code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = 'Speech2TextFeatureExtractor' lowerCamelCase__ : Dict = 'Speech2TextTokenizer' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.feature_extractor lowerCamelCase__ : List[Any] = False def __call__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_, **lowerCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ : Optional[int] = kwargs.pop('raw_speech' ) else: lowerCamelCase__ : int = kwargs.pop('audio', lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = kwargs.pop('sampling_rate', lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('text', lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowerCamelCase__ : List[str] = args[0] lowerCamelCase__ : Any = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ : Union[str, Any] = self.feature_extractor(lowerCamelCase_, *lowerCamelCase_, sampling_rate=lowerCamelCase_, **lowerCamelCase_ ) if text is not None: lowerCamelCase__ : List[Any] = self.tokenizer(lowerCamelCase_, **lowerCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Tuple = encodings['input_ids'] return inputs def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @contextmanager def a__ (self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ : int = True lowerCamelCase__ : List[Any] = self.tokenizer yield lowerCamelCase__ : Optional[int] = self.feature_extractor lowerCamelCase__ : List[Any] = False
696
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = 'Speech2TextFeatureExtractor' lowerCamelCase__ : Dict = 'Speech2TextTokenizer' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.feature_extractor lowerCamelCase__ : List[Any] = False def __call__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_, **lowerCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ : Optional[int] = kwargs.pop('raw_speech' ) else: lowerCamelCase__ : int = kwargs.pop('audio', lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = kwargs.pop('sampling_rate', lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('text', lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowerCamelCase__ : List[str] = args[0] lowerCamelCase__ : Any = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ : Union[str, Any] = self.feature_extractor(lowerCamelCase_, *lowerCamelCase_, sampling_rate=lowerCamelCase_, **lowerCamelCase_ ) if text is not None: lowerCamelCase__ : List[Any] = self.tokenizer(lowerCamelCase_, **lowerCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Tuple = encodings['input_ids'] return inputs def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @contextmanager def a__ (self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ : int = True lowerCamelCase__ : List[Any] = self.tokenizer yield lowerCamelCase__ : Optional[int] = self.feature_extractor lowerCamelCase__ : List[Any] = False
696
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : int = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = 'beit' def __init__(self, lowerCamelCase_=8_1_9_2, lowerCamelCase_=7_6_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=3_0_7_2, lowerCamelCase_="gelu", lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_=0.02, lowerCamelCase_=1e-12, lowerCamelCase_=2_2_4, lowerCamelCase_=1_6, lowerCamelCase_=3, lowerCamelCase_=False, lowerCamelCase_=False, lowerCamelCase_=False, lowerCamelCase_=False, lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=True, lowerCamelCase_=[3, 5, 7, 1_1], lowerCamelCase_=[1, 2, 3, 6], lowerCamelCase_=True, lowerCamelCase_=0.4, lowerCamelCase_=2_5_6, lowerCamelCase_=1, lowerCamelCase_=False, lowerCamelCase_=2_5_5, **lowerCamelCase_, ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Union[str, Any] = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : int = hidden_act lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : Optional[Any] = initializer_range lowerCamelCase__ : List[str] = layer_norm_eps lowerCamelCase__ : Optional[Any] = image_size lowerCamelCase__ : Union[str, Any] = patch_size lowerCamelCase__ : Any = num_channels lowerCamelCase__ : Union[str, Any] = use_mask_token lowerCamelCase__ : Any = use_absolute_position_embeddings lowerCamelCase__ : Union[str, Any] = use_relative_position_bias lowerCamelCase__ : Optional[Any] = use_shared_relative_position_bias lowerCamelCase__ : List[Any] = layer_scale_init_value lowerCamelCase__ : Union[str, Any] = drop_path_rate lowerCamelCase__ : int = use_mean_pooling # decode head attributes (semantic segmentation) lowerCamelCase__ : List[str] = out_indices lowerCamelCase__ : Optional[Any] = pool_scales # auxiliary head attributes (semantic segmentation) lowerCamelCase__ : List[Any] = use_auxiliary_head lowerCamelCase__ : int = auxiliary_loss_weight lowerCamelCase__ : Optional[Any] = auxiliary_channels lowerCamelCase__ : List[Any] = auxiliary_num_convs lowerCamelCase__ : List[str] = auxiliary_concat_input lowerCamelCase__ : List[Any] = semantic_loss_ignore_index class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = version.parse('1.11' ) @property def a__ (self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def a__ (self ): '''simple docstring''' return 1e-4
696
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : Optional[Any] = use_input_mask lowerCamelCase__ : List[Any] = use_token_type_ids lowerCamelCase__ : List[Any] = use_labels lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : Optional[int] = embedding_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Optional[Any] = num_labels lowerCamelCase__ : Dict = num_choices lowerCamelCase__ : Tuple = scope def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : List[str] = None if self.use_input_mask: lowerCamelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_token_type_ids: lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Any = None lowerCamelCase__ : Union[str, Any] = None if self.use_labels: lowerCamelCase__ : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, embedding_size=self.embedding_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, next_sentence_label=lowerCamelCase_, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, start_positions=lowerCamelCase_, end_positions=lowerCamelCase_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : int = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.num_choices lowerCamelCase__ : Dict = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : int = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : List[str] = config_and_inputs lowerCamelCase__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : int = True def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase_ ) return inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = MobileBertModelTester(self ) lowerCamelCase__ : List[str] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): return torch.tensor( _lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , ) A_ : Tuple = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(lowerCamelCase_ ) lowerCamelCase__ : Tuple = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ )[0] lowerCamelCase__ : Optional[int] = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [ [ [-2.4_736_526e07, 8.2_691_656e04, 1.6_521_838e05], [-5.7_541_704e-01, 3.9_056_022e00, 4.4_011_507e00], [2.6_047_359e00, 1.5_677_652e00, -1.7_324_188e-01], ] ], device=lowerCamelCase_, ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCamelCase__ : Optional[int] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCamelCase__ : Any = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
696
1
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class a_ ( snake_case_ ): '''simple docstring''' @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' lowerCamelCase__ : Union[str, Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' lowerCamelCase__ : Any = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache lowerCamelCase__ : Optional[Any] = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowerCamelCase_ ) BertModel.from_pretrained(lowerCamelCase_ ) BertTokenizer.from_pretrained(lowerCamelCase_ ) pipeline(task='fill-mask', model=lowerCamelCase_ ) # baseline - just load from_pretrained with normal network lowerCamelCase__ : Dict = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed lowerCamelCase__ : Any = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowerCamelCase__ : List[Any] = '1' lowerCamelCase__ : List[Any] = subprocess.run(lowerCamelCase_, env=lowerCamelCase_, check=lowerCamelCase_, capture_output=lowerCamelCase_ ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn('success', result.stdout.decode() ) @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' lowerCamelCase__ : Dict = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' lowerCamelCase__ : Union[str, Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache lowerCamelCase__ : Optional[Any] = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowerCamelCase_ ) BertModel.from_pretrained(lowerCamelCase_ ) BertTokenizer.from_pretrained(lowerCamelCase_ ) pipeline(task='fill-mask', model=lowerCamelCase_ ) # baseline - just load from_pretrained with normal network lowerCamelCase__ : List[Any] = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed lowerCamelCase__ : Union[str, Any] = self.get_env() lowerCamelCase__ : List[Any] = subprocess.run(lowerCamelCase_, env=lowerCamelCase_, check=lowerCamelCase_, capture_output=lowerCamelCase_ ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn('success', result.stdout.decode() ) @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' lowerCamelCase__ : int = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' lowerCamelCase__ : List[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network lowerCamelCase__ : List[Any] = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed lowerCamelCase__ : List[Any] = self.get_env() lowerCamelCase__ : int = subprocess.run(lowerCamelCase_, env=lowerCamelCase_, check=lowerCamelCase_, capture_output=lowerCamelCase_ ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn('success', result.stdout.decode() ) # next emulate no network lowerCamelCase__ : Optional[int] = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowerCamelCase__ : List[str] = '1' lowerCamelCase__ : str = subprocess.run(lowerCamelCase_, env=lowerCamelCase_, check=lowerCamelCase_, capture_output=lowerCamelCase_ ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn('success', result.stdout.decode() ) @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = '\nfrom transformers import pipeline\n ' lowerCamelCase__ : int = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' lowerCamelCase__ : Union[str, Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' lowerCamelCase__ : List[str] = self.get_env() lowerCamelCase__ : List[str] = '1' lowerCamelCase__ : List[Any] = [sys.executable, '-c', '\n'.join([load, mock, run] )] lowerCamelCase__ : Any = subprocess.run(lowerCamelCase_, env=lowerCamelCase_, check=lowerCamelCase_, capture_output=lowerCamelCase_ ) self.assertEqual(result.returncode, 1, result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode', result.stderr.decode().replace('\n', '' ), ) @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = '\nfrom transformers import AutoModel\n ' lowerCamelCase__ : List[Any] = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network lowerCamelCase__ : List[Any] = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed lowerCamelCase__ : int = self.get_env() lowerCamelCase__ : Optional[Any] = subprocess.run(lowerCamelCase_, env=lowerCamelCase_, check=lowerCamelCase_, capture_output=lowerCamelCase_ ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn('success', result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowerCamelCase__ : List[str] = '1' lowerCamelCase__ : Optional[int] = subprocess.run(lowerCamelCase_, env=lowerCamelCase_, check=lowerCamelCase_, capture_output=lowerCamelCase_ ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn('success', result.stdout.decode() )
696
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A_ : str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=1 ): '''simple docstring''' lowerCamelCase__ : Any = tokenizer lowerCamelCase__ : Optional[Any] = dataset lowerCamelCase__ : int = len(lowerCamelCase_ ) if n_tasks is None else n_tasks lowerCamelCase__ : Any = n_copies def __iter__(self ): '''simple docstring''' lowerCamelCase__ : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ : Optional[int] = self.tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = start_length lowerCamelCase__ : List[str] = eof_strings lowerCamelCase__ : List[str] = tokenizer def __call__(self, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ : Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ): lowerCamelCase__ : List[str] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): lowerCamelCase__ : str = batch['ids'].shape[-1] lowerCamelCase__ : int = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times lowerCamelCase__ : Optional[Any] = batch['task_id'].repeat(_lowerCamelCase ) lowerCamelCase__ : List[Any] = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ : List[Any] = generated_tokens.cpu().numpy() lowerCamelCase__ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) lowerCamelCase__ : str = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ : Optional[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase_ ( ): # Setup configuration lowerCamelCase__ : int = HfArgumentParser(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ : Tuple = 'false' if args.num_workers is None: lowerCamelCase__ : List[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ : List[Any] = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ : Optional[int] = tokenizer.eos_token lowerCamelCase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ : Optional[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric lowerCamelCase__ : Any = load_dataset('openai_humaneval' ) lowerCamelCase__ : Optional[int] = load_metric('code_eval' ) lowerCamelCase__ : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ : Optional[int] = args.n_samples // args.batch_size lowerCamelCase__ : Tuple = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ : Union[str, Any] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ : List[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ : str = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: lowerCamelCase__ : List[str] = [] for task in tqdm(range(_lowerCamelCase ) ): lowerCamelCase__ : int = human_eval['test'][task]['test'] lowerCamelCase__ : Union[str, Any] = f'''check({human_eval['test'][task]['entry_point']})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ : Any = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
696
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Any = 'transfo-xl' lowerCamelCase__ : str = ['mems'] lowerCamelCase__ : int = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self, lowerCamelCase_=2_6_7_7_3_5, lowerCamelCase_=[2_0_0_0_0, 4_0_0_0_0, 2_0_0_0_0_0], lowerCamelCase_=1_0_2_4, lowerCamelCase_=1_0_2_4, lowerCamelCase_=1_6, lowerCamelCase_=6_4, lowerCamelCase_=4_0_9_6, lowerCamelCase_=4, lowerCamelCase_=False, lowerCamelCase_=1_8, lowerCamelCase_=1_6_0_0, lowerCamelCase_=1_0_0_0, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=0, lowerCamelCase_=-1, lowerCamelCase_=True, lowerCamelCase_=0.1, lowerCamelCase_=0.0, lowerCamelCase_=True, lowerCamelCase_="normal", lowerCamelCase_=0.01, lowerCamelCase_=0.01, lowerCamelCase_=0.02, lowerCamelCase_=1e-5, lowerCamelCase_=0, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : Dict = [] self.cutoffs.extend(lowerCamelCase_ ) if proj_share_all_but_first: lowerCamelCase__ : Dict = [False] + [True] * len(self.cutoffs ) else: lowerCamelCase__ : Tuple = [False] + [False] * len(self.cutoffs ) lowerCamelCase__ : Union[str, Any] = d_model lowerCamelCase__ : Optional[Any] = d_embed lowerCamelCase__ : Optional[Any] = d_head lowerCamelCase__ : Optional[int] = d_inner lowerCamelCase__ : Optional[Any] = div_val lowerCamelCase__ : List[str] = pre_lnorm lowerCamelCase__ : List[Any] = n_layer lowerCamelCase__ : Tuple = n_head lowerCamelCase__ : Union[str, Any] = mem_len lowerCamelCase__ : str = same_length lowerCamelCase__ : Tuple = attn_type lowerCamelCase__ : Union[str, Any] = clamp_len lowerCamelCase__ : List[Any] = sample_softmax lowerCamelCase__ : List[Any] = adaptive lowerCamelCase__ : List[Any] = dropout lowerCamelCase__ : int = dropatt lowerCamelCase__ : Dict = untie_r lowerCamelCase__ : Tuple = init lowerCamelCase__ : Union[str, Any] = init_range lowerCamelCase__ : Union[str, Any] = proj_init_std lowerCamelCase__ : Union[str, Any] = init_std lowerCamelCase__ : str = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def a__ (self, lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
696
"""simple docstring""" from ..utils import DummyObject, requires_backends class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] ) class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] )
696
1
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file A_ : Optional[int] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def lowerCamelCase_ ( _lowerCamelCase=None ): if subparsers is not None: lowerCamelCase__ : Dict = subparsers.add_parser('tpu-config' , description=_description ) else: lowerCamelCase__ : str = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments lowerCamelCase__ : str = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_lowerCamelCase , default=_lowerCamelCase , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_lowerCamelCase , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_lowerCamelCase , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) lowerCamelCase__ : Optional[int] = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_lowerCamelCase , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_lowerCamelCase ) return parser def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : int = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: lowerCamelCase__ : int = defaults.command_file if not args.command and defaults.commands is not None: lowerCamelCase__ : List[str] = defaults.commands if not args.tpu_name: lowerCamelCase__ : List[Any] = defaults.tpu_name if not args.tpu_zone: lowerCamelCase__ : Any = defaults.tpu_zone if args.accelerate_version == "dev": lowerCamelCase__ : Any = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": lowerCamelCase__ : int = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _lowerCamelCase ): lowerCamelCase__ : List[str] = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: lowerCamelCase__ : Any = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _lowerCamelCase ): lowerCamelCase__ : Dict = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate lowerCamelCase__ : List[str] = ['cd /usr/share'] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command lowerCamelCase__ : int = '; '.join(_lowerCamelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess lowerCamelCase__ : str = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {' '.join(_lowerCamelCase )}''' ) return subprocess.run(_lowerCamelCase ) print('Successfully setup pod.' ) def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[int] = tpu_command_parser() lowerCamelCase__ : str = parser.parse_args() tpu_command_launcher(_lowerCamelCase )
696
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = 0 while number > 0: lowerCamelCase__ : List[str] = number % 10 sum_of_digits += last_digit lowerCamelCase__ : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase_ ( _lowerCamelCase = 100 ): lowerCamelCase__ : Union[str, Any] = factorial(_lowerCamelCase ) lowerCamelCase__ : List[Any] = split_and_add(_lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
696
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Optional[int] = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Any = 'van' def __init__(self, lowerCamelCase_=2_2_4, lowerCamelCase_=3, lowerCamelCase_=[7, 3, 3, 3], lowerCamelCase_=[4, 2, 2, 2], lowerCamelCase_=[6_4, 1_2_8, 3_2_0, 5_1_2], lowerCamelCase_=[3, 3, 1_2, 3], lowerCamelCase_=[8, 8, 4, 4], lowerCamelCase_="gelu", lowerCamelCase_=0.02, lowerCamelCase_=1e-6, lowerCamelCase_=1e-2, lowerCamelCase_=0.0, lowerCamelCase_=0.0, **lowerCamelCase_, ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : Dict = image_size lowerCamelCase__ : Dict = num_channels lowerCamelCase__ : Dict = patch_sizes lowerCamelCase__ : Any = strides lowerCamelCase__ : int = hidden_sizes lowerCamelCase__ : List[str] = depths lowerCamelCase__ : Dict = mlp_ratios lowerCamelCase__ : Tuple = hidden_act lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : Union[str, Any] = layer_scale_init_value lowerCamelCase__ : List[Any] = drop_path_rate lowerCamelCase__ : Dict = dropout_rate
696
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ : Dict = "pt" elif is_tf_available(): A_ : Union[str, Any] = "tf" else: A_ : List[str] = "jax" class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = PerceiverTokenizer lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ (self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=2_0, lowerCamelCase_=5 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [] for i in range(len(lowerCamelCase_ ) ): try: lowerCamelCase__ : Any = tokenizer.decode([i], clean_up_tokenization_spaces=lowerCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase__ : Any = list(filter(lambda lowerCamelCase_ : re.match(r'^[ a-zA-Z]+$', t[1] ), lowerCamelCase_ ) ) lowerCamelCase__ : Union[str, Any] = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=lowerCamelCase_ ), lowerCamelCase_ ) ) if max_length is not None and len(lowerCamelCase_ ) > max_length: lowerCamelCase__ : int = toks[:max_length] if min_length is not None and len(lowerCamelCase_ ) < min_length and len(lowerCamelCase_ ) > 0: while len(lowerCamelCase_ ) < min_length: lowerCamelCase__ : Dict = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : int = [t[0] for t in toks] # Ensure consistency lowerCamelCase__ : Optional[int] = tokenizer.decode(lowerCamelCase_, clean_up_tokenization_spaces=lowerCamelCase_ ) if " " not in output_txt and len(lowerCamelCase_ ) > 1: lowerCamelCase__ : List[Any] = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=lowerCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=lowerCamelCase_ ) ) if with_prefix_space: lowerCamelCase__ : Optional[Any] = ' ' + output_txt lowerCamelCase__ : List[Any] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) return output_txt, output_ids def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = 'Unicode €.' lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_ ) lowerCamelCase__ : Dict = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : int = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]Unicode €.[SEP]' ) lowerCamelCase__ : List[str] = tokenizer('e è é ê ë' ) lowerCamelCase__ : Dict = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : Any = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ), '[CLS]e è é ê ë[SEP]' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCamelCase__ : List[Any] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) if FRAMEWORK != "jax": lowerCamelCase__ : List[str] = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase__ : int = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertEqual((2, 3_8), batch.input_ids.shape ) self.assertEqual((2, 3_8), batch.attention_mask.shape ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.perceiver_tokenizer lowerCamelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCamelCase__ : List[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids', lowerCamelCase_ ) self.assertIn('attention_mask', lowerCamelCase_ ) self.assertNotIn('decoder_input_ids', lowerCamelCase_ ) self.assertNotIn('decoder_attention_mask', lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : int = [ 'Summary of the text.', 'Another summary.', ] lowerCamelCase__ : str = tokenizer( text_target=lowerCamelCase_, max_length=3_2, padding='max_length', truncation=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertEqual(3_2, targets['input_ids'].shape[1] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 4_2 ) # Now let's start the test lowerCamelCase__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : str = ' He is very happy, UNwant\u00E9d,running' lowerCamelCase__ : str = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : str = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) shutil.rmtree(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCamelCase__ : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCamelCase__ : List[str] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : int = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertIn('new_additional_special_token', after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 4_2 ) lowerCamelCase__ : List[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_, model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length, 4_3 ) shutil.rmtree(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : Optional[Any] = json.load(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : List[str] = json.load(lowerCamelCase_ ) lowerCamelCase__ : Any = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] lowerCamelCase__ : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCamelCase__ : List[str] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ : Dict = tokenizer_class.from_pretrained( lowerCamelCase_, ) self.assertIn( 'an_additional_special_token', tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token', lstrip=lowerCamelCase_ )] lowerCamelCase__ : Any = tokenizer_class.from_pretrained( lowerCamelCase_, additional_special_tokens=lowerCamelCase_, ) self.assertIn('a_new_additional_special_token', tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ), '�' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_tokenizers(fast=lowerCamelCase_, do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Tuple = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] lowerCamelCase__ : List[str] = tokenizer.convert_tokens_to_string(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ )
696
1
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ : List[str] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = XLMProphetNetTokenizer lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : List[str] = True def a__ (self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ : List[str] = XLMProphetNetTokenizer(lowerCamelCase_, keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = '[PAD]' lowerCamelCase__ : Dict = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ), lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ), lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '[PAD]' ) self.assertEqual(vocab_keys[1], '[CLS]' ) self.assertEqual(vocab_keys[-1], 'j' ) self.assertEqual(len(lowerCamelCase_ ), 1_0_1_2 ) def a__ (self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1_0_1_2 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = XLMProphetNetTokenizer(lowerCamelCase_, keep_accents=lowerCamelCase_ ) lowerCamelCase__ : int = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCamelCase_, ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ), [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]], ) lowerCamelCase__ : Optional[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase_, [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ], ) lowerCamelCase__ : Any = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_, [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ], ) lowerCamelCase__ : Dict = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_, [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ], ) @cached_property def a__ (self ): '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = 'Hello World!' lowerCamelCase__ : Optional[int] = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(lowerCamelCase_, self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = {'input_ids': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_, model_name='microsoft/xprophetnet-large-wiki100-cased', revision='1acad1643ddd54a44df6a1b797ada8373685d90e', )
696
"""simple docstring""" from math import pi, sqrt, tan def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCamelCase__ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_lowerCamelCase , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCamelCase__ : Dict = (sidea + sidea + sidea) / 2 lowerCamelCase__ : str = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
696
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase ): if len(_lowerCamelCase ) == 0: return [] lowerCamelCase__ , lowerCamelCase__ : Tuple = min(_lowerCamelCase ), max(_lowerCamelCase ) lowerCamelCase__ : str = int(max_value - min_value ) + 1 lowerCamelCase__ : list[list] = [[] for _ in range(_lowerCamelCase )] for i in my_list: buckets[int(i - min_value )].append(_lowerCamelCase ) return [v for bucket in buckets for v in sorted(_lowerCamelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
696
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : str = use_input_mask lowerCamelCase__ : Optional[Any] = use_token_type_ids lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : Union[str, Any] = type_sequence_label_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : Union[str, Any] = num_choices lowerCamelCase__ : List[str] = scope lowerCamelCase__ : Dict = vocab_size - 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = self.get_config() return config, input_ids, input_mask, token_labels def a__ (self ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[Any] = True return config, input_ids, input_mask, token_labels def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = GPTNeoXModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = True lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : Optional[Any] = GPTNeoXForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = self.num_labels lowerCamelCase__ : Optional[int] = GPTNeoXForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[Any] = GPTNeoXForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Tuple = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : List[str] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : str = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : List[Any] = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and lowerCamelCase__ : Tuple = torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : Tuple = torch.cat([input_mask, next_mask], dim=-1 ) lowerCamelCase__ : List[str] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, output_hidden_states=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = output_from_no_past['hidden_states'][0] lowerCamelCase__ : Optional[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_, output_hidden_states=lowerCamelCase_, )['hidden_states'][0] # select random slice lowerCamelCase__ : Dict = ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-3 ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = config_and_inputs lowerCamelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : int = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase__ : Dict = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = GPTNeoXModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=6_4, num_attention_heads=8 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def a__ (self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = ids_tensor([1, 1_0], config.vocab_size ) lowerCamelCase__ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Any = GPTNeoXModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() lowerCamelCase__ : List[Any] = original_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Optional[int] = {'type': scaling_type, 'factor': 10.0} lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() lowerCamelCase__ : Tuple = scaled_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: lowerCamelCase__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer('My favorite food is', return_tensors='pt' ).to(lowerCamelCase_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCamelCase__ : Dict = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' lowerCamelCase__ : Dict = model.generate(**lowerCamelCase_, do_sample=lowerCamelCase_, max_new_tokens=2_0 ) lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ )[0] self.assertEqual(lowerCamelCase_, lowerCamelCase_ )
696
1
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 A_ : Optional[int] = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ = 1_4 ): '''simple docstring''' if group not in primes: raise ValueError('Unsupported Group' ) lowerCamelCase__ : int = primes[group]['prime'] lowerCamelCase__ : Optional[int] = primes[group]['generator'] lowerCamelCase__ : Any = int(hexlify(urandom(3_2 ) ), base=1_6 ) def a__ (self ): '''simple docstring''' return hex(self.__private_key )[2:] def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = pow(self.generator, self.__private_key, self.prime ) return hex(lowerCamelCase_ )[2:] def a__ (self, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase_, (self.prime - 1) // 2, self.prime ) == 1 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = int(lowerCamelCase_, base=1_6 ) if not self.is_valid_public_key(lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Tuple = pow(lowerCamelCase_, self.__private_key, self.prime ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase_, (prime - 1) // 2, lowerCamelCase_ ) == 1 ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 1_4 ): '''simple docstring''' lowerCamelCase__ : Dict = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[Any] = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[str] = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase_, lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Dict = pow(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
696
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : Dict = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. A_ : List[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A_ : Union[str, Any] = spec.loader.load_module() A_ : int = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A_ : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") A_ : str = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCamelCase__ : Dict = False # source code of `config_class` lowerCamelCase__ : str = inspect.getsource(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = _re_checkpoint.findall(_lowerCamelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCamelCase__ , lowerCamelCase__ : Optional[int] = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase__ : Any = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: lowerCamelCase__ : Any = True break lowerCamelCase__ : Dict = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ : Optional[Any] = '\n'.join(sorted(_lowerCamelCase ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
696
1
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: A_ : int = None A_ : Optional[Any] = logging.get_logger(__name__) A_ : List[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} A_ : Tuple = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", }, "tokenizer_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json", }, } # TODO(PVP) - this should be removed in Transformers v5 A_ : Union[str, Any] = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = VOCAB_FILES_NAMES lowerCamelCase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Union[str, Any] = ['input_ids', 'attention_mask'] lowerCamelCase__ : Any = TaTokenizer lowerCamelCase__ : List[int] = [] def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_="</s>", lowerCamelCase_="<unk>", lowerCamelCase_="<pad>", lowerCamelCase_=1_0_0, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowerCamelCase__ : Any = [f'''<extra_id_{i}>''' for i in range(lowerCamelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowerCamelCase__ : int = len(set(filter(lambda lowerCamelCase_ : bool('extra_id_' in str(lowerCamelCase_ ) ), lowerCamelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) super().__init__( lowerCamelCase_, tokenizer_file=lowerCamelCase_, eos_token=lowerCamelCase_, unk_token=lowerCamelCase_, pad_token=lowerCamelCase_, extra_ids=lowerCamelCase_, additional_special_tokens=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : Optional[Any] = vocab_file lowerCamelCase__ : Any = False if not self.vocab_file else True lowerCamelCase__ : Dict = extra_ids @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowerCamelCase__ : Any = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.', lowerCamelCase_, ) return max_model_length def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ : Tuple = os.path.join( lowerCamelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file, lowerCamelCase_ ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Dict = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowerCamelCase__ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Dict = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def a__ (self ): '''simple docstring''' return list( set(filter(lambda lowerCamelCase_ : bool(re.search(r'<extra_id_\d+>', lowerCamelCase_ ) ) is not None, self.additional_special_tokens ) ) ) def a__ (self ): '''simple docstring''' return [self.convert_tokens_to_ids(lowerCamelCase_ ) for token in self.get_sentinel_tokens()]
696
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(1_00, 0.25) = }") print(f"{price_plus_tax(125.50, 0.05) = }")
696
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A_ : Optional[int] = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A_ : List[str] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) A_ : Tuple = BeautifulSoup(res.text, "html.parser") A_ : Dict = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f"https://google.com{link.get('href')}")
696
1
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = DownBlockaD # noqa F405 lowerCamelCase__ : Tuple = 'down' def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [-0.0_232, -0.9_869, 0.8_054, -0.0_637, -0.1_688, -1.4_264, 0.4_470, -1.3_394, 0.0_904] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = ResnetDownsampleBlockaD # noqa F405 lowerCamelCase__ : int = 'down' def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [0.0_710, 0.2_410, -0.7_320, -1.0_757, -1.1_343, 0.3_540, -0.0_133, -0.2_576, 0.0_948] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Tuple = AttnDownBlockaD # noqa F405 lowerCamelCase__ : Optional[int] = 'down' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [0.0_636, 0.8_964, -0.6_234, -1.0_131, 0.0_844, 0.4_935, 0.3_437, 0.0_911, -0.2_957] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Tuple = CrossAttnDownBlockaD # noqa F405 lowerCamelCase__ : List[str] = 'down' def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = super().prepare_init_args_and_inputs_for_common() lowerCamelCase__ : Dict = 3_2 return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = [0.2_238, -0.7_396, -0.2_255, -0.3_829, 0.1_925, 1.1_665, 0.0_603, -0.7_295, 0.1_983] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Tuple = SimpleCrossAttnDownBlockaD # noqa F405 lowerCamelCase__ : Optional[int] = 'down' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[str] = super().prepare_init_args_and_inputs_for_common() lowerCamelCase__ : List[str] = 3_2 return init_dict, inputs_dict @unittest.skipIf(torch_device == 'mps', 'MPS result is not consistent' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = [0.7_921, -0.0_992, -0.1_962, -0.7_695, -0.4_242, 0.7_804, 0.4_737, 0.2_765, 0.3_338] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = SkipDownBlockaD # noqa F405 lowerCamelCase__ : List[str] = 'down' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_skip_sample=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = [-0.0_845, -0.2_087, -0.2_465, 0.0_971, 0.1_900, -0.0_484, 0.2_664, 0.4_179, 0.5_069] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = AttnSkipDownBlockaD # noqa F405 lowerCamelCase__ : List[str] = 'down' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_skip_sample=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = [0.5_539, 0.1_609, 0.4_924, 0.0_537, -0.1_995, 0.4_050, 0.0_979, -0.2_721, -0.0_642] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[str] = DownEncoderBlockaD # noqa F405 lowerCamelCase__ : Optional[int] = 'down' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_temb=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = { 'in_channels': 3_2, 'out_channels': 3_2, } lowerCamelCase__ : Optional[int] = self.dummy_input return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [1.1_102, 0.5_302, 0.4_872, -0.0_023, -0.8_042, 0.0_483, -0.3_489, -0.5_632, 0.7_626] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = AttnDownEncoderBlockaD # noqa F405 lowerCamelCase__ : Any = 'down' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_temb=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = { 'in_channels': 3_2, 'out_channels': 3_2, } lowerCamelCase__ : int = self.dummy_input return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = [0.8_966, -0.1_486, 0.8_568, 0.8_141, -0.9_046, -0.1_342, -0.0_972, -0.7_417, 0.1_538] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Tuple = UNetMidBlockaD # noqa F405 lowerCamelCase__ : str = 'mid' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = { 'in_channels': 3_2, 'temb_channels': 1_2_8, } lowerCamelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [-0.1_062, 1.7_248, 0.3_494, 1.4_569, -0.0_910, -1.2_421, -0.9_984, 0.6_736, 1.0_028] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[Any] = UNetMidBlockaDCrossAttn # noqa F405 lowerCamelCase__ : List[str] = 'mid' def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = super().prepare_init_args_and_inputs_for_common() lowerCamelCase__ : Dict = 3_2 return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [0.0_187, 2.4_220, 0.4_484, 1.1_203, -0.6_121, -1.5_122, -0.8_270, 0.7_851, 1.8_335] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowerCamelCase__ : Optional[Any] = 'mid' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = super().prepare_init_args_and_inputs_for_common() lowerCamelCase__ : List[str] = 3_2 return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = [0.7_143, 1.9_974, 0.5_448, 1.3_977, 0.1_282, -1.1_237, -1.4_238, 0.5_530, 0.8_880] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = UpBlockaD # noqa F405 lowerCamelCase__ : Optional[Any] = 'up' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [-0.2_041, -0.4_165, -0.3_022, 0.0_041, -0.6_628, -0.7_053, 0.1_928, -0.0_325, 0.0_523] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ResnetUpsampleBlockaD # noqa F405 lowerCamelCase__ : str = 'up' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [0.2_287, 0.3_549, -0.1_346, 0.4_797, -0.1_715, -0.9_649, 0.7_305, -0.5_864, -0.6_244] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[Any] = CrossAttnUpBlockaD # noqa F405 lowerCamelCase__ : List[str] = 'up' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[str] = super().prepare_init_args_and_inputs_for_common() lowerCamelCase__ : Tuple = 3_2 return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = [-0.1_403, -0.3_515, -0.0_420, -0.1_425, 0.3_167, 0.5_094, -0.2_181, 0.5_931, 0.5_582] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = SimpleCrossAttnUpBlockaD # noqa F405 lowerCamelCase__ : Optional[Any] = 'up' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCamelCase_, include_encoder_hidden_states=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = super().prepare_init_args_and_inputs_for_common() lowerCamelCase__ : List[Any] = 3_2 return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = [0.2_645, 0.1_480, 0.0_909, 0.8_044, -0.9_758, -0.9_083, 0.0_994, -1.1_453, -0.7_402] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[int] = AttnUpBlockaD # noqa F405 lowerCamelCase__ : Any = 'up' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCamelCase_ ) @unittest.skipIf(torch_device == 'mps', 'MPS result is not consistent' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [0.0_979, 0.1_326, 0.0_021, 0.0_659, 0.2_249, 0.0_059, 0.1_132, 0.5_952, 0.1_033] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = SkipUpBlockaD # noqa F405 lowerCamelCase__ : Union[str, Any] = 'up' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = [-0.0_893, -0.1_234, -0.1_506, -0.0_332, 0.0_123, -0.0_211, 0.0_566, 0.0_143, 0.0_362] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = AttnSkipUpBlockaD # noqa F405 lowerCamelCase__ : Any = 'up' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = [0.0_361, 0.0_617, 0.2_787, -0.0_350, 0.0_342, 0.3_421, -0.0_843, 0.0_913, 0.3_015] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = UpDecoderBlockaD # noqa F405 lowerCamelCase__ : Dict = 'up' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_temb=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = {'in_channels': 3_2, 'out_channels': 3_2} lowerCamelCase__ : List[str] = self.dummy_input return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = [0.4_404, 0.1_998, -0.9_886, -0.3_320, -0.3_128, -0.7_034, -0.6_955, -0.2_338, -0.3_137] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = AttnUpDecoderBlockaD # noqa F405 lowerCamelCase__ : Any = 'up' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_temb=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = {'in_channels': 3_2, 'out_channels': 3_2} lowerCamelCase__ : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [0.6_738, 0.4_491, 0.1_055, 1.0_710, 0.7_316, 0.3_339, 0.3_352, 0.1_023, 0.3_568] super().test_output(lowerCamelCase_ )
696
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCamelCase__ : Tuple = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_, cache_dir=lowerCamelCase_ ) lowerCamelCase__ : List[str] = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_, os.listdir(lowerCamelCase_ )[0], 'snapshots' ) )] lowerCamelCase__ : Optional[int] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[int] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Any = 4 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : List[Any] = num_samples * [prompt] lowerCamelCase__ : Optional[int] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : int = replicate(lowerCamelCase_ ) lowerCamelCase__ : Any = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : int = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1_514_745 ) < 1e-3 assert np.abs(np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 49_947.875 ) < 5e-1 lowerCamelCase__ : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase_ ) == num_samples def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='flax', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : int = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[str] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : List[str] = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = shard(lowerCamelCase_ ) lowerCamelCase__ : str = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05_652_401) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_383_808.2) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Union[str, Any] = 5_0 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : Tuple = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Any = replicate(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa ) lowerCamelCase__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Union[str, Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] = 5_0 lowerCamelCase__ : Tuple = jax.device_count() lowerCamelCase__ : Optional[int] = num_samples * [prompt] lowerCamelCase__ : str = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Optional[int] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : List[str] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = FlaxDDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', set_alpha_to_one=lowerCamelCase_, steps_offset=1, ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, scheduler=lowerCamelCase_, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : List[str] = scheduler.create_state() lowerCamelCase__ : int = scheduler_state lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : Optional[Any] = jax.device_count() lowerCamelCase__ : Any = num_samples * [prompt] lowerCamelCase__ : Any = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Dict = shard(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045_043_945) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_347_693.5) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : int = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : str = jax.random.split(jax.random.PRNGKey(0 ), lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Dict = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Tuple = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : int = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention lowerCamelCase__ , lowerCamelCase__ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, use_memory_efficient_attention=lowerCamelCase_, ) lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : Any = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Any = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
696
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): return str(_lowerCamelCase ) == str(_lowerCamelCase )[::-1] def lowerCamelCase_ ( _lowerCamelCase ): return int(_lowerCamelCase ) + int(str(_lowerCamelCase )[::-1] ) def lowerCamelCase_ ( _lowerCamelCase = 1_0000 ): lowerCamelCase__ : Optional[Any] = [] for num in range(1 , _lowerCamelCase ): lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = num while iterations < 50: lowerCamelCase__ : Optional[Any] = sum_reverse(_lowerCamelCase ) iterations += 1 if is_palindrome(_lowerCamelCase ): break else: lychrel_nums.append(_lowerCamelCase ) return len(_lowerCamelCase ) if __name__ == "__main__": print(f"{solution() = }")
696
