.sigmas[step_index - 1] lowerCamelCase__ : List[str] = self.sigmas_interpol[step_index] lowerCamelCase__ : Optional[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCamelCase__ : str = sigma_hat if self.state_in_first_order else sigma_interpol lowerCamelCase__ : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCamelCase__ : Any = sigma_hat if self.state_in_first_order else sigma_interpol lowerCamelCase__ : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCamelCase__ : Any = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCamelCase__ : str = sigma_interpol - sigma_hat # store for 2nd order step lowerCamelCase__ : str = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order lowerCamelCase__ : Tuple = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep lowerCamelCase__ : Union[str, Any] = sigma_next - sigma_hat lowerCamelCase__ : Dict = self.sample lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCamelCase_ ): # mps does not support float64 lowerCamelCase__ : Tuple = self.timesteps.to(original_samples.device, dtype=torch.floataa ) lowerCamelCase__ : Union[str, Any] = timesteps.to(original_samples.device, dtype=torch.floataa ) else: lowerCamelCase__ : str = self.timesteps.to(original_samples.device ) lowerCamelCase__ : Union[str, Any] = timesteps.to(original_samples.device ) lowerCamelCase__ : Dict = [self.index_for_timestep(lowerCamelCase_, lowerCamelCase_ ) for t in timesteps] lowerCamelCase__ : Optional[int] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCamelCase__ : Optional[int] = sigma.unsqueeze(-1 ) lowerCamelCase__ : Tuple = original_samples + noise * sigma return noisy_samples def __len__(self ): '''simple docstring''' return self.config.num_train_timesteps
696
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : List[str] = analyze_text(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. lowerCamelCase__ : List[Any] = sum(single_char_strings.values() ) # one length string lowerCamelCase__ : str = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCamelCase__ : Tuple = single_char_strings[ch] lowerCamelCase__ : Union[str, Any] = my_str / all_sum my_fir_sum += prob * math.loga(_lowerCamelCase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string lowerCamelCase__ : Dict = sum(two_char_strings.values() ) lowerCamelCase__ : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCamelCase__ : int = cha + cha if sequence in two_char_strings: lowerCamelCase__ : int = two_char_strings[sequence] lowerCamelCase__ : Tuple = int(_lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(_lowerCamelCase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = Counter() # type: ignore lowerCamelCase__ : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase_ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
696
1
"""simple docstring""" import math def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowerCamelCase ) if number < 1: lowerCamelCase__ : Optional[int] = f'''Input value of [number={number}] must be > 0''' raise ValueError(_lowerCamelCase ) elif number == 1: return 3 elif number == 2: return 5 else: lowerCamelCase__ : Any = int(math.log(number // 3 , 2 ) ) + 2 lowerCamelCase__ : List[Any] = [3, 5] lowerCamelCase__ : List[Any] = 2 lowerCamelCase__ : List[Any] = 3 for block in range(1 , _lowerCamelCase ): for _ in range(_lowerCamelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): A_ : Dict = 0 try: A_ : Any = proth(number) except ValueError: print(f"ValueError: there is no {number}th Proth number") continue print(f"The {number}th Proth number: {value}")
696
"""simple docstring""" import os def lowerCamelCase_ ( ): with open(os.path.dirname(_lowerCamelCase ) + '/p022_names.txt' ) as file: lowerCamelCase__ : Union[str, Any] = str(file.readlines()[0] ) lowerCamelCase__ : int = names.replace('"' , '' ).split(',' ) names.sort() lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : str = 0 for i, name in enumerate(_lowerCamelCase ): for letter in name: name_score += ord(_lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowerCamelCase__ : Dict = 0 return total_score if __name__ == "__main__": print(solution())
696
1
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=False, lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_=False, lowerCamelCase_=1_9, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Tuple = parent lowerCamelCase__ : List[str] = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : str = is_training lowerCamelCase__ : str = use_input_mask lowerCamelCase__ : Dict = use_token_type_ids lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : str = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Any = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : str = type_vocab_size lowerCamelCase__ : Dict = type_sequence_label_size lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : Dict = num_labels lowerCamelCase__ : str = num_choices lowerCamelCase__ : Any = scope def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : List[Any] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : int = None if self.use_labels: lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : Any = ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase__ : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = EsmConfig( vocab_size=3_3, hidden_size=self.hidden_size, pad_token_id=1, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, is_folding_model=lowerCamelCase_, esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False}, ) return config def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = EsmForProteinFolding(config=lowerCamelCase_ ).float() model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Any = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) lowerCamelCase__ : str = model(lowerCamelCase_ ) self.parent.assertEqual(result.positions.shape, (8, self.batch_size, self.seq_length, 1_4, 3) ) self.parent.assertEqual(result.angles.shape, (8, self.batch_size, self.seq_length, 7, 2) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : str = config_and_inputs lowerCamelCase__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : List[str] = (EsmForProteinFolding,) if is_torch_available() else () lowerCamelCase__ : Union[str, Any] = () lowerCamelCase__ : Any = {} if is_torch_available() else {} lowerCamelCase__ : str = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = EsmFoldModelTester(self ) lowerCamelCase__ : Optional[Any] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) @unittest.skip('Does not support attention outputs' ) def a__ (self ): '''simple docstring''' pass @unittest.skip def a__ (self ): '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('ESMFold does not support passing input embeds!' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('ESMFold does not support head pruning.' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('ESMFold does not support head pruning.' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('ESMFold does not support head pruning.' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('ESMFold does not support head pruning.' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('ESMFold does not support head pruning.' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('ESMFold only has one output format.' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('ESMFold does not support input chunking.' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def a__ (self ): '''simple docstring''' pass @require_torch class a_ ( snake_case_ ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() lowerCamelCase__ : Optional[Any] = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) lowerCamelCase__ : Dict = model(lowerCamelCase_ )['positions'] lowerCamelCase__ : Optional[int] = torch.tensor([2.5_828, 0.7_993, -10.9_334], dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0], lowerCamelCase_, atol=1e-4 ) )
696
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = 'Speech2TextFeatureExtractor' lowerCamelCase__ : Dict = 'Speech2TextTokenizer' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.feature_extractor lowerCamelCase__ : List[Any] = False def __call__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_, **lowerCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ : Optional[int] = kwargs.pop('raw_speech' ) else: lowerCamelCase__ : int = kwargs.pop('audio', lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = kwargs.pop('sampling_rate', lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('text', lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowerCamelCase__ : List[str] = args[0] lowerCamelCase__ : Any = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ : Union[str, Any] = self.feature_extractor(lowerCamelCase_, *lowerCamelCase_, sampling_rate=lowerCamelCase_, **lowerCamelCase_ ) if text is not None: lowerCamelCase__ : List[Any] = self.tokenizer(lowerCamelCase_, **lowerCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Tuple = encodings['input_ids'] return inputs def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @contextmanager def a__ (self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ : int = True lowerCamelCase__ : List[Any] = self.tokenizer yield lowerCamelCase__ : Optional[int] = self.feature_extractor lowerCamelCase__ : List[Any] = False
696
1
"""simple docstring""" from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = k_size // 2 lowerCamelCase__ , lowerCamelCase__ : Tuple = mgrid[0 - center : k_size - center, 0 - center : k_size - center] lowerCamelCase__ : Optional[Any] = 1 / (2 * pi * sigma) * exp(-(square(_lowerCamelCase ) + square(_lowerCamelCase )) / (2 * square(_lowerCamelCase )) ) return g def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : Optional[int] = image.shape[0], image.shape[1] # dst image height and width lowerCamelCase__ : int = height - k_size + 1 lowerCamelCase__ : Dict = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows lowerCamelCase__ : str = zeros((dst_height * dst_width, k_size * k_size) ) lowerCamelCase__ : Optional[Any] = 0 for i, j in product(range(_lowerCamelCase ) , range(_lowerCamelCase ) ): lowerCamelCase__ : Union[str, Any] = ravel(image[i : i + k_size, j : j + k_size] ) lowerCamelCase__ : int = window row += 1 # turn the kernel into shape(k*k, 1) lowerCamelCase__ : Optional[int] = gen_gaussian_kernel(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = ravel(_lowerCamelCase ) # reshape and get the dst image lowerCamelCase__ : List[str] = dot(_lowerCamelCase , _lowerCamelCase ).reshape(_lowerCamelCase , _lowerCamelCase ).astype(_lowerCamelCase ) return dst if __name__ == "__main__": # read original image A_ : Union[str, Any] = imread(r"../image_data/lena.jpg") # turn image in gray scale value A_ : List[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size A_ : Tuple = gaussian_filter(gray, 3, sigma=1) A_ : Dict = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
696