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = 1_0_0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = True, ): '''simple docstring''' if audio_length_in_s is None: lowerCamelCase__ : str = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase__ : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase__ : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCamelCase__ : Dict = int(lowerCamelCase_ ) if sample_size % down_scale_factor != 0: lowerCamelCase__ : Union[str, Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ' process.' ) lowerCamelCase__ : Optional[Any] = int(lowerCamelCase_ ) lowerCamelCase__ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase__ : Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase_, lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ : Union[str, Any] = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_, device=self.device, dtype=lowerCamelCase_ ) # set step values self.scheduler.set_timesteps(lowerCamelCase_, device=audio.device ) lowerCamelCase__ : int = self.scheduler.timesteps.to(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase__ : List[Any] = self.unet(lowerCamelCase_, lowerCamelCase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase__ : List[str] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample lowerCamelCase__ : Union[str, Any] = audio.clamp(-1, 1 ).float().cpu().numpy() lowerCamelCase__ : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase_ )
696
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : str = use_input_mask lowerCamelCase__ : Optional[Any] = use_token_type_ids lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : Union[str, Any] = type_sequence_label_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : Union[str, Any] = num_choices lowerCamelCase__ : List[str] = scope lowerCamelCase__ : Dict = vocab_size - 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = self.get_config() return config, input_ids, input_mask, token_labels def a__ (self ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[Any] = True return config, input_ids, input_mask, token_labels def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = GPTNeoXModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = True lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : Optional[Any] = GPTNeoXForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = self.num_labels lowerCamelCase__ : Optional[int] = GPTNeoXForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[Any] = GPTNeoXForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Tuple = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : List[str] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : str = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : List[Any] = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and lowerCamelCase__ : Tuple = torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : Tuple = torch.cat([input_mask, next_mask], dim=-1 ) lowerCamelCase__ : List[str] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, output_hidden_states=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = output_from_no_past['hidden_states'][0] lowerCamelCase__ : Optional[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_, output_hidden_states=lowerCamelCase_, )['hidden_states'][0] # select random slice lowerCamelCase__ : Dict = ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-3 ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = config_and_inputs lowerCamelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : int = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase__ : Dict = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = GPTNeoXModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=6_4, num_attention_heads=8 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def a__ (self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = ids_tensor([1, 1_0], config.vocab_size ) lowerCamelCase__ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Any = GPTNeoXModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() lowerCamelCase__ : List[Any] = original_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Optional[int] = {'type': scaling_type, 'factor': 10.0} lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() lowerCamelCase__ : Tuple = scaled_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: lowerCamelCase__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer('My favorite food is', return_tensors='pt' ).to(lowerCamelCase_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCamelCase__ : Dict = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' lowerCamelCase__ : Dict = model.generate(**lowerCamelCase_, do_sample=lowerCamelCase_, max_new_tokens=2_0 ) lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ )[0] self.assertEqual(lowerCamelCase_, lowerCamelCase_ )
696
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(lowerCamelCase_ ) ) vocab_file.flush() lowerCamelCase__ : Tuple = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCamelCase__ : Optional[Any] = BertModel(BertConfig(vocab_size=len(lowerCamelCase_ ) ) ) model.save_pretrained(lowerCamelCase_ ) self._test_export(lowerCamelCase_, 'pt', 1_2, lowerCamelCase_ ) @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Optional[Any] = self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Any = quantize(Path(lowerCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Any = self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = quantize(lowerCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowerCamelCase__ : str = Path(lowerCamelCase_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ) return path except Exception as e: self.fail(lowerCamelCase_ ) @require_torch @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : str = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'pt' ) @require_tf @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import TFBertModel lowerCamelCase__ : Dict = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Optional[int] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'tf' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = FeatureExtractionPipeline(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = infer_shapes(lowerCamelCase_, lowerCamelCase_ ) # Assert all variables are present self.assertEqual(len(lowerCamelCase_ ), len(lowerCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3], lowerCamelCase_ ) self.assertSequenceEqual(variable_names[3:], lowerCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name], {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'], {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'], {0: 'batch'} ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['input_ids', 'attention_mask', 'token_type_ids'] lowerCamelCase__ : Optional[int] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowerCamelCase__ , lowerCamelCase__ : str = ensure_valid_input(FuncContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase_ ), 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase_ ), set(lowerCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase_, (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCamelCase__ , lowerCamelCase__ : Any = ensure_valid_input(FuncNonContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase_ ), 1 ) self.assertEqual(len(lowerCamelCase_ ), 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0], tokens['input_ids'] ) self.assertEqual(ordered_input_names[0], 'input_ids' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ), '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx', generated.as_posix() )
696
1
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig A_ : Union[str, Any] = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } A_ : int = logging.get_logger(__name__) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = 'maskformer' lowerCamelCase__ : Tuple = {'hidden_size': 'mask_feature_size'} lowerCamelCase__ : List[Any] = ['resnet', 'swin'] lowerCamelCase__ : Union[str, Any] = ['detr'] def __init__(self, lowerCamelCase_ = 2_5_6, lowerCamelCase_ = 2_5_6, lowerCamelCase_ = 0.1, lowerCamelCase_ = False, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = 0.02, lowerCamelCase_ = 1.0, lowerCamelCase_ = 1.0, lowerCamelCase_ = 1.0, lowerCamelCase_ = 20.0, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowerCamelCase__ : Optional[int] = SwinConfig( image_size=3_8_4, in_channels=3, patch_size=4, embed_dim=1_2_8, depths=[2, 2, 1_8, 2], num_heads=[4, 8, 1_6, 3_2], window_size=1_2, drop_path_rate=0.3, out_features=['stage1', 'stage2', 'stage3', 'stage4'], ) if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : List[str] = backbone_config.pop('model_type' ) lowerCamelCase__ : Tuple = CONFIG_MAPPING[backbone_model_type] lowerCamelCase__ : int = config_class.from_dict(lowerCamelCase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowerCamelCase__ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported lowerCamelCase__ : Union[str, Any] = ( decoder_config.pop('model_type' ) if isinstance(lowerCamelCase_, lowerCamelCase_ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Tuple = CONFIG_MAPPING[decoder_type] lowerCamelCase__ : int = config_class.from_dict(lowerCamelCase_ ) lowerCamelCase__ : int = backbone_config lowerCamelCase__ : List[str] = decoder_config # main feature dimension for the model lowerCamelCase__ : Optional[Any] = fpn_feature_size lowerCamelCase__ : int = mask_feature_size # initializer lowerCamelCase__ : Optional[Any] = init_std lowerCamelCase__ : Union[str, Any] = init_xavier_std # Hungarian matcher && loss lowerCamelCase__ : Tuple = cross_entropy_weight lowerCamelCase__ : Union[str, Any] = dice_weight lowerCamelCase__ : str = mask_weight lowerCamelCase__ : int = use_auxiliary_loss lowerCamelCase__ : List[Any] = no_object_weight lowerCamelCase__ : int = output_auxiliary_logits lowerCamelCase__ : Any = self.decoder_config.encoder_attention_heads lowerCamelCase__ : int = self.decoder_config.num_hidden_layers super().__init__(**lowerCamelCase_ ) @classmethod def a__ (cls, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return cls( backbone_config=lowerCamelCase_, decoder_config=lowerCamelCase_, **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = copy.deepcopy(self.__dict__ ) lowerCamelCase__ : str = self.backbone_config.to_dict() lowerCamelCase__ : Optional[Any] = self.decoder_config.to_dict() lowerCamelCase__ : Any = self.__class__.model_type return output
696
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase__ : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : str = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ : Any = False @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return self.time_input_dim @property def a__ (self ): '''simple docstring''' return self.time_input_dim * 4 @property def a__ (self ): '''simple docstring''' return 1_0_0 @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase__ : int = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def a__ (self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.dummy_unet lowerCamelCase__ : List[Any] = self.dummy_movq lowerCamelCase__ : Tuple = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase__ : Optional[Any] = DDIMScheduler(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image lowerCamelCase__ : Any = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase__ : Optional[Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint lowerCamelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : int = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = 'cpu' lowerCamelCase__ : List[Any] = self.get_dummy_components() lowerCamelCase__ : List[Any] = self.pipeline_class(**lowerCamelCase_ ) lowerCamelCase__ : Dict = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : str = pipe( **self.get_dummy_inputs(lowerCamelCase_ ), return_dict=lowerCamelCase_, )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : List[str] = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase__ : Any = init_image.resize((5_1_2, 5_1_2) ) lowerCamelCase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase__ : Any = torch.from_numpy(np.array(lowerCamelCase_ ) ).float() / 255.0 lowerCamelCase__ : Optional[int] = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowerCamelCase__ : Union[str, Any] = 'A robot, 4k photo' lowerCamelCase__ : Any = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth', torch_dtype=torch.floataa ) lowerCamelCase__ : int = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = pipe_prior( lowerCamelCase_, image=lowerCamelCase_, strength=0.85, generator=lowerCamelCase_, negative_prompt='', ).to_tuple() lowerCamelCase__ : Union[str, Any] = pipeline( image=lowerCamelCase_, image_embeds=lowerCamelCase_, negative_image_embeds=lowerCamelCase_, hint=lowerCamelCase_, generator=lowerCamelCase_, num_inference_steps=1_0_0, height=5_1_2, width=5_1_2, strength=0.5, output_type='np', ) lowerCamelCase__ : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase_, lowerCamelCase_ )
696
1
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = iter(_lowerCamelCase ) while True: lowerCamelCase__ : str = tuple(itertools.islice(_lowerCamelCase , _lowerCamelCase ) ) if not chunk: return yield chunk def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) lowerCamelCase__ : Union[str, Any] = '' if len(_lowerCamelCase ) < 2: return dirty for i in range(len(_lowerCamelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_lowerCamelCase ) & 1: clean += "X" return clean def lowerCamelCase_ ( _lowerCamelCase ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) lowerCamelCase__ : str = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler lowerCamelCase__ : Tuple = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_lowerCamelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_lowerCamelCase ) return table def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : str = generate_table(_lowerCamelCase ) lowerCamelCase__ : Dict = prepare_input(_lowerCamelCase ) lowerCamelCase__ : str = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowerCamelCase , 2 ): lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = divmod(table.index(_lowerCamelCase ) , 5 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = divmod(table.index(_lowerCamelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = generate_table(_lowerCamelCase ) lowerCamelCase__ : Tuple = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowerCamelCase , 2 ): lowerCamelCase__ , lowerCamelCase__ : int = divmod(table.index(_lowerCamelCase ) , 5 ) lowerCamelCase__ , lowerCamelCase__ : List[Any] = divmod(table.index(_lowerCamelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
696
"""simple docstring""" A_ : List[str] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
696
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : List[str] = { "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = ["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = ["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 A_ : Optional[int] = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ = 1_4 ): '''simple docstring''' if group not in primes: raise ValueError('Unsupported Group' ) lowerCamelCase__ : int = primes[group]['prime'] lowerCamelCase__ : Optional[int] = primes[group]['generator'] lowerCamelCase__ : Any = int(hexlify(urandom(3_2 ) ), base=1_6 ) def a__ (self ): '''simple docstring''' return hex(self.__private_key )[2:] def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = pow(self.generator, self.__private_key, self.prime ) return hex(lowerCamelCase_ )[2:] def a__ (self, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase_, (self.prime - 1) // 2, self.prime ) == 1 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = int(lowerCamelCase_, base=1_6 ) if not self.is_valid_public_key(lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Tuple = pow(lowerCamelCase_, self.__private_key, self.prime ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase_, (prime - 1) // 2, lowerCamelCase_ ) == 1 ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 1_4 ): '''simple docstring''' lowerCamelCase__ : Dict = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[Any] = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[str] = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase_, lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Dict = pow(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
696
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = tempfile.mkdtemp() # fmt: off lowerCamelCase__ : Tuple = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCamelCase__ : Dict = dict(zip(lowerCamelCase_, range(len(lowerCamelCase_ ) ) ) ) lowerCamelCase__ : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCamelCase__ : str = {'unk_token': '<unk>'} lowerCamelCase__ : Dict = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ : Tuple = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase_ ) ) lowerCamelCase__ : Optional[Any] = { 'do_resize': True, 'size': 2_0, 'do_center_crop': True, 'crop_size': 1_8, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCamelCase__ : List[Any] = os.path.join(self.tmpdirname, lowerCamelCase_ ) with open(self.image_processor_file, 'w', encoding='utf-8' ) as fp: json.dump(lowerCamelCase_, lowerCamelCase_ ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, pad_token='!', **lowerCamelCase_ ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, pad_token='!', **lowerCamelCase_ ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [np.random.randint(2_5_5, size=(3, 3_0, 4_0_0), dtype=np.uinta )] lowerCamelCase__ : Tuple = [Image.fromarray(np.moveaxis(lowerCamelCase_, 0, -1 ) ) for x in image_inputs] return image_inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.get_tokenizer() lowerCamelCase__ : Dict = self.get_rust_tokenizer() lowerCamelCase__ : List[str] = self.get_image_processor() lowerCamelCase__ : Optional[Any] = OwlViTProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase__ : int = OwlViTProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase_ ) lowerCamelCase__ : int = OwlViTProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase__ : List[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, lowerCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer, lowerCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, lowerCamelCase_ ) self.assertIsInstance(processor_fast.image_processor, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = OwlViTProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Optional[int] = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) lowerCamelCase__ : Optional[int] = self.get_image_processor(do_normalize=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = OwlViTProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCamelCase_ ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.get_image_processor() lowerCamelCase__ : List[Any] = self.get_tokenizer() lowerCamelCase__ : Any = OwlViTProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = self.prepare_image_inputs() lowerCamelCase__ : Dict = image_processor(lowerCamelCase_, return_tensors='np' ) lowerCamelCase__ : Dict = processor(images=lowerCamelCase_, return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.get_image_processor() lowerCamelCase__ : int = self.get_tokenizer() lowerCamelCase__ : Any = OwlViTProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = 'lower newer' lowerCamelCase__ : Tuple = processor(text=lowerCamelCase_, return_tensors='np' ) lowerCamelCase__ : List[str] = tokenizer(lowerCamelCase_, return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist(), encoded_processor[key][0].tolist() ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.get_image_processor() lowerCamelCase__ : Optional[int] = self.get_tokenizer() lowerCamelCase__ : str = OwlViTProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : Dict = 'lower newer' lowerCamelCase__ : Optional[int] = self.prepare_image_inputs() lowerCamelCase__ : Dict = processor(text=lowerCamelCase_, images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ), ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = 'google/owlvit-base-patch32' lowerCamelCase__ : int = OwlViTProcessor.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : str = ['cat', 'nasa badge'] lowerCamelCase__ : Optional[int] = processor(text=lowerCamelCase_ ) lowerCamelCase__ : str = 1_6 self.assertListEqual(list(inputs.keys() ), ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape, (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = 'google/owlvit-base-patch32' lowerCamelCase__ : Dict = OwlViTProcessor.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = [['cat', 'nasa badge'], ['person']] lowerCamelCase__ : Dict = processor(text=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = 1_6 lowerCamelCase__ : int = len(lowerCamelCase_ ) lowerCamelCase__ : Dict = max([len(lowerCamelCase_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ), ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape, (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = 'google/owlvit-base-patch32' lowerCamelCase__ : List[str] = OwlViTProcessor.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = ['cat', 'nasa badge'] lowerCamelCase__ : Dict = processor(text=lowerCamelCase_ ) lowerCamelCase__ : int = 1_6 lowerCamelCase__ : Tuple = inputs['input_ids'] lowerCamelCase__ : Any = [ [4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ), ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape, (2, seq_length) ) self.assertListEqual(list(input_ids[0] ), predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ), predicted_ids[1] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.get_image_processor() lowerCamelCase__ : Optional[int] = self.get_tokenizer() lowerCamelCase__ : int = OwlViTProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.prepare_image_inputs() lowerCamelCase__ : Union[str, Any] = self.prepare_image_inputs() lowerCamelCase__ : List[Any] = processor(images=lowerCamelCase_, query_images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ), ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.get_image_processor() lowerCamelCase__ : List[str] = self.get_tokenizer() lowerCamelCase__ : Optional[Any] = OwlViTProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ : List[Any] = processor.batch_decode(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ )
696
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_lowerCamelCase ) * abs(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
696
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[Any] = KandinskyVaaInpaintPipeline lowerCamelCase__ : Any = ['image_embeds', 'negative_image_embeds', 'image', 'mask_image'] lowerCamelCase__ : List[Any] = [ 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] lowerCamelCase__ : Optional[int] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ : int = False @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return self.time_input_dim @property def a__ (self ): '''simple docstring''' return self.time_input_dim * 4 @property def a__ (self ): '''simple docstring''' return 1_0_0 @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase__ : str = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def a__ (self ): '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.dummy_unet lowerCamelCase__ : int = self.dummy_movq lowerCamelCase__ : Any = DDIMScheduler( num_train_timesteps=1_0_0_0, beta_schedule='linear', beta_start=0.00_085, beta_end=0.012, clip_sample=lowerCamelCase_, set_alpha_to_one=lowerCamelCase_, steps_offset=1, prediction_type='epsilon', thresholding=lowerCamelCase_, ) lowerCamelCase__ : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : Tuple = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image lowerCamelCase__ : str = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase__ : Optional[int] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create mask lowerCamelCase__ : Tuple = np.ones((6_4, 6_4), dtype=np.floataa ) lowerCamelCase__ : List[Any] = 0 if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : List[Any] = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : int = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : List[str] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = 'cpu' lowerCamelCase__ : int = self.get_dummy_components() lowerCamelCase__ : Optional[int] = self.pipeline_class(**lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : Union[str, Any] = pipe( **self.get_dummy_inputs(lowerCamelCase_ ), return_dict=lowerCamelCase_, )[0] lowerCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] lowerCamelCase__ : str = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : int = np.array( [0.50_775_903, 0.49_527_195, 0.48_824_543, 0.50_192_237, 0.48_644_906, 0.49_373_814, 0.4_780_598, 0.47_234_827, 0.48_327_848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def a__ (self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) lowerCamelCase__ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase__ : Any = np.ones((7_6_8, 7_6_8), dtype=np.floataa ) lowerCamelCase__ : str = 0 lowerCamelCase__ : Any = 'a hat' lowerCamelCase__ : List[str] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) lowerCamelCase__ : int = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint', torch_dtype=torch.floataa ) lowerCamelCase__ : List[Any] = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : int = pipe_prior( lowerCamelCase_, generator=lowerCamelCase_, num_inference_steps=5, negative_prompt='', ).to_tuple() lowerCamelCase__ : List[str] = pipeline( image=lowerCamelCase_, mask_image=lowerCamelCase_, image_embeds=lowerCamelCase_, negative_image_embeds=lowerCamelCase_, generator=lowerCamelCase_, num_inference_steps=1_0_0, height=7_6_8, width=7_6_8, output_type='np', ) lowerCamelCase__ : Tuple = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCamelCase_, lowerCamelCase_ )
696
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : int = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : Optional[int] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : str = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : Optional[int] = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Tuple = c.n_embd + 1 # int lowerCamelCase__ : Union[str, Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : List[Any] = not c.scale_attn_weights # bool lowerCamelCase__ : List[Any] = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = PretrainedConfig() lowerCamelCase__ : Optional[Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : Any = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : int = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = mock.Mock() lowerCamelCase__ : List[str] = 5_0_0 lowerCamelCase__ : Any = {} lowerCamelCase__ : int = HTTPError lowerCamelCase__ : Optional[Any] = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : str = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : str = ['config.42.0.0.json'] lowerCamelCase__ : Union[str, Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Optional[int] = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Dict = 'v3.0.0' lowerCamelCase__ : List[str] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
696
1
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = MODEL_FOR_MASKED_LM_MAPPING lowerCamelCase__ : Dict = TF_MODEL_FOR_MASKED_LM_MAPPING def a__ (self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = pipeline(task='fill-mask', model='sshleifer/tiny-distilroberta-base', top_k=2, framework='tf' ) lowerCamelCase__ : Any = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(lowerCamelCase_, decimals=6 ), [ {'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 3_8_0_1_5, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 2_5_5_0_6, 'token_str': ' accuser'}, ], ) lowerCamelCase__ : Optional[int] = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(lowerCamelCase_, decimals=6 ), [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-05, 'token': 3_8_0_1_5, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-05, 'token': 2_5_5_0_6, 'token_str': ' accuser', }, ], ) lowerCamelCase__ : List[str] = unmasker('My name is <mask>', targets=[' Patrick', ' Clara', ' Teven'], top_k=3 ) self.assertEqual( nested_simplify(lowerCamelCase_, decimals=6 ), [ {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 1_3_6_0_6, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3_4_9_9, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2_9_4_1, 'token_str': ' Te'}, ], ) @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = pipeline(task='fill-mask', model='sshleifer/tiny-distilroberta-base', top_k=2, framework='pt' ) lowerCamelCase__ : List[Any] = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(lowerCamelCase_, decimals=6 ), [ {'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 3_5_6_7_6, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 1_6_4_1_6, 'token_str': 'ELS'}, ], ) lowerCamelCase__ : Optional[Any] = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(lowerCamelCase_, decimals=6 ), [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-05, 'token': 3_5_6_7_6, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 1_6_4_1_6, 'token_str': 'ELS'}, ], ) lowerCamelCase__ : int = unmasker('My name is <mask>', targets=[' Patrick', ' Clara', ' Teven'], top_k=3 ) self.assertEqual( nested_simplify(lowerCamelCase_, decimals=6 ), [ {'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3_4_9_9, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-05, 'token': 2_9_4_1, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 1_3_6_0_6, 'token_str': ' Clara'}, ], ) lowerCamelCase__ : Optional[Any] = unmasker('My name is <mask> <mask>', top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_, decimals=6 ), [ [ { 'score': 2.2e-05, 'token': 3_5_6_7_6, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-05, 'token': 1_6_4_1_6, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-05, 'token': 3_5_6_7_6, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-05, 'token': 1_6_4_1_6, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ], ) @require_torch_gpu def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = pipeline('fill-mask', model='hf-internal-testing/tiny-random-distilbert', device=0, framework='pt' ) # convert model to fp16 pipe.model.half() lowerCamelCase__ : Optional[int] = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) @slow @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = pipeline(task='fill-mask', model='distilroberta-base', top_k=2, framework='pt' ) self.run_large_test(lowerCamelCase_ ) @slow @require_tf def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = pipeline(task='fill-mask', model='distilroberta-base', top_k=2, framework='tf' ) self.run_large_test(lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(lowerCamelCase_ ), [ {'sequence': 'My name is John', 'score': 0.008, 'token': 6_1_0, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.007, 'token': 1_5_7_3, 'token_str': ' Chris'}, ], ) lowerCamelCase__ : str = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(lowerCamelCase_ ), [ { 'sequence': 'The largest city in France is Paris', 'score': 0.251, 'token': 2_2_0_1, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.214, 'token': 1_2_7_9_0, 'token_str': ' Lyon', }, ], ) lowerCamelCase__ : Union[str, Any] = unmasker('My name is <mask>', targets=[' Patrick', ' Clara', ' Teven'], top_k=3 ) self.assertEqual( nested_simplify(lowerCamelCase_ ), [ {'sequence': 'My name is Patrick', 'score': 0.005, 'token': 3_4_9_9, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.000, 'token': 1_3_6_0_6, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.000, 'token': 2_9_4_1, 'token_str': ' Te'}, ], ) @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = pipeline(task='fill-mask', model='sshleifer/tiny-distilroberta-base', framework='pt' ) lowerCamelCase__ : Any = None lowerCamelCase__ : str = None self.run_pipeline_test(lowerCamelCase_, [] ) @require_tf def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = pipeline(task='fill-mask', model='sshleifer/tiny-distilroberta-base', framework='tf' ) lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Dict = None self.run_pipeline_test(lowerCamelCase_, [] ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) lowerCamelCase__ : Dict = FillMaskPipeline(model=lowerCamelCase_, tokenizer=lowerCamelCase_ ) lowerCamelCase__ : Tuple = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = fill_masker.tokenizer lowerCamelCase__ : int = fill_masker.model lowerCamelCase__ : Union[str, Any] = fill_masker( f'''This is a {tokenizer.mask_token}''', ) self.assertEqual( lowerCamelCase_, [ {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, ], ) lowerCamelCase__ : Optional[Any] = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( lowerCamelCase_, [ {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, ], ) lowerCamelCase__ : Optional[Any] = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( lowerCamelCase_, [ [ {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, ], [ {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, ], ], ) with self.assertRaises(lowerCamelCase_ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(lowerCamelCase_ ): fill_masker('This is' ) self.run_test_top_k(lowerCamelCase_, lowerCamelCase_ ) self.run_test_targets(lowerCamelCase_, lowerCamelCase_ ) self.run_test_top_k_targets(lowerCamelCase_, lowerCamelCase_ ) self.fill_mask_with_duplicate_targets_and_top_k(lowerCamelCase_, lowerCamelCase_ ) self.fill_mask_with_multiple_masks(lowerCamelCase_, lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = tokenizer.get_vocab() lowerCamelCase__ : Dict = sorted(vocab.keys() )[:2] # Pipeline argument lowerCamelCase__ : Optional[int] = FillMaskPipeline(model=lowerCamelCase_, tokenizer=lowerCamelCase_, targets=lowerCamelCase_ ) lowerCamelCase__ : Tuple = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( lowerCamelCase_, [ {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, ], ) lowerCamelCase__ : List[str] = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs}, lowerCamelCase_ ) lowerCamelCase__ : Tuple = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs}, set(lowerCamelCase_ ) ) # Call argument lowerCamelCase__ : int = FillMaskPipeline(model=lowerCamelCase_, tokenizer=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''', targets=lowerCamelCase_ ) self.assertEqual( lowerCamelCase_, [ {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, ], ) lowerCamelCase__ : Tuple = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs}, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs}, set(lowerCamelCase_ ) ) # Score equivalence lowerCamelCase__ : Optional[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''', targets=lowerCamelCase_ ) lowerCamelCase__ : List[str] = [top_mask['token_str'] for top_mask in outputs] lowerCamelCase__ : List[Any] = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowerCamelCase_ ) == set(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''', targets=lowerCamelCase_ ) lowerCamelCase__ : Any = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(lowerCamelCase_ ), nested_simplify(lowerCamelCase_ ) ) # Raises with invalid with self.assertRaises(lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = fill_masker(f'''This is a {tokenizer.mask_token}''', targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = fill_masker(f'''This is a {tokenizer.mask_token}''', targets=[''] ) with self.assertRaises(lowerCamelCase_ ): lowerCamelCase__ : List[str] = fill_masker(f'''This is a {tokenizer.mask_token}''', targets='' ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = FillMaskPipeline(model=lowerCamelCase_, tokenizer=lowerCamelCase_, top_k=2 ) lowerCamelCase__ : List[str] = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( lowerCamelCase_, [ {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, ], ) lowerCamelCase__ : int = FillMaskPipeline(model=lowerCamelCase_, tokenizer=lowerCamelCase_ ) lowerCamelCase__ : int = fill_masker(f'''This is a {tokenizer.mask_token}''', top_k=2 ) self.assertEqual( lowerCamelCase_, [ {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, ], ) self.assertEqual(nested_simplify(lowerCamelCase_ ), nested_simplify(lowerCamelCase_ ) ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = tokenizer.get_vocab() lowerCamelCase__ : List[Any] = FillMaskPipeline(model=lowerCamelCase_, tokenizer=lowerCamelCase_ ) # top_k=2, ntargets=3 lowerCamelCase__ : Optional[int] = sorted(vocab.keys() )[:3] lowerCamelCase__ : List[str] = fill_masker(f'''This is a {tokenizer.mask_token}''', top_k=2, targets=lowerCamelCase_ ) # If we use the most probably targets, and filter differently, we should still # have the same results lowerCamelCase__ : Any = [el['token_str'] for el in sorted(lowerCamelCase_, key=lambda lowerCamelCase_ : x["score"], reverse=lowerCamelCase_ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowerCamelCase_ ).issubset(lowerCamelCase_ ): lowerCamelCase__ : Tuple = fill_masker(f'''This is a {tokenizer.mask_token}''', top_k=3, targets=lowerCamelCase_ ) # They should yield exactly the same result self.assertEqual(nested_simplify(lowerCamelCase_ ), nested_simplify(lowerCamelCase_ ) ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = FillMaskPipeline(model=lowerCamelCase_, tokenizer=lowerCamelCase_ ) lowerCamelCase__ : List[str] = tokenizer.get_vocab() # String duplicates + id duplicates lowerCamelCase__ : Tuple = sorted(vocab.keys() )[:3] lowerCamelCase__ : Tuple = [targets[0], targets[1], targets[0], targets[2], targets[1]] lowerCamelCase__ : Any = fill_masker(f'''My name is {tokenizer.mask_token}''', targets=lowerCamelCase_, top_k=1_0 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(lowerCamelCase_ ), 3 ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = FillMaskPipeline(model=lowerCamelCase_, tokenizer=lowerCamelCase_ ) lowerCamelCase__ : List[str] = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''', top_k=2 ) self.assertEqual( lowerCamelCase_, [ [ {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, ], [ {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, ], [ {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, {'sequence': ANY(lowerCamelCase_ ), 'score': ANY(lowerCamelCase_ ), 'token': ANY(lowerCamelCase_ ), 'token_str': ANY(lowerCamelCase_ )}, ], ], )
696
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' super().__init__() lowerCamelCase__ : Dict = value_function lowerCamelCase__ : int = unet lowerCamelCase__ : Union[str, Any] = scheduler lowerCamelCase__ : int = env lowerCamelCase__ : List[Any] = env.get_dataset() lowerCamelCase__ : Dict = {} for key in self.data.keys(): try: lowerCamelCase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowerCamelCase__ : Optional[int] = {} for key in self.data.keys(): try: lowerCamelCase__ : Tuple = self.data[key].std() except: # noqa: E722 pass lowerCamelCase__ : Optional[Any] = env.observation_space.shape[0] lowerCamelCase__ : List[str] = env.action_space.shape[0] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def a__ (self, lowerCamelCase_ ): '''simple docstring''' if type(lowerCamelCase_ ) is dict: return {k: self.to_torch(lowerCamelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase_, device=self.unet.device ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for key, val in cond.items(): lowerCamelCase__ : Optional[Any] = val.clone() return x_in def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = x.shape[0] lowerCamelCase__ : Tuple = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCamelCase__ : Dict = torch.full((batch_size,), lowerCamelCase_, device=self.unet.device, dtype=torch.long ) for _ in range(lowerCamelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCamelCase__ : str = self.value_function(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample lowerCamelCase__ : Union[str, Any] = torch.autograd.grad([y.sum()], [x] )[0] lowerCamelCase__ : Optional[int] = self.scheduler._get_variance(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = torch.exp(0.5 * posterior_variance ) lowerCamelCase__ : Tuple = model_std * grad lowerCamelCase__ : str = 0 lowerCamelCase__ : Dict = x.detach() lowerCamelCase__ : Dict = x + scale * grad lowerCamelCase__ : Optional[int] = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : Tuple = self.unet(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample.permute(0, 2, 1 ) # TODO: verify deprecation of this kwarg lowerCamelCase__ : Optional[Any] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, predict_epsilon=lowerCamelCase_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowerCamelCase__ : Any = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) return x, y def __call__(self, lowerCamelCase_, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=0.1 ): '''simple docstring''' lowerCamelCase__ : Dict = self.normalize(lowerCamelCase_, 'observations' ) lowerCamelCase__ : List[str] = obs[None].repeat(lowerCamelCase_, axis=0 ) lowerCamelCase__ : str = {0: self.to_torch(lowerCamelCase_ )} lowerCamelCase__ : Optional[Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCamelCase__ : List[Any] = randn_tensor(lowerCamelCase_, device=self.unet.device ) lowerCamelCase__ : int = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) # run the diffusion process lowerCamelCase__ , lowerCamelCase__ : List[str] = self.run_diffusion(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # sort output trajectories by value lowerCamelCase__ : Union[str, Any] = y.argsort(0, descending=lowerCamelCase_ ).squeeze() lowerCamelCase__ : List[str] = x[sorted_idx] lowerCamelCase__ : Optional[Any] = sorted_values[:, :, : self.action_dim] lowerCamelCase__ : Union[str, Any] = actions.detach().cpu().numpy() lowerCamelCase__ : Union[str, Any] = self.de_normalize(lowerCamelCase_, key='actions' ) # select the action with the highest value if y is not None: lowerCamelCase__ : str = 0 else: # if we didn't run value guiding, select a random action lowerCamelCase__ : Optional[Any] = np.random.randint(0, lowerCamelCase_ ) lowerCamelCase__ : Tuple = denorm_actions[selected_index, 0] return denorm_actions
696
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor A_ : str = logging.get_logger(__name__) class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.', lowerCamelCase_, ) super().__init__(*lowerCamelCase_, **lowerCamelCase_ )
696
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : List[str] = analyze_text(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. lowerCamelCase__ : List[Any] = sum(single_char_strings.values() ) # one length string lowerCamelCase__ : str = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCamelCase__ : Tuple = single_char_strings[ch] lowerCamelCase__ : Union[str, Any] = my_str / all_sum my_fir_sum += prob * math.loga(_lowerCamelCase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string lowerCamelCase__ : Dict = sum(two_char_strings.values() ) lowerCamelCase__ : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCamelCase__ : int = cha + cha if sequence in two_char_strings: lowerCamelCase__ : int = two_char_strings[sequence] lowerCamelCase__ : Tuple = int(_lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(_lowerCamelCase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = Counter() # type: ignore lowerCamelCase__ : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase_ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
696
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): # noqa: E741 lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : int = 0 lowerCamelCase__ : Any = [0] * n lowerCamelCase__ : str = [False] * n lowerCamelCase__ : Optional[int] = [False] * n def dfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if parent == root: out_edge_count += 1 lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : Any = at for to in l[at]: if to == parent: pass elif not visited[to]: lowerCamelCase__ : str = dfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : str = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: lowerCamelCase__ : Union[str, Any] = True # AP found via cycle if at == low[to]: lowerCamelCase__ : List[str] = True else: lowerCamelCase__ : Dict = min(low[at] , _lowerCamelCase ) return out_edge_count for i in range(_lowerCamelCase ): if not visited[i]: lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : str = dfs(_lowerCamelCase , _lowerCamelCase , -1 , _lowerCamelCase ) lowerCamelCase__ : int = out_edge_count > 1 for x in range(len(_lowerCamelCase ) ): if is_art[x] is True: print(_lowerCamelCase ) # Adjacency list of graph A_ : Any = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
696
"""simple docstring""" import os def lowerCamelCase_ ( ): with open(os.path.dirname(_lowerCamelCase ) + '/p022_names.txt' ) as file: lowerCamelCase__ : Union[str, Any] = str(file.readlines()[0] ) lowerCamelCase__ : int = names.replace('"' , '' ).split(',' ) names.sort() lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : str = 0 for i, name in enumerate(_lowerCamelCase ): for letter in name: name_score += ord(_lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowerCamelCase__ : Dict = 0 return total_score if __name__ == "__main__": print(solution())
696
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : str = { "configuration_bridgetower": [ "BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP", "BridgeTowerConfig", "BridgeTowerTextConfig", "BridgeTowerVisionConfig", ], "processing_bridgetower": ["BridgeTowerProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["BridgeTowerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST", "BridgeTowerForContrastiveLearning", "BridgeTowerForImageAndTextRetrieval", "BridgeTowerForMaskedLM", "BridgeTowerModel", "BridgeTowerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
696
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = 'Speech2TextFeatureExtractor' lowerCamelCase__ : Dict = 'Speech2TextTokenizer' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.feature_extractor lowerCamelCase__ : List[Any] = False def __call__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_, **lowerCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ : Optional[int] = kwargs.pop('raw_speech' ) else: lowerCamelCase__ : int = kwargs.pop('audio', lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = kwargs.pop('sampling_rate', lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('text', lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowerCamelCase__ : List[str] = args[0] lowerCamelCase__ : Any = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ : Union[str, Any] = self.feature_extractor(lowerCamelCase_, *lowerCamelCase_, sampling_rate=lowerCamelCase_, **lowerCamelCase_ ) if text is not None: lowerCamelCase__ : List[Any] = self.tokenizer(lowerCamelCase_, **lowerCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Tuple = encodings['input_ids'] return inputs def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @contextmanager def a__ (self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ : int = True lowerCamelCase__ : List[Any] = self.tokenizer yield lowerCamelCase__ : Optional[int] = self.feature_extractor lowerCamelCase__ : List[Any] = False
696
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging A_ : Tuple = logging.get_logger(__name__) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['input_features', 'attention_mask'] def __init__(self, lowerCamelCase_=8_0, lowerCamelCase_=1_6_0_0_0, lowerCamelCase_=0.0, lowerCamelCase_=1_0, lowerCamelCase_=2_5, lowerCamelCase_="hamming_window", lowerCamelCase_=32_768.0, lowerCamelCase_=0.97, lowerCamelCase_=1.0, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=False, **lowerCamelCase_, ): '''simple docstring''' super().__init__(feature_size=lowerCamelCase_, sampling_rate=lowerCamelCase_, padding_value=lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : List[str] = feature_size lowerCamelCase__ : Union[str, Any] = sampling_rate lowerCamelCase__ : List[str] = padding_value lowerCamelCase__ : Optional[int] = hop_length lowerCamelCase__ : List[Any] = win_length lowerCamelCase__ : Tuple = frame_signal_scale lowerCamelCase__ : Tuple = preemphasis_coeff lowerCamelCase__ : Optional[Any] = mel_floor lowerCamelCase__ : str = normalize_means lowerCamelCase__ : Dict = normalize_vars lowerCamelCase__ : List[str] = win_function lowerCamelCase__ : Optional[Any] = return_attention_mask lowerCamelCase__ : int = win_length * sampling_rate // 1_0_0_0 lowerCamelCase__ : Any = hop_length * sampling_rate // 1_0_0_0 lowerCamelCase__ : List[str] = optimal_fft_length(self.sample_size ) lowerCamelCase__ : str = (self.n_fft // 2) + 1 def a__ (self, lowerCamelCase_ ): '''simple docstring''' if self.win_function == "hamming_window": lowerCamelCase__ : str = window_function(window_length=self.sample_size, name=self.win_function, periodic=lowerCamelCase_ ) else: lowerCamelCase__ : str = window_function(window_length=self.sample_size, name=self.win_function ) lowerCamelCase__ : List[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs, num_mel_filters=self.feature_size, min_frequency=0.0, max_frequency=self.sampling_rate / 2.0, sampling_rate=self.sampling_rate, ) lowerCamelCase__ : List[Any] = spectrogram( one_waveform * self.frame_signal_scale, window=lowerCamelCase_, frame_length=self.sample_size, hop_length=self.sample_stride, fft_length=self.n_fft, center=lowerCamelCase_, preemphasis=self.preemphasis_coeff, mel_filters=lowerCamelCase_, mel_floor=self.mel_floor, log_mel='log', ) return msfc_features.T def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self.normalize_means: lowerCamelCase__ : Tuple = x[:input_length].mean(axis=0 ) lowerCamelCase__ : Optional[int] = np.subtract(lowerCamelCase_, lowerCamelCase_ ) if self.normalize_vars: lowerCamelCase__ : Dict = x[:input_length].std(axis=0 ) lowerCamelCase__ : Dict = np.divide(lowerCamelCase_, lowerCamelCase_ ) if input_length < x.shape[0]: lowerCamelCase__ : Optional[Any] = padding_value # make sure array is in float32 lowerCamelCase__ : int = x.astype(np.floataa ) return x def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(lowerCamelCase_, lowerCamelCase_, self.padding_value ) for x, n in zip(lowerCamelCase_, lowerCamelCase_ )] def __call__(self, lowerCamelCase_, lowerCamelCase_ = False, lowerCamelCase_ = None, lowerCamelCase_ = False, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowerCamelCase__ : List[Any] = isinstance(lowerCamelCase_, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCamelCase__ : int = is_batched_numpy or ( isinstance(lowerCamelCase_, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase__ : int = [np.asarray(lowerCamelCase_, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase_, np.ndarray ): lowerCamelCase__ : Tuple = np.asarray(lowerCamelCase_, dtype=np.floataa ) elif isinstance(lowerCamelCase_, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase__ : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase__ : str = [raw_speech] # extract fbank features lowerCamelCase__ : Dict = [self._extract_mfsc_features(lowerCamelCase_ ) for one_waveform in raw_speech] # convert into correct format for padding lowerCamelCase__ : List[str] = BatchFeature({'input_features': features} ) lowerCamelCase__ : Any = self.pad( lowerCamelCase_, padding=lowerCamelCase_, max_length=lowerCamelCase_, truncation=lowerCamelCase_, pad_to_multiple_of=lowerCamelCase_, return_attention_mask=lowerCamelCase_, **lowerCamelCase_, ) # make sure list is in array format lowerCamelCase__ : int = padded_inputs.get('input_features' ) if isinstance(input_features[0], lowerCamelCase_ ): lowerCamelCase__ : Dict = [np.asarray(lowerCamelCase_, dtype=np.floataa ) for feature in input_features] lowerCamelCase__ : Any = padded_inputs.get('attention_mask' ) if attention_mask is not None: lowerCamelCase__ : int = [np.asarray(lowerCamelCase_, dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: lowerCamelCase__ : int = ( np.array(lowerCamelCase_, dtype=np.intaa ) if self._get_padding_strategies(lowerCamelCase_, max_length=lowerCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) lowerCamelCase__ : Tuple = self.normalize( padded_inputs['input_features'], attention_mask=lowerCamelCase_ ) if return_tensors is not None: lowerCamelCase__ : str = padded_inputs.convert_to_tensors(lowerCamelCase_ ) return padded_inputs
696
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : Optional[Any] = use_input_mask lowerCamelCase__ : List[Any] = use_token_type_ids lowerCamelCase__ : List[Any] = use_labels lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : Optional[int] = embedding_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Optional[Any] = num_labels lowerCamelCase__ : Dict = num_choices lowerCamelCase__ : Tuple = scope def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : List[str] = None if self.use_input_mask: lowerCamelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_token_type_ids: lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Any = None lowerCamelCase__ : Union[str, Any] = None if self.use_labels: lowerCamelCase__ : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, embedding_size=self.embedding_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, next_sentence_label=lowerCamelCase_, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, start_positions=lowerCamelCase_, end_positions=lowerCamelCase_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : int = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.num_choices lowerCamelCase__ : Dict = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : int = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : List[str] = config_and_inputs lowerCamelCase__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : int = True def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase_ ) return inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = MobileBertModelTester(self ) lowerCamelCase__ : List[str] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): return torch.tensor( _lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , ) A_ : Tuple = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(lowerCamelCase_ ) lowerCamelCase__ : Tuple = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ )[0] lowerCamelCase__ : Optional[int] = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [ [ [-2.4_736_526e07, 8.2_691_656e04, 1.6_521_838e05], [-5.7_541_704e-01, 3.9_056_022e00, 4.4_011_507e00], [2.6_047_359e00, 1.5_677_652e00, -1.7_324_188e-01], ] ], device=lowerCamelCase_, ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCamelCase__ : Optional[int] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCamelCase__ : Any = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
696
1
"""simple docstring""" from datetime import datetime as dt import os from github import Github A_ : Optional[Any] = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[int] = Github(os.environ['GITHUB_TOKEN'] ) lowerCamelCase__ : Dict = g.get_repo('huggingface/transformers' ) lowerCamelCase__ : Union[str, Any] = repo.get_issues(state='open' ) for issue in open_issues: lowerCamelCase__ : Any = sorted([comment for comment in issue.get_comments()] , key=lambda _lowerCamelCase : i.created_at , reverse=_lowerCamelCase ) lowerCamelCase__ : Any = comments[0] if len(_lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
696
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A_ : str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=1 ): '''simple docstring''' lowerCamelCase__ : Any = tokenizer lowerCamelCase__ : Optional[Any] = dataset lowerCamelCase__ : int = len(lowerCamelCase_ ) if n_tasks is None else n_tasks lowerCamelCase__ : Any = n_copies def __iter__(self ): '''simple docstring''' lowerCamelCase__ : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ : Optional[int] = self.tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = start_length lowerCamelCase__ : List[str] = eof_strings lowerCamelCase__ : List[str] = tokenizer def __call__(self, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ : Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ): lowerCamelCase__ : List[str] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): lowerCamelCase__ : str = batch['ids'].shape[-1] lowerCamelCase__ : int = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times lowerCamelCase__ : Optional[Any] = batch['task_id'].repeat(_lowerCamelCase ) lowerCamelCase__ : List[Any] = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ : List[Any] = generated_tokens.cpu().numpy() lowerCamelCase__ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) lowerCamelCase__ : str = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ : Optional[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase_ ( ): # Setup configuration lowerCamelCase__ : int = HfArgumentParser(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ : Tuple = 'false' if args.num_workers is None: lowerCamelCase__ : List[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ : List[Any] = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ : Optional[int] = tokenizer.eos_token lowerCamelCase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ : Optional[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric lowerCamelCase__ : Any = load_dataset('openai_humaneval' ) lowerCamelCase__ : Optional[int] = load_metric('code_eval' ) lowerCamelCase__ : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ : Optional[int] = args.n_samples // args.batch_size lowerCamelCase__ : Tuple = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ : Union[str, Any] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ : List[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ : str = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: lowerCamelCase__ : List[str] = [] for task in tqdm(range(_lowerCamelCase ) ): lowerCamelCase__ : int = human_eval['test'][task]['test'] lowerCamelCase__ : Union[str, Any] = f'''check({human_eval['test'][task]['entry_point']})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ : Any = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
696
1
"""simple docstring""" from math import factorial def lowerCamelCase_ ( _lowerCamelCase = 100 ): return sum(map(_lowerCamelCase , str(factorial(_lowerCamelCase ) ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
696
"""simple docstring""" from ..utils import DummyObject, requires_backends class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] ) class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] )
696
1
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class a_ ( nn.Module ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__() lowerCamelCase__ : Optional[Any] = nn.Linear(3, 4 ) lowerCamelCase__ : List[Any] = nn.BatchNormad(4 ) lowerCamelCase__ : Optional[Any] = nn.Linear(4, 5 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_ ) ) ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCamelCase_, model.state_dict() ) lowerCamelCase__ : Union[str, Any] = os.path.join(lowerCamelCase_, 'index.json' ) self.assertTrue(os.path.isfile(lowerCamelCase_ ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: lowerCamelCase__ : List[str] = os.path.join(lowerCamelCase_, f'''{key}.dat''' ) self.assertTrue(os.path.isfile(lowerCamelCase_ ) ) # TODO: add tests on the fact weights are properly loaded def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: lowerCamelCase__ : str = torch.randn(2, 3, dtype=lowerCamelCase_ ) with TemporaryDirectory() as tmp_dir: lowerCamelCase__ : Optional[Any] = offload_weight(lowerCamelCase_, 'weight', lowerCamelCase_, {} ) lowerCamelCase__ : Union[str, Any] = os.path.join(lowerCamelCase_, 'weight.dat' ) self.assertTrue(os.path.isfile(lowerCamelCase_ ) ) self.assertDictEqual(lowerCamelCase_, {'weight': {'shape': [2, 3], 'dtype': str(lowerCamelCase_ ).split('.' )[1]}} ) lowerCamelCase__ : Dict = load_offloaded_weight(lowerCamelCase_, index['weight'] ) self.assertTrue(torch.equal(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = ModelForTest() lowerCamelCase__ : Optional[int] = model.state_dict() lowerCamelCase__ : Dict = {k: v for k, v in state_dict.items() if 'linear2' not in k} lowerCamelCase__ : Tuple = {k: v for k, v in state_dict.items() if 'linear2' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Tuple = OffloadedWeightsLoader(state_dict=lowerCamelCase_, save_folder=lowerCamelCase_ ) # Every key is there with the right value self.assertEqual(sorted(lowerCamelCase_ ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCamelCase_, weight_map[key] ) ) lowerCamelCase__ : List[Any] = {k: v for k, v in state_dict.items() if 'weight' in k} lowerCamelCase__ : Dict = {k: v for k, v in state_dict.items() if 'weight' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = OffloadedWeightsLoader(state_dict=lowerCamelCase_, save_folder=lowerCamelCase_ ) # Every key is there with the right value self.assertEqual(sorted(lowerCamelCase_ ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCamelCase_, weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCamelCase_, lowerCamelCase_ ) # Duplicates are removed lowerCamelCase__ : Optional[Any] = OffloadedWeightsLoader(state_dict=lowerCamelCase_, save_folder=lowerCamelCase_ ) # Every key is there with the right value self.assertEqual(sorted(lowerCamelCase_ ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCamelCase_, weight_map[key] ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = {'a.1': 0, 'a.10': 1, 'a.2': 2} lowerCamelCase__ : List[Any] = extract_submodules_state_dict(lowerCamelCase_, ['a.1', 'a.2'] ) self.assertDictEqual(lowerCamelCase_, {'a.1': 0, 'a.2': 2} ) lowerCamelCase__ : Dict = {'a.1.a': 0, 'a.10.a': 1, 'a.2.a': 2} lowerCamelCase__ : List[Any] = extract_submodules_state_dict(lowerCamelCase_, ['a.1', 'a.2'] ) self.assertDictEqual(lowerCamelCase_, {'a.1.a': 0, 'a.2.a': 2} )
696
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = 0 while number > 0: lowerCamelCase__ : List[str] = number % 10 sum_of_digits += last_digit lowerCamelCase__ : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase_ ( _lowerCamelCase = 100 ): lowerCamelCase__ : Union[str, Any] = factorial(_lowerCamelCase ) lowerCamelCase__ : List[Any] = split_and_add(_lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
696
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase__ : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : str = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ : Any = False @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return self.time_input_dim @property def a__ (self ): '''simple docstring''' return self.time_input_dim * 4 @property def a__ (self ): '''simple docstring''' return 1_0_0 @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase__ : int = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def a__ (self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.dummy_unet lowerCamelCase__ : List[Any] = self.dummy_movq lowerCamelCase__ : Tuple = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase__ : Optional[Any] = DDIMScheduler(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image lowerCamelCase__ : Any = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase__ : Optional[Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint lowerCamelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : int = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = 'cpu' lowerCamelCase__ : List[Any] = self.get_dummy_components() lowerCamelCase__ : List[Any] = self.pipeline_class(**lowerCamelCase_ ) lowerCamelCase__ : Dict = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : str = pipe( **self.get_dummy_inputs(lowerCamelCase_ ), return_dict=lowerCamelCase_, )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : List[str] = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase__ : Any = init_image.resize((5_1_2, 5_1_2) ) lowerCamelCase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase__ : Any = torch.from_numpy(np.array(lowerCamelCase_ ) ).float() / 255.0 lowerCamelCase__ : Optional[int] = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowerCamelCase__ : Union[str, Any] = 'A robot, 4k photo' lowerCamelCase__ : Any = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth', torch_dtype=torch.floataa ) lowerCamelCase__ : int = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = pipe_prior( lowerCamelCase_, image=lowerCamelCase_, strength=0.85, generator=lowerCamelCase_, negative_prompt='', ).to_tuple() lowerCamelCase__ : Union[str, Any] = pipeline( image=lowerCamelCase_, image_embeds=lowerCamelCase_, negative_image_embeds=lowerCamelCase_, hint=lowerCamelCase_, generator=lowerCamelCase_, num_inference_steps=1_0_0, height=5_1_2, width=5_1_2, strength=0.5, output_type='np', ) lowerCamelCase__ : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase_, lowerCamelCase_ )
696
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ : Dict = "pt" elif is_tf_available(): A_ : Union[str, Any] = "tf" else: A_ : List[str] = "jax" class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = PerceiverTokenizer lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ (self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=2_0, lowerCamelCase_=5 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [] for i in range(len(lowerCamelCase_ ) ): try: lowerCamelCase__ : Any = tokenizer.decode([i], clean_up_tokenization_spaces=lowerCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase__ : Any = list(filter(lambda lowerCamelCase_ : re.match(r'^[ a-zA-Z]+$', t[1] ), lowerCamelCase_ ) ) lowerCamelCase__ : Union[str, Any] = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=lowerCamelCase_ ), lowerCamelCase_ ) ) if max_length is not None and len(lowerCamelCase_ ) > max_length: lowerCamelCase__ : int = toks[:max_length] if min_length is not None and len(lowerCamelCase_ ) < min_length and len(lowerCamelCase_ ) > 0: while len(lowerCamelCase_ ) < min_length: lowerCamelCase__ : Dict = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : int = [t[0] for t in toks] # Ensure consistency lowerCamelCase__ : Optional[int] = tokenizer.decode(lowerCamelCase_, clean_up_tokenization_spaces=lowerCamelCase_ ) if " " not in output_txt and len(lowerCamelCase_ ) > 1: lowerCamelCase__ : List[Any] = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=lowerCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=lowerCamelCase_ ) ) if with_prefix_space: lowerCamelCase__ : Optional[Any] = ' ' + output_txt lowerCamelCase__ : List[Any] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) return output_txt, output_ids def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = 'Unicode €.' lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_ ) lowerCamelCase__ : Dict = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : int = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]Unicode €.[SEP]' ) lowerCamelCase__ : List[str] = tokenizer('e è é ê ë' ) lowerCamelCase__ : Dict = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : Any = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ), '[CLS]e è é ê ë[SEP]' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCamelCase__ : List[Any] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) if FRAMEWORK != "jax": lowerCamelCase__ : List[str] = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase__ : int = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertEqual((2, 3_8), batch.input_ids.shape ) self.assertEqual((2, 3_8), batch.attention_mask.shape ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.perceiver_tokenizer lowerCamelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCamelCase__ : List[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids', lowerCamelCase_ ) self.assertIn('attention_mask', lowerCamelCase_ ) self.assertNotIn('decoder_input_ids', lowerCamelCase_ ) self.assertNotIn('decoder_attention_mask', lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : int = [ 'Summary of the text.', 'Another summary.', ] lowerCamelCase__ : str = tokenizer( text_target=lowerCamelCase_, max_length=3_2, padding='max_length', truncation=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertEqual(3_2, targets['input_ids'].shape[1] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 4_2 ) # Now let's start the test lowerCamelCase__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : str = ' He is very happy, UNwant\u00E9d,running' lowerCamelCase__ : str = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : str = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) shutil.rmtree(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCamelCase__ : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCamelCase__ : List[str] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : int = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertIn('new_additional_special_token', after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 4_2 ) lowerCamelCase__ : List[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_, model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length, 4_3 ) shutil.rmtree(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : Optional[Any] = json.load(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : List[str] = json.load(lowerCamelCase_ ) lowerCamelCase__ : Any = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] lowerCamelCase__ : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCamelCase__ : List[str] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ : Dict = tokenizer_class.from_pretrained( lowerCamelCase_, ) self.assertIn( 'an_additional_special_token', tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token', lstrip=lowerCamelCase_ )] lowerCamelCase__ : Any = tokenizer_class.from_pretrained( lowerCamelCase_, additional_special_tokens=lowerCamelCase_, ) self.assertIn('a_new_additional_special_token', tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ), '�' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_tokenizers(fast=lowerCamelCase_, do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Tuple = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] lowerCamelCase__ : List[str] = tokenizer.convert_tokens_to_string(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ )
696
1
"""simple docstring""" import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig A_ : List[Any] = logging.get_logger(__name__) A_ : Optional[int] = "T5Config" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = jnp.zeros_like(_lowerCamelCase ) lowerCamelCase__ : Tuple = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCamelCase__ : List[str] = shifted_input_ids.at[:, 0].set(_lowerCamelCase ) lowerCamelCase__ : int = jnp.where(shifted_input_ids == -100 , _lowerCamelCase , _lowerCamelCase ) return shifted_input_ids class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = 'mt5' lowerCamelCase__ : Optional[Any] = MTaConfig class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = 'mt5' lowerCamelCase__ : List[Any] = MTaConfig class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = 'mt5' lowerCamelCase__ : List[Any] = MTaConfig
696
"""simple docstring""" from math import pi, sqrt, tan def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCamelCase__ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_lowerCamelCase , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCamelCase__ : Dict = (sidea + sidea + sidea) / 2 lowerCamelCase__ : str = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
696
1
"""simple docstring""" from math import isqrt def lowerCamelCase_ ( _lowerCamelCase ): return all(number % divisor != 0 for divisor in range(2 , isqrt(_lowerCamelCase ) + 1 ) ) def lowerCamelCase_ ( _lowerCamelCase = 10**6 ): lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : int = 1 lowerCamelCase__ : Tuple = 7 while prime_candidate < max_prime: primes_count += is_prime(_lowerCamelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f"{solution() = }")
696
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : str = use_input_mask lowerCamelCase__ : Optional[Any] = use_token_type_ids lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : Union[str, Any] = type_sequence_label_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : Union[str, Any] = num_choices lowerCamelCase__ : List[str] = scope lowerCamelCase__ : Dict = vocab_size - 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = self.get_config() return config, input_ids, input_mask, token_labels def a__ (self ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[Any] = True return config, input_ids, input_mask, token_labels def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = GPTNeoXModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = True lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : Optional[Any] = GPTNeoXForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = self.num_labels lowerCamelCase__ : Optional[int] = GPTNeoXForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[Any] = GPTNeoXForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Tuple = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : List[str] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : str = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : List[Any] = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and lowerCamelCase__ : Tuple = torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : Tuple = torch.cat([input_mask, next_mask], dim=-1 ) lowerCamelCase__ : List[str] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, output_hidden_states=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = output_from_no_past['hidden_states'][0] lowerCamelCase__ : Optional[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_, output_hidden_states=lowerCamelCase_, )['hidden_states'][0] # select random slice lowerCamelCase__ : Dict = ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-3 ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = config_and_inputs lowerCamelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : int = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase__ : Dict = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = GPTNeoXModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=6_4, num_attention_heads=8 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def a__ (self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = ids_tensor([1, 1_0], config.vocab_size ) lowerCamelCase__ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Any = GPTNeoXModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() lowerCamelCase__ : List[Any] = original_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Optional[int] = {'type': scaling_type, 'factor': 10.0} lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() lowerCamelCase__ : Tuple = scaled_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: lowerCamelCase__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer('My favorite food is', return_tensors='pt' ).to(lowerCamelCase_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCamelCase__ : Dict = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' lowerCamelCase__ : Dict = model.generate(**lowerCamelCase_, do_sample=lowerCamelCase_, max_new_tokens=2_0 ) lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ )[0] self.assertEqual(lowerCamelCase_, lowerCamelCase_ )
696
1
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets A_ : Union[str, Any] = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" A_ : List[str] = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" A_ : Union[str, Any] = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def a__ (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ), reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ], ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(lowerCamelCase_, lowerCamelCase_, sample_weight=lowerCamelCase_ ) ), }
696
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : Dict = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. A_ : List[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A_ : Union[str, Any] = spec.loader.load_module() A_ : int = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A_ : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") A_ : str = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCamelCase__ : Dict = False # source code of `config_class` lowerCamelCase__ : str = inspect.getsource(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = _re_checkpoint.findall(_lowerCamelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCamelCase__ , lowerCamelCase__ : Optional[int] = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase__ : Any = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: lowerCamelCase__ : Any = True break lowerCamelCase__ : Dict = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ : Optional[Any] = '\n'.join(sorted(_lowerCamelCase ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
696
1
"""simple docstring""" A_ : Dict = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = set() # keep track of all the paths to be checked lowerCamelCase__ : Optional[Any] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowerCamelCase__ : Any = queue.pop(0 ) # get the last node from the path lowerCamelCase__ : List[str] = path[-1] if node not in explored: lowerCamelCase__ : Union[str, Any] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowerCamelCase__ : Union[str, Any] = list(_lowerCamelCase ) new_path.append(_lowerCamelCase ) queue.append(_lowerCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_lowerCamelCase ) # in case there's no path between the 2 nodes return [] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowerCamelCase__ : Any = [start] lowerCamelCase__ : List[Any] = set(_lowerCamelCase ) # Keep tab on distances from `start` node. lowerCamelCase__ : Tuple = {start: 0, target: -1} while queue: lowerCamelCase__ : Optional[int] = queue.pop(0 ) if node == target: lowerCamelCase__ : Optional[int] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_lowerCamelCase ) queue.append(_lowerCamelCase ) lowerCamelCase__ : int = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
696
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
1
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() A_ : int = logging.get_logger(__name__) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[int] = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: lowerCamelCase__ : str = 128 elif "12-12" in model_name: lowerCamelCase__ : Union[str, Any] = 12 lowerCamelCase__ : str = 12 elif "14-14" in model_name: lowerCamelCase__ : Union[str, Any] = 14 lowerCamelCase__ : str = 14 elif "16-16" in model_name: lowerCamelCase__ : Optional[Any] = 16 lowerCamelCase__ : int = 16 else: raise ValueError('Model not supported' ) lowerCamelCase__ : List[str] = 'huggingface/label-files' if "speech-commands" in model_name: lowerCamelCase__ : Optional[Any] = 35 lowerCamelCase__ : Any = 'speech-commands-v2-id2label.json' else: lowerCamelCase__ : Optional[int] = 527 lowerCamelCase__ : Any = 'audioset-id2label.json' lowerCamelCase__ : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : str = idalabel lowerCamelCase__ : str = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( _lowerCamelCase ): if "module.v" in name: lowerCamelCase__ : str = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: lowerCamelCase__ : Optional[Any] = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: lowerCamelCase__ : int = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: lowerCamelCase__ : Union[str, Any] = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowerCamelCase__ : str = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: lowerCamelCase__ : str = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: lowerCamelCase__ : Dict = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCamelCase__ : List[str] = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCamelCase__ : Optional[int] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCamelCase__ : str = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCamelCase__ : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCamelCase__ : Any = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: lowerCamelCase__ : Dict = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: lowerCamelCase__ : Union[str, Any] = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: lowerCamelCase__ : Any = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): for key in orig_state_dict.copy().keys(): lowerCamelCase__ : Any = orig_state_dict.pop(_lowerCamelCase ) if "qkv" in key: lowerCamelCase__ : int = key.split('.' ) lowerCamelCase__ : Any = int(key_split[3] ) lowerCamelCase__ : Optional[int] = config.hidden_size if "weight" in key: lowerCamelCase__ : Dict = val[:dim, :] lowerCamelCase__ : Union[str, Any] = val[dim : dim * 2, :] lowerCamelCase__ : str = val[-dim:, :] else: lowerCamelCase__ : Tuple = val[:dim] lowerCamelCase__ : str = val[dim : dim * 2] lowerCamelCase__ : Optional[int] = val[-dim:] else: lowerCamelCase__ : Union[str, Any] = val return orig_state_dict def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : int = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): lowerCamelCase__ : Optional[int] = get_audio_spectrogram_transformer_config(_lowerCamelCase ) lowerCamelCase__ : str = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict lowerCamelCase__ : List[Any] = model_name_to_url[model_name] lowerCamelCase__ : str = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location='cpu' ) # remove some keys remove_keys(_lowerCamelCase ) # rename some keys lowerCamelCase__ : List[str] = convert_state_dict(_lowerCamelCase , _lowerCamelCase ) # load 🤗 model lowerCamelCase__ : List[Any] = ASTForAudioClassification(_lowerCamelCase ) model.eval() model.load_state_dict(_lowerCamelCase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 lowerCamelCase__ : Dict = -4.2_677_393 if 'speech-commands' not in model_name else -6.845_978 lowerCamelCase__ : Optional[Any] = 4.5_689_974 if 'speech-commands' not in model_name else 5.5_654_526 lowerCamelCase__ : Optional[int] = 1024 if 'speech-commands' not in model_name else 128 lowerCamelCase__ : Tuple = ASTFeatureExtractor(mean=_lowerCamelCase , std=_lowerCamelCase , max_length=_lowerCamelCase ) if "speech-commands" in model_name: lowerCamelCase__ : Dict = load_dataset('speech_commands' , 'v0.02' , split='validation' ) lowerCamelCase__ : str = dataset[0]['audio']['array'] else: lowerCamelCase__ : List[Any] = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) lowerCamelCase__ , lowerCamelCase__ : Dict = torchaudio.load(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = waveform.squeeze().numpy() lowerCamelCase__ : str = feature_extractor(_lowerCamelCase , sampling_rate=1_6000 , return_tensors='pt' ) # forward pass lowerCamelCase__ : List[Any] = model(**_lowerCamelCase ) lowerCamelCase__ : Dict = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": lowerCamelCase__ : int = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": lowerCamelCase__ : Union[str, Any] = torch.tensor([-1.1_986, -7.0_903, -8.2_718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": lowerCamelCase__ : Optional[Any] = torch.tensor([-2.6_128, -8.0_080, -9.4_344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": lowerCamelCase__ : Dict = torch.tensor([-1.5_080, -7.4_534, -8.8_917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": lowerCamelCase__ : Optional[int] = torch.tensor([-0.5_050, -6.5_833, -8.0_843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": lowerCamelCase__ : Tuple = torch.tensor([-0.3_826, -7.0_336, -8.2_413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": lowerCamelCase__ : Optional[int] = torch.tensor([-1.2_113, -6.9_101, -8.3_470] ) elif model_name == "ast-finetuned-speech-commands-v2": lowerCamelCase__ : str = torch.tensor([6.1_589, -8.0_566, -8.7_984] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(_lowerCamelCase ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) A_ : Optional[int] = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
696
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A_ : Optional[int] = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A_ : List[str] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) A_ : Tuple = BeautifulSoup(res.text, "html.parser") A_ : Dict = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f"https://google.com{link.get('href')}")
696
1
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image A_ : Optional[Any] = ["text", "image", "audio"] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): inputs.append(create_inputs(_lowerCamelCase ) ) else: raise ValueError(f'''Invalid type requested: {input_type}''' ) return inputs def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : int = [] for output in outputs: if isinstance(_lowerCamelCase , (str, AgentText) ): output_types.append('text' ) elif isinstance(_lowerCamelCase , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(_lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(f'''Invalid output: {output}''' ) return output_types @is_tool_test class a_ : '''simple docstring''' def a__ (self ): '''simple docstring''' self.assertTrue(hasattr(self.tool, 'inputs' ) ) self.assertTrue(hasattr(self.tool, 'outputs' ) ) lowerCamelCase__ : Optional[int] = self.tool.inputs for _input in inputs: if isinstance(_input, lowerCamelCase_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCamelCase__ : Union[str, Any] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = create_inputs(self.tool.inputs ) lowerCamelCase__ : List[Any] = self.tool(*lowerCamelCase_ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCamelCase__ : List[Any] = [outputs] self.assertListEqual(output_types(lowerCamelCase_ ), self.tool.outputs ) def a__ (self ): '''simple docstring''' self.assertTrue(hasattr(self.tool, 'description' ) ) self.assertTrue(hasattr(self.tool, 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = create_inputs(self.tool.inputs ) lowerCamelCase__ : Optional[int] = self.tool(*lowerCamelCase_ ) if not isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = [outputs] self.assertEqual(len(lowerCamelCase_ ), len(self.tool.outputs ) ) for output, output_type in zip(lowerCamelCase_, self.tool.outputs ): lowerCamelCase__ : List[Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = create_inputs(self.tool.inputs ) lowerCamelCase__ : Optional[int] = [] for _input, input_type in zip(lowerCamelCase_, self.tool.inputs ): if isinstance(lowerCamelCase_, lowerCamelCase_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCamelCase__ : int = self.tool(*lowerCamelCase_ ) if not isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : str = [outputs] self.assertEqual(len(lowerCamelCase_ ), len(self.tool.outputs ) )
696
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCamelCase__ : Tuple = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_, cache_dir=lowerCamelCase_ ) lowerCamelCase__ : List[str] = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_, os.listdir(lowerCamelCase_ )[0], 'snapshots' ) )] lowerCamelCase__ : Optional[int] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[int] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Any = 4 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : List[Any] = num_samples * [prompt] lowerCamelCase__ : Optional[int] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : int = replicate(lowerCamelCase_ ) lowerCamelCase__ : Any = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : int = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1_514_745 ) < 1e-3 assert np.abs(np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 49_947.875 ) < 5e-1 lowerCamelCase__ : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase_ ) == num_samples def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='flax', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : int = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[str] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : List[str] = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = shard(lowerCamelCase_ ) lowerCamelCase__ : str = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05_652_401) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_383_808.2) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Union[str, Any] = 5_0 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : Tuple = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Any = replicate(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa ) lowerCamelCase__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Union[str, Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] = 5_0 lowerCamelCase__ : Tuple = jax.device_count() lowerCamelCase__ : Optional[int] = num_samples * [prompt] lowerCamelCase__ : str = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Optional[int] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : List[str] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = FlaxDDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', set_alpha_to_one=lowerCamelCase_, steps_offset=1, ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, scheduler=lowerCamelCase_, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : List[str] = scheduler.create_state() lowerCamelCase__ : int = scheduler_state lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : Optional[Any] = jax.device_count() lowerCamelCase__ : Any = num_samples * [prompt] lowerCamelCase__ : Any = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Dict = shard(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045_043_945) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_347_693.5) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : int = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : str = jax.random.split(jax.random.PRNGKey(0 ), lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Dict = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Tuple = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : int = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention lowerCamelCase__ , lowerCamelCase__ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, use_memory_efficient_attention=lowerCamelCase_, ) lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : Any = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Any = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
696
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = False ): if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis lowerCamelCase__ : Dict = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] lowerCamelCase__ : str = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_lowerCamelCase , 1 ): if n < _p: # then we have our last prime to check lowerCamelCase__ : Any = primes[:idx] break lowerCamelCase__ , lowerCamelCase__ : int = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCamelCase__ : Optional[Any] = False for r in range(_lowerCamelCase ): lowerCamelCase__ : Any = pow(_lowerCamelCase , d * 2**r , _lowerCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCamelCase__ : Dict = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowerCamelCase_ ( ): assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
696
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = 1_0_0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = True, ): '''simple docstring''' if audio_length_in_s is None: lowerCamelCase__ : str = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase__ : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase__ : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCamelCase__ : Dict = int(lowerCamelCase_ ) if sample_size % down_scale_factor != 0: lowerCamelCase__ : Union[str, Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ' process.' ) lowerCamelCase__ : Optional[Any] = int(lowerCamelCase_ ) lowerCamelCase__ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase__ : Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase_, lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ : Union[str, Any] = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_, device=self.device, dtype=lowerCamelCase_ ) # set step values self.scheduler.set_timesteps(lowerCamelCase_, device=audio.device ) lowerCamelCase__ : int = self.scheduler.timesteps.to(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase__ : List[Any] = self.unet(lowerCamelCase_, lowerCamelCase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase__ : List[str] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample lowerCamelCase__ : Union[str, Any] = audio.clamp(-1, 1 ).float().cpu().numpy() lowerCamelCase__ : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase_ )
696
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase = 100_0000 ): lowerCamelCase__ : Tuple = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
696
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(lowerCamelCase_ ) ) vocab_file.flush() lowerCamelCase__ : Tuple = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCamelCase__ : Optional[Any] = BertModel(BertConfig(vocab_size=len(lowerCamelCase_ ) ) ) model.save_pretrained(lowerCamelCase_ ) self._test_export(lowerCamelCase_, 'pt', 1_2, lowerCamelCase_ ) @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Optional[Any] = self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Any = quantize(Path(lowerCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Any = self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = quantize(lowerCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowerCamelCase__ : str = Path(lowerCamelCase_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ) return path except Exception as e: self.fail(lowerCamelCase_ ) @require_torch @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : str = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'pt' ) @require_tf @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import TFBertModel lowerCamelCase__ : Dict = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Optional[int] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'tf' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = FeatureExtractionPipeline(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = infer_shapes(lowerCamelCase_, lowerCamelCase_ ) # Assert all variables are present self.assertEqual(len(lowerCamelCase_ ), len(lowerCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3], lowerCamelCase_ ) self.assertSequenceEqual(variable_names[3:], lowerCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name], {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'], {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'], {0: 'batch'} ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['input_ids', 'attention_mask', 'token_type_ids'] lowerCamelCase__ : Optional[int] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowerCamelCase__ , lowerCamelCase__ : str = ensure_valid_input(FuncContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase_ ), 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase_ ), set(lowerCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase_, (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCamelCase__ , lowerCamelCase__ : Any = ensure_valid_input(FuncNonContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase_ ), 1 ) self.assertEqual(len(lowerCamelCase_ ), 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0], tokens['input_ids'] ) self.assertEqual(ordered_input_names[0], 'input_ids' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ), '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx', generated.as_posix() )
696
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : List[str] = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Any = 'switch_transformers' lowerCamelCase__ : Any = ['past_key_values'] lowerCamelCase__ : Tuple = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__(self, lowerCamelCase_=3_2_1_2_8, lowerCamelCase_=7_6_8, lowerCamelCase_=6_4, lowerCamelCase_=2_0_4_8, lowerCamelCase_=6_4, lowerCamelCase_=1_2, lowerCamelCase_=3, lowerCamelCase_=1_2, lowerCamelCase_=3, lowerCamelCase_=1_2, lowerCamelCase_=8, lowerCamelCase_=False, lowerCamelCase_=0.01, lowerCamelCase_="float32", lowerCamelCase_=False, lowerCamelCase_=3_2, lowerCamelCase_=1_2_8, lowerCamelCase_=0.1, lowerCamelCase_=1e-6, lowerCamelCase_=0.001, lowerCamelCase_=0.001, lowerCamelCase_=1.0, lowerCamelCase_="relu", lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_=True, lowerCamelCase_=0, lowerCamelCase_=1, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Tuple = vocab_size lowerCamelCase__ : str = d_model lowerCamelCase__ : str = d_kv lowerCamelCase__ : Optional[int] = d_ff lowerCamelCase__ : Optional[int] = num_sparse_encoder_layers lowerCamelCase__ : Any = num_layers lowerCamelCase__ : Any = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCamelCase__ : Optional[int] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: lowerCamelCase__ : str = self.num_layers // self.num_sparse_encoder_layers else: lowerCamelCase__ : Optional[Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: lowerCamelCase__ : List[Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: lowerCamelCase__ : Union[str, Any] = self.num_decoder_layers # HACK: this will create 0 sparse layers lowerCamelCase__ : List[str] = num_heads lowerCamelCase__ : Optional[Any] = num_experts lowerCamelCase__ : Any = expert_capacity lowerCamelCase__ : Union[str, Any] = router_bias lowerCamelCase__ : str = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) lowerCamelCase__ : str = router_dtype lowerCamelCase__ : Optional[int] = router_ignore_padding_tokens lowerCamelCase__ : Optional[int] = relative_attention_num_buckets lowerCamelCase__ : Optional[int] = relative_attention_max_distance lowerCamelCase__ : int = dropout_rate lowerCamelCase__ : List[Any] = layer_norm_epsilon lowerCamelCase__ : int = initializer_factor lowerCamelCase__ : List[Any] = feed_forward_proj lowerCamelCase__ : Dict = use_cache lowerCamelCase__ : Any = add_router_probs lowerCamelCase__ : str = router_z_loss_coef lowerCamelCase__ : Optional[Any] = router_aux_loss_coef lowerCamelCase__ : Optional[Any] = self.feed_forward_proj.split('-' ) lowerCamelCase__ : Any = act_info[-1] lowerCamelCase__ : Any = act_info[0] == 'gated' if len(lowerCamelCase_ ) > 1 and act_info[0] != "gated" or len(lowerCamelCase_ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowerCamelCase__ : str = 'gelu_new' super().__init__( pad_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, is_encoder_decoder=lowerCamelCase_, **lowerCamelCase_, )
696
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase__ : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : str = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ : Any = False @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return self.time_input_dim @property def a__ (self ): '''simple docstring''' return self.time_input_dim * 4 @property def a__ (self ): '''simple docstring''' return 1_0_0 @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase__ : int = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def a__ (self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.dummy_unet lowerCamelCase__ : List[Any] = self.dummy_movq lowerCamelCase__ : Tuple = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase__ : Optional[Any] = DDIMScheduler(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image lowerCamelCase__ : Any = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase__ : Optional[Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint lowerCamelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : int = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = 'cpu' lowerCamelCase__ : List[Any] = self.get_dummy_components() lowerCamelCase__ : List[Any] = self.pipeline_class(**lowerCamelCase_ ) lowerCamelCase__ : Dict = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : str = pipe( **self.get_dummy_inputs(lowerCamelCase_ ), return_dict=lowerCamelCase_, )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : List[str] = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase__ : Any = init_image.resize((5_1_2, 5_1_2) ) lowerCamelCase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase__ : Any = torch.from_numpy(np.array(lowerCamelCase_ ) ).float() / 255.0 lowerCamelCase__ : Optional[int] = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowerCamelCase__ : Union[str, Any] = 'A robot, 4k photo' lowerCamelCase__ : Any = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth', torch_dtype=torch.floataa ) lowerCamelCase__ : int = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = pipe_prior( lowerCamelCase_, image=lowerCamelCase_, strength=0.85, generator=lowerCamelCase_, negative_prompt='', ).to_tuple() lowerCamelCase__ : Union[str, Any] = pipeline( image=lowerCamelCase_, image_embeds=lowerCamelCase_, negative_image_embeds=lowerCamelCase_, hint=lowerCamelCase_, generator=lowerCamelCase_, num_inference_steps=1_0_0, height=5_1_2, width=5_1_2, strength=0.5, output_type='np', ) lowerCamelCase__ : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase_, lowerCamelCase_ )