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : Optional[Any] = use_input_mask lowerCamelCase__ : List[Any] = use_token_type_ids lowerCamelCase__ : List[Any] = use_labels lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : Optional[int] = embedding_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Optional[Any] = num_labels lowerCamelCase__ : Dict = num_choices lowerCamelCase__ : Tuple = scope def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : List[str] = None if self.use_input_mask: lowerCamelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_token_type_ids: lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Any = None lowerCamelCase__ : Union[str, Any] = None if self.use_labels: lowerCamelCase__ : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, embedding_size=self.embedding_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, next_sentence_label=lowerCamelCase_, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, start_positions=lowerCamelCase_, end_positions=lowerCamelCase_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : int = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.num_choices lowerCamelCase__ : Dict = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : int = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : List[str] = config_and_inputs lowerCamelCase__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : int = True def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase_ ) return inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = MobileBertModelTester(self ) lowerCamelCase__ : List[str] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): return torch.tensor( _lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , ) A_ : Tuple = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(lowerCamelCase_ ) lowerCamelCase__ : Tuple = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ )[0] lowerCamelCase__ : Optional[int] = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [ [ [-2.4_736_526e07, 8.2_691_656e04, 1.6_521_838e05], [-5.7_541_704e-01, 3.9_056_022e00, 4.4_011_507e00], [2.6_047_359e00, 1.5_677_652e00, -1.7_324_188e-01], ] ], device=lowerCamelCase_, ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCamelCase__ : Optional[int] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCamelCase__ : Any = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
696
1
"""simple docstring""" import argparse from collections import defaultdict def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = f'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(_lowerCamelCase , 'r' ) as f: lowerCamelCase__ : Optional[int] = f.readlines() lowerCamelCase__ : Tuple = f'''class {class_name}(''' lowerCamelCase__ : Union[str, Any] = f'''{4 * ' '}def {test_name}(''' lowerCamelCase__ : int = f'''{8 * ' '}{correct_line.split()[0]}''' lowerCamelCase__ : List[str] = f'''{16 * ' '}{correct_line.split()[0]}''' lowerCamelCase__ : Any = False lowerCamelCase__ : str = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Any = 0 lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : List[Any] = [] for line in lines: if line.startswith(_lowerCamelCase ): lowerCamelCase__ : Optional[Any] = True elif in_class and line.startswith(_lowerCamelCase ): lowerCamelCase__ : Any = True elif in_class and in_func and (line.startswith(_lowerCamelCase ) or line.startswith(_lowerCamelCase )): lowerCamelCase__ : List[str] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: lowerCamelCase__ : str = True if in_class and in_func and in_line: if ")" not in line: continue else: lowerCamelCase__ : List[str] = True if in_class and in_func and in_line and insert_line: new_lines.append(f'''{spaces * ' '}{correct_line}''' ) lowerCamelCase__ : Union[str, Any] = False else: new_lines.append(_lowerCamelCase ) with open(_lowerCamelCase , 'w' ) as f: for line in new_lines: f.write(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=None ): if fail is not None: with open(_lowerCamelCase , 'r' ) as f: lowerCamelCase__ : List[str] = {l.strip() for l in f.readlines()} else: lowerCamelCase__ : Tuple = None with open(_lowerCamelCase , 'r' ) as f: lowerCamelCase__ : Optional[int] = f.readlines() lowerCamelCase__ : Union[str, Any] = defaultdict(_lowerCamelCase ) for line in correct_lines: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) A_ : Dict = parser.parse_args() main(args.correct_filename, args.fail_filename)
696
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A_ : str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=1 ): '''simple docstring''' lowerCamelCase__ : Any = tokenizer lowerCamelCase__ : Optional[Any] = dataset lowerCamelCase__ : int = len(lowerCamelCase_ ) if n_tasks is None else n_tasks lowerCamelCase__ : Any = n_copies def __iter__(self ): '''simple docstring''' lowerCamelCase__ : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ : Optional[int] = self.tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = start_length lowerCamelCase__ : List[str] = eof_strings lowerCamelCase__ : List[str] = tokenizer def __call__(self, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ : Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ): lowerCamelCase__ : List[str] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): lowerCamelCase__ : str = batch['ids'].shape[-1] lowerCamelCase__ : int = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times lowerCamelCase__ : Optional[Any] = batch['task_id'].repeat(_lowerCamelCase ) lowerCamelCase__ : List[Any] = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ : List[Any] = generated_tokens.cpu().numpy() lowerCamelCase__ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) lowerCamelCase__ : str = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ : Optional[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase_ ( ): # Setup configuration lowerCamelCase__ : int = HfArgumentParser(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ : Tuple = 'false' if args.num_workers is None: lowerCamelCase__ : List[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ : List[Any] = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ : Optional[int] = tokenizer.eos_token lowerCamelCase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ : Optional[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric lowerCamelCase__ : Any = load_dataset('openai_humaneval' ) lowerCamelCase__ : Optional[int] = load_metric('code_eval' ) lowerCamelCase__ : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ : Optional[int] = args.n_samples // args.batch_size lowerCamelCase__ : Tuple = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ : Union[str, Any] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ : List[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ : str = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: lowerCamelCase__ : List[str] = [] for task in tqdm(range(_lowerCamelCase ) ): lowerCamelCase__ : int = human_eval['test'][task]['test'] lowerCamelCase__ : Union[str, Any] = f'''check({human_eval['test'][task]['entry_point']})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ : Any = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