696
1
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = StableDiffusionControlNetImgaImgPipeline lowerCamelCase__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} lowerCamelCase__ : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'} ) lowerCamelCase__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : str = UNetaDConditionModel( block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=3_2, ) torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = ControlNetModel( block_out_channels=(3_2, 6_4), layers_per_block=2, in_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), cross_attention_dim=3_2, conditioning_embedding_out_channels=(1_6, 3_2), ) torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', clip_sample=lowerCamelCase_, set_alpha_to_one=lowerCamelCase_, ) torch.manual_seed(0 ) lowerCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[3_2, 6_4], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=3_2, intermediate_size=3_7, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, ) lowerCamelCase__ : Optional[Any] = CLIPTextModel(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase__ : Optional[int] = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : List[Any] = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Union[str, Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = 2 lowerCamelCase__ : Optional[Any] = randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor), generator=lowerCamelCase_, device=torch.device(lowerCamelCase_ ), ) lowerCamelCase__ : List[str] = floats_tensor(control_image.shape, rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase__ : List[str] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((6_4, 6_4) ) lowerCamelCase__ : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def a__ (self ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def a__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def a__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[str] = StableDiffusionControlNetImgaImgPipeline lowerCamelCase__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} lowerCamelCase__ : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase__ : Tuple = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Dict = UNetaDConditionModel( block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=3_2, ) torch.manual_seed(0 ) def init_weights(lowerCamelCase_ ): if isinstance(lowerCamelCase_, torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowerCamelCase__ : List[str] = ControlNetModel( block_out_channels=(3_2, 6_4), layers_per_block=2, in_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), cross_attention_dim=3_2, conditioning_embedding_out_channels=(1_6, 3_2), ) controlneta.controlnet_down_blocks.apply(lowerCamelCase_ ) torch.manual_seed(0 ) lowerCamelCase__ : List[Any] = ControlNetModel( block_out_channels=(3_2, 6_4), layers_per_block=2, in_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), cross_attention_dim=3_2, conditioning_embedding_out_channels=(1_6, 3_2), ) controlneta.controlnet_down_blocks.apply(lowerCamelCase_ ) torch.manual_seed(0 ) lowerCamelCase__ : List[Any] = DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', clip_sample=lowerCamelCase_, set_alpha_to_one=lowerCamelCase_, ) torch.manual_seed(0 ) lowerCamelCase__ : Any = AutoencoderKL( block_out_channels=[3_2, 6_4], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=3_2, intermediate_size=3_7, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, ) lowerCamelCase__ : Tuple = CLIPTextModel(lowerCamelCase_ ) lowerCamelCase__ : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase__ : Tuple = MultiControlNetModel([controlneta, controlneta] ) lowerCamelCase__ : Union[str, Any] = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : Dict = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = 2 lowerCamelCase__ : Dict = [ randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor), generator=lowerCamelCase_, device=torch.device(lowerCamelCase_ ), ), randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor), generator=lowerCamelCase_, device=torch.device(lowerCamelCase_ ), ), ] lowerCamelCase__ : Any = floats_tensor(control_image[0].shape, rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase__ : List[Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((6_4, 6_4) ) lowerCamelCase__ : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_dummy_components() lowerCamelCase__ : List[str] = self.pipeline_class(**lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 10.0 lowerCamelCase__ : Union[str, Any] = 4 lowerCamelCase__ : Any = self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = steps lowerCamelCase__ : int = scale lowerCamelCase__ : Any = pipe(**lowerCamelCase_ )[0] lowerCamelCase__ : int = self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = steps lowerCamelCase__ : Union[str, Any] = scale lowerCamelCase__ : Union[str, Any] = pipe(**lowerCamelCase_, control_guidance_start=0.1, control_guidance_end=0.2 )[0] lowerCamelCase__ : Tuple = self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : int = steps lowerCamelCase__ : Any = scale lowerCamelCase__ : Union[str, Any] = pipe(**lowerCamelCase_, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7] )[0] lowerCamelCase__ : Tuple = self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : Dict = steps lowerCamelCase__ : List[str] = scale lowerCamelCase__ : Any = pipe(**lowerCamelCase_, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def a__ (self ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def a__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def a__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.get_dummy_components() lowerCamelCase__ : Union[str, Any] = self.pipeline_class(**lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowerCamelCase_ ) except NotImplementedError: pass @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) lowerCamelCase__ : str = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', safety_checker=lowerCamelCase_, controlnet=lowerCamelCase_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ : List[str] = 'evil space-punk bird' lowerCamelCase__ : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((5_1_2, 5_1_2) ) lowerCamelCase__ : Optional[int] = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((5_1_2, 5_1_2) ) lowerCamelCase__ : Union[str, Any] = pipe( lowerCamelCase_, lowerCamelCase_, control_image=lowerCamelCase_, generator=lowerCamelCase_, output_type='np', num_inference_steps=5_0, strength=0.6, ) lowerCamelCase__ : int = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) lowerCamelCase__ : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9e-2
696
"""simple docstring""" A_ : List[str] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
696
1
"""simple docstring""" from __future__ import annotations import math def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) ) def lowerCamelCase_ ( ): lowerCamelCase__ : List[str] = [90, 23, 6, 33, 21, 65, 123, 3_4423] lowerCamelCase__ : List[Any] = math.log(len(_lowerCamelCase ) , 2 ) print(f'''Optimal value : {minimax(0 , 0 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
696
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 A_ : Optional[int] = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ = 1_4 ): '''simple docstring''' if group not in primes: raise ValueError('Unsupported Group' ) lowerCamelCase__ : int = primes[group]['prime'] lowerCamelCase__ : Optional[int] = primes[group]['generator'] lowerCamelCase__ : Any = int(hexlify(urandom(3_2 ) ), base=1_6 ) def a__ (self ): '''simple docstring''' return hex(self.__private_key )[2:] def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = pow(self.generator, self.__private_key, self.prime ) return hex(lowerCamelCase_ )[2:] def a__ (self, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase_, (self.prime - 1) // 2, self.prime ) == 1 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = int(lowerCamelCase_, base=1_6 ) if not self.is_valid_public_key(lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Tuple = pow(lowerCamelCase_, self.__private_key, self.prime ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase_, (prime - 1) // 2, lowerCamelCase_ ) == 1 ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 1_4 ): '''simple docstring''' lowerCamelCase__ : Dict = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[Any] = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[str] = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase_, lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Dict = pow(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
696
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer A_ : Union[str, Any] = logging.get_logger(__name__) A_ : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A_ : Tuple = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] A_ : Optional[Any] = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } A_ : Dict = {f"funnel-transformer/{name}": 5_12 for name in _model_names} A_ : str = {f"funnel-transformer/{name}": {"do_lower_case": True} for name in _model_names} class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = VOCAB_FILES_NAMES lowerCamelCase__ : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ : List[str] = FunnelTokenizer lowerCamelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : int = 2 def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=True, lowerCamelCase_="<unk>", lowerCamelCase_="<sep>", lowerCamelCase_="<pad>", lowerCamelCase_="<cls>", lowerCamelCase_="<mask>", lowerCamelCase_="<s>", lowerCamelCase_="</s>", lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=None, lowerCamelCase_="##", **lowerCamelCase_, ): '''simple docstring''' super().__init__( lowerCamelCase_, tokenizer_file=lowerCamelCase_, do_lower_case=lowerCamelCase_, unk_token=lowerCamelCase_, sep_token=lowerCamelCase_, pad_token=lowerCamelCase_, cls_token=lowerCamelCase_, mask_token=lowerCamelCase_, bos_token=lowerCamelCase_, eos_token=lowerCamelCase_, clean_text=lowerCamelCase_, tokenize_chinese_chars=lowerCamelCase_, strip_accents=lowerCamelCase_, wordpieces_prefix=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase', lowerCamelCase_ ) != do_lower_case or normalizer_state.get('strip_accents', lowerCamelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars', lowerCamelCase_ ) != tokenize_chinese_chars ): lowerCamelCase__ : List[str] = getattr(lowerCamelCase_, normalizer_state.pop('type' ) ) lowerCamelCase__ : Optional[int] = do_lower_case lowerCamelCase__ : Dict = strip_accents lowerCamelCase__ : Any = tokenize_chinese_chars lowerCamelCase__ : List[str] = normalizer_class(**lowerCamelCase_ ) lowerCamelCase__ : int = do_lower_case def a__ (self, lowerCamelCase_, lowerCamelCase_=None ): '''simple docstring''' lowerCamelCase__ : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Dict = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._tokenizer.model.save(lowerCamelCase_, name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
696
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_lowerCamelCase ) * abs(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
696
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : int = logging.get_logger(__name__) A_ : List[Any] = { "andreasmadsen/efficient_mlm_m0.40": ( "https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json" ), } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Any = 'roberta-prelayernorm' def __init__(self, lowerCamelCase_=5_0_2_6_5, lowerCamelCase_=7_6_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=3_0_7_2, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=1e-12, lowerCamelCase_=1, lowerCamelCase_=0, lowerCamelCase_=2, lowerCamelCase_="absolute", lowerCamelCase_=True, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : List[str] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Union[str, Any] = num_hidden_layers lowerCamelCase__ : str = num_attention_heads lowerCamelCase__ : int = hidden_act lowerCamelCase__ : int = intermediate_size lowerCamelCase__ : List[str] = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = max_position_embeddings lowerCamelCase__ : List[str] = type_vocab_size lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : Optional[Any] = layer_norm_eps lowerCamelCase__ : List[Any] = position_embedding_type lowerCamelCase__ : List[Any] = use_cache lowerCamelCase__ : Union[str, Any] = classifier_dropout class a_ ( snake_case_ ): '''simple docstring''' @property def a__ (self ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase__ : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
696
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : int = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : Optional[int] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : str = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : Optional[int] = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Tuple = c.n_embd + 1 # int lowerCamelCase__ : Union[str, Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : List[Any] = not c.scale_attn_weights # bool lowerCamelCase__ : List[Any] = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = PretrainedConfig() lowerCamelCase__ : Optional[Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : Any = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : int = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = mock.Mock() lowerCamelCase__ : List[str] = 5_0_0 lowerCamelCase__ : Any = {} lowerCamelCase__ : int = HTTPError lowerCamelCase__ : Optional[Any] = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : str = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : str = ['config.42.0.0.json'] lowerCamelCase__ : Union[str, Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Optional[int] = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Dict = 'v3.0.0' lowerCamelCase__ : List[str] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
696
1
"""simple docstring""" from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowerCamelCase_ ( _lowerCamelCase = True , *_lowerCamelCase , **_lowerCamelCase ): if not is_tqdm_available(): raise ImportError('Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.' ) lowerCamelCase__ : int = False if main_process_only: lowerCamelCase__ : Optional[Any] = PartialState().local_process_index == 0 return _tqdm(*_lowerCamelCase , **_lowerCamelCase , disable=_lowerCamelCase )
696
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' super().__init__() lowerCamelCase__ : Dict = value_function lowerCamelCase__ : int = unet lowerCamelCase__ : Union[str, Any] = scheduler lowerCamelCase__ : int = env lowerCamelCase__ : List[Any] = env.get_dataset() lowerCamelCase__ : Dict = {} for key in self.data.keys(): try: lowerCamelCase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowerCamelCase__ : Optional[int] = {} for key in self.data.keys(): try: lowerCamelCase__ : Tuple = self.data[key].std() except: # noqa: E722 pass lowerCamelCase__ : Optional[Any] = env.observation_space.shape[0] lowerCamelCase__ : List[str] = env.action_space.shape[0] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def a__ (self, lowerCamelCase_ ): '''simple docstring''' if type(lowerCamelCase_ ) is dict: return {k: self.to_torch(lowerCamelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase_, device=self.unet.device ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for key, val in cond.items(): lowerCamelCase__ : Optional[Any] = val.clone() return x_in def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = x.shape[0] lowerCamelCase__ : Tuple = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCamelCase__ : Dict = torch.full((batch_size,), lowerCamelCase_, device=self.unet.device, dtype=torch.long ) for _ in range(lowerCamelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCamelCase__ : str = self.value_function(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample lowerCamelCase__ : Union[str, Any] = torch.autograd.grad([y.sum()], [x] )[0] lowerCamelCase__ : Optional[int] = self.scheduler._get_variance(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = torch.exp(0.5 * posterior_variance ) lowerCamelCase__ : Tuple = model_std * grad lowerCamelCase__ : str = 0 lowerCamelCase__ : Dict = x.detach() lowerCamelCase__ : Dict = x + scale * grad lowerCamelCase__ : Optional[int] = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : Tuple = self.unet(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample.permute(0, 2, 1 ) # TODO: verify deprecation of this kwarg lowerCamelCase__ : Optional[Any] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, predict_epsilon=lowerCamelCase_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowerCamelCase__ : Any = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) return x, y def __call__(self, lowerCamelCase_, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=0.1 ): '''simple docstring''' lowerCamelCase__ : Dict = self.normalize(lowerCamelCase_, 'observations' ) lowerCamelCase__ : List[str] = obs[None].repeat(lowerCamelCase_, axis=0 ) lowerCamelCase__ : str = {0: self.to_torch(lowerCamelCase_ )} lowerCamelCase__ : Optional[Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCamelCase__ : List[Any] = randn_tensor(lowerCamelCase_, device=self.unet.device ) lowerCamelCase__ : int = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) # run the diffusion process lowerCamelCase__ , lowerCamelCase__ : List[str] = self.run_diffusion(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # sort output trajectories by value lowerCamelCase__ : Union[str, Any] = y.argsort(0, descending=lowerCamelCase_ ).squeeze() lowerCamelCase__ : List[str] = x[sorted_idx] lowerCamelCase__ : Optional[Any] = sorted_values[:, :, : self.action_dim] lowerCamelCase__ : Union[str, Any] = actions.detach().cpu().numpy() lowerCamelCase__ : Union[str, Any] = self.de_normalize(lowerCamelCase_, key='actions' ) # select the action with the highest value if y is not None: lowerCamelCase__ : str = 0 else: # if we didn't run value guiding, select a random action lowerCamelCase__ : Optional[Any] = np.random.randint(0, lowerCamelCase_ ) lowerCamelCase__ : Tuple = denorm_actions[selected_index, 0] return denorm_actions
696
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : List[str] = analyze_text(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. lowerCamelCase__ : List[Any] = sum(single_char_strings.values() ) # one length string lowerCamelCase__ : str = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCamelCase__ : Tuple = single_char_strings[ch] lowerCamelCase__ : Union[str, Any] = my_str / all_sum my_fir_sum += prob * math.loga(_lowerCamelCase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string lowerCamelCase__ : Dict = sum(two_char_strings.values() ) lowerCamelCase__ : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCamelCase__ : int = cha + cha if sequence in two_char_strings: lowerCamelCase__ : int = two_char_strings[sequence] lowerCamelCase__ : Tuple = int(_lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(_lowerCamelCase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = Counter() # type: ignore lowerCamelCase__ : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase_ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
696
1
"""simple docstring""" import colorsys from PIL import Image # type: ignore def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = x lowerCamelCase__ : List[str] = y for step in range(_lowerCamelCase ): # noqa: B007 lowerCamelCase__ : Optional[Any] = a * a - b * b + x lowerCamelCase__ : Any = 2 * a * b + y lowerCamelCase__ : List[str] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase_ ( _lowerCamelCase ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase_ ( _lowerCamelCase ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(_lowerCamelCase , 1 , 1 ) ) def lowerCamelCase_ ( _lowerCamelCase = 800 , _lowerCamelCase = 600 , _lowerCamelCase = -0.6 , _lowerCamelCase = 0 , _lowerCamelCase = 3.2 , _lowerCamelCase = 50 , _lowerCamelCase = True , ): lowerCamelCase__ : int = Image.new('RGB' , (image_width, image_height) ) lowerCamelCase__ : int = img.load() # loop through the image-coordinates for image_x in range(_lowerCamelCase ): for image_y in range(_lowerCamelCase ): # determine the figure-coordinates based on the image-coordinates lowerCamelCase__ : Optional[int] = figure_width / image_width * image_height lowerCamelCase__ : Dict = figure_center_x + (image_x / image_width - 0.5) * figure_width lowerCamelCase__ : int = figure_center_y + (image_y / image_height - 0.5) * figure_height lowerCamelCase__ : List[str] = get_distance(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowerCamelCase__ : Dict = get_color_coded_rgb(_lowerCamelCase ) else: lowerCamelCase__ : Dict = get_black_and_white_rgb(_lowerCamelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure A_ : Optional[Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
696
"""simple docstring""" import os def lowerCamelCase_ ( ): with open(os.path.dirname(_lowerCamelCase ) + '/p022_names.txt' ) as file: lowerCamelCase__ : Union[str, Any] = str(file.readlines()[0] ) lowerCamelCase__ : int = names.replace('"' , '' ).split(',' ) names.sort() lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : str = 0 for i, name in enumerate(_lowerCamelCase ): for letter in name: name_score += ord(_lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowerCamelCase__ : Dict = 0 return total_score if __name__ == "__main__": print(solution())
696
1
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer A_ : Any = ["gpt2"] A_ : Any = "gpt2" if is_tf_available(): class a_ ( tf.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' super().__init__() lowerCamelCase__ : List[str] = tokenizer lowerCamelCase__ : Optional[Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Any = TFGPTaLMHeadModel.from_config(lowerCamelCase_ ) @tf.function(input_signature=(tf.TensorSpec((None,), tf.string, name='text' ),) ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.tokenizer(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = tokenized['input_ids'].to_tensor() lowerCamelCase__ : str = tf.cast(input_ids_dense > 0, tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) lowerCamelCase__ : Union[str, Any] = self.model(input_ids=lowerCamelCase_, attention_mask=lowerCamelCase_ )['logits'] return outputs @require_tf @require_keras_nlp class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : Optional[Any] = [GPTaTokenizer.from_pretrained(lowerCamelCase_ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] lowerCamelCase__ : Any = [TFGPTaTokenizer.from_pretrained(lowerCamelCase_ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowerCamelCase__ : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] lowerCamelCase__ : Optional[int] = list(zip(self.test_sentences, self.test_sentences[::-1] ) ) def a__ (self ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers, self.tf_tokenizers ): for test_inputs in self.test_sentences: lowerCamelCase__ : Union[str, Any] = tokenizer([test_inputs], return_tensors='tf' ) lowerCamelCase__ : List[str] = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors lowerCamelCase__ : Dict = python_outputs[key].numpy() lowerCamelCase__ : List[str] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowerCamelCase_, tf.intaa ) == tf_outputs_values ) ) @slow def a__ (self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCamelCase__ : Any = tf.function(lowerCamelCase_ ) for test_inputs in self.test_sentences: lowerCamelCase__ : List[str] = tf.constant(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = compiled_tokenizer(lowerCamelCase_ ) lowerCamelCase__ : Any = tf_tokenizer(lowerCamelCase_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def a__ (self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCamelCase__ : Dict = ModelToSave(tokenizer=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCamelCase__ : Tuple = model.serving(lowerCamelCase_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowerCamelCase__ : Any = Path(lowerCamelCase_ ) / 'saved.model' tf.saved_model.save(lowerCamelCase_, lowerCamelCase_, signatures={'serving_default': model.serving} ) lowerCamelCase__ : List[str] = tf.saved_model.load(lowerCamelCase_ ) lowerCamelCase__ : List[str] = loaded_model.signatures['serving_default'](lowerCamelCase_ )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def a__ (self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCamelCase__ : List[str] = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCamelCase__ : Optional[int] = tf_tokenizer(lowerCamelCase_ ) # Build model with some sample inputs lowerCamelCase__ : int = tf_tokenizer.get_config() lowerCamelCase__ : List[Any] = TFGPTaTokenizer.from_config(lowerCamelCase_ ) lowerCamelCase__ : Tuple = model_from_config(lowerCamelCase_ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def a__ (self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run lowerCamelCase__ : Any = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: lowerCamelCase__ : List[str] = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCamelCase__ : Any = tf_tokenizer(lowerCamelCase_, max_length=lowerCamelCase_ ) lowerCamelCase__ : Any = out['input_ids'].numpy().shape[1] assert out_length == max_length
696
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = 'Speech2TextFeatureExtractor' lowerCamelCase__ : Dict = 'Speech2TextTokenizer' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.feature_extractor lowerCamelCase__ : List[Any] = False def __call__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_, **lowerCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ : Optional[int] = kwargs.pop('raw_speech' ) else: lowerCamelCase__ : int = kwargs.pop('audio', lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = kwargs.pop('sampling_rate', lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('text', lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowerCamelCase__ : List[str] = args[0] lowerCamelCase__ : Any = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ : Union[str, Any] = self.feature_extractor(lowerCamelCase_, *lowerCamelCase_, sampling_rate=lowerCamelCase_, **lowerCamelCase_ ) if text is not None: lowerCamelCase__ : List[Any] = self.tokenizer(lowerCamelCase_, **lowerCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Tuple = encodings['input_ids'] return inputs def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @contextmanager def a__ (self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ : int = True lowerCamelCase__ : List[Any] = self.tokenizer yield lowerCamelCase__ : Optional[int] = self.feature_extractor lowerCamelCase__ : List[Any] = False
696
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[torch.FloatTensor] = None lowerCamelCase__ : torch.FloatTensor = None lowerCamelCase__ : Optional[Tuple[torch.FloatTensor]] = None lowerCamelCase__ : Optional[Tuple[torch.FloatTensor]] = None class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_=1, lowerCamelCase_=0, lowerCamelCase_=2, lowerCamelCase_=5_1_2, lowerCamelCase_="cls", lowerCamelCase_=False, lowerCamelCase_=True, **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : List[str] = project_dim lowerCamelCase__ : int = pooler_fn lowerCamelCase__ : Dict = learn_encoder lowerCamelCase__ : Dict = use_attention_mask class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = [R'pooler', R'logit_scale'] lowerCamelCase__ : Optional[Any] = [R'position_ids', R'predictions.decoder.bias'] lowerCamelCase__ : str = 'roberta' lowerCamelCase__ : List[str] = RobertaSeriesConfig def __init__(self, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = XLMRobertaModel(lowerCamelCase_ ) lowerCamelCase__ : List[str] = nn.Linear(config.hidden_size, config.project_dim ) lowerCamelCase__ : int = getattr(lowerCamelCase_, 'has_pre_transformation', lowerCamelCase_ ) if self.has_pre_transformation: lowerCamelCase__ : int = nn.Linear(config.hidden_size, config.project_dim ) lowerCamelCase__ : Optional[int] = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps ) self.post_init() def a__ (self, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, ): '''simple docstring''' lowerCamelCase__ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__ : Optional[int] = self.base_model( input_ids=lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, position_ids=lowerCamelCase_, head_mask=lowerCamelCase_, inputs_embeds=lowerCamelCase_, encoder_hidden_states=lowerCamelCase_, encoder_attention_mask=lowerCamelCase_, output_attentions=lowerCamelCase_, output_hidden_states=True if self.has_pre_transformation else output_hidden_states, return_dict=lowerCamelCase_, ) if self.has_pre_transformation: lowerCamelCase__ : Any = outputs['hidden_states'][-2] lowerCamelCase__ : int = self.pre_LN(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = self.transformation_pre(lowerCamelCase_ ) return TransformationModelOutput( projection_state=lowerCamelCase_, last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) else: lowerCamelCase__ : List[str] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=lowerCamelCase_, last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
696
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : Optional[Any] = use_input_mask lowerCamelCase__ : List[Any] = use_token_type_ids lowerCamelCase__ : List[Any] = use_labels lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : Optional[int] = embedding_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Optional[Any] = num_labels lowerCamelCase__ : Dict = num_choices lowerCamelCase__ : Tuple = scope def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : List[str] = None if self.use_input_mask: lowerCamelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_token_type_ids: lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Any = None lowerCamelCase__ : Union[str, Any] = None if self.use_labels: lowerCamelCase__ : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, embedding_size=self.embedding_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, next_sentence_label=lowerCamelCase_, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, start_positions=lowerCamelCase_, end_positions=lowerCamelCase_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : int = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.num_choices lowerCamelCase__ : Dict = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : int = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : List[str] = config_and_inputs lowerCamelCase__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : int = True def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase_ ) return inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = MobileBertModelTester(self ) lowerCamelCase__ : List[str] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): return torch.tensor( _lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , ) A_ : Tuple = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(lowerCamelCase_ ) lowerCamelCase__ : Tuple = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ )[0] lowerCamelCase__ : Optional[int] = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [ [ [-2.4_736_526e07, 8.2_691_656e04, 1.6_521_838e05], [-5.7_541_704e-01, 3.9_056_022e00, 4.4_011_507e00], [2.6_047_359e00, 1.5_677_652e00, -1.7_324_188e-01], ] ], device=lowerCamelCase_, ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCamelCase__ : Optional[int] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCamelCase__ : Any = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
696
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging A_ : int = logging.get_logger(__name__) if is_vision_available(): import PIL class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['pixel_values'] def __init__(self, lowerCamelCase_ = True, lowerCamelCase_ = None, lowerCamelCase_ = PILImageResampling.BICUBIC, lowerCamelCase_ = True, lowerCamelCase_ = None, lowerCamelCase_ = True, lowerCamelCase_ = 1 / 2_5_5, lowerCamelCase_ = True, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = True, **lowerCamelCase_, ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : Tuple = size if size is not None else {'shortest_edge': 2_2_4} lowerCamelCase__ : Union[str, Any] = get_size_dict(lowerCamelCase_, default_to_square=lowerCamelCase_ ) lowerCamelCase__ : Dict = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} lowerCamelCase__ : List[str] = get_size_dict(lowerCamelCase_, default_to_square=lowerCamelCase_, param_name='crop_size' ) lowerCamelCase__ : Optional[int] = do_resize lowerCamelCase__ : Optional[int] = size lowerCamelCase__ : Dict = resample lowerCamelCase__ : Dict = do_center_crop lowerCamelCase__ : Tuple = crop_size lowerCamelCase__ : Dict = do_rescale lowerCamelCase__ : str = rescale_factor lowerCamelCase__ : str = do_normalize lowerCamelCase__ : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCamelCase__ : int = image_std if image_std is not None else OPENAI_CLIP_STD lowerCamelCase__ : Tuple = do_convert_rgb def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = PILImageResampling.BICUBIC, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : List[str] = get_size_dict(lowerCamelCase_, default_to_square=lowerCamelCase_ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowerCamelCase__ : Union[str, Any] = get_resize_output_image_size(lowerCamelCase_, size=size['shortest_edge'], default_to_square=lowerCamelCase_ ) return resize(lowerCamelCase_, size=lowerCamelCase_, resample=lowerCamelCase_, data_format=lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : List[str] = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCamelCase_, size=(size['height'], size['width']), data_format=lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' return rescale(lowerCamelCase_, scale=lowerCamelCase_, data_format=lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' return normalize(lowerCamelCase_, mean=lowerCamelCase_, std=lowerCamelCase_, data_format=lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = ChannelDimension.FIRST, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Tuple = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : str = size if size is not None else self.size lowerCamelCase__ : str = get_size_dict(lowerCamelCase_, param_name='size', default_to_square=lowerCamelCase_ ) lowerCamelCase__ : Dict = resample if resample is not None else self.resample lowerCamelCase__ : str = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase__ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size lowerCamelCase__ : Dict = get_size_dict(lowerCamelCase_, param_name='crop_size', default_to_square=lowerCamelCase_ ) lowerCamelCase__ : Tuple = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : Tuple = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ : List[Any] = image_mean if image_mean is not None else self.image_mean lowerCamelCase__ : int = image_std if image_std is not None else self.image_std lowerCamelCase__ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCamelCase__ : Optional[Any] = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCamelCase__ : List[str] = [convert_to_rgb(lowerCamelCase_ ) for image in images] # All transformations expect numpy arrays. lowerCamelCase__ : str = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: lowerCamelCase__ : str = [self.resize(image=lowerCamelCase_, size=lowerCamelCase_, resample=lowerCamelCase_ ) for image in images] if do_center_crop: lowerCamelCase__ : Optional[int] = [self.center_crop(image=lowerCamelCase_, size=lowerCamelCase_ ) for image in images] if do_rescale: lowerCamelCase__ : Optional[int] = [self.rescale(image=lowerCamelCase_, scale=lowerCamelCase_ ) for image in images] if do_normalize: lowerCamelCase__ : List[str] = [self.normalize(image=lowerCamelCase_, mean=lowerCamelCase_, std=lowerCamelCase_ ) for image in images] lowerCamelCase__ : Optional[int] = [to_channel_dimension_format(lowerCamelCase_, lowerCamelCase_ ) for image in images] lowerCamelCase__ : Optional[int] = {'pixel_values': images} return BatchFeature(data=lowerCamelCase_, tensor_type=lowerCamelCase_ )
696
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A_ : str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=1 ): '''simple docstring''' lowerCamelCase__ : Any = tokenizer lowerCamelCase__ : Optional[Any] = dataset lowerCamelCase__ : int = len(lowerCamelCase_ ) if n_tasks is None else n_tasks lowerCamelCase__ : Any = n_copies def __iter__(self ): '''simple docstring''' lowerCamelCase__ : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ : Optional[int] = self.tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = start_length lowerCamelCase__ : List[str] = eof_strings lowerCamelCase__ : List[str] = tokenizer def __call__(self, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ : Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ): lowerCamelCase__ : List[str] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): lowerCamelCase__ : str = batch['ids'].shape[-1] lowerCamelCase__ : int = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times lowerCamelCase__ : Optional[Any] = batch['task_id'].repeat(_lowerCamelCase ) lowerCamelCase__ : List[Any] = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ : List[Any] = generated_tokens.cpu().numpy() lowerCamelCase__ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) lowerCamelCase__ : str = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ : Optional[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase_ ( ): # Setup configuration lowerCamelCase__ : int = HfArgumentParser(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ : Tuple = 'false' if args.num_workers is None: lowerCamelCase__ : List[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ : List[Any] = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ : Optional[int] = tokenizer.eos_token lowerCamelCase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ : Optional[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric lowerCamelCase__ : Any = load_dataset('openai_humaneval' ) lowerCamelCase__ : Optional[int] = load_metric('code_eval' ) lowerCamelCase__ : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ : Optional[int] = args.n_samples // args.batch_size lowerCamelCase__ : Tuple = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ : Union[str, Any] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ : List[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ : str = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: lowerCamelCase__ : List[str] = [] for task in tqdm(range(_lowerCamelCase ) ): lowerCamelCase__ : int = human_eval['test'][task]['test'] lowerCamelCase__ : Union[str, Any] = f'''check({human_eval['test'][task]['entry_point']})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ : Any = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
696
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A_ : Optional[int] = logging.get_logger(__name__) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False ): lowerCamelCase__ : Optional[int] = 'backbone.' if is_semantic else '' lowerCamelCase__ : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (f'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (f'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (f'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False ): for i in range(config.num_hidden_layers ): lowerCamelCase__ : Tuple = 'backbone.' if is_semantic else '' # queries, keys and values lowerCamelCase__ : Tuple = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) lowerCamelCase__ : str = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) lowerCamelCase__ : Dict = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) lowerCamelCase__ : List[str] = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase__ : int = q_bias lowerCamelCase__ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ : Any = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowerCamelCase__ : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) lowerCamelCase__ : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) lowerCamelCase__ : Union[str, Any] = gamma_a lowerCamelCase__ : Union[str, Any] = gamma_a def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = dct.pop(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : List[Any] = val def lowerCamelCase_ ( ): lowerCamelCase__ : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : List[str] = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): lowerCamelCase__ : Dict = False if 'rvlcdip' in checkpoint_url else True lowerCamelCase__ : List[str] = BeitConfig(use_absolute_position_embeddings=SCREAMING_SNAKE_CASE_ , use_mask_token=SCREAMING_SNAKE_CASE_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowerCamelCase__ : Optional[int] = 1024 lowerCamelCase__ : Optional[int] = 4096 lowerCamelCase__ : Any = 24 lowerCamelCase__ : Dict = 16 # labels if "rvlcdip" in checkpoint_url: lowerCamelCase__ : Tuple = 16 lowerCamelCase__ : Union[str, Any] = 'huggingface/label-files' lowerCamelCase__ : Union[str, Any] = 'rvlcdip-id2label.json' lowerCamelCase__ : str = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ : Optional[Any] = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} lowerCamelCase__ : Dict = idalabel lowerCamelCase__ : Any = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowerCamelCase__ : str = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='cpu' )['model'] lowerCamelCase__ : Optional[int] = create_rename_keys(SCREAMING_SNAKE_CASE_ , has_lm_head=SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , has_lm_head=SCREAMING_SNAKE_CASE_ ) # load HuggingFace model lowerCamelCase__ : Tuple = BeitForMaskedImageModeling(SCREAMING_SNAKE_CASE_ ) if has_lm_head else BeitForImageClassification(SCREAMING_SNAKE_CASE_ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image lowerCamelCase__ : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Optional[Any] = prepare_img() lowerCamelCase__ : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) lowerCamelCase__ : Optional[Any] = encoding['pixel_values'] lowerCamelCase__ : Any = model(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Tuple = outputs.logits # verify logits lowerCamelCase__ : Optional[Any] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(SCREAMING_SNAKE_CASE_ ), "Shape of logits not as expected" Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: if has_lm_head: lowerCamelCase__ : Optional[int] = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: lowerCamelCase__ : Optional[int] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=SCREAMING_SNAKE_CASE_ , ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=SCREAMING_SNAKE_CASE_ , ) if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) A_ : Any = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
700
"""simple docstring""" from ..utils import DummyObject, requires_backends class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] ) class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] )
696
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Tuple = { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class a_ ( _snake_case ): '''simple docstring''' lowerCamelCase__ : str = 'roformer' def __init__(self, lowerCamelCase_=5_0_0_0_0, lowerCamelCase_=None, lowerCamelCase_=7_6_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=3_0_7_2, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_5_3_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=1e-12, lowerCamelCase_=0, lowerCamelCase_=False, lowerCamelCase_=True, **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__, **lowerCAmelCase__ ) lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : Optional[Any] = hidden_size if embedding_size is None else embedding_size lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : Union[str, Any] = num_attention_heads lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : List[str] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : Any = layer_norm_eps lowerCamelCase__ : Union[str, Any] = rotary_value lowerCamelCase__ : Dict = use_cache class a_ ( _snake_case ): '''simple docstring''' @property def a__ (self ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase__ : Dict = {0: 'batch', 1: 'sequence'} lowerCamelCase__ : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
701
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = 0 while number > 0: lowerCamelCase__ : List[str] = number % 10 sum_of_digits += last_digit lowerCamelCase__ : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase_ ( _lowerCamelCase = 100 ): lowerCamelCase__ : Union[str, Any] = factorial(_lowerCamelCase ) lowerCamelCase__ : List[Any] = split_and_add(_lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
696
0
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a_ ( snake_case__ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' super().__init__() lowerCamelCase__ : Optional[Any] = value_function lowerCamelCase__ : Any = unet lowerCamelCase__ : Optional[Any] = scheduler lowerCamelCase__ : Union[str, Any] = env lowerCamelCase__ : Any = env.get_dataset() lowerCamelCase__ : Tuple = {} for key in self.data.keys(): try: lowerCamelCase__ : List[Any] = self.data[key].mean() except: # noqa: E722 pass lowerCamelCase__ : Dict = {} for key in self.data.keys(): try: lowerCamelCase__ : List[Any] = self.data[key].std() except: # noqa: E722 pass lowerCamelCase__ : List[str] = env.observation_space.shape[0] lowerCamelCase__ : Union[str, Any] = env.action_space.shape[0] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def a__ (self, lowerCamelCase_ ): '''simple docstring''' if type(UpperCAmelCase_ ) is dict: return {k: self.to_torch(UpperCAmelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(UpperCAmelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(UpperCAmelCase_, device=self.unet.device ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for key, val in cond.items(): lowerCamelCase__ : Any = val.clone() return x_in def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = x.shape[0] lowerCamelCase__ : Dict = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCamelCase__ : int = torch.full((batch_size,), UpperCAmelCase_, device=self.unet.device, dtype=torch.long ) for _ in range(UpperCAmelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCamelCase__ : Any = self.value_function(x.permute(0, 2, 1 ), UpperCAmelCase_ ).sample lowerCamelCase__ : List[str] = torch.autograd.grad([y.sum()], [x] )[0] lowerCamelCase__ : str = self.scheduler._get_variance(UpperCAmelCase_ ) lowerCamelCase__ : str = torch.exp(0.5 * posterior_variance ) lowerCamelCase__ : int = model_std * grad lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : List[Any] = x.detach() lowerCamelCase__ : Any = x + scale * grad lowerCamelCase__ : Optional[Any] = self.reset_xa(UpperCAmelCase_, UpperCAmelCase_, self.action_dim ) lowerCamelCase__ : Dict = self.unet(x.permute(0, 2, 1 ), UpperCAmelCase_ ).sample.permute(0, 2, 1 ) # TODO: verify deprecation of this kwarg lowerCamelCase__ : List[str] = self.scheduler.step(UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, predict_epsilon=UpperCAmelCase_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowerCamelCase__ : Any = self.reset_xa(UpperCAmelCase_, UpperCAmelCase_, self.action_dim ) lowerCamelCase__ : List[Any] = self.to_torch(UpperCAmelCase_ ) return x, y def __call__(self, lowerCamelCase_, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=0.1 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.normalize(UpperCAmelCase_, 'observations' ) lowerCamelCase__ : List[str] = obs[None].repeat(UpperCAmelCase_, axis=0 ) lowerCamelCase__ : Union[str, Any] = {0: self.to_torch(UpperCAmelCase_ )} lowerCamelCase__ : str = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCamelCase__ : Optional[int] = randn_tensor(UpperCAmelCase_, device=self.unet.device ) lowerCamelCase__ : Any = self.reset_xa(UpperCAmelCase_, UpperCAmelCase_, self.action_dim ) lowerCamelCase__ : Optional[int] = self.to_torch(UpperCAmelCase_ ) # run the diffusion process lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.run_diffusion(UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) # sort output trajectories by value lowerCamelCase__ : List[Any] = y.argsort(0, descending=UpperCAmelCase_ ).squeeze() lowerCamelCase__ : Optional[Any] = x[sorted_idx] lowerCamelCase__ : List[str] = sorted_values[:, :, : self.action_dim] lowerCamelCase__ : List[Any] = actions.detach().cpu().numpy() lowerCamelCase__ : int = self.de_normalize(UpperCAmelCase_, key='actions' ) # select the action with the highest value if y is not None: lowerCamelCase__ : Any = 0 else: # if we didn't run value guiding, select a random action lowerCamelCase__ : Union[str, Any] = np.random.randint(0, UpperCAmelCase_ ) lowerCamelCase__ : Optional[Any] = denorm_actions[selected_index, 0] return denorm_actions
702
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ : Dict = "pt" elif is_tf_available(): A_ : Union[str, Any] = "tf" else: A_ : List[str] = "jax" class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = PerceiverTokenizer lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ (self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=2_0, lowerCamelCase_=5 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [] for i in range(len(lowerCamelCase_ ) ): try: lowerCamelCase__ : Any = tokenizer.decode([i], clean_up_tokenization_spaces=lowerCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase__ : Any = list(filter(lambda lowerCamelCase_ : re.match(r'^[ a-zA-Z]+$', t[1] ), lowerCamelCase_ ) ) lowerCamelCase__ : Union[str, Any] = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=lowerCamelCase_ ), lowerCamelCase_ ) ) if max_length is not None and len(lowerCamelCase_ ) > max_length: lowerCamelCase__ : int = toks[:max_length] if min_length is not None and len(lowerCamelCase_ ) < min_length and len(lowerCamelCase_ ) > 0: while len(lowerCamelCase_ ) < min_length: lowerCamelCase__ : Dict = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : int = [t[0] for t in toks] # Ensure consistency lowerCamelCase__ : Optional[int] = tokenizer.decode(lowerCamelCase_, clean_up_tokenization_spaces=lowerCamelCase_ ) if " " not in output_txt and len(lowerCamelCase_ ) > 1: lowerCamelCase__ : List[Any] = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=lowerCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=lowerCamelCase_ ) ) if with_prefix_space: lowerCamelCase__ : Optional[Any] = ' ' + output_txt lowerCamelCase__ : List[Any] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) return output_txt, output_ids def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = 'Unicode €.' lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_ ) lowerCamelCase__ : Dict = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : int = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]Unicode €.[SEP]' ) lowerCamelCase__ : List[str] = tokenizer('e è é ê ë' ) lowerCamelCase__ : Dict = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : Any = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ), '[CLS]e è é ê ë[SEP]' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCamelCase__ : List[Any] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) if FRAMEWORK != "jax": lowerCamelCase__ : List[str] = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase__ : int = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertEqual((2, 3_8), batch.input_ids.shape ) self.assertEqual((2, 3_8), batch.attention_mask.shape ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.perceiver_tokenizer lowerCamelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCamelCase__ : List[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids', lowerCamelCase_ ) self.assertIn('attention_mask', lowerCamelCase_ ) self.assertNotIn('decoder_input_ids', lowerCamelCase_ ) self.assertNotIn('decoder_attention_mask', lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : int = [ 'Summary of the text.', 'Another summary.', ] lowerCamelCase__ : str = tokenizer( text_target=lowerCamelCase_, max_length=3_2, padding='max_length', truncation=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertEqual(3_2, targets['input_ids'].shape[1] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 4_2 ) # Now let's start the test lowerCamelCase__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : str = ' He is very happy, UNwant\u00E9d,running' lowerCamelCase__ : str = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : str = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) shutil.rmtree(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCamelCase__ : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCamelCase__ : List[str] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : int = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertIn('new_additional_special_token', after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 4_2 ) lowerCamelCase__ : List[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_, model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length, 4_3 ) shutil.rmtree(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : Optional[Any] = json.load(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : List[str] = json.load(lowerCamelCase_ ) lowerCamelCase__ : Any = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] lowerCamelCase__ : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCamelCase__ : List[str] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ : Dict = tokenizer_class.from_pretrained( lowerCamelCase_, ) self.assertIn( 'an_additional_special_token', tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token', lstrip=lowerCamelCase_ )] lowerCamelCase__ : Any = tokenizer_class.from_pretrained( lowerCamelCase_, additional_special_tokens=lowerCamelCase_, ) self.assertIn('a_new_additional_special_token', tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ), '�' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_tokenizers(fast=lowerCamelCase_, do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Tuple = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] lowerCamelCase__ : List[str] = tokenizer.convert_tokens_to_string(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys A_ : Optional[Any] = "3" print("Python version:", sys.version) print("OS platform:", platform.platform()) print("OS architecture:", platform.machine()) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) except ImportError: print("Torch version:", None) try: import transformers print("transformers version:", transformers.__version__) except ImportError: print("transformers version:", None)
703
"""simple docstring""" from math import pi, sqrt, tan def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCamelCase__ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_lowerCamelCase , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCamelCase__ : Dict = (sidea + sidea + sidea) / 2 lowerCamelCase__ : str = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
696
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : str = [False] * len(_lowercase ) lowerCamelCase__ : Dict = [-1] * len(_lowercase ) def dfs(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Dict = True lowerCamelCase__ : Optional[int] = c for u in graph[v]: if not visited[u]: dfs(_lowercase , 1 - c ) for i in range(len(_lowercase ) ): if not visited[i]: dfs(_lowercase , 0 ) for i in range(len(_lowercase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph A_ : Union[str, Any] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
704
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : str = use_input_mask lowerCamelCase__ : Optional[Any] = use_token_type_ids lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : Union[str, Any] = type_sequence_label_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : Union[str, Any] = num_choices lowerCamelCase__ : List[str] = scope lowerCamelCase__ : Dict = vocab_size - 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = self.get_config() return config, input_ids, input_mask, token_labels def a__ (self ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[Any] = True return config, input_ids, input_mask, token_labels def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = GPTNeoXModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = True lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : Optional[Any] = GPTNeoXForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = self.num_labels lowerCamelCase__ : Optional[int] = GPTNeoXForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[Any] = GPTNeoXForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Tuple = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : List[str] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : str = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : List[Any] = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and lowerCamelCase__ : Tuple = torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : Tuple = torch.cat([input_mask, next_mask], dim=-1 ) lowerCamelCase__ : List[str] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, output_hidden_states=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = output_from_no_past['hidden_states'][0] lowerCamelCase__ : Optional[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_, output_hidden_states=lowerCamelCase_, )['hidden_states'][0] # select random slice lowerCamelCase__ : Dict = ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-3 ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = config_and_inputs lowerCamelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : int = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase__ : Dict = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = GPTNeoXModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=6_4, num_attention_heads=8 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def a__ (self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = ids_tensor([1, 1_0], config.vocab_size ) lowerCamelCase__ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Any = GPTNeoXModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() lowerCamelCase__ : List[Any] = original_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Optional[int] = {'type': scaling_type, 'factor': 10.0} lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() lowerCamelCase__ : Tuple = scaled_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: lowerCamelCase__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer('My favorite food is', return_tensors='pt' ).to(lowerCamelCase_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCamelCase__ : Dict = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' lowerCamelCase__ : Dict = model.generate(**lowerCamelCase_, do_sample=lowerCamelCase_, max_new_tokens=2_0 ) lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ )[0] self.assertEqual(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : str = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class a_ ( lowercase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = 'sew-d' def __init__(self, lowerCamelCase_=3_2, lowerCamelCase_=7_6_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=3_0_7_2, lowerCamelCase_=2, lowerCamelCase_=5_1_2, lowerCamelCase_=2_5_6, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=("p2c", "c2p"), lowerCamelCase_="layer_norm", lowerCamelCase_="gelu_python", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=0.0, lowerCamelCase_=0.1, lowerCamelCase_=0.02, lowerCamelCase_=1e-7, lowerCamelCase_=1e-5, lowerCamelCase_="group", lowerCamelCase_="gelu", lowerCamelCase_=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2), lowerCamelCase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), lowerCamelCase_=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1), lowerCamelCase_=False, lowerCamelCase_=1_2_8, lowerCamelCase_=1_6, lowerCamelCase_=True, lowerCamelCase_=0.05, lowerCamelCase_=1_0, lowerCamelCase_=2, lowerCamelCase_=0.0, lowerCamelCase_=1_0, lowerCamelCase_=0, lowerCamelCase_="mean", lowerCamelCase_=False, lowerCamelCase_=False, lowerCamelCase_=2_5_6, lowerCamelCase_=0, lowerCamelCase_=1, lowerCamelCase_=2, **lowerCamelCase_, ): '''simple docstring''' super().__init__(**__lowerCamelCase, pad_token_id=__lowerCamelCase, bos_token_id=__lowerCamelCase, eos_token_id=__lowerCamelCase ) lowerCamelCase__ : Any = hidden_size lowerCamelCase__ : Union[str, Any] = feat_extract_norm lowerCamelCase__ : List[str] = feat_extract_activation lowerCamelCase__ : Any = list(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = list(__lowerCamelCase ) lowerCamelCase__ : int = list(__lowerCamelCase ) lowerCamelCase__ : List[str] = conv_bias lowerCamelCase__ : Union[str, Any] = num_conv_pos_embeddings lowerCamelCase__ : int = num_conv_pos_embedding_groups lowerCamelCase__ : Union[str, Any] = len(self.conv_dim ) lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Optional[int] = squeeze_factor lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : List[str] = position_buckets lowerCamelCase__ : List[str] = share_att_key lowerCamelCase__ : int = relative_attention lowerCamelCase__ : Dict = norm_rel_ebd lowerCamelCase__ : Optional[int] = list(__lowerCamelCase ) lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : List[str] = num_attention_heads lowerCamelCase__ : Any = hidden_dropout lowerCamelCase__ : List[Any] = attention_dropout lowerCamelCase__ : Any = activation_dropout lowerCamelCase__ : List[str] = feat_proj_dropout lowerCamelCase__ : int = final_dropout lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : List[Any] = feature_layer_norm_eps lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : List[str] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__ : List[str] = apply_spec_augment lowerCamelCase__ : Optional[int] = mask_time_prob lowerCamelCase__ : Optional[Any] = mask_time_length lowerCamelCase__ : Union[str, Any] = mask_time_min_masks lowerCamelCase__ : List[Any] = mask_feature_prob lowerCamelCase__ : Optional[Any] = mask_feature_length lowerCamelCase__ : Any = mask_feature_min_masks # ctc loss lowerCamelCase__ : Dict = ctc_loss_reduction lowerCamelCase__ : List[Any] = ctc_zero_infinity # sequence classification lowerCamelCase__ : Optional[Any] = use_weighted_layer_sum lowerCamelCase__ : Union[str, Any] = classifier_proj_size @property def a__ (self ): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1 )
705
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : Dict = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. A_ : List[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A_ : Union[str, Any] = spec.loader.load_module() A_ : int = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A_ : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") A_ : str = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCamelCase__ : Dict = False # source code of `config_class` lowerCamelCase__ : str = inspect.getsource(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = _re_checkpoint.findall(_lowerCamelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCamelCase__ , lowerCamelCase__ : Optional[int] = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase__ : Any = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: lowerCamelCase__ : Any = True break lowerCamelCase__ : Dict = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ : Optional[Any] = '\n'.join(sorted(_lowerCamelCase ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
696
0
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A_ : Tuple = "src/diffusers" A_ : Optional[Any] = "." # This is to make sure the diffusers module imported is the one in the repo. A_ : Optional[int] = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) A_ : Any = spec.loader.load_module() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return line.startswith(lowerCamelCase_ ) or len(lowerCamelCase_ ) <= 1 or re.search(r'^\s*\)(\s*->.*:|:)\s*$' , lowerCamelCase_ ) is not None def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Dict = object_name.split('.' ) lowerCamelCase__ : Any = 0 # First let's find the module where our object lives. lowerCamelCase__ : str = parts[i] while i < len(lowerCamelCase_ ) and not os.path.isfile(os.path.join(lowerCamelCase_ , f'''{module}.py''' ) ): i += 1 if i < len(lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = os.path.join(lowerCamelCase_ , parts[i] ) if i >= len(lowerCamelCase_ ): raise ValueError(f'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(lowerCamelCase_ , f'''{module}.py''' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCamelCase__ : List[str] = f.readlines() # Now let's find the class / func in the code! lowerCamelCase__ : int = '' lowerCamelCase__ : Optional[int] = 0 for name in parts[i + 1 :]: while ( line_index < len(lowerCamelCase_ ) and re.search(rf'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowerCamelCase_ ): raise ValueError(f''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowerCamelCase__ : Tuple = line_index while line_index < len(lowerCamelCase_ ) and _should_continue(lines[line_index] , lowerCamelCase_ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCamelCase__ : List[str] = lines[start_index:line_index] return "".join(lowerCamelCase_ ) A_ : List[Any] = re.compile(r"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") A_ : str = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)") A_ : Any = re.compile(r"<FILL\s+[^>]*>") def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Dict = code.split('\n' ) lowerCamelCase__ : List[Any] = 0 while idx < len(lowerCamelCase_ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowerCamelCase_ ): return re.search(r'^(\s*)\S' , lines[idx] ).groups()[0] return "" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Dict = len(get_indent(lowerCamelCase_ ) ) > 0 if has_indent: lowerCamelCase__ : Dict = f'''class Bla:\n{code}''' lowerCamelCase__ : Union[str, Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=lowerCamelCase_ ) lowerCamelCase__ : Tuple = black.format_str(lowerCamelCase_ , mode=lowerCamelCase_ ) lowerCamelCase__ : Any = style_docstrings_in_code(lowerCamelCase_ ) return result[len('class Bla:\n' ) :] if has_indent else result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=False ): with open(lowerCamelCase_ , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCamelCase__ : Optional[int] = f.readlines() lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowerCamelCase_ ): lowerCamelCase__ : Any = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowerCamelCase__ : Tuple = search.groups() lowerCamelCase__ : Optional[Any] = find_code_in_diffusers(lowerCamelCase_ ) lowerCamelCase__ : Dict = get_indent(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 lowerCamelCase__ : Optional[int] = theoretical_indent lowerCamelCase__ : Tuple = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowerCamelCase__ : List[Any] = True while line_index < len(lowerCamelCase_ ) and should_continue: line_index += 1 if line_index >= len(lowerCamelCase_ ): break lowerCamelCase__ : Dict = lines[line_index] lowerCamelCase__ : List[str] = _should_continue(lowerCamelCase_ , lowerCamelCase_ ) and re.search(f'''^{indent}# End copy''' , lowerCamelCase_ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCamelCase__ : str = lines[start_index:line_index] lowerCamelCase__ : Dict = ''.join(lowerCamelCase_ ) # Remove any nested `Copied from` comments to avoid circular copies lowerCamelCase__ : List[Any] = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(lowerCamelCase_ ) is None] lowerCamelCase__ : Dict = '\n'.join(lowerCamelCase_ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowerCamelCase_ ) > 0: lowerCamelCase__ : List[str] = replace_pattern.replace('with' , '' ).split(',' ) lowerCamelCase__ : Optional[int] = [_re_replace_pattern.search(lowerCamelCase_ ) for p in patterns] for pattern in patterns: if pattern is None: continue lowerCamelCase__ : List[str] = pattern.groups() lowerCamelCase__ : Optional[Any] = re.sub(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if option.strip() == "all-casing": lowerCamelCase__ : Union[str, Any] = re.sub(obja.lower() , obja.lower() , lowerCamelCase_ ) lowerCamelCase__ : Tuple = re.sub(obja.upper() , obja.upper() , lowerCamelCase_ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowerCamelCase__ : Optional[Any] = blackify(lines[start_index - 1] + theoretical_code ) lowerCamelCase__ : List[str] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: lowerCamelCase__ : int = lines[:start_index] + [theoretical_code] + lines[line_index:] lowerCamelCase__ : str = start_index + 1 if overwrite and len(lowerCamelCase_ ) > 0: # Warn the user a file has been modified. print(f'''Detected changes, rewriting {filename}.''' ) with open(lowerCamelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lowerCamelCase_ ) return diffs def lowerCamelCase_ ( _lowerCamelCase = False ): lowerCamelCase__ : List[Any] = glob.glob(os.path.join(lowerCamelCase_ , '**/*.py' ) , recursive=lowerCamelCase_ ) lowerCamelCase__ : Tuple = [] for filename in all_files: lowerCamelCase__ : int = is_copy_consistent(lowerCamelCase_ , lowerCamelCase_ ) diffs += [f'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(lowerCamelCase_ ) > 0: lowerCamelCase__ : int = '\n'.join(lowerCamelCase_ ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") A_ : List[str] = parser.parse_args() check_copies(args.fix_and_overwrite)
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : List[Any] = logging.get_logger(__name__) A_ : Optional[int] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } A_ : int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } A_ : List[str] = {"facebook/blenderbot-3B": 1_28} class a_ ( UpperCAmelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Union[str, Any] = ['input_ids', 'attention_mask'] lowerCamelCase__ : Optional[Any] = BlenderbotTokenizer def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_="replace", lowerCamelCase_="<s>", lowerCamelCase_="</s>", lowerCamelCase_="</s>", lowerCamelCase_="<s>", lowerCamelCase_="<unk>", lowerCamelCase_="<pad>", lowerCamelCase_="<mask>", lowerCamelCase_=False, lowerCamelCase_=True, **lowerCamelCase_, ): '''simple docstring''' super().__init__( _lowercase, _lowercase, tokenizer_file=_lowercase, errors=_lowercase, bos_token=_lowercase, eos_token=_lowercase, sep_token=_lowercase, cls_token=_lowercase, unk_token=_lowercase, pad_token=_lowercase, mask_token=_lowercase, add_prefix_space=_lowercase, trim_offsets=_lowercase, **_lowercase, ) lowerCamelCase__ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', _lowercase ) != add_prefix_space: lowerCamelCase__ : str = getattr(_lowercase, pre_tok_state.pop('type' ) ) lowerCamelCase__ : str = add_prefix_space lowerCamelCase__ : Any = pre_tok_class(**_lowercase ) lowerCamelCase__ : List[Any] = add_prefix_space lowerCamelCase__ : Optional[int] = 'post_processor' lowerCamelCase__ : Optional[int] = getattr(self.backend_tokenizer, _lowercase, _lowercase ) if tokenizer_component_instance: lowerCamelCase__ : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCamelCase__ : Dict = tuple(state['sep'] ) if "cls" in state: lowerCamelCase__ : Dict = tuple(state['cls'] ) lowerCamelCase__ : Optional[int] = False if state.get('add_prefix_space', _lowercase ) != add_prefix_space: lowerCamelCase__ : int = add_prefix_space lowerCamelCase__ : str = True if state.get('trim_offsets', _lowercase ) != trim_offsets: lowerCamelCase__ : Dict = trim_offsets lowerCamelCase__ : Any = True if changes_to_apply: lowerCamelCase__ : Optional[Any] = getattr(_lowercase, state.pop('type' ) ) lowerCamelCase__ : Tuple = component_class(**_lowercase ) setattr(self.backend_tokenizer, _lowercase, _lowercase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def a__ (self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = AddedToken(_lowercase, lstrip=_lowercase, rstrip=_lowercase ) if isinstance(_lowercase, _lowercase ) else value lowerCamelCase__ : Any = value def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = kwargs.get('is_split_into_words', _lowercase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowercase, **_lowercase ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = kwargs.get('is_split_into_words', _lowercase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowercase, **_lowercase ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : List[str] = self._tokenizer.model.save(_lowercase, name=_lowercase ) return tuple(_lowercase ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Tuple = [self.sep_token_id] lowerCamelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(_lowercase ) lowerCamelCase__ : Optional[Any] = ' '.join(_lowercase ) lowerCamelCase__ : Optional[int] = self.encode(_lowercase ) if len(_lowercase ) > self.model_max_length: lowerCamelCase__ : Dict = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
707
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A_ : Optional[int] = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A_ : List[str] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) A_ : Tuple = BeautifulSoup(res.text, "html.parser") A_ : Dict = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f"https://google.com{link.get('href')}")
696
0
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Dict = { "huggingface/informer-tourism-monthly": ( "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" ), # See all Informer models at https://huggingface.co/models?filter=informer } class a_ ( __A ): '''simple docstring''' lowerCamelCase__ : Tuple = 'informer' lowerCamelCase__ : Dict = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__(self, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = "student_t", lowerCamelCase_ = "nll", lowerCamelCase_ = 1, lowerCamelCase_ = None, lowerCamelCase_ = "mean", lowerCamelCase_ = 0, lowerCamelCase_ = 0, lowerCamelCase_ = 0, lowerCamelCase_ = 0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = 6_4, lowerCamelCase_ = 3_2, lowerCamelCase_ = 3_2, lowerCamelCase_ = 2, lowerCamelCase_ = 2, lowerCamelCase_ = 2, lowerCamelCase_ = 2, lowerCamelCase_ = True, lowerCamelCase_ = "gelu", lowerCamelCase_ = 0.05, lowerCamelCase_ = 0.1, lowerCamelCase_ = 0.1, lowerCamelCase_ = 0.1, lowerCamelCase_ = 0.1, lowerCamelCase_ = 1_0_0, lowerCamelCase_ = 0.02, lowerCamelCase_=True, lowerCamelCase_ = "prob", lowerCamelCase_ = 5, lowerCamelCase_ = True, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = prediction_length lowerCamelCase__ : Union[str, Any] = context_length or prediction_length lowerCamelCase__ : Optional[Any] = distribution_output lowerCamelCase__ : int = loss lowerCamelCase__ : str = input_size lowerCamelCase__ : Optional[Any] = num_time_features lowerCamelCase__ : Union[str, Any] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCamelCase__ : Any = scaling lowerCamelCase__ : Any = num_dynamic_real_features lowerCamelCase__ : Any = num_static_real_features lowerCamelCase__ : Any = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(lowerCamelCase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) lowerCamelCase__ : Dict = cardinality else: lowerCamelCase__ : Tuple = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(lowerCamelCase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) lowerCamelCase__ : str = embedding_dimension else: lowerCamelCase__ : Optional[Any] = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality] lowerCamelCase__ : str = num_parallel_samples # Transformer architecture configuration lowerCamelCase__ : List[Any] = input_size * len(self.lags_sequence ) + self._number_of_features lowerCamelCase__ : List[Any] = d_model lowerCamelCase__ : Optional[Any] = encoder_attention_heads lowerCamelCase__ : Any = decoder_attention_heads lowerCamelCase__ : Any = encoder_ffn_dim lowerCamelCase__ : Dict = decoder_ffn_dim lowerCamelCase__ : Optional[Any] = encoder_layers lowerCamelCase__ : Union[str, Any] = decoder_layers lowerCamelCase__ : str = dropout lowerCamelCase__ : Tuple = attention_dropout lowerCamelCase__ : Optional[int] = activation_dropout lowerCamelCase__ : Tuple = encoder_layerdrop lowerCamelCase__ : Any = decoder_layerdrop lowerCamelCase__ : str = activation_function lowerCamelCase__ : Any = init_std lowerCamelCase__ : Tuple = use_cache # Informer lowerCamelCase__ : Optional[int] = attention_type lowerCamelCase__ : Union[str, Any] = sampling_factor lowerCamelCase__ : Tuple = distil super().__init__(is_encoder_decoder=lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
708
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCamelCase__ : Tuple = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_, cache_dir=lowerCamelCase_ ) lowerCamelCase__ : List[str] = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_, os.listdir(lowerCamelCase_ )[0], 'snapshots' ) )] lowerCamelCase__ : Optional[int] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[int] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Any = 4 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : List[Any] = num_samples * [prompt] lowerCamelCase__ : Optional[int] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : int = replicate(lowerCamelCase_ ) lowerCamelCase__ : Any = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : int = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1_514_745 ) < 1e-3 assert np.abs(np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 49_947.875 ) < 5e-1 lowerCamelCase__ : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase_ ) == num_samples def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='flax', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : int = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[str] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : List[str] = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = shard(lowerCamelCase_ ) lowerCamelCase__ : str = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05_652_401) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_383_808.2) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Union[str, Any] = 5_0 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : Tuple = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Any = replicate(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa ) lowerCamelCase__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Union[str, Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] = 5_0 lowerCamelCase__ : Tuple = jax.device_count() lowerCamelCase__ : Optional[int] = num_samples * [prompt] lowerCamelCase__ : str = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Optional[int] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : List[str] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = FlaxDDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', set_alpha_to_one=lowerCamelCase_, steps_offset=1, ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, scheduler=lowerCamelCase_, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : List[str] = scheduler.create_state() lowerCamelCase__ : int = scheduler_state lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : Optional[Any] = jax.device_count() lowerCamelCase__ : Any = num_samples * [prompt] lowerCamelCase__ : Any = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Dict = shard(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045_043_945) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_347_693.5) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : int = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : str = jax.random.split(jax.random.PRNGKey(0 ), lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Dict = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Tuple = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : int = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention lowerCamelCase__ , lowerCamelCase__ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, use_memory_efficient_attention=lowerCamelCase_, ) lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : Any = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Any = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
696
0
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) lowerCamelCase__ : Any = FileLock(str(tmpdir / 'foo.lock' ) ) lowerCamelCase__ : int = 0.01 with locka.acquire(): with pytest.raises(__lowerCAmelCase ): lowerCamelCase__ : Tuple = time.time() locka.acquire(__lowerCAmelCase ) assert time.time() - _start > timeout def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = 'a' * 1000 + '.lock' lowerCamelCase__ : Optional[int] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__lowerCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 lowerCamelCase__ : Any = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__lowerCAmelCase ): locka.acquire(0 )
709
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = 1_0_0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = True, ): '''simple docstring''' if audio_length_in_s is None: lowerCamelCase__ : str = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase__ : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase__ : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCamelCase__ : Dict = int(lowerCamelCase_ ) if sample_size % down_scale_factor != 0: lowerCamelCase__ : Union[str, Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ' process.' ) lowerCamelCase__ : Optional[Any] = int(lowerCamelCase_ ) lowerCamelCase__ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase__ : Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase_, lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ : Union[str, Any] = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_, device=self.device, dtype=lowerCamelCase_ ) # set step values self.scheduler.set_timesteps(lowerCamelCase_, device=audio.device ) lowerCamelCase__ : int = self.scheduler.timesteps.to(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase__ : List[Any] = self.unet(lowerCamelCase_, lowerCamelCase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase__ : List[str] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample lowerCamelCase__ : Union[str, Any] = audio.clamp(-1, 1 ).float().cpu().numpy() lowerCamelCase__ : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase_ )
696
0
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar A_ : int = TypeVar("_T") class a_ ( Generic[_T] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : list[_T] = list(iterable or [] ) lowerCamelCase__ : list[_T] = [] def __len__(self ): '''simple docstring''' return len(self._stacka ) + len(self._stacka ) def __repr__(self ): '''simple docstring''' return f'''Queue({tuple(self._stacka[::-1] + self._stacka )})''' def a__ (self, lowerCamelCase_ ): '''simple docstring''' self._stacka.append(UpperCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self._stacka.pop lowerCamelCase__ : Union[str, Any] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('Queue is empty' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
710
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(lowerCamelCase_ ) ) vocab_file.flush() lowerCamelCase__ : Tuple = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCamelCase__ : Optional[Any] = BertModel(BertConfig(vocab_size=len(lowerCamelCase_ ) ) ) model.save_pretrained(lowerCamelCase_ ) self._test_export(lowerCamelCase_, 'pt', 1_2, lowerCamelCase_ ) @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Optional[Any] = self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Any = quantize(Path(lowerCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Any = self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = quantize(lowerCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowerCamelCase__ : str = Path(lowerCamelCase_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ) return path except Exception as e: self.fail(lowerCamelCase_ ) @require_torch @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : str = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'pt' ) @require_tf @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import TFBertModel lowerCamelCase__ : Dict = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Optional[int] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'tf' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = FeatureExtractionPipeline(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = infer_shapes(lowerCamelCase_, lowerCamelCase_ ) # Assert all variables are present self.assertEqual(len(lowerCamelCase_ ), len(lowerCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3], lowerCamelCase_ ) self.assertSequenceEqual(variable_names[3:], lowerCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name], {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'], {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'], {0: 'batch'} ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['input_ids', 'attention_mask', 'token_type_ids'] lowerCamelCase__ : Optional[int] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowerCamelCase__ , lowerCamelCase__ : str = ensure_valid_input(FuncContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase_ ), 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase_ ), set(lowerCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase_, (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCamelCase__ , lowerCamelCase__ : Any = ensure_valid_input(FuncNonContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase_ ), 1 ) self.assertEqual(len(lowerCamelCase_ ), 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0], tokens['input_ids'] ) self.assertEqual(ordered_input_names[0], 'input_ids' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ), '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx', generated.as_posix() )
696
0
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer lowerCamelCase__ : List[str] = flax_key_tuple[:-1] + ("weight",) lowerCamelCase__ : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer lowerCamelCase__ : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) lowerCamelCase__ : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowerCamelCase__ : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if "metadata" in layer: lowerCamelCase__ : Optional[int] = layer.split('metadata' ) lowerCamelCase__ : Union[str, Any] = "".join(split_layer[0] )[:-1] lowerCamelCase__ : Dict = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: lowerCamelCase__ : List[str] = layer.split('kvstore' ) lowerCamelCase__ : Optional[int] = "".join(split_layer[0] )[:-1] lowerCamelCase__ : List[Any] = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: lowerCamelCase__ : Tuple = layer.split('/' ) lowerCamelCase__ : int = "/".join(split_layer[:-1] ) lowerCamelCase__ : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: lowerCamelCase__ : int = f'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: lowerCamelCase__ : Optional[int] = "file" else: lowerCamelCase__ : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' lowerCamelCase__ : str = rename_keys(_lowerCAmelCase ) lowerCamelCase__ : Dict = {} for k, v in current_block.items(): lowerCamelCase__ : Union[str, Any] = v lowerCamelCase__ : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ): '''simple docstring''' lowerCamelCase__ : Dict = convert_file_size_to_int(_lowerCAmelCase ) lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : Dict = {} lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: lowerCamelCase__ : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] lowerCamelCase__ : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep='/' ) lowerCamelCase__ : Optional[int] = {} for layer in checkpoint_info.keys(): lowerCamelCase__ : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: lowerCamelCase__ : Optional[int] = content else: lowerCamelCase__ : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file lowerCamelCase__ : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() lowerCamelCase__ : int = torch.tensor(_lowerCAmelCase ) lowerCamelCase__ : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts lowerCamelCase__ : Optional[Any] = rename_base_flax_keys(tuple(key.split('/' ) ) , _lowerCAmelCase ) lowerCamelCase__ : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: lowerCamelCase__ : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace('.bin' , f'''-{len(_lowerCAmelCase )+1:05d}-of-???.bin''' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block lowerCamelCase__ : Optional[int] = {} lowerCamelCase__ : Dict = 0 lowerCamelCase__ : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block lowerCamelCase__ : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace('.bin' , f'''-{len(_lowerCAmelCase )+1:05d}-of-???.bin''' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : str = {} for idx, shard in enumerate(_lowerCAmelCase ): lowerCamelCase__ : Dict = weights_name.replace( '.bin' , f'''-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin''' ) # len(sharded_state_dicts):05d} lowerCamelCase__ : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) lowerCamelCase__ : Tuple = shard for key in shard: lowerCamelCase__ : str = shard_file # Add the metadata lowerCamelCase__ : Optional[Any] = {"total_size": total_size} lowerCamelCase__ : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , 'w' , encoding='utf-8' ) as f: lowerCamelCase__ : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": A_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) A_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowerCamelCase_ ( ): '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer lowerCamelCase__ : Optional[int] = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) lowerCamelCase__ : int = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) lowerCamelCase__ : List[str] = TaTokenizer.from_pretrained('t5-small' ) lowerCamelCase__ : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." lowerCamelCase__ : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors='pt' ).input_ids lowerCamelCase__ : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
711
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase__ : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : str = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ : Any = False @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return self.time_input_dim @property def a__ (self ): '''simple docstring''' return self.time_input_dim * 4 @property def a__ (self ): '''simple docstring''' return 1_0_0 @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase__ : int = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def a__ (self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.dummy_unet lowerCamelCase__ : List[Any] = self.dummy_movq lowerCamelCase__ : Tuple = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase__ : Optional[Any] = DDIMScheduler(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image lowerCamelCase__ : Any = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase__ : Optional[Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint lowerCamelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : int = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = 'cpu' lowerCamelCase__ : List[Any] = self.get_dummy_components() lowerCamelCase__ : List[Any] = self.pipeline_class(**lowerCamelCase_ ) lowerCamelCase__ : Dict = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : str = pipe( **self.get_dummy_inputs(lowerCamelCase_ ), return_dict=lowerCamelCase_, )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : List[str] = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase__ : Any = init_image.resize((5_1_2, 5_1_2) ) lowerCamelCase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase__ : Any = torch.from_numpy(np.array(lowerCamelCase_ ) ).float() / 255.0 lowerCamelCase__ : Optional[int] = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowerCamelCase__ : Union[str, Any] = 'A robot, 4k photo' lowerCamelCase__ : Any = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth', torch_dtype=torch.floataa ) lowerCamelCase__ : int = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = pipe_prior( lowerCamelCase_, image=lowerCamelCase_, strength=0.85, generator=lowerCamelCase_, negative_prompt='', ).to_tuple() lowerCamelCase__ : Union[str, Any] = pipeline( image=lowerCamelCase_, image_embeds=lowerCamelCase_, negative_image_embeds=lowerCamelCase_, hint=lowerCamelCase_, generator=lowerCamelCase_, num_inference_steps=1_0_0, height=5_1_2, width=5_1_2, strength=0.5, output_type='np', ) lowerCamelCase__ : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" from datetime import datetime as dt import os from github import Github A_ : Dict = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = Github(os.environ['GITHUB_TOKEN'] ) lowerCamelCase__ : str = g.get_repo('huggingface/transformers' ) lowerCamelCase__ : List[str] = repo.get_issues(state='open' ) for issue in open_issues: lowerCamelCase__ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowerCamelCase : i.created_at , reverse=__lowerCAmelCase ) lowerCamelCase__ : Union[str, Any] = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
712
"""simple docstring""" A_ : List[str] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
696
0
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[int] = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=__UpperCAmelCase , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=__UpperCAmelCase , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=__UpperCAmelCase ) return parser.parse_args() def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = parse_args() # Import training_script as a module. lowerCamelCase__ : Any = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCamelCase__ : str = script_fpath.stem lowerCamelCase__ : Union[str, Any] = importlib.import_module(__UpperCAmelCase ) # Patch sys.argv lowerCamelCase__ : List[Any] = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
713
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 A_ : Optional[int] = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ = 1_4 ): '''simple docstring''' if group not in primes: raise ValueError('Unsupported Group' ) lowerCamelCase__ : int = primes[group]['prime'] lowerCamelCase__ : Optional[int] = primes[group]['generator'] lowerCamelCase__ : Any = int(hexlify(urandom(3_2 ) ), base=1_6 ) def a__ (self ): '''simple docstring''' return hex(self.__private_key )[2:] def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = pow(self.generator, self.__private_key, self.prime ) return hex(lowerCamelCase_ )[2:] def a__ (self, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase_, (self.prime - 1) // 2, self.prime ) == 1 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = int(lowerCamelCase_, base=1_6 ) if not self.is_valid_public_key(lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Tuple = pow(lowerCamelCase_, self.__private_key, self.prime ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase_, (prime - 1) // 2, lowerCamelCase_ ) == 1 ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 1_4 ): '''simple docstring''' lowerCamelCase__ : Dict = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[Any] = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[str] = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase_, lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Dict = pow(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
696
0
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = 1_0 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = [1, 2, 3, 4] lowerCamelCase__ : Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase, self.block_size, 0 ), _UpperCAmelCase ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] lowerCamelCase__ : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(_UpperCAmelCase, self.block_size, 0 ), _UpperCAmelCase ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] lowerCamelCase__ : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(_UpperCAmelCase, self.block_size, 0 ), _UpperCAmelCase ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' lowerCamelCase__ , lowerCamelCase__ : str = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, [] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = '' lowerCamelCase__ , lowerCamelCase__ : Dict = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, [] ) self.assertEqual(_UpperCAmelCase, [] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) lowerCamelCase__ , lowerCamelCase__ : int = process_story(_UpperCAmelCase ) lowerCamelCase__ : str = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(_UpperCAmelCase, _UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = ['It was the best of times.'] self.assertEqual(_UpperCAmelCase, _UpperCAmelCase ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = torch.tensor([1, 2, 3, 4] ) lowerCamelCase__ : List[str] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase, 0 ).numpy(), expected.numpy() ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) lowerCamelCase__ : Any = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase, 2_3 ).numpy(), expected.numpy() ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) lowerCamelCase__ : Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase, 1 ).numpy(), expected.numpy() ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = 1_0_1 lowerCamelCase__ : int = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) lowerCamelCase__ : List[str] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) lowerCamelCase__ : int = compute_token_type_ids(_UpperCAmelCase, _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase, _UpperCAmelCase )
714
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_lowerCamelCase ) * abs(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
696
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if index == number_of_items: return 0 lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : str = 0 lowerCamelCase__ : List[Any] = knapsack(__A , __A , __A , __A , index + 1 ) if weights[index] <= max_weight: lowerCamelCase__ : Optional[int] = values[index] + knapsack( __A , __A , __A , max_weight - weights[index] , index + 1 ) return max(__A , __A ) if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : int = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : Optional[int] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : str = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : Optional[int] = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Tuple = c.n_embd + 1 # int lowerCamelCase__ : Union[str, Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : List[Any] = not c.scale_attn_weights # bool lowerCamelCase__ : List[Any] = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = PretrainedConfig() lowerCamelCase__ : Optional[Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : Any = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : int = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = mock.Mock() lowerCamelCase__ : List[str] = 5_0_0 lowerCamelCase__ : Any = {} lowerCamelCase__ : int = HTTPError lowerCamelCase__ : Optional[Any] = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : str = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : str = ['config.42.0.0.json'] lowerCamelCase__ : Union[str, Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Optional[int] = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Dict = 'v3.0.0' lowerCamelCase__ : List[str] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