696
1
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=2_2_4, lowerCamelCase_=1_0_0_0, lowerCamelCase_=[3, 3, 6, 4], lowerCamelCase_=[4_8, 5_6, 1_1_2, 2_2_0], ): '''simple docstring''' lowerCamelCase__ : Any = parent lowerCamelCase__ : List[str] = batch_size lowerCamelCase__ : List[str] = num_channels lowerCamelCase__ : Any = is_training lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : Any = image_size lowerCamelCase__ : List[Any] = layer_depths lowerCamelCase__ : Dict = embed_dims def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Dict = None if self.use_labels: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size], self.num_labels ) lowerCamelCase__ : Optional[Any] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths, embed_dims=self.embed_dims, mlp_ratio=4, downsamples=[True, True, True, True], hidden_act='gelu', num_labels=self.num_labels, down_patch_size=3, down_stride=2, down_pad=1, drop_rate=0.0, drop_path_rate=0.0, use_layer_scale=lowerCamelCase_, layer_scale_init_value=1e-5, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = SwiftFormerModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dims[-1], 7, 7) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = self.num_labels lowerCamelCase__ : Optional[Any] = SwiftFormerForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) lowerCamelCase__ : Any = SwiftFormerForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self ): '''simple docstring''' ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : Optional[Any] = self.prepare_config_and_inputs() lowerCamelCase__ : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCamelCase__ : Tuple = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SwiftFormerModelTester(self ) lowerCamelCase__ : Dict = ConfigTester( self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7, num_attention_heads=1_2, num_hidden_layers=1_2, ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Union[str, Any] = model_class(lowerCamelCase_ ) lowerCamelCase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, nn.Linear ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) lowerCamelCase__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : List[Any] = [*signature.parameters.keys()] lowerCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def a__ (self ): '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Dict = SwiftFormerModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @unittest.skip(reason='SwiftFormer does not output attentions' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Optional[Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Any = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ : Any = outputs.hidden_states lowerCamelCase__ : Dict = 8 self.assertEqual(len(lowerCamelCase_ ), lowerCamelCase_ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCamelCase_ ) ): self.assertEqual( hidden_states[i].shape, torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ), ) lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = True check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : int = True check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' def _config_zero_init(lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = copy.deepcopy(lowerCamelCase_ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCamelCase_, lowerCamelCase_, 1e-10 ) if isinstance(getattr(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ), lowerCamelCase_ ): lowerCamelCase__ : List[Any] = _config_zero_init(getattr(lowerCamelCase_, lowerCamelCase_ ) ) setattr(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return configs_no_init lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Any = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: lowerCamelCase__ : Union[str, Any] = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item(), [0.0, 1.0], msg=f'''Parameter {name} of model {model_class} seems not properly initialized''', ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def a__ (self ): '''simple docstring''' pass def lowerCamelCase_ ( ): lowerCamelCase__ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(lowerCamelCase_ ) lowerCamelCase__ : str = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Tuple = image_processor(images=lowerCamelCase_, return_tensors='pt' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : Tuple = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : List[str] = torch.tensor([[-2.1_703e00, 2.1_107e00, -2.0_811e00]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
696
"""simple docstring""" from ..utils import DummyObject, requires_backends class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] ) class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] )
696
1
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 10**-10 ): lowerCamelCase__ : Optional[int] = a while True: lowerCamelCase__ : Any = Decimal(_lowerCamelCase ) - ( Decimal(eval(_lowerCamelCase ) ) / Decimal(eval(str(diff(_lowerCamelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowerCamelCase ) ) < precision: # noqa: S307 return float(_lowerCamelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