696
0
"""simple docstring""" from collections import deque from .hash_table import HashTable class a_ ( a__ ): '''simple docstring''' def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' super().__init__(*_A, **_A ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_A ) lowerCamelCase__ : Optional[int] = self.values[key] def a__ (self ): '''simple docstring''' return ( sum(self.charge_factor - len(_A ) for slot in self.values ) / self.size_table * self.charge_factor ) def a__ (self, lowerCamelCase_, lowerCamelCase_=None ): '''simple docstring''' if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_A ) == 0 ): return key return super()._collision_resolution(_A, _A )
716
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' super().__init__() lowerCamelCase__ : Dict = value_function lowerCamelCase__ : int = unet lowerCamelCase__ : Union[str, Any] = scheduler lowerCamelCase__ : int = env lowerCamelCase__ : List[Any] = env.get_dataset() lowerCamelCase__ : Dict = {} for key in self.data.keys(): try: lowerCamelCase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowerCamelCase__ : Optional[int] = {} for key in self.data.keys(): try: lowerCamelCase__ : Tuple = self.data[key].std() except: # noqa: E722 pass lowerCamelCase__ : Optional[Any] = env.observation_space.shape[0] lowerCamelCase__ : List[str] = env.action_space.shape[0] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def a__ (self, lowerCamelCase_ ): '''simple docstring''' if type(lowerCamelCase_ ) is dict: return {k: self.to_torch(lowerCamelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase_, device=self.unet.device ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for key, val in cond.items(): lowerCamelCase__ : Optional[Any] = val.clone() return x_in def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = x.shape[0] lowerCamelCase__ : Tuple = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCamelCase__ : Dict = torch.full((batch_size,), lowerCamelCase_, device=self.unet.device, dtype=torch.long ) for _ in range(lowerCamelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCamelCase__ : str = self.value_function(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample lowerCamelCase__ : Union[str, Any] = torch.autograd.grad([y.sum()], [x] )[0] lowerCamelCase__ : Optional[int] = self.scheduler._get_variance(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = torch.exp(0.5 * posterior_variance ) lowerCamelCase__ : Tuple = model_std * grad lowerCamelCase__ : str = 0 lowerCamelCase__ : Dict = x.detach() lowerCamelCase__ : Dict = x + scale * grad lowerCamelCase__ : Optional[int] = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : Tuple = self.unet(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample.permute(0, 2, 1 ) # TODO: verify deprecation of this kwarg lowerCamelCase__ : Optional[Any] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, predict_epsilon=lowerCamelCase_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowerCamelCase__ : Any = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) return x, y def __call__(self, lowerCamelCase_, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=0.1 ): '''simple docstring''' lowerCamelCase__ : Dict = self.normalize(lowerCamelCase_, 'observations' ) lowerCamelCase__ : List[str] = obs[None].repeat(lowerCamelCase_, axis=0 ) lowerCamelCase__ : str = {0: self.to_torch(lowerCamelCase_ )} lowerCamelCase__ : Optional[Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCamelCase__ : List[Any] = randn_tensor(lowerCamelCase_, device=self.unet.device ) lowerCamelCase__ : int = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) # run the diffusion process lowerCamelCase__ , lowerCamelCase__ : List[str] = self.run_diffusion(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # sort output trajectories by value lowerCamelCase__ : Union[str, Any] = y.argsort(0, descending=lowerCamelCase_ ).squeeze() lowerCamelCase__ : List[str] = x[sorted_idx] lowerCamelCase__ : Optional[Any] = sorted_values[:, :, : self.action_dim] lowerCamelCase__ : Union[str, Any] = actions.detach().cpu().numpy() lowerCamelCase__ : Union[str, Any] = self.de_normalize(lowerCamelCase_, key='actions' ) # select the action with the highest value if y is not None: lowerCamelCase__ : str = 0 else: # if we didn't run value guiding, select a random action lowerCamelCase__ : Optional[Any] = np.random.randint(0, lowerCamelCase_ ) lowerCamelCase__ : Tuple = denorm_actions[selected_index, 0] return denorm_actions
696
0
"""simple docstring""" import datasets from .evaluate import evaluate A_ : Tuple = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" A_ : Optional[Any] = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" A_ : Dict = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def a__ (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': {'id': datasets.Value('string' ), 'prediction_text': datasets.Value('string' )}, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ), codebase_urls=['https://rajpurkar.github.io/SQuAD-explorer/'], reference_urls=['https://rajpurkar.github.io/SQuAD-explorer/'], ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} lowerCamelCase__ : str = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] lowerCamelCase__ : List[Any] = evaluate(dataset=__lowerCamelCase, predictions=__lowerCamelCase ) return score
717
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : List[str] = analyze_text(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. lowerCamelCase__ : List[Any] = sum(single_char_strings.values() ) # one length string lowerCamelCase__ : str = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCamelCase__ : Tuple = single_char_strings[ch] lowerCamelCase__ : Union[str, Any] = my_str / all_sum my_fir_sum += prob * math.loga(_lowerCamelCase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string lowerCamelCase__ : Dict = sum(two_char_strings.values() ) lowerCamelCase__ : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCamelCase__ : int = cha + cha if sequence in two_char_strings: lowerCamelCase__ : int = two_char_strings[sequence] lowerCamelCase__ : Tuple = int(_lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(_lowerCamelCase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = Counter() # type: ignore lowerCamelCase__ : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase_ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
696
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a_ ( _UpperCAmelCase ): '''simple docstring''' lowerCamelCase__ : Any = (DPMSolverSinglestepScheduler,) lowerCamelCase__ : int = (('num_inference_steps', 25),) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('inf' ), '''variance_type''': None, } config.update(**lowerCamelCase_ ) return config def a__ (self, lowerCamelCase_=0, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = dict(self.forward_default_kwargs ) lowerCamelCase__ : List[str] = kwargs.pop('num_inference_steps', lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = self.dummy_sample lowerCamelCase__ : Optional[Any] = 0.1 * sample lowerCamelCase__ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCamelCase__ : int = self.get_scheduler_config(**lowerCamelCase_ ) lowerCamelCase__ : List[Any] = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals lowerCamelCase__ : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = scheduler_class.from_pretrained(lowerCamelCase_ ) new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals lowerCamelCase__ : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCamelCase__ : Dict = sample, sample for t in range(lowerCamelCase_, time_step + scheduler.config.solver_order + 1 ): lowerCamelCase__ : List[Any] = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample lowerCamelCase__ : Union[str, Any] = new_scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a__ (self ): '''simple docstring''' pass def a__ (self, lowerCamelCase_=0, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = dict(self.forward_default_kwargs ) lowerCamelCase__ : List[str] = kwargs.pop('num_inference_steps', lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = self.dummy_sample lowerCamelCase__ : List[str] = 0.1 * sample lowerCamelCase__ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCamelCase__ : str = self.get_scheduler_config() lowerCamelCase__ : Tuple = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) lowerCamelCase__ : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = scheduler_class.from_pretrained(lowerCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) lowerCamelCase__ : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCamelCase__ : Any = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample lowerCamelCase__ : str = new_scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a__ (self, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if scheduler is None: lowerCamelCase__ : Optional[int] = self.scheduler_classes[0] lowerCamelCase__ : Dict = self.get_scheduler_config(**lowerCamelCase_ ) lowerCamelCase__ : Any = scheduler_class(**lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.scheduler_classes[0] lowerCamelCase__ : Tuple = self.get_scheduler_config(**lowerCamelCase_ ) lowerCamelCase__ : Dict = scheduler_class(**lowerCamelCase_ ) lowerCamelCase__ : str = 1_0 lowerCamelCase__ : int = self.dummy_model() lowerCamelCase__ : int = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase__ : List[str] = model(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample return sample def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowerCamelCase__ : Optional[int] = 5_0 lowerCamelCase__ : Optional[int] = self.dummy_model() lowerCamelCase__ : Dict = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase_ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): lowerCamelCase__ : Union[str, Any] = model(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[Any] = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample lowerCamelCase__ : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_574 ) < 1e-3 def a__ (self ): '''simple docstring''' for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowerCamelCase__ : Optional[int] = self.full_loop(scheduler=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 lowerCamelCase__ : str = DEISMultistepScheduler.from_config(scheduler.config ) lowerCamelCase__ : Optional[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCamelCase__ : Optional[int] = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCamelCase__ : List[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCamelCase__ : Union[str, Any] = self.full_loop(scheduler=lowerCamelCase_ ) lowerCamelCase__ : List[str] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 def a__ (self ): '''simple docstring''' self.check_over_configs(thresholding=lowerCamelCase_ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase_, prediction_type=lowerCamelCase_, sample_max_value=lowerCamelCase_, algorithm_type='dpmsolver++', solver_order=lowerCamelCase_, solver_type=lowerCamelCase_, ) def a__ (self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase_, solver_type=lowerCamelCase_, prediction_type=lowerCamelCase_, algorithm_type=lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = self.full_loop( solver_order=lowerCamelCase_, solver_type=lowerCamelCase_, prediction_type=lowerCamelCase_, algorithm_type=lowerCamelCase_, ) assert not torch.isnan(lowerCamelCase_ ).any(), "Samples have nan numbers" def a__ (self ): '''simple docstring''' self.check_over_configs(lower_order_final=lowerCamelCase_ ) self.check_over_configs(lower_order_final=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def a__ (self ): '''simple docstring''' self.check_over_configs(variance_type=lowerCamelCase_ ) self.check_over_configs(variance_type='learned_range' ) def a__ (self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=lowerCamelCase_, time_step=0 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.full_loop() lowerCamelCase__ : int = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.full_loop(use_karras_sigmas=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_248 ) < 1e-3 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.full_loop(prediction_type='v_prediction' ) lowerCamelCase__ : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.1_453 ) < 1e-3 def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.full_loop(prediction_type='v_prediction', use_karras_sigmas=lowerCamelCase_ ) lowerCamelCase__ : str = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.0_649 ) < 1e-3 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.scheduler_classes[0] lowerCamelCase__ : Optional[Any] = self.get_scheduler_config(thresholding=lowerCamelCase_, dynamic_thresholding_ratio=0 ) lowerCamelCase__ : Optional[int] = scheduler_class(**lowerCamelCase_ ) lowerCamelCase__ : Tuple = 1_0 lowerCamelCase__ : Any = self.dummy_model() lowerCamelCase__ : Tuple = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase__ : Tuple = model(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Any = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample assert sample.dtype == torch.floataa
718
"""simple docstring""" import os def lowerCamelCase_ ( ): with open(os.path.dirname(_lowerCamelCase ) + '/p022_names.txt' ) as file: lowerCamelCase__ : Union[str, Any] = str(file.readlines()[0] ) lowerCamelCase__ : int = names.replace('"' , '' ).split(',' ) names.sort() lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : str = 0 for i, name in enumerate(_lowerCamelCase ): for letter in name: name_score += ord(_lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowerCamelCase__ : Dict = 0 return total_score if __name__ == "__main__": print(solution())
696
0
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient A_ : int = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Dict = test_results.split(' ' ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Optional[Any] = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowerCamelCase__ : str = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(_A ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = False for line in failures_short_lines.split('\n' ): if re.search(r'_ \[doctest\]' , _A ): lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Optional[int] = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): lowerCamelCase__ : List[str] = line lowerCamelCase__ : List[Any] = False return failures class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = title lowerCamelCase__ : Dict = doc_test_results['time_spent'].split(',' )[0] lowerCamelCase__ : List[Any] = doc_test_results['success'] lowerCamelCase__ : Optional[int] = doc_test_results['failures'] lowerCamelCase__ : Union[str, Any] = self.n_success + self.n_failures # Failures and success of the modeling tests lowerCamelCase__ : str = doc_test_results @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [self._time_spent] lowerCamelCase__ : Dict = 0 for time in time_spent: lowerCamelCase__ : Union[str, Any] = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__UpperCamelCase ) == 1: lowerCamelCase__ : int = [0, 0, time_parts[0]] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_6_0_0 + minutes * 6_0 + seconds lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = total_secs // 3_6_0_0, (total_secs % 3_6_0_0) // 6_0, total_secs % 6_0 return f'''{int(__UpperCamelCase )}h{int(__UpperCamelCase )}m{int(__UpperCamelCase )}s''' @property def a__ (self ): '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def a__ (self ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } @property def a__ (self ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' f''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = 4_0 lowerCamelCase__ : List[str] = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(__UpperCamelCase, __UpperCamelCase )} lowerCamelCase__ : Dict = '' for category, failures in category_failures.items(): if len(__UpperCamelCase ) == 0: continue if report != "": report += "\n\n" report += f'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(__UpperCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'''The following examples had failures:\n\n\n{report}\n''', }, } @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(__UpperCamelCase ) @staticmethod def a__ (): '''simple docstring''' lowerCamelCase__ : Optional[int] = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': f'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(__UpperCamelCase )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'], text='There was an issue running the tests.', blocks=__UpperCamelCase, ) def a__ (self ): '''simple docstring''' print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) lowerCamelCase__ : List[str] = f'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else 'All tests passed.' lowerCamelCase__ : Union[str, Any] = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'], blocks=self.payload, text=__UpperCamelCase, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = '' for key, value in failures.items(): lowerCamelCase__ : Optional[Any] = value[:2_0_0] + ' [Truncated]' if len(__UpperCamelCase ) > 2_5_0 else value failures_text += f'''*{key}*\n_{value}_\n\n''' lowerCamelCase__ : Dict = job_name lowerCamelCase__ : Optional[int] = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: lowerCamelCase__ : str = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def a__ (self ): '''simple docstring''' if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) lowerCamelCase__ : Optional[int] = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) lowerCamelCase__ : Optional[Any] = sorted(self.doc_test_results.items(), key=lambda lowerCamelCase_ : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): lowerCamelCase__ : Union[str, Any] = f'''*Num failures* :{len(job_result['failed'] )} \n''' lowerCamelCase__ : Optional[int] = job_result['failures'] lowerCamelCase__ : Any = self.get_reply_blocks(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase, text=__UpperCamelCase ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'], text=f'''Results for {job}''', blocks=__UpperCamelCase, thread_ts=self.thread_ts['ts'], ) time.sleep(1 ) def lowerCamelCase_ ( ): lowerCamelCase__ : List[Any] = os.environ['GITHUB_RUN_ID'] lowerCamelCase__ : Dict = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' lowerCamelCase__ : List[str] = requests.get(_A ).json() lowerCamelCase__ : Optional[Any] = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) lowerCamelCase__ : Tuple = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_A ): lowerCamelCase__ : List[Any] = requests.get(url + f'''&page={i + 2}''' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , _A ) return {} def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Dict = {} if os.path.exists(_A ): lowerCamelCase__ : int = os.listdir(_A ) for file in files: try: with open(os.path.join(_A , _A ) , encoding='utf-8' ) as f: lowerCamelCase__ : Any = f.read() except UnicodeDecodeError as e: raise ValueError(f'''Could not open {os.path.join(_A , _A )}.''' ) from e return _artifact def lowerCamelCase_ ( ): class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = name lowerCamelCase__ : Tuple = [] def __str__(self ): '''simple docstring''' return self.name def a__ (self, lowerCamelCase_ ): '''simple docstring''' self.paths.append({'name': self.name, 'path': path} ) lowerCamelCase__ : int = {} lowerCamelCase__ : Dict = filter(os.path.isdir , os.listdir() ) for directory in directories: lowerCamelCase__ : List[Any] = directory if artifact_name not in _available_artifacts: lowerCamelCase__ : int = Artifact(_A ) _available_artifacts[artifact_name].add_path(_A ) return _available_artifacts if __name__ == "__main__": A_ : Dict = get_job_links() A_ : Dict = retrieve_available_artifacts() A_ : Optional[int] = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' A_ : Dict = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job A_ : int = github_actions_job_links.get("run_doctests") A_ : Tuple = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] A_ : Optional[Any] = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: A_ : str = handle_test_results(artifact["stats"]) A_ : Tuple = failed A_ : int = success A_ : Any = time_spent[1:-1] + ''', ''' A_ : Dict = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): A_ : List[Any] = line.replace("FAILED ", "") A_ : Tuple = line.split()[0].replace("\n", "") if "::" in line: A_ : Union[str, Any] = line.split("::") else: A_ : Optional[Any] = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): A_ : List[Any] = docs[file_regex] doc_test_results[category]["failed"].append(test) A_ : Optional[Any] = all_failures[test] if test in all_failures else '''N/A''' A_ : List[str] = failure break A_ : List[Any] = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
719
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = 'Speech2TextFeatureExtractor' lowerCamelCase__ : Dict = 'Speech2TextTokenizer' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.feature_extractor lowerCamelCase__ : List[Any] = False def __call__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_, **lowerCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ : Optional[int] = kwargs.pop('raw_speech' ) else: lowerCamelCase__ : int = kwargs.pop('audio', lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = kwargs.pop('sampling_rate', lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('text', lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowerCamelCase__ : List[str] = args[0] lowerCamelCase__ : Any = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ : Union[str, Any] = self.feature_extractor(lowerCamelCase_, *lowerCamelCase_, sampling_rate=lowerCamelCase_, **lowerCamelCase_ ) if text is not None: lowerCamelCase__ : List[Any] = self.tokenizer(lowerCamelCase_, **lowerCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Tuple = encodings['input_ids'] return inputs def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @contextmanager def a__ (self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ : int = True lowerCamelCase__ : List[Any] = self.tokenizer yield lowerCamelCase__ : Optional[int] = self.feature_extractor lowerCamelCase__ : List[Any] = False
696
0
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() A_ : Optional[int] = logging.get_logger(__name__) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: lowerCamelCase__ : str = 128 elif "12-12" in model_name: lowerCamelCase__ : Optional[int] = 12 lowerCamelCase__ : int = 12 elif "14-14" in model_name: lowerCamelCase__ : Tuple = 14 lowerCamelCase__ : Any = 14 elif "16-16" in model_name: lowerCamelCase__ : Optional[int] = 16 lowerCamelCase__ : List[Any] = 16 else: raise ValueError('Model not supported' ) lowerCamelCase__ : int = 'huggingface/label-files' if "speech-commands" in model_name: lowerCamelCase__ : Optional[int] = 35 lowerCamelCase__ : Tuple = 'speech-commands-v2-id2label.json' else: lowerCamelCase__ : List[Any] = 527 lowerCamelCase__ : int = 'audioset-id2label.json' lowerCamelCase__ : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ : Optional[int] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Dict = idalabel lowerCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( _lowerCamelCase ): if "module.v" in name: lowerCamelCase__ : List[Any] = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: lowerCamelCase__ : List[Any] = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: lowerCamelCase__ : List[str] = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: lowerCamelCase__ : Dict = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowerCamelCase__ : List[str] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: lowerCamelCase__ : List[str] = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: lowerCamelCase__ : str = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCamelCase__ : Optional[int] = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCamelCase__ : Any = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCamelCase__ : Optional[int] = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: lowerCamelCase__ : Optional[Any] = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: lowerCamelCase__ : int = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: lowerCamelCase__ : Dict = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): for key in orig_state_dict.copy().keys(): lowerCamelCase__ : List[Any] = orig_state_dict.pop(_lowerCamelCase ) if "qkv" in key: lowerCamelCase__ : Union[str, Any] = key.split('.' ) lowerCamelCase__ : Union[str, Any] = int(key_split[3] ) lowerCamelCase__ : List[str] = config.hidden_size if "weight" in key: lowerCamelCase__ : Tuple = val[:dim, :] lowerCamelCase__ : Any = val[dim : dim * 2, :] lowerCamelCase__ : Optional[int] = val[-dim:, :] else: lowerCamelCase__ : int = val[:dim] lowerCamelCase__ : Optional[Any] = val[dim : dim * 2] lowerCamelCase__ : str = val[-dim:] else: lowerCamelCase__ : Dict = val return orig_state_dict def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): lowerCamelCase__ : Any = get_audio_spectrogram_transformer_config(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict lowerCamelCase__ : Union[str, Any] = model_name_to_url[model_name] lowerCamelCase__ : int = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location='cpu' ) # remove some keys remove_keys(_lowerCamelCase ) # rename some keys lowerCamelCase__ : Union[str, Any] = convert_state_dict(_lowerCamelCase , _lowerCamelCase ) # load 🤗 model lowerCamelCase__ : List[str] = ASTForAudioClassification(_lowerCamelCase ) model.eval() model.load_state_dict(_lowerCamelCase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 lowerCamelCase__ : Union[str, Any] = -4.2_677_393 if 'speech-commands' not in model_name else -6.845_978 lowerCamelCase__ : Optional[Any] = 4.5_689_974 if 'speech-commands' not in model_name else 5.5_654_526 lowerCamelCase__ : Dict = 1024 if 'speech-commands' not in model_name else 128 lowerCamelCase__ : List[str] = ASTFeatureExtractor(mean=_lowerCamelCase , std=_lowerCamelCase , max_length=_lowerCamelCase ) if "speech-commands" in model_name: lowerCamelCase__ : Union[str, Any] = load_dataset('speech_commands' , 'v0.02' , split='validation' ) lowerCamelCase__ : Optional[int] = dataset[0]['audio']['array'] else: lowerCamelCase__ : Any = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) lowerCamelCase__ , lowerCamelCase__ : List[str] = torchaudio.load(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = waveform.squeeze().numpy() lowerCamelCase__ : Optional[Any] = feature_extractor(_lowerCamelCase , sampling_rate=1_6000 , return_tensors='pt' ) # forward pass lowerCamelCase__ : Any = model(**_lowerCamelCase ) lowerCamelCase__ : List[str] = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": lowerCamelCase__ : str = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": lowerCamelCase__ : int = torch.tensor([-1.1_986, -7.0_903, -8.2_718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": lowerCamelCase__ : List[str] = torch.tensor([-2.6_128, -8.0_080, -9.4_344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": lowerCamelCase__ : Dict = torch.tensor([-1.5_080, -7.4_534, -8.8_917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": lowerCamelCase__ : Optional[int] = torch.tensor([-0.5_050, -6.5_833, -8.0_843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": lowerCamelCase__ : Tuple = torch.tensor([-0.3_826, -7.0_336, -8.2_413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": lowerCamelCase__ : Optional[int] = torch.tensor([-1.2_113, -6.9_101, -8.3_470] ) elif model_name == "ast-finetuned-speech-commands-v2": lowerCamelCase__ : Union[str, Any] = torch.tensor([6.1_589, -8.0_566, -8.7_984] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(_lowerCamelCase ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) A_ : str = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
720
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : Optional[Any] = use_input_mask lowerCamelCase__ : List[Any] = use_token_type_ids lowerCamelCase__ : List[Any] = use_labels lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : Optional[int] = embedding_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Optional[Any] = num_labels lowerCamelCase__ : Dict = num_choices lowerCamelCase__ : Tuple = scope def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : List[str] = None if self.use_input_mask: lowerCamelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_token_type_ids: lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Any = None lowerCamelCase__ : Union[str, Any] = None if self.use_labels: lowerCamelCase__ : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, embedding_size=self.embedding_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, next_sentence_label=lowerCamelCase_, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, start_positions=lowerCamelCase_, end_positions=lowerCamelCase_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : int = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.num_choices lowerCamelCase__ : Dict = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : int = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : List[str] = config_and_inputs lowerCamelCase__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : int = True def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase_ ) return inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = MobileBertModelTester(self ) lowerCamelCase__ : List[str] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): return torch.tensor( _lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , ) A_ : Tuple = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(lowerCamelCase_ ) lowerCamelCase__ : Tuple = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ )[0] lowerCamelCase__ : Optional[int] = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [ [ [-2.4_736_526e07, 8.2_691_656e04, 1.6_521_838e05], [-5.7_541_704e-01, 3.9_056_022e00, 4.4_011_507e00], [2.6_047_359e00, 1.5_677_652e00, -1.7_324_188e-01], ] ], device=lowerCamelCase_, ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCamelCase__ : Optional[int] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCamelCase__ : Any = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
696
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType A_ : Tuple = logging.get_logger(__name__) A_ : int = { '''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''', } # fmt: off A_ : List[str] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] A_ : Optional[Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class a_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'whisper' lowerCamelCase__ : int = ['past_key_values'] lowerCamelCase__ : int = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self, lowerCamelCase_=5_1_8_6_5, lowerCamelCase_=8_0, lowerCamelCase_=6, lowerCamelCase_=4, lowerCamelCase_=6, lowerCamelCase_=4, lowerCamelCase_=1_5_3_6, lowerCamelCase_=1_5_3_6, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_=5_0_2_5_7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_="gelu", lowerCamelCase_=2_5_6, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_=0.02, lowerCamelCase_=False, lowerCamelCase_=1_5_0_0, lowerCamelCase_=4_4_8, lowerCamelCase_=5_0_2_5_6, lowerCamelCase_=5_0_2_5_6, lowerCamelCase_=5_0_2_5_6, lowerCamelCase_=None, lowerCamelCase_=[2_2_0, 5_0_2_5_6], lowerCamelCase_=False, lowerCamelCase_=2_5_6, lowerCamelCase_=False, lowerCamelCase_=0.05, lowerCamelCase_=1_0, lowerCamelCase_=2, lowerCamelCase_=0.0, lowerCamelCase_=1_0, lowerCamelCase_=0, lowerCamelCase_=7, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : Dict = num_mel_bins lowerCamelCase__ : Dict = d_model lowerCamelCase__ : List[Any] = encoder_layers lowerCamelCase__ : Dict = encoder_attention_heads lowerCamelCase__ : Any = decoder_layers lowerCamelCase__ : Union[str, Any] = decoder_attention_heads lowerCamelCase__ : str = decoder_ffn_dim lowerCamelCase__ : Union[str, Any] = encoder_ffn_dim lowerCamelCase__ : Dict = dropout lowerCamelCase__ : Any = attention_dropout lowerCamelCase__ : Dict = activation_dropout lowerCamelCase__ : str = activation_function lowerCamelCase__ : Tuple = init_std lowerCamelCase__ : Optional[int] = encoder_layerdrop lowerCamelCase__ : Any = decoder_layerdrop lowerCamelCase__ : List[Any] = use_cache lowerCamelCase__ : int = encoder_layers lowerCamelCase__ : str = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase__ : str = max_source_positions lowerCamelCase__ : int = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowerCamelCase__ : str = classifier_proj_size lowerCamelCase__ : int = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__ : List[str] = apply_spec_augment lowerCamelCase__ : Optional[int] = mask_time_prob lowerCamelCase__ : Any = mask_time_length lowerCamelCase__ : Tuple = mask_time_min_masks lowerCamelCase__ : Tuple = mask_feature_prob lowerCamelCase__ : List[Any] = mask_feature_length lowerCamelCase__ : Union[str, Any] = mask_feature_min_masks lowerCamelCase__ : Dict = median_filter_width super().__init__( pad_token_id=_lowercase, bos_token_id=_lowercase, eos_token_id=_lowercase, is_encoder_decoder=_lowercase, decoder_start_token_id=_lowercase, suppress_tokens=_lowercase, begin_suppress_tokens=_lowercase, **_lowercase, ) class a_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: lowerCamelCase__ : List[str] = {0: """batch"""} else: lowerCamelCase__ : str = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowercase, direction='inputs' ) return common_inputs def a__ (self, lowerCamelCase_, lowerCamelCase_ = -1, lowerCamelCase_ = -1, lowerCamelCase_ = False, lowerCamelCase_ = None, lowerCamelCase_ = 2_2_0_5_0, lowerCamelCase_ = 5.0, lowerCamelCase_ = 2_2_0, ): '''simple docstring''' lowerCamelCase__ : Dict = OrderedDict() lowerCamelCase__ : Optional[Any] = OnnxConfig.generate_dummy_inputs( self, preprocessor=preprocessor.feature_extractor, batch_size=_lowercase, framework=_lowercase, sampling_rate=_lowercase, time_duration=_lowercase, frequency=_lowercase, ) lowerCamelCase__ : Any = encoder_inputs["""input_features"""].shape[2] lowerCamelCase__ : Optional[int] = encoder_sequence_length // 2 if self.use_past else seq_length lowerCamelCase__ : List[str] = super().generate_dummy_inputs( preprocessor.tokenizer, _lowercase, _lowercase, _lowercase, _lowercase ) lowerCamelCase__ : Optional[int] = encoder_inputs.pop('input_features' ) lowerCamelCase__ : str = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: lowerCamelCase__ : List[Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def a__ (self ): '''simple docstring''' return 1e-3
721
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A_ : str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=1 ): '''simple docstring''' lowerCamelCase__ : Any = tokenizer lowerCamelCase__ : Optional[Any] = dataset lowerCamelCase__ : int = len(lowerCamelCase_ ) if n_tasks is None else n_tasks lowerCamelCase__ : Any = n_copies def __iter__(self ): '''simple docstring''' lowerCamelCase__ : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ : Optional[int] = self.tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = start_length lowerCamelCase__ : List[str] = eof_strings lowerCamelCase__ : List[str] = tokenizer def __call__(self, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ : Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ): lowerCamelCase__ : List[str] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): lowerCamelCase__ : str = batch['ids'].shape[-1] lowerCamelCase__ : int = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times lowerCamelCase__ : Optional[Any] = batch['task_id'].repeat(_lowerCamelCase ) lowerCamelCase__ : List[Any] = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ : List[Any] = generated_tokens.cpu().numpy() lowerCamelCase__ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) lowerCamelCase__ : str = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ : Optional[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase_ ( ): # Setup configuration lowerCamelCase__ : int = HfArgumentParser(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ : Tuple = 'false' if args.num_workers is None: lowerCamelCase__ : List[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ : List[Any] = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ : Optional[int] = tokenizer.eos_token lowerCamelCase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ : Optional[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric lowerCamelCase__ : Any = load_dataset('openai_humaneval' ) lowerCamelCase__ : Optional[int] = load_metric('code_eval' ) lowerCamelCase__ : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ : Optional[int] = args.n_samples // args.batch_size lowerCamelCase__ : Tuple = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ : Union[str, Any] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ : List[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ : str = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: lowerCamelCase__ : List[str] = [] for task in tqdm(range(_lowerCamelCase ) ): lowerCamelCase__ : int = human_eval['test'][task]['test'] lowerCamelCase__ : Union[str, Any] = f'''check({human_eval['test'][task]['entry_point']})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ : Any = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
696
0
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class a_ ( _lowercase ): '''simple docstring''' lowerCamelCase__ : Any = (DDPMParallelScheduler,) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**A_ ) return config def a__ (self ): '''simple docstring''' for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=A_ ) def a__ (self ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=A_, beta_end=A_ ) def a__ (self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A_ ) def a__ (self ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=A_ ) def a__ (self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=A_ ) def a__ (self ): '''simple docstring''' self.check_over_configs(thresholding=A_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=A_, prediction_type=A_, sample_max_value=A_, ) def a__ (self ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def a__ (self ): '''simple docstring''' for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=A_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.scheduler_classes[0] lowerCamelCase__ : Optional[int] = self.get_scheduler_config() lowerCamelCase__ : Union[str, Any] = scheduler_class(**A_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.scheduler_classes[0] lowerCamelCase__ : str = self.get_scheduler_config() lowerCamelCase__ : List[str] = scheduler_class(**A_ ) lowerCamelCase__ : List[Any] = len(A_ ) lowerCamelCase__ : Dict = self.dummy_model() lowerCamelCase__ : Tuple = self.dummy_sample_deter lowerCamelCase__ : List[str] = self.dummy_sample_deter + 0.1 lowerCamelCase__ : Optional[Any] = self.dummy_sample_deter - 0.1 lowerCamelCase__ : Dict = samplea.shape[0] lowerCamelCase__ : Optional[int] = torch.stack([samplea, samplea, samplea], dim=0 ) lowerCamelCase__ : Dict = torch.arange(A_ )[0:3, None].repeat(1, A_ ) lowerCamelCase__ : int = model(samples.flatten(0, 1 ), timesteps.flatten(0, 1 ) ) lowerCamelCase__ : int = scheduler.batch_step_no_noise(A_, timesteps.flatten(0, 1 ), samples.flatten(0, 1 ) ) lowerCamelCase__ : Tuple = torch.sum(torch.abs(A_ ) ) lowerCamelCase__ : Optional[Any] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2 assert abs(result_mean.item() - 0.5_005 ) < 1e-3 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.scheduler_classes[0] lowerCamelCase__ : Union[str, Any] = self.get_scheduler_config() lowerCamelCase__ : str = scheduler_class(**A_ ) lowerCamelCase__ : Optional[int] = len(A_ ) lowerCamelCase__ : Optional[Any] = self.dummy_model() lowerCamelCase__ : Any = self.dummy_sample_deter lowerCamelCase__ : List[Any] = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual lowerCamelCase__ : List[str] = model(A_, A_ ) # 2. predict previous mean of sample x_t-1 lowerCamelCase__ : Optional[int] = scheduler.step(A_, A_, A_, generator=A_ ).prev_sample lowerCamelCase__ : List[str] = pred_prev_sample lowerCamelCase__ : Any = torch.sum(torch.abs(A_ ) ) lowerCamelCase__ : int = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.scheduler_classes[0] lowerCamelCase__ : int = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCamelCase__ : Union[str, Any] = scheduler_class(**A_ ) lowerCamelCase__ : Optional[int] = len(A_ ) lowerCamelCase__ : List[Any] = self.dummy_model() lowerCamelCase__ : Union[str, Any] = self.dummy_sample_deter lowerCamelCase__ : Optional[int] = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual lowerCamelCase__ : List[str] = model(A_, A_ ) # 2. predict previous mean of sample x_t-1 lowerCamelCase__ : Union[str, Any] = scheduler.step(A_, A_, A_, generator=A_ ).prev_sample lowerCamelCase__ : Dict = pred_prev_sample lowerCamelCase__ : str = torch.sum(torch.abs(A_ ) ) lowerCamelCase__ : List[Any] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.scheduler_classes[0] lowerCamelCase__ : str = self.get_scheduler_config() lowerCamelCase__ : Union[str, Any] = scheduler_class(**A_ ) lowerCamelCase__ : List[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=A_ ) lowerCamelCase__ : List[Any] = scheduler.timesteps for i, timestep in enumerate(A_ ): if i == len(A_ ) - 1: lowerCamelCase__ : int = -1 else: lowerCamelCase__ : Any = timesteps[i + 1] lowerCamelCase__ : Tuple = scheduler.previous_timestep(A_ ) lowerCamelCase__ : Union[str, Any] = prev_t.item() self.assertEqual(A_, A_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.scheduler_classes[0] lowerCamelCase__ : List[Any] = self.get_scheduler_config() lowerCamelCase__ : str = scheduler_class(**A_ ) lowerCamelCase__ : List[str] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(A_, msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=A_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.scheduler_classes[0] lowerCamelCase__ : int = self.get_scheduler_config() lowerCamelCase__ : Any = scheduler_class(**A_ ) lowerCamelCase__ : Optional[Any] = [1_0_0, 8_7, 5_0, 1, 0] lowerCamelCase__ : List[Any] = len(A_ ) with self.assertRaises(A_, msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=A_, timesteps=A_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.scheduler_classes[0] lowerCamelCase__ : List[Any] = self.get_scheduler_config() lowerCamelCase__ : Optional[int] = scheduler_class(**A_ ) lowerCamelCase__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( A_, msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}', ): scheduler.set_timesteps(timesteps=A_ )
700
"""simple docstring""" from ..utils import DummyObject, requires_backends class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] ) class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] )
696
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
701
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = 0 while number > 0: lowerCamelCase__ : List[str] = number % 10 sum_of_digits += last_digit lowerCamelCase__ : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase_ ( _lowerCamelCase = 100 ): lowerCamelCase__ : Union[str, Any] = factorial(_lowerCamelCase ) lowerCamelCase__ : List[Any] = split_and_add(_lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
696
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Tuple = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): for attribute in key.split('.' ): lowerCamelCase__ : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: lowerCamelCase__ : List[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: lowerCamelCase__ : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCamelCase__ : Tuple = value elif weight_type == "weight_g": lowerCamelCase__ : List[Any] = value elif weight_type == "weight_v": lowerCamelCase__ : Any = value elif weight_type == "bias": lowerCamelCase__ : Dict = value else: lowerCamelCase__ : Tuple = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Dict = [] lowerCamelCase__ : Tuple = fairseq_model.state_dict() lowerCamelCase__ : Any = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__ : str = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == 'group' , ) lowerCamelCase__ : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__ : Union[str, Any] = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowerCamelCase__ : Tuple = True if "*" in mapped_key: lowerCamelCase__ : Optional[Any] = name.split(_lowerCamelCase )[0].split('.' )[-2] lowerCamelCase__ : List[Any] = mapped_key.replace('*' , _lowerCamelCase ) if "weight_g" in name: lowerCamelCase__ : Tuple = 'weight_g' elif "weight_v" in name: lowerCamelCase__ : str = 'weight_v' elif "weight" in name: lowerCamelCase__ : Optional[int] = 'weight' elif "bias" in name: lowerCamelCase__ : Tuple = 'bias' else: lowerCamelCase__ : str = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = full_name.split('conv_layers.' )[-1] lowerCamelCase__ : List[Any] = name.split('.' ) lowerCamelCase__ : Dict = int(items[0] ) lowerCamelCase__ : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowerCamelCase__ : Dict = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowerCamelCase__ : List[str] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowerCamelCase__ : Optional[int] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowerCamelCase__ : Optional[int] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Dict = SEWConfig() if is_finetuned: lowerCamelCase__ : str = model.wav_encoder.wav_model.cfg else: lowerCamelCase__ : Optional[int] = model.cfg lowerCamelCase__ : Tuple = fs_config.conv_bias lowerCamelCase__ : Tuple = eval(fs_config.conv_feature_layers ) lowerCamelCase__ : Union[str, Any] = [x[0] for x in conv_layers] lowerCamelCase__ : str = [x[1] for x in conv_layers] lowerCamelCase__ : Optional[int] = [x[2] for x in conv_layers] lowerCamelCase__ : Union[str, Any] = 'gelu' lowerCamelCase__ : Tuple = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' lowerCamelCase__ : List[Any] = 0.0 lowerCamelCase__ : Dict = fs_config.activation_fn.name lowerCamelCase__ : Optional[int] = fs_config.encoder_embed_dim lowerCamelCase__ : Dict = 0.02 lowerCamelCase__ : int = fs_config.encoder_ffn_embed_dim lowerCamelCase__ : Optional[int] = 1e-5 lowerCamelCase__ : Tuple = fs_config.encoder_layerdrop lowerCamelCase__ : Any = fs_config.encoder_attention_heads lowerCamelCase__ : Optional[Any] = fs_config.conv_pos_groups lowerCamelCase__ : List[str] = fs_config.conv_pos lowerCamelCase__ : Tuple = len(_lowerCamelCase ) lowerCamelCase__ : Any = fs_config.encoder_layers lowerCamelCase__ : str = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowerCamelCase__ : Dict = model.cfg lowerCamelCase__ : Optional[int] = fs_config.final_dropout lowerCamelCase__ : Any = fs_config.layerdrop lowerCamelCase__ : Union[str, Any] = fs_config.activation_dropout lowerCamelCase__ : Any = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowerCamelCase__ : str = fs_config.attention_dropout lowerCamelCase__ : Tuple = fs_config.dropout_input lowerCamelCase__ : Optional[int] = fs_config.dropout lowerCamelCase__ : Tuple = fs_config.mask_channel_length lowerCamelCase__ : Tuple = fs_config.mask_channel_prob lowerCamelCase__ : Tuple = fs_config.mask_length lowerCamelCase__ : List[Any] = fs_config.mask_prob lowerCamelCase__ : Union[str, Any] = 'Wav2Vec2FeatureExtractor' lowerCamelCase__ : Optional[Any] = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ): if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Any = convert_config(model[0] , _lowerCamelCase ) lowerCamelCase__ : Optional[int] = model[0].eval() lowerCamelCase__ : str = True if config.feat_extract_norm == 'layer' else False lowerCamelCase__ : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: lowerCamelCase__ : Any = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__ : Dict = target_dict.pad_index lowerCamelCase__ : Optional[Any] = target_dict.bos_index lowerCamelCase__ : str = target_dict.pad_index lowerCamelCase__ : Tuple = target_dict.bos_index lowerCamelCase__ : int = target_dict.eos_index lowerCamelCase__ : List[Any] = len(target_dict.symbols ) lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , 'vocab.json' ) if not os.path.isdir(_lowerCamelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) lowerCamelCase__ : int = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_lowerCamelCase , ) lowerCamelCase__ : Optional[Any] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) lowerCamelCase__ : str = SEWForCTC(_lowerCamelCase ) else: lowerCamelCase__ : Union[str, Any] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) A_ : List[str] = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
702