696
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = 0 while number > 0: lowerCamelCase__ : List[str] = number % 10 sum_of_digits += last_digit lowerCamelCase__ : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase_ ( _lowerCamelCase = 100 ): lowerCamelCase__ : Union[str, Any] = factorial(_lowerCamelCase ) lowerCamelCase__ : List[Any] = split_and_add(_lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
696
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Dict = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys A_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ : Dict = "pt" elif is_tf_available(): A_ : Union[str, Any] = "tf" else: A_ : List[str] = "jax" class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = PerceiverTokenizer lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ (self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=2_0, lowerCamelCase_=5 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [] for i in range(len(lowerCamelCase_ ) ): try: lowerCamelCase__ : Any = tokenizer.decode([i], clean_up_tokenization_spaces=lowerCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase__ : Any = list(filter(lambda lowerCamelCase_ : re.match(r'^[ a-zA-Z]+$', t[1] ), lowerCamelCase_ ) ) lowerCamelCase__ : Union[str, Any] = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=lowerCamelCase_ ), lowerCamelCase_ ) ) if max_length is not None and len(lowerCamelCase_ ) > max_length: lowerCamelCase__ : int = toks[:max_length] if min_length is not None and len(lowerCamelCase_ ) < min_length and len(lowerCamelCase_ ) > 0: while len(lowerCamelCase_ ) < min_length: lowerCamelCase__ : Dict = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : int = [t[0] for t in toks] # Ensure consistency lowerCamelCase__ : Optional[int] = tokenizer.decode(lowerCamelCase_, clean_up_tokenization_spaces=lowerCamelCase_ ) if " " not in output_txt and len(lowerCamelCase_ ) > 1: lowerCamelCase__ : List[Any] = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=lowerCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=lowerCamelCase_ ) ) if with_prefix_space: lowerCamelCase__ : Optional[Any] = ' ' + output_txt lowerCamelCase__ : List[Any] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) return output_txt, output_ids def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = 'Unicode €.' lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_ ) lowerCamelCase__ : Dict = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : int = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]Unicode €.[SEP]' ) lowerCamelCase__ : List[str] = tokenizer('e è é ê ë' ) lowerCamelCase__ : Dict = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : Any = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ), '[CLS]e è é ê ë[SEP]' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCamelCase__ : List[Any] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) if FRAMEWORK != "jax": lowerCamelCase__ : List[str] = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase__ : int = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertEqual((2, 3_8), batch.input_ids.shape ) self.assertEqual((2, 3_8), batch.attention_mask.shape ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.perceiver_tokenizer lowerCamelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCamelCase__ : List[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids', lowerCamelCase_ ) self.assertIn('attention_mask', lowerCamelCase_ ) self.assertNotIn('decoder_input_ids', lowerCamelCase_ ) self.assertNotIn('decoder_attention_mask', lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : int = [ 'Summary of the text.', 'Another summary.', ] lowerCamelCase__ : str = tokenizer( text_target=lowerCamelCase_, max_length=3_2, padding='max_length', truncation=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertEqual(3_2, targets['input_ids'].shape[1] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 4_2 ) # Now let's start the test lowerCamelCase__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : str = ' He is very happy, UNwant\u00E9d,running' lowerCamelCase__ : str = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : str = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) shutil.rmtree(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCamelCase__ : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCamelCase__ : List[str] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : int = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertIn('new_additional_special_token', after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 4_2 ) lowerCamelCase__ : List[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_, model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length, 4_3 ) shutil.rmtree(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : Optional[Any] = json.load(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : List[str] = json.load(lowerCamelCase_ ) lowerCamelCase__ : Any = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] lowerCamelCase__ : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCamelCase__ : List[str] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ : Dict = tokenizer_class.from_pretrained( lowerCamelCase_, ) self.assertIn( 'an_additional_special_token', tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token', lstrip=lowerCamelCase_ )] lowerCamelCase__ : Any = tokenizer_class.from_pretrained( lowerCamelCase_, additional_special_tokens=lowerCamelCase_, ) self.assertIn('a_new_additional_special_token', tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ), '�' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_tokenizers(fast=lowerCamelCase_, do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Tuple = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] lowerCamelCase__ : List[str] = tokenizer.convert_tokens_to_string(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ )
696
1
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['image_processor', 'tokenizer'] lowerCamelCase__ : Dict = 'AutoImageProcessor' lowerCamelCase__ : List[str] = 'AutoTokenizer' def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : List[str] = kwargs.pop('feature_extractor' ) lowerCamelCase__ : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = self.image_processor lowerCamelCase__ : Union[str, Any] = False def __call__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : List[Any] = kwargs.pop('images', lowerCamelCase_ ) lowerCamelCase__ : Any = kwargs.pop('text', lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowerCamelCase__ : Any = args[0] lowerCamelCase__ : Tuple = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: lowerCamelCase__ : Optional[Any] = self.image_processor(lowerCamelCase_, *lowerCamelCase_, **lowerCamelCase_ ) if text is not None: lowerCamelCase__ : Optional[int] = self.tokenizer(lowerCamelCase_, **lowerCamelCase_ ) if text is None: return inputs elif images is None: return encodings else: lowerCamelCase__ : Dict = encodings['input_ids'] return inputs def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @contextmanager def a__ (self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : Union[str, Any] = self.tokenizer yield lowerCamelCase__ : Optional[int] = self.image_processor lowerCamelCase__ : str = False def a__ (self, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=None ): '''simple docstring''' if added_vocab is None: lowerCamelCase__ : Dict = self.tokenizer.get_added_vocab() lowerCamelCase__ : Optional[Any] = {} while tokens: lowerCamelCase__ : Dict = re.search(r'<s_(.*?)>', lowerCamelCase_, re.IGNORECASE ) if start_token is None: break lowerCamelCase__ : List[Any] = start_token.group(1 ) lowerCamelCase__ : Dict = re.search(rf'''</s_{key}>''', lowerCamelCase_, re.IGNORECASE ) lowerCamelCase__ : Tuple = start_token.group() if end_token is None: lowerCamelCase__ : Optional[int] = tokens.replace(lowerCamelCase_, '' ) else: lowerCamelCase__ : str = end_token.group() lowerCamelCase__ : str = re.escape(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = re.escape(lowerCamelCase_ ) lowerCamelCase__ : Any = re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''', lowerCamelCase_, re.IGNORECASE ) if content is not None: lowerCamelCase__ : Dict = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCamelCase__ : Any = self.tokenajson(lowerCamelCase_, is_inner_value=lowerCamelCase_, added_vocab=lowerCamelCase_ ) if value: if len(lowerCamelCase_ ) == 1: lowerCamelCase__ : List[Any] = value[0] lowerCamelCase__ : Dict = value else: # leaf nodes lowerCamelCase__ : Dict = [] for leaf in content.split(r'<sep/>' ): lowerCamelCase__ : List[str] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCamelCase__ : Union[str, Any] = leaf[1:-2] # for categorical special tokens output[key].append(lowerCamelCase_ ) if len(output[key] ) == 1: lowerCamelCase__ : Optional[int] = output[key][0] lowerCamelCase__ : Any = tokens[tokens.find(lowerCamelCase_ ) + len(lowerCamelCase_ ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:], is_inner_value=lowerCamelCase_, added_vocab=lowerCamelCase_ ) if len(lowerCamelCase_ ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def a__ (self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.', lowerCamelCase_, ) return self.image_processor_class @property def a__ (self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.', lowerCamelCase_, ) return self.image_processor
696
"""simple docstring""" from math import pi, sqrt, tan def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCamelCase__ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_lowerCamelCase , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCamelCase__ : Dict = (sidea + sidea + sidea) / 2 lowerCamelCase__ : str = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
696
1
"""simple docstring""" import os import sys import unittest A_ : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A_ : int = os.path.join(git_repo_path, "src", "transformers") A_ : Union[str, Any] = "\n{0} = None\n" A_ : int = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" A_ : Tuple = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(lowerCamelCase_ ) lowerCamelCase__ : Tuple = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(lowerCamelCase_, 'tokenizers' ) lowerCamelCase__ : Any = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(lowerCamelCase_, 'tensorflow_text' ) lowerCamelCase__ : Tuple = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(lowerCamelCase_, 'sentencepiece_and_tokenizers' ) lowerCamelCase__ : Optional[int] = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(lowerCamelCase_, 'sentencepiece_and_tensorflow_text' ) lowerCamelCase__ : str = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(lowerCamelCase_, 'sentencepiece_and_tokenizers_and_vision' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch', lowerCamelCase_ ) self.assertIn('tensorflow_text', lowerCamelCase_ ) self.assertIn('sentencepiece_and_tokenizers', lowerCamelCase_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel', objects['torch'] ) self.assertIn('TFBertModel', objects['tf'] ) self.assertIn('FlaxBertModel', objects['flax'] ) self.assertIn('BertModel', objects['torch'] ) self.assertIn('TFBertTokenizer', objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer', objects['sentencepiece_and_tokenizers'] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = create_dummy_object('CONSTANT', '\'torch\'' ) self.assertEqual(lowerCamelCase_, '\nCONSTANT = None\n' ) lowerCamelCase__ : List[Any] = create_dummy_object('function', '\'torch\'' ) self.assertEqual( lowerCamelCase_, '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) lowerCamelCase__ : str = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' lowerCamelCase__ : Dict = create_dummy_object('FakeClass', '\'torch\'' ) self.assertEqual(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' lowerCamelCase__ : Tuple = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'], lowerCamelCase_ )
696
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : str = use_input_mask lowerCamelCase__ : Optional[Any] = use_token_type_ids lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : Union[str, Any] = type_sequence_label_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : Union[str, Any] = num_choices lowerCamelCase__ : List[str] = scope lowerCamelCase__ : Dict = vocab_size - 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = self.get_config() return config, input_ids, input_mask, token_labels def a__ (self ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[Any] = True return config, input_ids, input_mask, token_labels def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = GPTNeoXModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = True lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : Optional[Any] = GPTNeoXForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = self.num_labels lowerCamelCase__ : Optional[int] = GPTNeoXForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[Any] = GPTNeoXForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Tuple = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : List[str] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : str = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : List[Any] = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and lowerCamelCase__ : Tuple = torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : Tuple = torch.cat([input_mask, next_mask], dim=-1 ) lowerCamelCase__ : List[str] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, output_hidden_states=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = output_from_no_past['hidden_states'][0] lowerCamelCase__ : Optional[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_, output_hidden_states=lowerCamelCase_, )['hidden_states'][0] # select random slice lowerCamelCase__ : Dict = ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-3 ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = config_and_inputs lowerCamelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : int = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase__ : Dict = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = GPTNeoXModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=6_4, num_attention_heads=8 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def a__ (self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = ids_tensor([1, 1_0], config.vocab_size ) lowerCamelCase__ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Any = GPTNeoXModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() lowerCamelCase__ : List[Any] = original_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Optional[int] = {'type': scaling_type, 'factor': 10.0} lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() lowerCamelCase__ : Tuple = scaled_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: lowerCamelCase__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer('My favorite food is', return_tensors='pt' ).to(lowerCamelCase_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCamelCase__ : Dict = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' lowerCamelCase__ : Dict = model.generate(**lowerCamelCase_, do_sample=lowerCamelCase_, max_new_tokens=2_0 ) lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ )[0] self.assertEqual(lowerCamelCase_, lowerCamelCase_ )
696
1
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A_ : str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=1 ): '''simple docstring''' lowerCamelCase__ : Any = tokenizer lowerCamelCase__ : Optional[Any] = dataset lowerCamelCase__ : int = len(lowerCamelCase_ ) if n_tasks is None else n_tasks lowerCamelCase__ : Any = n_copies def __iter__(self ): '''simple docstring''' lowerCamelCase__ : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ : Optional[int] = self.tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = start_length lowerCamelCase__ : List[str] = eof_strings lowerCamelCase__ : List[str] = tokenizer def __call__(self, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ : Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ): lowerCamelCase__ : List[str] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): lowerCamelCase__ : str = batch['ids'].shape[-1] lowerCamelCase__ : int = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times lowerCamelCase__ : Optional[Any] = batch['task_id'].repeat(_lowerCamelCase ) lowerCamelCase__ : List[Any] = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ : List[Any] = generated_tokens.cpu().numpy() lowerCamelCase__ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) lowerCamelCase__ : str = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ : Optional[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase_ ( ): # Setup configuration lowerCamelCase__ : int = HfArgumentParser(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ : Tuple = 'false' if args.num_workers is None: lowerCamelCase__ : List[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ : List[Any] = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ : Optional[int] = tokenizer.eos_token lowerCamelCase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ : Optional[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric lowerCamelCase__ : Any = load_dataset('openai_humaneval' ) lowerCamelCase__ : Optional[int] = load_metric('code_eval' ) lowerCamelCase__ : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ : Optional[int] = args.n_samples // args.batch_size lowerCamelCase__ : Tuple = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ : Union[str, Any] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ : List[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ : str = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: lowerCamelCase__ : List[str] = [] for task in tqdm(range(_lowerCamelCase ) ): lowerCamelCase__ : int = human_eval['test'][task]['test'] lowerCamelCase__ : Union[str, Any] = f'''check({human_eval['test'][task]['entry_point']})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ : Any = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