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ : Dict = "pt" elif is_tf_available(): A_ : Union[str, Any] = "tf" else: A_ : List[str] = "jax" class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = PerceiverTokenizer lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ (self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=2_0, lowerCamelCase_=5 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [] for i in range(len(lowerCamelCase_ ) ): try: lowerCamelCase__ : Any = tokenizer.decode([i], clean_up_tokenization_spaces=lowerCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase__ : Any = list(filter(lambda lowerCamelCase_ : re.match(r'^[ a-zA-Z]+$', t[1] ), lowerCamelCase_ ) ) lowerCamelCase__ : Union[str, Any] = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=lowerCamelCase_ ), lowerCamelCase_ ) ) if max_length is not None and len(lowerCamelCase_ ) > max_length: lowerCamelCase__ : int = toks[:max_length] if min_length is not None and len(lowerCamelCase_ ) < min_length and len(lowerCamelCase_ ) > 0: while len(lowerCamelCase_ ) < min_length: lowerCamelCase__ : Dict = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : int = [t[0] for t in toks] # Ensure consistency lowerCamelCase__ : Optional[int] = tokenizer.decode(lowerCamelCase_, clean_up_tokenization_spaces=lowerCamelCase_ ) if " " not in output_txt and len(lowerCamelCase_ ) > 1: lowerCamelCase__ : List[Any] = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=lowerCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=lowerCamelCase_ ) ) if with_prefix_space: lowerCamelCase__ : Optional[Any] = ' ' + output_txt lowerCamelCase__ : List[Any] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) return output_txt, output_ids def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = 'Unicode €.' lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_ ) lowerCamelCase__ : Dict = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : int = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]Unicode €.[SEP]' ) lowerCamelCase__ : List[str] = tokenizer('e è é ê ë' ) lowerCamelCase__ : Dict = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : Any = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ), '[CLS]e è é ê ë[SEP]' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCamelCase__ : List[Any] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) if FRAMEWORK != "jax": lowerCamelCase__ : List[str] = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase__ : int = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertEqual((2, 3_8), batch.input_ids.shape ) self.assertEqual((2, 3_8), batch.attention_mask.shape ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.perceiver_tokenizer lowerCamelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCamelCase__ : List[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids', lowerCamelCase_ ) self.assertIn('attention_mask', lowerCamelCase_ ) self.assertNotIn('decoder_input_ids', lowerCamelCase_ ) self.assertNotIn('decoder_attention_mask', lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : int = [ 'Summary of the text.', 'Another summary.', ] lowerCamelCase__ : str = tokenizer( text_target=lowerCamelCase_, max_length=3_2, padding='max_length', truncation=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertEqual(3_2, targets['input_ids'].shape[1] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 4_2 ) # Now let's start the test lowerCamelCase__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : str = ' He is very happy, UNwant\u00E9d,running' lowerCamelCase__ : str = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : str = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) shutil.rmtree(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCamelCase__ : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCamelCase__ : List[str] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : int = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertIn('new_additional_special_token', after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 4_2 ) lowerCamelCase__ : List[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_, model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length, 4_3 ) shutil.rmtree(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : Optional[Any] = json.load(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : List[str] = json.load(lowerCamelCase_ ) lowerCamelCase__ : Any = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] lowerCamelCase__ : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCamelCase__ : List[str] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ : Dict = tokenizer_class.from_pretrained( lowerCamelCase_, ) self.assertIn( 'an_additional_special_token', tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token', lstrip=lowerCamelCase_ )] lowerCamelCase__ : Any = tokenizer_class.from_pretrained( lowerCamelCase_, additional_special_tokens=lowerCamelCase_, ) self.assertIn('a_new_additional_special_token', tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ), '�' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_tokenizers(fast=lowerCamelCase_, do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Tuple = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] lowerCamelCase__ : List[str] = tokenizer.convert_tokens_to_string(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable A_ : Union[str, Any] = list[list[float | int]] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = len(snake_case_ ) lowerCamelCase__ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )] lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float for row in range(snake_case_ ): for col in range(snake_case_ ): lowerCamelCase__ : Union[str, Any] = matrix[row][col] lowerCamelCase__ : Any = vector[row][0] lowerCamelCase__ : Any = 0 lowerCamelCase__ : Optional[Any] = 0 while row < size and col < size: # pivoting lowerCamelCase__ : Union[str, Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_ , snake_case_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowerCamelCase__ : List[Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , snake_case_ ): lowerCamelCase__ : Dict = augmented[rowa][col] / augmented[row][col] lowerCamelCase__ : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , snake_case_ ): for row in range(snake_case_ ): lowerCamelCase__ : Any = augmented[row][col] / augmented[col][col] for cola in range(snake_case_ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(snake_case_ ) ] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : int = len(snake_case_ ) lowerCamelCase__ : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )] lowerCamelCase__ : Matrix = [[0] for _ in range(snake_case_ )] lowerCamelCase__ : Matrix lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int for x_val, y_val in enumerate(snake_case_ ): for col in range(snake_case_ ): lowerCamelCase__ : Tuple = (x_val + 1) ** (size - col - 1) lowerCamelCase__ : Tuple = y_val lowerCamelCase__ : Any = solve(snake_case_ , snake_case_ ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(snake_case_ ) ) return interpolated_func def lowerCamelCase_ ( _lowerCamelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase_ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): lowerCamelCase__ : list[int] = [func(snake_case_ ) for x_val in range(1 , order + 1 )] lowerCamelCase__ : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] lowerCamelCase__ : int = 0 lowerCamelCase__ : Callable[[int], int] lowerCamelCase__ : int for poly in polynomials: lowerCamelCase__ : Tuple = 1 while func(snake_case_ ) == poly(snake_case_ ): x_val += 1 ret += poly(snake_case_ ) return ret if __name__ == "__main__": print(f"{solution() = }")
703
"""simple docstring""" from math import pi, sqrt, tan def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCamelCase__ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_lowerCamelCase , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCamelCase__ : Dict = (sidea + sidea + sidea) / 2 lowerCamelCase__ : str = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
696
0
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename A_ : Any = "http://www.mocksite.com/file1.txt" A_ : Dict = "\"text\": [\"foo\", \"foo\"]" A_ : Optional[Any] = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class a_ : '''simple docstring''' lowerCamelCase__ : Optional[Any] = 200 lowerCamelCase__ : List[Any] = {'Content-Length': '100'} lowerCamelCase__ : Optional[int] = {} def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return [bytes(lowerCamelCase_, 'utf-8' )] def lowerCamelCase_ ( *_lowerCamelCase , **_lowerCamelCase ): return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): import requests monkeypatch.setattr(_lowerCamelCase , 'request' , _lowerCamelCase ) lowerCamelCase__ : str = URL if issubclass(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = url elif issubclass(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = [url] elif issubclass(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = {"train": url} lowerCamelCase__ : Tuple = "dummy" lowerCamelCase__ : Optional[Any] = "downloads" lowerCamelCase__ : List[Any] = tmp_path lowerCamelCase__ : Optional[int] = DownloadConfig( cache_dir=os.path.join(_lowerCamelCase , _lowerCamelCase ) , use_etag=_lowerCamelCase , ) lowerCamelCase__ : Union[str, Any] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) lowerCamelCase__ : Tuple = dl_manager.download(_lowerCamelCase ) lowerCamelCase__ : Dict = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : str = [downloaded_paths] lowerCamelCase__ : List[Any] = [urls] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in downloaded_paths.keys() lowerCamelCase__ : Union[str, Any] = downloaded_paths.values() lowerCamelCase__ : Optional[int] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCamelCase , _lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowerCamelCase__ : Dict = Path(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowerCamelCase__ : Optional[int] = downloaded_path.read_text() assert content == CONTENT lowerCamelCase__ : Union[str, Any] = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() lowerCamelCase__ : Optional[Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : str = str(_lowerCamelCase ) if issubclass(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = filename elif issubclass(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = [filename] elif issubclass(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[str] = {"train": filename} lowerCamelCase__ : Tuple = "dummy" lowerCamelCase__ : int = xz_file.parent lowerCamelCase__ : List[Any] = "extracted" lowerCamelCase__ : Dict = DownloadConfig( cache_dir=_lowerCamelCase , use_etag=_lowerCamelCase , ) lowerCamelCase__ : Tuple = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) lowerCamelCase__ : Tuple = dl_manager.extract(_lowerCamelCase ) lowerCamelCase__ : List[Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = [extracted_paths] lowerCamelCase__ : Optional[Any] = [paths] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in extracted_paths.keys() lowerCamelCase__ : str = extracted_paths.values() lowerCamelCase__ : Any = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCamelCase , _lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] lowerCamelCase__ : Any = Path(_lowerCamelCase ) lowerCamelCase__ : Any = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCamelCase , etag=_lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowerCamelCase__ : int = extracted_path.read_text() lowerCamelCase__ : str = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): assert path.endswith('.jsonl' ) for num_items, line in enumerate(_lowerCamelCase , start=1 ): lowerCamelCase__ : List[str] = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = request.getfixturevalue(_lowerCamelCase ) lowerCamelCase__ : List[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = request.getfixturevalue(_lowerCamelCase ) lowerCamelCase__ : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[int] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCamelCase ) , start=1 ): assert os.path.basename(_lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
704
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : str = use_input_mask lowerCamelCase__ : Optional[Any] = use_token_type_ids lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : Union[str, Any] = type_sequence_label_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : Union[str, Any] = num_choices lowerCamelCase__ : List[str] = scope lowerCamelCase__ : Dict = vocab_size - 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = self.get_config() return config, input_ids, input_mask, token_labels def a__ (self ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[Any] = True return config, input_ids, input_mask, token_labels def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = GPTNeoXModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = True lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : Optional[Any] = GPTNeoXForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = self.num_labels lowerCamelCase__ : Optional[int] = GPTNeoXForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[Any] = GPTNeoXForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Tuple = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : List[str] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : str = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : List[Any] = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and lowerCamelCase__ : Tuple = torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : Tuple = torch.cat([input_mask, next_mask], dim=-1 ) lowerCamelCase__ : List[str] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, output_hidden_states=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = output_from_no_past['hidden_states'][0] lowerCamelCase__ : Optional[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_, output_hidden_states=lowerCamelCase_, )['hidden_states'][0] # select random slice lowerCamelCase__ : Dict = ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-3 ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = config_and_inputs lowerCamelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : int = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase__ : Dict = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = GPTNeoXModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=6_4, num_attention_heads=8 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def a__ (self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = ids_tensor([1, 1_0], config.vocab_size ) lowerCamelCase__ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Any = GPTNeoXModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() lowerCamelCase__ : List[Any] = original_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Optional[int] = {'type': scaling_type, 'factor': 10.0} lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() lowerCamelCase__ : Tuple = scaled_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: lowerCamelCase__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer('My favorite food is', return_tensors='pt' ).to(lowerCamelCase_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCamelCase__ : Dict = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' lowerCamelCase__ : Dict = model.generate(**lowerCamelCase_, do_sample=lowerCamelCase_, max_new_tokens=2_0 ) lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ )[0] self.assertEqual(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" import os def lowerCamelCase_ ( ): with open(os.path.dirname(_lowerCamelCase ) + '/grid.txt' ) as f: lowerCamelCase__ : str = [] # noqa: E741 for _ in range(20 ): l.append([int(_lowerCamelCase ) for x in f.readline().split()] ) lowerCamelCase__ : str = 0 # right for i in range(20 ): for j in range(17 ): lowerCamelCase__ : Optional[int] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowerCamelCase__ : Optional[int] = temp # down for i in range(17 ): for j in range(20 ): lowerCamelCase__ : List[Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowerCamelCase__ : List[Any] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowerCamelCase__ : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowerCamelCase__ : Optional[Any] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowerCamelCase__ : List[str] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowerCamelCase__ : Any = temp return maximum if __name__ == "__main__": print(solution())
705
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : Dict = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. A_ : List[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A_ : Union[str, Any] = spec.loader.load_module() A_ : int = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A_ : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") A_ : str = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCamelCase__ : Dict = False # source code of `config_class` lowerCamelCase__ : str = inspect.getsource(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = _re_checkpoint.findall(_lowerCamelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCamelCase__ , lowerCamelCase__ : Optional[int] = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase__ : Any = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: lowerCamelCase__ : Any = True break lowerCamelCase__ : Dict = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ : Optional[Any] = '\n'.join(sorted(_lowerCamelCase ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
696
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(snake_case__ , snake_case__ ): raise TypeError('Input value must be an \'int\' type' ) lowerCamelCase__ : Dict = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
0
"""simple docstring""" import torch from transformers import AutoModel class a_ ( torch.nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(__lowerCAmelCase, self ).__init__() lowerCamelCase__ : Optional[int] = AutoModel.from_pretrained(__lowerCAmelCase, return_dict=__lowerCAmelCase ) lowerCamelCase__ : Optional[Any] = torch.nn.CosineSimilarity(3, 1e-08 ) lowerCamelCase__ : Any = torch.nn.Softmax(dim=1 ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return self.bert(**__lowerCAmelCase ).last_hidden_state def a__ (self, lowerCamelCase_ ): '''simple docstring''' return token_embeddings.sum(2, keepdim=__lowerCAmelCase ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=1 ): '''simple docstring''' return self.softmax(T * self.cos(__lowerCAmelCase, __lowerCAmelCase ) ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = W_supports['sizes'].tolist() lowerCamelCase__ : Tuple = W_supports['start_token_id'].item() lowerCamelCase__ : List[Any] = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowerCamelCase__ : Optional[Any] = self.BERT(**__lowerCAmelCase ) lowerCamelCase__ : Any = self.BERT(**__lowerCAmelCase ) lowerCamelCase__ : List[Any] = None lowerCamelCase__ : int = None lowerCamelCase__ : Union[str, Any] = W_supports['input_ids'] == start_token_id lowerCamelCase__ : Tuple = W_supports['input_ids'] == end_token_id for i, size in enumerate(__lowerCAmelCase ): if i == 0: lowerCamelCase__ : Dict = 0 else: lowerCamelCase__ : Union[str, Any] = support_sizes[i - 1] lowerCamelCase__ : Optional[Any] = S[s : s + size][start_token_masks[s : s + size]] lowerCamelCase__ : Optional[Any] = S[s : s + size][end_token_masks[s : s + size]] lowerCamelCase__ : Union[str, Any] = torch.matmul(q[i], s_start.T ).sum(1 ).softmax(0 ) lowerCamelCase__ : List[Any] = torch.matmul(q[i], s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowerCamelCase__ : Tuple = torch.vstack((p_starts, p_start) ) lowerCamelCase__ : Tuple = torch.vstack((p_ends, p_end) ) else: lowerCamelCase__ : str = p_start lowerCamelCase__ : Optional[Any] = p_end return p_starts, p_ends
707
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A_ : Optional[int] = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A_ : List[str] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) A_ : Tuple = BeautifulSoup(res.text, "html.parser") A_ : Dict = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f"https://google.com{link.get('href')}")
696
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
708
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCamelCase__ : Tuple = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_, cache_dir=lowerCamelCase_ ) lowerCamelCase__ : List[str] = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_, os.listdir(lowerCamelCase_ )[0], 'snapshots' ) )] lowerCamelCase__ : Optional[int] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[int] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Any = 4 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : List[Any] = num_samples * [prompt] lowerCamelCase__ : Optional[int] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : int = replicate(lowerCamelCase_ ) lowerCamelCase__ : Any = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : int = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1_514_745 ) < 1e-3 assert np.abs(np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 49_947.875 ) < 5e-1 lowerCamelCase__ : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase_ ) == num_samples def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='flax', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : int = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[str] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : List[str] = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = shard(lowerCamelCase_ ) lowerCamelCase__ : str = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05_652_401) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_383_808.2) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Union[str, Any] = 5_0 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : Tuple = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Any = replicate(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa ) lowerCamelCase__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Union[str, Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] = 5_0 lowerCamelCase__ : Tuple = jax.device_count() lowerCamelCase__ : Optional[int] = num_samples * [prompt] lowerCamelCase__ : str = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Optional[int] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : List[str] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = FlaxDDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', set_alpha_to_one=lowerCamelCase_, steps_offset=1, ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, scheduler=lowerCamelCase_, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : List[str] = scheduler.create_state() lowerCamelCase__ : int = scheduler_state lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : Optional[Any] = jax.device_count() lowerCamelCase__ : Any = num_samples * [prompt] lowerCamelCase__ : Any = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Dict = shard(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045_043_945) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_347_693.5) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : int = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : str = jax.random.split(jax.random.PRNGKey(0 ), lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Dict = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Tuple = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : int = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention lowerCamelCase__ , lowerCamelCase__ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, use_memory_efficient_attention=lowerCamelCase_, ) lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : Any = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Any = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
696
0
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging A_ : Any = logging.get_logger(__name__) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): try: with open(_lowercase , 'rb' ) as flax_state_f: lowerCamelCase__ : Union[str, Any] = from_bytes(_lowercase , flax_state_f.read() ) except UnpicklingError as e: try: with open(_lowercase ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(_lowercase , _lowercase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights lowerCamelCase__ : str = flatten_dict(jax.tree_util.tree_map(lambda _lowerCamelCase : x.dtype == jnp.bfloataa , _lowercase ) ).values() if any(_lowercase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) lowerCamelCase__ : Optional[Any] = jax.tree_util.tree_map( lambda _lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _lowercase ) lowerCamelCase__ : str = "" lowerCamelCase__ : Union[str, Any] = flatten_dict(_lowercase , sep='.' ) lowerCamelCase__ : Optional[int] = pt_model.state_dict() # keep track of unexpected & missing keys lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCamelCase__ : List[Any] = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowerCamelCase__ : Union[str, Any] = flax_key_tuple_array[:-1] + ["weight"] lowerCamelCase__ : int = jnp.transpose(_lowercase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowerCamelCase__ : List[Any] = flax_key_tuple_array[:-1] + ["weight"] lowerCamelCase__ : Optional[int] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowerCamelCase__ : Union[str, Any] = flax_key_tuple_array[:-1] + ["weight"] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(_lowercase ): lowerCamelCase__ : Dict = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) lowerCamelCase__ : Optional[int] = ".".join(_lowercase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' f'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict lowerCamelCase__ : int = np.asarray(_lowercase ) if not isinstance(_lowercase , np.ndarray ) else flax_tensor lowerCamelCase__ : Optional[Any] = torch.from_numpy(_lowercase ) # remove from missing keys missing_keys.remove(_lowercase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_lowercase ) pt_model.load_state_dict(_lowercase ) # re-transform missing_keys to list lowerCamelCase__ : List[Any] = list(_lowercase ) if len(_lowercase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' f''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' f''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' f''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(_lowercase ) > 0: logger.warning( f'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' f''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' ' use it for predictions and inference.' ) return pt_model
709
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = 1_0_0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = True, ): '''simple docstring''' if audio_length_in_s is None: lowerCamelCase__ : str = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase__ : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase__ : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCamelCase__ : Dict = int(lowerCamelCase_ ) if sample_size % down_scale_factor != 0: lowerCamelCase__ : Union[str, Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ' process.' ) lowerCamelCase__ : Optional[Any] = int(lowerCamelCase_ ) lowerCamelCase__ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase__ : Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase_, lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ : Union[str, Any] = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_, device=self.device, dtype=lowerCamelCase_ ) # set step values self.scheduler.set_timesteps(lowerCamelCase_, device=audio.device ) lowerCamelCase__ : int = self.scheduler.timesteps.to(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase__ : List[Any] = self.unet(lowerCamelCase_, lowerCamelCase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase__ : List[str] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample lowerCamelCase__ : Union[str, Any] = audio.clamp(-1, 1 ).float().cpu().numpy() lowerCamelCase__ : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase_ )
696
0
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(UpperCAmelCase__ , 2 ) - pow(UpperCAmelCase__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(UpperCAmelCase__ , 2 ) - pow(UpperCAmelCase__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(UpperCAmelCase__ , 2 ) + pow(UpperCAmelCase__ , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
710
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(lowerCamelCase_ ) ) vocab_file.flush() lowerCamelCase__ : Tuple = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCamelCase__ : Optional[Any] = BertModel(BertConfig(vocab_size=len(lowerCamelCase_ ) ) ) model.save_pretrained(lowerCamelCase_ ) self._test_export(lowerCamelCase_, 'pt', 1_2, lowerCamelCase_ ) @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Optional[Any] = self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Any = quantize(Path(lowerCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Any = self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = quantize(lowerCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowerCamelCase__ : str = Path(lowerCamelCase_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ) return path except Exception as e: self.fail(lowerCamelCase_ ) @require_torch @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : str = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'pt' ) @require_tf @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import TFBertModel lowerCamelCase__ : Dict = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Optional[int] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'tf' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = FeatureExtractionPipeline(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = infer_shapes(lowerCamelCase_, lowerCamelCase_ ) # Assert all variables are present self.assertEqual(len(lowerCamelCase_ ), len(lowerCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3], lowerCamelCase_ ) self.assertSequenceEqual(variable_names[3:], lowerCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name], {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'], {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'], {0: 'batch'} ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['input_ids', 'attention_mask', 'token_type_ids'] lowerCamelCase__ : Optional[int] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowerCamelCase__ , lowerCamelCase__ : str = ensure_valid_input(FuncContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase_ ), 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase_ ), set(lowerCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase_, (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCamelCase__ , lowerCamelCase__ : Any = ensure_valid_input(FuncNonContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase_ ), 1 ) self.assertEqual(len(lowerCamelCase_ ), 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0], tokens['input_ids'] ) self.assertEqual(ordered_input_names[0], 'input_ids' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ), '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx', generated.as_posix() )
696
0
"""simple docstring""" import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected' , [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]), ({'num_shards': 10, 'max_num_jobs': 10}, [range(_snake_case , i + 1 ) for i in range(10 )]), ({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]), ({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' lowerCamelCase__ : Optional[int] = _distribute_shards(**_snake_case ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected' , [ ({'foo': 0}, 10, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ] , ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = _split_gen_kwargs(_snake_case , _snake_case ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected' , [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ] , ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if expected is RuntimeError: with pytest.raises(_snake_case ): _number_of_shards_in_gen_kwargs(_snake_case ) else: lowerCamelCase__ : Any = _number_of_shards_in_gen_kwargs(_snake_case ) assert out == expected
711
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase__ : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : str = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ : Any = False @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return self.time_input_dim @property def a__ (self ): '''simple docstring''' return self.time_input_dim * 4 @property def a__ (self ): '''simple docstring''' return 1_0_0 @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase__ : int = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def a__ (self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.dummy_unet lowerCamelCase__ : List[Any] = self.dummy_movq lowerCamelCase__ : Tuple = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase__ : Optional[Any] = DDIMScheduler(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image lowerCamelCase__ : Any = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase__ : Optional[Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint lowerCamelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : int = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = 'cpu' lowerCamelCase__ : List[Any] = self.get_dummy_components() lowerCamelCase__ : List[Any] = self.pipeline_class(**lowerCamelCase_ ) lowerCamelCase__ : Dict = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : str = pipe( **self.get_dummy_inputs(lowerCamelCase_ ), return_dict=lowerCamelCase_, )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : List[str] = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase__ : Any = init_image.resize((5_1_2, 5_1_2) ) lowerCamelCase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase__ : Any = torch.from_numpy(np.array(lowerCamelCase_ ) ).float() / 255.0 lowerCamelCase__ : Optional[int] = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowerCamelCase__ : Union[str, Any] = 'A robot, 4k photo' lowerCamelCase__ : Any = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth', torch_dtype=torch.floataa ) lowerCamelCase__ : int = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = pipe_prior( lowerCamelCase_, image=lowerCamelCase_, strength=0.85, generator=lowerCamelCase_, negative_prompt='', ).to_tuple() lowerCamelCase__ : Union[str, Any] = pipeline( image=lowerCamelCase_, image_embeds=lowerCamelCase_, negative_image_embeds=lowerCamelCase_, hint=lowerCamelCase_, generator=lowerCamelCase_, num_inference_steps=1_0_0, height=5_1_2, width=5_1_2, strength=0.5, output_type='np', ) lowerCamelCase__ : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : int = 16 A_ : str = 32 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 16 ): lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Any = DatasetDict( { 'train': dataset['train'].select(_lowercase ), 'validation': dataset['train'].select(_lowercase ), 'test': dataset['validation'], } ) def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase__ : int = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowercase , max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase__ : Union[str, Any] = datasets.map( _lowercase , batched=_lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase__ : Tuple = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase__ : Dict = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase__ : Optional[Any] = 16 elif accelerator.mixed_precision != "no": lowerCamelCase__ : str = 8 else: lowerCamelCase__ : Any = None return tokenizer.pad( _lowercase , padding='longest' , max_length=_lowercase , pad_to_multiple_of=_lowercase , return_tensors='pt' , ) # Instantiate dataloaders. lowerCamelCase__ : Optional[Any] = DataLoader( tokenized_datasets['train'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) lowerCamelCase__ : int = DataLoader( tokenized_datasets['validation'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) lowerCamelCase__ : str = DataLoader( tokenized_datasets['test'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) return train_dataloader, eval_dataloader, test_dataloader def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # New Code # lowerCamelCase__ : Union[str, Any] = [] # Download the dataset lowerCamelCase__ : Dict = load_dataset('glue' , 'mrpc' ) # Create our splits lowerCamelCase__ : Union[str, Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowerCamelCase__ : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase__ : Optional[Any] = config['''lr'''] lowerCamelCase__ : Optional[int] = int(config['num_epochs'] ) lowerCamelCase__ : Dict = int(config['seed'] ) lowerCamelCase__ : int = int(config['batch_size'] ) lowerCamelCase__ : str = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation lowerCamelCase__ : Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCamelCase__ : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE lowerCamelCase__ : int = MAX_GPU_BATCH_SIZE set_seed(_lowercase ) # New Code # # Create our folds: lowerCamelCase__ : Dict = kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] ) lowerCamelCase__ : List[Any] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_lowercase ): lowerCamelCase__ : int = get_fold_dataloaders( _lowercase , _lowercase , _lowercase , _lowercase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase__ : Tuple = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=_lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase__ : List[Any] = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase__ : Any = AdamW(params=model.parameters() , lr=_lowercase ) # Instantiate scheduler lowerCamelCase__ : int = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=100 , num_training_steps=(len(_lowercase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase__ : Tuple = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Now we train the model for epoch in range(_lowercase ): model.train() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase__ : Union[str, Any] = model(**_lowercase ) lowerCamelCase__ : List[Any] = outputs.loss lowerCamelCase__ : str = loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase__ : Union[str, Any] = model(**_lowercase ) lowerCamelCase__ : Tuple = outputs.logits.argmax(dim=-1 ) lowerCamelCase__ : List[Any] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=_lowercase , references=_lowercase , ) lowerCamelCase__ : Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _lowercase ) # New Code # # We also run predictions on the test set at the very end lowerCamelCase__ : Dict = [] for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase__ : Dict = model(**_lowercase ) lowerCamelCase__ : List[str] = outputs.logits lowerCamelCase__ : Dict = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_lowercase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowerCamelCase__ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowerCamelCase__ : int = torch.stack(_lowercase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowerCamelCase__ : Optional[Any] = metric.compute(predictions=_lowercase , references=_lowercase ) accelerator.print('Average test metrics from all folds:' , _lowercase ) def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=_lowercase , default=_lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' , type=_lowercase , default=3 , help='The number of splits to perform across the dataset' ) lowerCamelCase__ : Tuple = parser.parse_args() lowerCamelCase__ : Optional[int] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
712
"""simple docstring""" A_ : List[str] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
696
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase ): if len(__UpperCamelCase ) == 0: return array lowerCamelCase__ , lowerCamelCase__ : int = min(__UpperCamelCase ), max(__UpperCamelCase ) # Compute the variables lowerCamelCase__ : Optional[int] = _max - _min + 1 lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: lowerCamelCase__ : str = i - _min lowerCamelCase__ : int = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. lowerCamelCase__ : List[Any] = 0 for i in range(__UpperCamelCase ): while holes_repeat[i] > 0: lowerCamelCase__ : Optional[int] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() A_ : Union[str, Any] = input("Enter numbers separated by comma:\n") A_ : str = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
713
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 A_ : Optional[int] = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ = 1_4 ): '''simple docstring''' if group not in primes: raise ValueError('Unsupported Group' ) lowerCamelCase__ : int = primes[group]['prime'] lowerCamelCase__ : Optional[int] = primes[group]['generator'] lowerCamelCase__ : Any = int(hexlify(urandom(3_2 ) ), base=1_6 ) def a__ (self ): '''simple docstring''' return hex(self.__private_key )[2:] def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = pow(self.generator, self.__private_key, self.prime ) return hex(lowerCamelCase_ )[2:] def a__ (self, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase_, (self.prime - 1) // 2, self.prime ) == 1 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = int(lowerCamelCase_, base=1_6 ) if not self.is_valid_public_key(lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Tuple = pow(lowerCamelCase_, self.__private_key, self.prime ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase_, (prime - 1) // 2, lowerCamelCase_ ) == 1 ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 1_4 ): '''simple docstring''' lowerCamelCase__ : Dict = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[Any] = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[str] = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase_, lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Dict = pow(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
696
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=6_4, lowerCamelCase_=None ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = np.random.default_rng(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = length lowerCamelCase__ : Union[str, Any] = rng.normal(size=(length,) ).astype(np.floataa ) lowerCamelCase__ : Tuple = a * self.x + b + rng.normal(scale=0.1, size=(length,) ).astype(np.floataa ) def __len__(self ): '''simple docstring''' return self.length def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class a_ ( torch.nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_=0, lowerCamelCase_=0, lowerCamelCase_=False ): '''simple docstring''' super().__init__() lowerCamelCase__ : int = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCamelCase__ : int = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCamelCase__ : Dict = True def a__ (self, lowerCamelCase_=None ): '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) lowerCamelCase__ : Union[str, Any] = False return x * self.a[0] + self.b[0] class a_ ( torch.nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_=0, lowerCamelCase_=0, lowerCamelCase_=False ): '''simple docstring''' super().__init__() lowerCamelCase__ : List[str] = torch.nn.Parameter(torch.tensor(lowerCamelCase_ ).float() ) lowerCamelCase__ : Optional[int] = torch.nn.Parameter(torch.tensor(lowerCamelCase_ ).float() ) lowerCamelCase__ : List[Any] = True def a__ (self, lowerCamelCase_=None ): '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) lowerCamelCase__ : Optional[int] = False return x * self.a + self.b def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = 16 ): from datasets import load_dataset from transformers import AutoTokenizer lowerCamelCase__ : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[int] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} lowerCamelCase__ : Any = load_dataset('csv' , data_files=_lowerCamelCase ) lowerCamelCase__ : Any = datasets["""train"""].unique('label' ) lowerCamelCase__ : List[Any] = {v: i for i, v in enumerate(_lowerCamelCase )} def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase__ : Dict = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) if "label" in examples: lowerCamelCase__ : Optional[int] = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase__ : List[Any] = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCamelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_lowerCamelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. lowerCamelCase__ : Optional[int] = DataLoader(tokenized_datasets['train'] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=2 ) lowerCamelCase__ : Dict = DataLoader(tokenized_datasets['validation'] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=1 ) return train_dataloader, eval_dataloader
714
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_lowerCamelCase ) * abs(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
696
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Dict = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : int = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : Optional[int] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : str = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : Optional[int] = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Tuple = c.n_embd + 1 # int lowerCamelCase__ : Union[str, Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : List[Any] = not c.scale_attn_weights # bool lowerCamelCase__ : List[Any] = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = PretrainedConfig() lowerCamelCase__ : Optional[Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : Any = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : int = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = mock.Mock() lowerCamelCase__ : List[str] = 5_0_0 lowerCamelCase__ : Any = {} lowerCamelCase__ : int = HTTPError lowerCamelCase__ : Optional[Any] = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : str = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : str = ['config.42.0.0.json'] lowerCamelCase__ : Union[str, Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Optional[int] = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Dict = 'v3.0.0' lowerCamelCase__ : List[str] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
696
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor A_ : int = logging.get_logger(__name__) class a_ ( __snake_case ): '''simple docstring''' def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.', A_, ) super().__init__(*A_, **A_ )
716
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' super().__init__() lowerCamelCase__ : Dict = value_function lowerCamelCase__ : int = unet lowerCamelCase__ : Union[str, Any] = scheduler lowerCamelCase__ : int = env lowerCamelCase__ : List[Any] = env.get_dataset() lowerCamelCase__ : Dict = {} for key in self.data.keys(): try: lowerCamelCase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowerCamelCase__ : Optional[int] = {} for key in self.data.keys(): try: lowerCamelCase__ : Tuple = self.data[key].std() except: # noqa: E722 pass lowerCamelCase__ : Optional[Any] = env.observation_space.shape[0] lowerCamelCase__ : List[str] = env.action_space.shape[0] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def a__ (self, lowerCamelCase_ ): '''simple docstring''' if type(lowerCamelCase_ ) is dict: return {k: self.to_torch(lowerCamelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase_, device=self.unet.device ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for key, val in cond.items(): lowerCamelCase__ : Optional[Any] = val.clone() return x_in def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = x.shape[0] lowerCamelCase__ : Tuple = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCamelCase__ : Dict = torch.full((batch_size,), lowerCamelCase_, device=self.unet.device, dtype=torch.long ) for _ in range(lowerCamelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCamelCase__ : str = self.value_function(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample lowerCamelCase__ : Union[str, Any] = torch.autograd.grad([y.sum()], [x] )[0] lowerCamelCase__ : Optional[int] = self.scheduler._get_variance(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = torch.exp(0.5 * posterior_variance ) lowerCamelCase__ : Tuple = model_std * grad lowerCamelCase__ : str = 0 lowerCamelCase__ : Dict = x.detach() lowerCamelCase__ : Dict = x + scale * grad lowerCamelCase__ : Optional[int] = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : Tuple = self.unet(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample.permute(0, 2, 1 ) # TODO: verify deprecation of this kwarg lowerCamelCase__ : Optional[Any] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, predict_epsilon=lowerCamelCase_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowerCamelCase__ : Any = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) return x, y def __call__(self, lowerCamelCase_, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=0.1 ): '''simple docstring''' lowerCamelCase__ : Dict = self.normalize(lowerCamelCase_, 'observations' ) lowerCamelCase__ : List[str] = obs[None].repeat(lowerCamelCase_, axis=0 ) lowerCamelCase__ : str = {0: self.to_torch(lowerCamelCase_ )} lowerCamelCase__ : Optional[Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCamelCase__ : List[Any] = randn_tensor(lowerCamelCase_, device=self.unet.device ) lowerCamelCase__ : int = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) # run the diffusion process lowerCamelCase__ , lowerCamelCase__ : List[str] = self.run_diffusion(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # sort output trajectories by value lowerCamelCase__ : Union[str, Any] = y.argsort(0, descending=lowerCamelCase_ ).squeeze() lowerCamelCase__ : List[str] = x[sorted_idx] lowerCamelCase__ : Optional[Any] = sorted_values[:, :, : self.action_dim] lowerCamelCase__ : Union[str, Any] = actions.detach().cpu().numpy() lowerCamelCase__ : Union[str, Any] = self.de_normalize(lowerCamelCase_, key='actions' ) # select the action with the highest value if y is not None: lowerCamelCase__ : str = 0 else: # if we didn't run value guiding, select a random action lowerCamelCase__ : Optional[Any] = np.random.randint(0, lowerCamelCase_ ) lowerCamelCase__ : Tuple = denorm_actions[selected_index, 0] return denorm_actions
696
0