696
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : Dict = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. A_ : List[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A_ : Union[str, Any] = spec.loader.load_module() A_ : int = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A_ : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") A_ : str = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCamelCase__ : Dict = False # source code of `config_class` lowerCamelCase__ : str = inspect.getsource(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = _re_checkpoint.findall(_lowerCamelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCamelCase__ , lowerCamelCase__ : Optional[int] = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase__ : Any = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: lowerCamelCase__ : Any = True break lowerCamelCase__ : Dict = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ : Optional[Any] = '\n'.join(sorted(_lowerCamelCase ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
696
1
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' super().__init__() lowerCamelCase__ : Dict = value_function lowerCamelCase__ : int = unet lowerCamelCase__ : Union[str, Any] = scheduler lowerCamelCase__ : int = env lowerCamelCase__ : List[Any] = env.get_dataset() lowerCamelCase__ : Dict = {} for key in self.data.keys(): try: lowerCamelCase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowerCamelCase__ : Optional[int] = {} for key in self.data.keys(): try: lowerCamelCase__ : Tuple = self.data[key].std() except: # noqa: E722 pass lowerCamelCase__ : Optional[Any] = env.observation_space.shape[0] lowerCamelCase__ : List[str] = env.action_space.shape[0] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def a__ (self, lowerCamelCase_ ): '''simple docstring''' if type(lowerCamelCase_ ) is dict: return {k: self.to_torch(lowerCamelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase_, device=self.unet.device ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for key, val in cond.items(): lowerCamelCase__ : Optional[Any] = val.clone() return x_in def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = x.shape[0] lowerCamelCase__ : Tuple = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCamelCase__ : Dict = torch.full((batch_size,), lowerCamelCase_, device=self.unet.device, dtype=torch.long ) for _ in range(lowerCamelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCamelCase__ : str = self.value_function(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample lowerCamelCase__ : Union[str, Any] = torch.autograd.grad([y.sum()], [x] )[0] lowerCamelCase__ : Optional[int] = self.scheduler._get_variance(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = torch.exp(0.5 * posterior_variance ) lowerCamelCase__ : Tuple = model_std * grad lowerCamelCase__ : str = 0 lowerCamelCase__ : Dict = x.detach() lowerCamelCase__ : Dict = x + scale * grad lowerCamelCase__ : Optional[int] = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : Tuple = self.unet(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample.permute(0, 2, 1 ) # TODO: verify deprecation of this kwarg lowerCamelCase__ : Optional[Any] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, predict_epsilon=lowerCamelCase_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowerCamelCase__ : Any = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) return x, y def __call__(self, lowerCamelCase_, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=0.1 ): '''simple docstring''' lowerCamelCase__ : Dict = self.normalize(lowerCamelCase_, 'observations' ) lowerCamelCase__ : List[str] = obs[None].repeat(lowerCamelCase_, axis=0 ) lowerCamelCase__ : str = {0: self.to_torch(lowerCamelCase_ )} lowerCamelCase__ : Optional[Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCamelCase__ : List[Any] = randn_tensor(lowerCamelCase_, device=self.unet.device ) lowerCamelCase__ : int = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) # run the diffusion process lowerCamelCase__ , lowerCamelCase__ : List[str] = self.run_diffusion(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # sort output trajectories by value lowerCamelCase__ : Union[str, Any] = y.argsort(0, descending=lowerCamelCase_ ).squeeze() lowerCamelCase__ : List[str] = x[sorted_idx] lowerCamelCase__ : Optional[Any] = sorted_values[:, :, : self.action_dim] lowerCamelCase__ : Union[str, Any] = actions.detach().cpu().numpy() lowerCamelCase__ : Union[str, Any] = self.de_normalize(lowerCamelCase_, key='actions' ) # select the action with the highest value if y is not None: lowerCamelCase__ : str = 0 else: # if we didn't run value guiding, select a random action lowerCamelCase__ : Optional[Any] = np.random.randint(0, lowerCamelCase_ ) lowerCamelCase__ : Tuple = denorm_actions[selected_index, 0] return denorm_actions
696
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
1