"""simple docstring""" import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = tmp_path / 'file.csv' lowerCamelCase__ : Optional[int] = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) @pytest.fixture def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Any = tmp_path / 'malformed_file.csv' lowerCamelCase__ : Union[str, Any] = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) @pytest.fixture def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = tmp_path / 'csv_with_image.csv' lowerCamelCase__ : Any = textwrap.dedent( f'''\ image {image_file} ''' ) with open(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) @pytest.fixture def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Dict = tmp_path / 'csv_with_label.csv' lowerCamelCase__ : Tuple = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) @pytest.fixture def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Dict = tmp_path / 'csv_with_int_list.csv' lowerCamelCase__ : Tuple = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : str = Csv() lowerCamelCase__ : int = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCamelCase , match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(_lowerCamelCase ) in record.message for record in caplog.records ) @require_pil def lowerCamelCase_ ( _lowerCamelCase ): with open(_lowerCamelCase , encoding='utf-8' ) as f: lowerCamelCase__ : List[Any] = f.read().splitlines()[1] lowerCamelCase__ : str = Csv(encoding='utf-8' , features=Features({'image': Image()} ) ) lowerCamelCase__ : Dict = csv._generate_tables([[csv_file_with_image]] ) lowerCamelCase__ : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() lowerCamelCase__ : str = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCamelCase_ ( _lowerCamelCase ): with open(_lowerCamelCase , encoding='utf-8' ) as f: lowerCamelCase__ : str = f.read().splitlines()[1:] lowerCamelCase__ : Dict = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) lowerCamelCase__ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] ) lowerCamelCase__ : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() lowerCamelCase__ : Dict = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(_lowerCamelCase ) for label in labels] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda _lowerCamelCase : [int(_lowerCamelCase ) for i in x.split()]} ) lowerCamelCase__ : Union[str, Any] = csv._generate_tables([[csv_file_with_int_list]] ) lowerCamelCase__ : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) lowerCamelCase__ : List[Any] = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
717
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : List[str] = analyze_text(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. lowerCamelCase__ : List[Any] = sum(single_char_strings.values() ) # one length string lowerCamelCase__ : str = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCamelCase__ : Tuple = single_char_strings[ch] lowerCamelCase__ : Union[str, Any] = my_str / all_sum my_fir_sum += prob * math.loga(_lowerCamelCase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string lowerCamelCase__ : Dict = sum(two_char_strings.values() ) lowerCamelCase__ : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCamelCase__ : int = cha + cha if sequence in two_char_strings: lowerCamelCase__ : int = two_char_strings[sequence] lowerCamelCase__ : Tuple = int(_lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(_lowerCamelCase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = Counter() # type: ignore lowerCamelCase__ : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase_ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
696
0
"""simple docstring""" import math import os import sys def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : str = "" try: with open(__lowerCAmelCase , 'rb' ) as binary_file: lowerCamelCase__ : Tuple = binary_file.read() for dat in data: lowerCamelCase__ : str = f'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lexicon.pop(__lowerCAmelCase ) lowerCamelCase__ : str = last_match_id if math.loga(__lowerCAmelCase ).is_integer(): for curr_key in lexicon: lowerCamelCase__ : List[str] = "0" + lexicon[curr_key] lowerCamelCase__ : str = bin(__lowerCAmelCase )[2:] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = {"0": "0", "1": "1"} lowerCamelCase__ : Optional[int] = "", "" lowerCamelCase__ : int = len(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowerCamelCase__ : Tuple = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) index += 1 lowerCamelCase__ : Any = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": lowerCamelCase__ : List[str] = lexicon[curr_string] result += last_match_id return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = os.path.getsize(__lowerCAmelCase ) lowerCamelCase__ : List[str] = bin(__lowerCAmelCase )[2:] lowerCamelCase__ : Dict = len(__lowerCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 8 try: with open(__lowerCAmelCase , 'wb' ) as opened_file: lowerCamelCase__ : Optional[Any] = [ to_write[i : i + byte_length] for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__lowerCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[str] = read_file_binary(__lowerCAmelCase ) lowerCamelCase__ : Tuple = compress_data(__lowerCAmelCase ) lowerCamelCase__ : Union[str, Any] = add_file_length(__lowerCAmelCase , __lowerCAmelCase ) write_file_binary(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
718
"""simple docstring""" import os def lowerCamelCase_ ( ): with open(os.path.dirname(_lowerCamelCase ) + '/p022_names.txt' ) as file: lowerCamelCase__ : Union[str, Any] = str(file.readlines()[0] ) lowerCamelCase__ : int = names.replace('"' , '' ).split(',' ) names.sort() lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : str = 0 for i, name in enumerate(_lowerCamelCase ): for letter in name: name_score += ord(_lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowerCamelCase__ : Dict = 0 return total_score if __name__ == "__main__": print(solution())
696
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : Tuple = {"vocab_file": "spiece.model"} A_ : Optional[Any] = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 A_ : Any = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } A_ : int = "▁" class a_ ( __a ): '''simple docstring''' lowerCamelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Dict = ["input_ids", "attention_mask"] def __init__(self, lowerCamelCase_, lowerCamelCase_="</s>", lowerCamelCase_="<unk>", lowerCamelCase_="<pad>", lowerCamelCase_=1_0_0, lowerCamelCase_=None, lowerCamelCase_ = None, lowerCamelCase_=True, **lowerCamelCase_, ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowerCamelCase__ : Tuple = [f'''<extra_id_{i}>''' for i in range(lowerCAmelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowerCamelCase__ : List[Any] = len(set(filter(lambda lowerCamelCase_ : bool('extra_id' in str(lowerCAmelCase_ ) ), lowerCAmelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) lowerCamelCase__ : Any = legacy lowerCamelCase__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase_, unk_token=lowerCAmelCase_, pad_token=lowerCAmelCase_, extra_ids=lowerCAmelCase_, additional_special_tokens=lowerCAmelCase_, sp_model_kwargs=self.sp_model_kwargs, legacy=lowerCAmelCase_, **lowerCAmelCase_, ) lowerCamelCase__ : Dict = vocab_file lowerCamelCase__ : Union[str, Any] = extra_ids lowerCamelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: lowerCamelCase__ : str = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.', lowerCAmelCase_, ) return max_model_length @property def a__ (self ): '''simple docstring''' return self.sp_model.get_piece_size() + self._extra_ids def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_, token_ids_a=lowerCAmelCase_, already_has_special_tokens=lowerCAmelCase_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCAmelCase_ )) + [1] return ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1] def a__ (self ): '''simple docstring''' return list( set(filter(lambda lowerCamelCase_ : bool(re.search(r'<extra_id_\d+>', lowerCAmelCase_ ) ) is not None, self.additional_special_tokens ) ) ) def a__ (self ): '''simple docstring''' return [self._convert_token_to_id(lowerCAmelCase_ ) for token in self.get_sentinel_tokens()] def a__ (self, lowerCamelCase_ ): '''simple docstring''' if len(lowerCAmelCase_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Dict = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Dict = self._add_eos_if_not_present(lowerCAmelCase_ ) if token_ids_a is None: return token_ids_a else: lowerCamelCase__ : Tuple = self._add_eos_if_not_present(lowerCAmelCase_ ) return token_ids_a + token_ids_a def __getstate__(self ): '''simple docstring''' lowerCamelCase__ : Any = self.__dict__.copy() lowerCamelCase__ : str = None return state def __setstate__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): lowerCamelCase__ : Any = {} lowerCamelCase__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ (self, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if not self.legacy: lowerCamelCase__ : List[str] = SPIECE_UNDERLINE + text.replace(lowerCAmelCase_, ' ' ) return super().tokenize(lowerCAmelCase_, **lowerCAmelCase_ ) def a__ (self, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if not self.legacy: lowerCamelCase__ : int = text.startswith(lowerCAmelCase_ ) if is_first: lowerCamelCase__ : List[Any] = text[1:] lowerCamelCase__ : Tuple = self.sp_model.encode(lowerCAmelCase_, out_type=lowerCAmelCase_ ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(lowerCAmelCase_ ): lowerCamelCase__ : Union[str, Any] = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def a__ (self, lowerCamelCase_ ): '''simple docstring''' if token.startswith('<extra_id_' ): lowerCamelCase__ : Tuple = re.match(r'<extra_id_(\d+)>', lowerCAmelCase_ ) lowerCamelCase__ : List[str] = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(lowerCAmelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' if index < self.sp_model.get_piece_size(): lowerCamelCase__ : Union[str, Any] = self.sp_model.IdToPiece(lowerCAmelCase_ ) else: lowerCamelCase__ : int = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : Optional[Any] = '' lowerCamelCase__ : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase_ ) + token lowerCamelCase__ : str = True lowerCamelCase__ : Optional[Any] = [] else: current_sub_tokens.append(lowerCAmelCase_ ) lowerCamelCase__ : str = False out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if not os.path.isdir(lowerCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ : Any = os.path.join( lowerCAmelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_, 'wb' ) as fi: lowerCamelCase__ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
719
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = 'Speech2TextFeatureExtractor' lowerCamelCase__ : Dict = 'Speech2TextTokenizer' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.feature_extractor lowerCamelCase__ : List[Any] = False def __call__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_, **lowerCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ : Optional[int] = kwargs.pop('raw_speech' ) else: lowerCamelCase__ : int = kwargs.pop('audio', lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = kwargs.pop('sampling_rate', lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('text', lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowerCamelCase__ : List[str] = args[0] lowerCamelCase__ : Any = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ : Union[str, Any] = self.feature_extractor(lowerCamelCase_, *lowerCamelCase_, sampling_rate=lowerCamelCase_, **lowerCamelCase_ ) if text is not None: lowerCamelCase__ : List[Any] = self.tokenizer(lowerCamelCase_, **lowerCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Tuple = encodings['input_ids'] return inputs def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @contextmanager def a__ (self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ : int = True lowerCamelCase__ : List[Any] = self.tokenizer yield lowerCamelCase__ : Optional[int] = self.feature_extractor lowerCamelCase__ : List[Any] = False
696
0
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 A_ : int = get_tests_dir("fixtures") A_ : List[Any] = get_tests_dir("fixtures/dummy_feature_extractor_config.json") A_ : str = get_tests_dir("fixtures/dummy-config.json") class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = 0 def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(__a, __a ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a, __a ) def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally lowerCamelCase__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained(__a ).to_dict() config_dict.pop('feature_extractor_type' ) lowerCamelCase__ : str = WavaVecaFeatureExtractor(**__a ) # save in new folder model_config.save_pretrained(__a ) config.save_pretrained(__a ) lowerCamelCase__ : Optional[Any] = AutoFeatureExtractor.from_pretrained(__a ) # make sure private variable is not incorrectly saved lowerCamelCase__ : Any = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(__a, __a ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a, __a ) def a__ (self ): '''simple docstring''' with self.assertRaisesRegex( __a, 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained('bert-base' ) def a__ (self ): '''simple docstring''' with self.assertRaisesRegex( __a, r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase__ : str = AutoFeatureExtractor.from_pretrained(__a, revision='aaaaaa' ) def a__ (self ): '''simple docstring''' with self.assertRaisesRegex( __a, 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.', ): lowerCamelCase__ : int = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def a__ (self ): '''simple docstring''' with self.assertRaises(__a ): lowerCamelCase__ : int = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__a ): lowerCamelCase__ : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor', trust_remote_code=__a ) lowerCamelCase__ : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor', trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__, 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) lowerCamelCase__ : Tuple = AutoFeatureExtractor.from_pretrained(__a, trust_remote_code=__a ) self.assertEqual(reloaded_feature_extractor.__class__.__name__, 'NewFeatureExtractor' ) def a__ (self ): '''simple docstring''' try: AutoConfig.register('custom', __a ) AutoFeatureExtractor.register(__a, __a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoFeatureExtractor.register(__a, __a ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase__ : Tuple = CustomFeatureExtractor.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) lowerCamelCase__ : List[str] = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a, __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def a__ (self ): '''simple docstring''' class a_ ( __lowercase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = True try: AutoConfig.register('custom', __a ) AutoFeatureExtractor.register(__a, __a ) # If remote code is not set, the default is to use local lowerCamelCase__ : int = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__, 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. lowerCamelCase__ : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor', trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__, 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub lowerCamelCase__ : List[str] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor', trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__, 'NewFeatureExtractor' ) self.assertTrue(not hasattr(__a, 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
720
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : Optional[Any] = use_input_mask lowerCamelCase__ : List[Any] = use_token_type_ids lowerCamelCase__ : List[Any] = use_labels lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : Optional[int] = embedding_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Optional[Any] = num_labels lowerCamelCase__ : Dict = num_choices lowerCamelCase__ : Tuple = scope def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : List[str] = None if self.use_input_mask: lowerCamelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_token_type_ids: lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Any = None lowerCamelCase__ : Union[str, Any] = None if self.use_labels: lowerCamelCase__ : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, embedding_size=self.embedding_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, next_sentence_label=lowerCamelCase_, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, start_positions=lowerCamelCase_, end_positions=lowerCamelCase_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : int = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.num_choices lowerCamelCase__ : Dict = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : int = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : List[str] = config_and_inputs lowerCamelCase__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : int = True def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase_ ) return inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = MobileBertModelTester(self ) lowerCamelCase__ : List[str] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): return torch.tensor( _lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , ) A_ : Tuple = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(lowerCamelCase_ ) lowerCamelCase__ : Tuple = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ )[0] lowerCamelCase__ : Optional[int] = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [ [ [-2.4_736_526e07, 8.2_691_656e04, 1.6_521_838e05], [-5.7_541_704e-01, 3.9_056_022e00, 4.4_011_507e00], [2.6_047_359e00, 1.5_677_652e00, -1.7_324_188e-01], ] ], device=lowerCamelCase_, ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCamelCase__ : Optional[int] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCamelCase__ : Any = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
696
0
"""simple docstring""" import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def lowerCamelCase_ ( _lowerCamelCase=32 , _lowerCamelCase=10 , _lowerCamelCase=100 , _lowerCamelCase=1026 , _lowerCamelCase=True , _lowerCamelCase="data/tokenized_stories_train_wikitext103.jbl" , _lowerCamelCase="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set lowerCamelCase__ , lowerCamelCase__ : Dict = generate_datasets( _UpperCamelCase , _UpperCamelCase , number=_UpperCamelCase , min_len=1026 , trim=_UpperCamelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowerCamelCase__ : int = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model lowerCamelCase__ : Union[str, Any] = load_gpta('gpt2' ).to(_UpperCamelCase ) print('computing perplexity on objective set' ) lowerCamelCase__ : int = compute_perplexity(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).item() print('perplexity on objective set:' , _UpperCamelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=15 , _lowerCamelCase=128 , _lowerCamelCase=100 , _lowerCamelCase="igf_model.pt" , ): set_seed(42 ) # Load pre-trained model lowerCamelCase__ : Optional[int] = GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model lowerCamelCase__ : int = SecondaryLearner(_UpperCamelCase ) # Train secondary learner lowerCamelCase__ : Any = train_secondary_learner( _UpperCamelCase , _UpperCamelCase , max_epochs=_UpperCamelCase , batch_size=_UpperCamelCase , eval_freq=100 , igf_model_path=_UpperCamelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=32 , _lowerCamelCase=1000 , _lowerCamelCase=16 , _lowerCamelCase=1.0 , _lowerCamelCase=recopy_gpta , _lowerCamelCase=None , _lowerCamelCase=10 , _lowerCamelCase="gpt2_finetuned.pt" , ): lowerCamelCase__ : Union[str, Any] = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) lowerCamelCase__ : int = RandomSampler(_UpperCamelCase ) lowerCamelCase__ : Any = DataLoader(_UpperCamelCase , sampler=_UpperCamelCase ) lowerCamelCase__ : str = max_steps // (len(_UpperCamelCase )) + 1 lowerCamelCase__ : str = 0 lowerCamelCase__ : Optional[Any] = torch.zeros((1, context_len) , dtype=torch.long , device=_UpperCamelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = recopy_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) model.train() if secondary_learner is not None: secondary_learner.to(_UpperCamelCase ) secondary_learner.eval() lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Dict = [] # Compute the performance of the transformer model at the beginning lowerCamelCase__ : int = compute_perplexity(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) test_perps.append(_UpperCamelCase ) print('Test perplexity, step' , _UpperCamelCase , ':' , _UpperCamelCase ) for epoch in range(int(_UpperCamelCase ) ): for step, example in enumerate(_UpperCamelCase ): torch.cuda.empty_cache() lowerCamelCase__ : Optional[int] = random.randint(0 , example.size(2 ) - context_len - 1 ) lowerCamelCase__ : Dict = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowerCamelCase__ : List[Any] = model(_UpperCamelCase , labels=_UpperCamelCase ) lowerCamelCase__ : Any = True if secondary_learner is not None: lowerCamelCase__ : List[str] = secondary_learner.forward( torch.tensor(_UpperCamelCase , dtype=torch.long , device=_UpperCamelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_UpperCamelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowerCamelCase__ : List[str] = -1 if predicted_q < threshold: lowerCamelCase__ : Union[str, Any] = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowerCamelCase__ : Dict = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowerCamelCase__ : Union[str, Any] = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowerCamelCase__ : Tuple = compute_perplexity(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) test_perps.append(_UpperCamelCase ) print('Test perplexity, step' , _UpperCamelCase , ':' , _UpperCamelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _UpperCamelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def lowerCamelCase_ ( ): lowerCamelCase__ : List[str] = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=_UpperCamelCase , default=_UpperCamelCase , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=_UpperCamelCase , default=_UpperCamelCase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=_UpperCamelCase , type=_UpperCamelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=_UpperCamelCase , default=_UpperCamelCase , help='A seed for reproducible training.' ) parser.add_argument( '--context_len' , default=32 , type=_UpperCamelCase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=_UpperCamelCase , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=_UpperCamelCase , help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' , default=1000 , type=_UpperCamelCase , help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=_UpperCamelCase , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=_UpperCamelCase , help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' , default=10 , type=_UpperCamelCase , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=_UpperCamelCase , help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' , default=1026 , type=_UpperCamelCase , help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=_UpperCamelCase , help='number of epochs to train secondary learner' ) parser.add_argument('--trim' , default=_UpperCamelCase , type=_UpperCamelCase , help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' , default=1.0 , type=_UpperCamelCase , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=_UpperCamelCase , help='finetuned_model_name' ) parser.add_argument( '--recopy_model' , default=_UpperCamelCase , type=_UpperCamelCase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=_UpperCamelCase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner lowerCamelCase__ : str = joblib.load('data/IGF_values.jbl' ) # Train secondary learner lowerCamelCase__ : Any = training_secondary_learner( _UpperCamelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model lowerCamelCase__ : List[str] = GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model lowerCamelCase__ , lowerCamelCase__ : Tuple = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=_UpperCamelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=_UpperCamelCase , secondary_learner=_UpperCamelCase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
721
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A_ : str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=1 ): '''simple docstring''' lowerCamelCase__ : Any = tokenizer lowerCamelCase__ : Optional[Any] = dataset lowerCamelCase__ : int = len(lowerCamelCase_ ) if n_tasks is None else n_tasks lowerCamelCase__ : Any = n_copies def __iter__(self ): '''simple docstring''' lowerCamelCase__ : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ : Optional[int] = self.tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = start_length lowerCamelCase__ : List[str] = eof_strings lowerCamelCase__ : List[str] = tokenizer def __call__(self, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ : Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ): lowerCamelCase__ : List[str] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): lowerCamelCase__ : str = batch['ids'].shape[-1] lowerCamelCase__ : int = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times lowerCamelCase__ : Optional[Any] = batch['task_id'].repeat(_lowerCamelCase ) lowerCamelCase__ : List[Any] = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ : List[Any] = generated_tokens.cpu().numpy() lowerCamelCase__ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) lowerCamelCase__ : str = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ : Optional[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase_ ( ): # Setup configuration lowerCamelCase__ : int = HfArgumentParser(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ : Tuple = 'false' if args.num_workers is None: lowerCamelCase__ : List[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ : List[Any] = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ : Optional[int] = tokenizer.eos_token lowerCamelCase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ : Optional[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric lowerCamelCase__ : Any = load_dataset('openai_humaneval' ) lowerCamelCase__ : Optional[int] = load_metric('code_eval' ) lowerCamelCase__ : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ : Optional[int] = args.n_samples // args.batch_size lowerCamelCase__ : Tuple = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ : Union[str, Any] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ : List[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ : str = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: lowerCamelCase__ : List[str] = [] for task in tqdm(range(_lowerCamelCase ) ): lowerCamelCase__ : int = human_eval['test'][task]['test'] lowerCamelCase__ : Union[str, Any] = f'''check({human_eval['test'][task]['entry_point']})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ : Any = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
696
0
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : str = [] for line in lines: lowerCamelCase__ : Any = re.sub(r'#.*' , '' , _lowerCamelCase ) # remove comments if line: filtered_lines.append(_lowerCamelCase ) lowerCamelCase__ : str = '\n'.join(_lowerCamelCase ) # Make a hash from all this code lowerCamelCase__ : Any = full_str.encode('utf-8' ) return shaaaa(_lowerCamelCase ).hexdigest() # get importable module names and hash for caching A_ : str = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions A_ : str = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) A_ : Any = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name A_ : Any = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(".zip") _MODULE_TO_EXTENSIONS["audiofolder"].append(".zip")
700
"""simple docstring""" from ..utils import DummyObject, requires_backends class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] ) class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] )
696
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: A_ : List[str] = None A_ : Tuple = logging.get_logger(__name__) A_ : Union[str, Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} A_ : Optional[Any] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json" ), }, } A_ : Dict = { "moussaKam/mbarthez": 10_24, "moussaKam/barthez": 10_24, "moussaKam/barthez-orangesum-title": 10_24, } A_ : Tuple = "▁" class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = VOCAB_FILES_NAMES lowerCamelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Optional[Any] = ['input_ids', 'attention_mask'] lowerCamelCase__ : int = BarthezTokenizer def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_="<s>", lowerCamelCase_="</s>", lowerCamelCase_="</s>", lowerCamelCase_="<s>", lowerCamelCase_="<unk>", lowerCamelCase_="<pad>", lowerCamelCase_="<mask>", **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Optional[int] = AddedToken(lowerCamelCase_, lstrip=lowerCamelCase_, rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_, lowerCamelCase_ ) else mask_token super().__init__( lowerCamelCase_, tokenizer_file=lowerCamelCase_, bos_token=lowerCamelCase_, eos_token=lowerCamelCase_, unk_token=lowerCamelCase_, sep_token=lowerCamelCase_, cls_token=lowerCamelCase_, pad_token=lowerCamelCase_, mask_token=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : Optional[Any] = vocab_file lowerCamelCase__ : List[Any] = False if not self.vocab_file else True def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] lowerCamelCase__ : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : List[str] = [self.sep_token_id] lowerCamelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ : Dict = os.path.join( lowerCamelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file, lowerCamelCase_ ) return (out_vocab_file,)
701
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = 0 while number > 0: lowerCamelCase__ : List[str] = number % 10 sum_of_digits += last_digit lowerCamelCase__ : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase_ ( _lowerCamelCase = 100 ): lowerCamelCase__ : Union[str, Any] = factorial(_lowerCamelCase ) lowerCamelCase__ : List[Any] = split_and_add(_lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
696
0
"""simple docstring""" import argparse import os import re import packaging.version A_ : Any = "examples/" A_ : int = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } A_ : Optional[Any] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } A_ : List[Any] = "README.md" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): with open(lowercase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCamelCase__ : Optional[Any] = f.read() lowerCamelCase__ , lowerCamelCase__ : int = REPLACE_PATTERNS[pattern] lowerCamelCase__ : int = replace.replace('VERSION' , lowercase__ ) lowerCamelCase__ : int = re_pattern.sub(lowercase__ , lowercase__ ) with open(lowercase__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(lowercase__ ) def lowerCamelCase_ ( _lowerCamelCase ): for folder, directories, fnames in os.walk(lowercase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(lowercase__ , lowercase__ ) , lowercase__ , pattern='examples' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowercase__ , lowercase__ , lowercase__ ) if not patch: update_version_in_examples(lowercase__ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Union[str, Any] = '🤗 Transformers currently provides the following architectures' lowerCamelCase__ : Any = '1. Want to contribute a new model?' with open(lowercase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCamelCase__ : int = f.readlines() # Find the start of the list. lowerCamelCase__ : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCamelCase__ : Optional[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): lowerCamelCase__ : List[str] = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(lowercase__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lowercase__ ) def lowerCamelCase_ ( ): with open(REPLACE_FILES['init'] , 'r' ) as f: lowerCamelCase__ : str = f.read() lowerCamelCase__ : str = REPLACE_PATTERNS['init'][0].search(lowercase__ ).groups()[0] return packaging.version.parse(lowercase__ ) def lowerCamelCase_ ( _lowerCamelCase=False ): lowerCamelCase__ : Any = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: lowerCamelCase__ : int = default_version.base_version elif patch: lowerCamelCase__ : Union[str, Any] = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: lowerCamelCase__ : Optional[int] = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. lowerCamelCase__ : int = input(f'''Which version are you releasing? [{default_version}]''' ) if len(lowercase__ ) == 0: lowerCamelCase__ : Optional[Any] = default_version print(f'''Updating version to {version}.''' ) global_version_update(lowercase__ , patch=lowercase__ ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def lowerCamelCase_ ( ): lowerCamelCase__ : int = get_version() lowerCamelCase__ : Dict = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' lowerCamelCase__ : Optional[int] = current_version.base_version # Check with the user we got that right. lowerCamelCase__ : List[Any] = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(lowercase__ ) == 0: lowerCamelCase__ : str = dev_version print(f'''Updating version to {version}.''' ) global_version_update(lowercase__ ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") A_ : List[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
702
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ : Dict = "pt" elif is_tf_available(): A_ : Union[str, Any] = "tf" else: A_ : List[str] = "jax" class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = PerceiverTokenizer lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ (self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=2_0, lowerCamelCase_=5 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [] for i in range(len(lowerCamelCase_ ) ): try: lowerCamelCase__ : Any = tokenizer.decode([i], clean_up_tokenization_spaces=lowerCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase__ : Any = list(filter(lambda lowerCamelCase_ : re.match(r'^[ a-zA-Z]+$', t[1] ), lowerCamelCase_ ) ) lowerCamelCase__ : Union[str, Any] = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=lowerCamelCase_ ), lowerCamelCase_ ) ) if max_length is not None and len(lowerCamelCase_ ) > max_length: lowerCamelCase__ : int = toks[:max_length] if min_length is not None and len(lowerCamelCase_ ) < min_length and len(lowerCamelCase_ ) > 0: while len(lowerCamelCase_ ) < min_length: lowerCamelCase__ : Dict = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : int = [t[0] for t in toks] # Ensure consistency lowerCamelCase__ : Optional[int] = tokenizer.decode(lowerCamelCase_, clean_up_tokenization_spaces=lowerCamelCase_ ) if " " not in output_txt and len(lowerCamelCase_ ) > 1: lowerCamelCase__ : List[Any] = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=lowerCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=lowerCamelCase_ ) ) if with_prefix_space: lowerCamelCase__ : Optional[Any] = ' ' + output_txt lowerCamelCase__ : List[Any] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) return output_txt, output_ids def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = 'Unicode €.' lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_ ) lowerCamelCase__ : Dict = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : int = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]Unicode €.[SEP]' ) lowerCamelCase__ : List[str] = tokenizer('e è é ê ë' ) lowerCamelCase__ : Dict = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : Any = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ), '[CLS]e è é ê ë[SEP]' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCamelCase__ : List[Any] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) if FRAMEWORK != "jax": lowerCamelCase__ : List[str] = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase__ : int = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertEqual((2, 3_8), batch.input_ids.shape ) self.assertEqual((2, 3_8), batch.attention_mask.shape ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.perceiver_tokenizer lowerCamelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCamelCase__ : List[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids', lowerCamelCase_ ) self.assertIn('attention_mask', lowerCamelCase_ ) self.assertNotIn('decoder_input_ids', lowerCamelCase_ ) self.assertNotIn('decoder_attention_mask', lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : int = [ 'Summary of the text.', 'Another summary.', ] lowerCamelCase__ : str = tokenizer( text_target=lowerCamelCase_, max_length=3_2, padding='max_length', truncation=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertEqual(3_2, targets['input_ids'].shape[1] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 4_2 ) # Now let's start the test lowerCamelCase__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : str = ' He is very happy, UNwant\u00E9d,running' lowerCamelCase__ : str = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : str = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) shutil.rmtree(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCamelCase__ : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCamelCase__ : List[str] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : int = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertIn('new_additional_special_token', after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 4_2 ) lowerCamelCase__ : List[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_, model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length, 4_3 ) shutil.rmtree(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : Optional[Any] = json.load(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : List[str] = json.load(lowerCamelCase_ ) lowerCamelCase__ : Any = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] lowerCamelCase__ : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCamelCase__ : List[str] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ : Dict = tokenizer_class.from_pretrained( lowerCamelCase_, ) self.assertIn( 'an_additional_special_token', tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token', lstrip=lowerCamelCase_ )] lowerCamelCase__ : Any = tokenizer_class.from_pretrained( lowerCamelCase_, additional_special_tokens=lowerCamelCase_, ) self.assertIn('a_new_additional_special_token', tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ), '�' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_tokenizers(fast=lowerCamelCase_, do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Tuple = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] lowerCamelCase__ : List[str] = tokenizer.convert_tokens_to_string(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None lowerCamelCase__ : Dict = get_aligned_output_features_output_indices(lowercase__, lowercase__, lowercase__ ) self.assertEqual(lowercase__, ['c'] ) self.assertEqual(lowercase__, [2] ) # Out indices set to match out features lowerCamelCase__ : str = get_aligned_output_features_output_indices(['a', 'c'], lowercase__, lowercase__ ) self.assertEqual(lowercase__, ['a', 'c'] ) self.assertEqual(lowercase__, [0, 2] ) # Out features set to match out indices lowerCamelCase__ : Any = get_aligned_output_features_output_indices(lowercase__, [0, 2], lowercase__ ) self.assertEqual(lowercase__, ['a', 'c'] ) self.assertEqual(lowercase__, [0, 2] ) # Out features selected from negative indices lowerCamelCase__ : Optional[int] = get_aligned_output_features_output_indices(lowercase__, [-3, -1], lowercase__ ) self.assertEqual(lowercase__, ['a', 'c'] ) self.assertEqual(lowercase__, [-3, -1] ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['a', 'b'], (0, 1), lowercase__ ) # Out features must be a list with self.assertRaises(lowercase__ ): verify_out_features_out_indices(('a', 'b'), (0, 1), ['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['a', 'b'], (0, 1), ['a'] ) # Out indices must be a list or tuple with self.assertRaises(lowercase__ ): verify_out_features_out_indices(lowercase__, 0, ['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(lowercase__ ): verify_out_features_out_indices(lowercase__, (0, 1), ['a'] ) # Out features and out indices must be the same length with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['a', 'b'], (0,), ['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['a', 'b'], (0, 2), ['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['b', 'a'], (0, 1), ['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'], (0, 1, -1), ['a', 'b', 'c', 'd'] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BackboneMixin() lowerCamelCase__ : List[Any] = ['''a''', '''b''', '''c'''] lowerCamelCase__ : Union[str, Any] = ['''a''', '''c'''] lowerCamelCase__ : Any = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features, ['a', 'c'] ) self.assertEqual(backbone.out_indices, [0, 2] ) # Check out features and indices are updated correctly lowerCamelCase__ : List[str] = ['''a''', '''b'''] self.assertEqual(backbone.out_features, ['a', 'b'] ) self.assertEqual(backbone.out_indices, [0, 1] ) lowerCamelCase__ : Dict = [-3, -1] self.assertEqual(backbone.out_features, ['a', 'c'] ) self.assertEqual(backbone.out_indices, [-3, -1] )
703
"""simple docstring""" from math import pi, sqrt, tan def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCamelCase__ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_lowerCamelCase , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCamelCase__ : Dict = (sidea + sidea + sidea) / 2 lowerCamelCase__ : str = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
696
0
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig A_ : List[Any] = logging.get_logger(__name__) # General docstring A_ : str = "RegNetConfig" # Base docstring A_ : Union[str, Any] = "facebook/regnet-y-040" A_ : Any = [1, 10_88, 7, 7] # Image classification docstring A_ : Optional[Any] = "facebook/regnet-y-040" A_ : Union[str, Any] = "tabby, tabby cat" A_ : Optional[Any] = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class a_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ = 3, lowerCamelCase_ = 1, lowerCamelCase_ = 1, lowerCamelCase_ = "relu", **lowerCamelCase_, ): '''simple docstring''' super().__init__(**lowercase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowerCamelCase__ : Dict = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowerCamelCase__ : List[Any] = tf.keras.layers.ConvaD( filters=lowercase__, kernel_size=lowercase__, strides=lowercase__, padding='VALID', groups=lowercase__, use_bias=lowercase__, name='convolution', ) lowerCamelCase__ : str = tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name='normalization' ) lowerCamelCase__ : List[str] = ACTaFN[activation] if activation is not None else tf.identity def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.convolution(self.padding(lowercase__ ) ) lowerCamelCase__ : Tuple = self.normalization(lowercase__ ) lowerCamelCase__ : int = self.activation(lowercase__ ) return hidden_state class a_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' super().__init__(**lowercase__ ) lowerCamelCase__ : Optional[Any] = config.num_channels lowerCamelCase__ : Optional[int] = TFRegNetConvLayer( out_channels=config.embedding_size, kernel_size=3, stride=2, activation=config.hidden_act, name='embedder', ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = shape_list(lowercase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowerCamelCase__ : Union[str, Any] = tf.transpose(lowercase__, perm=(0, 2, 3, 1) ) lowerCamelCase__ : Optional[Any] = self.embedder(lowercase__ ) return hidden_state class a_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ = 2, **lowerCamelCase_ ): '''simple docstring''' super().__init__(**lowercase__ ) lowerCamelCase__ : Dict = tf.keras.layers.ConvaD( filters=lowercase__, kernel_size=1, strides=lowercase__, use_bias=lowercase__, name='convolution' ) lowerCamelCase__ : Any = tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name='normalization' ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = False ): '''simple docstring''' return self.normalization(self.convolution(lowercase__ ), training=lowercase__ ) class a_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' super().__init__(**lowercase__ ) lowerCamelCase__ : int = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase__, name='pooler' ) lowerCamelCase__ : str = [ tf.keras.layers.ConvaD(filters=lowercase__, kernel_size=1, activation='relu', name='attention.0' ), tf.keras.layers.ConvaD(filters=lowercase__, kernel_size=1, activation='sigmoid', name='attention.2' ), ] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.pooler(lowercase__ ) for layer_module in self.attention: lowerCamelCase__ : Union[str, Any] = layer_module(lowercase__ ) lowerCamelCase__ : List[Any] = hidden_state * pooled return hidden_state class a_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 1, **lowerCamelCase_ ): '''simple docstring''' super().__init__(**lowercase__ ) lowerCamelCase__ : str = in_channels != out_channels or stride != 1 lowerCamelCase__ : Any = max(1, out_channels // config.groups_width ) lowerCamelCase__ : int = ( TFRegNetShortCut(lowercase__, stride=lowercase__, name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear', name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowerCamelCase__ : str = [ TFRegNetConvLayer(lowercase__, kernel_size=1, activation=config.hidden_act, name='layer.0' ), TFRegNetConvLayer( lowercase__, stride=lowercase__, groups=lowercase__, activation=config.hidden_act, name='layer.1' ), TFRegNetConvLayer(lowercase__, kernel_size=1, activation=lowercase__, name='layer.2' ), ] lowerCamelCase__ : Any = ACTaFN[config.hidden_act] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = hidden_state for layer_module in self.layers: lowerCamelCase__ : Tuple = layer_module(lowercase__ ) lowerCamelCase__ : List[Any] = self.shortcut(lowercase__ ) hidden_state += residual lowerCamelCase__ : List[Any] = self.activation(lowercase__ ) return hidden_state class a_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 1, **lowerCamelCase_ ): '''simple docstring''' super().__init__(**lowercase__ ) lowerCamelCase__ : str = in_channels != out_channels or stride != 1 lowerCamelCase__ : List[Any] = max(1, out_channels // config.groups_width ) lowerCamelCase__ : Optional[Any] = ( TFRegNetShortCut(lowercase__, stride=lowercase__, name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear', name='shortcut' ) ) lowerCamelCase__ : Tuple = [ TFRegNetConvLayer(lowercase__, kernel_size=1, activation=config.hidden_act, name='layer.0' ), TFRegNetConvLayer( lowercase__, stride=lowercase__, groups=lowercase__, activation=config.hidden_act, name='layer.1' ), TFRegNetSELayer(lowercase__, reduced_channels=int(round(in_channels / 4 ) ), name='layer.2' ), TFRegNetConvLayer(lowercase__, kernel_size=1, activation=lowercase__, name='layer.3' ), ] lowerCamelCase__ : Optional[Any] = ACTaFN[config.hidden_act] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = hidden_state for layer_module in self.layers: lowerCamelCase__ : Optional[int] = layer_module(lowercase__ ) lowerCamelCase__ : List[str] = self.shortcut(lowercase__ ) hidden_state += residual lowerCamelCase__ : List[Any] = self.activation(lowercase__ ) return hidden_state class a_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 2, lowerCamelCase_ = 2, **lowerCamelCase_ ): '''simple docstring''' super().__init__(**lowercase__ ) lowerCamelCase__ : Any = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer lowerCamelCase__ : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowercase__, lowercase__, lowercase__, stride=lowercase__, name='layers.0' ), *[layer(lowercase__, lowercase__, lowercase__, name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def a__ (self, lowerCamelCase_ ): '''simple docstring''' for layer_module in self.layers: lowerCamelCase__ : str = layer_module(lowercase__ ) return hidden_state class a_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' super().__init__(**lowercase__ ) lowerCamelCase__ : List[str] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowercase__, config.embedding_size, config.hidden_sizes[0], stride=2 if config.downsample_in_first_stage else 1, depth=config.depths[0], name='stages.0', ) ) lowerCamelCase__ : Optional[int] = zip(config.hidden_sizes, config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowercase__, config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowercase__, lowercase__, lowercase__, depth=lowercase__, name=f'''stages.{i+1}''' ) ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = False, lowerCamelCase_ = True ): '''simple docstring''' lowerCamelCase__ : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCamelCase__ : Dict = hidden_states + (hidden_state,) lowerCamelCase__ : List[str] = stage_module(lowercase__ ) if output_hidden_states: lowerCamelCase__ : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowercase__, hidden_states=lowercase__ ) @keras_serializable class a_ ( tf.keras.layers.Layer ): '''simple docstring''' lowerCamelCase__ : Dict = RegNetConfig def __init__(self, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' super().__init__(**lowercase__ ) lowerCamelCase__ : Tuple = config lowerCamelCase__ : Optional[int] = TFRegNetEmbeddings(lowercase__, name='embedder' ) lowerCamelCase__ : Tuple = TFRegNetEncoder(lowercase__, name='encoder' ) lowerCamelCase__ : Any = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase__, name='pooler' ) @unpack_inputs def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = False, ): '''simple docstring''' lowerCamelCase__ : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase__ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__ : Optional[int] = self.embedder(lowercase__, training=lowercase__ ) lowerCamelCase__ : List[Any] = self.encoder( lowercase__, output_hidden_states=lowercase__, return_dict=lowercase__, training=lowercase__ ) lowerCamelCase__ : Optional[Any] = encoder_outputs[0] lowerCamelCase__ : Optional[Any] = self.pooler(lowercase__ ) # Change to NCHW output format have uniformity in the modules lowerCamelCase__ : Optional[int] = tf.transpose(lowercase__, perm=(0, 3, 1, 2) ) lowerCamelCase__ : List[Any] = tf.transpose(lowercase__, perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowerCamelCase__ : Any = tuple([tf.transpose(lowercase__, perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase__, pooler_output=lowercase__, hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states, ) class a_ ( _UpperCAmelCase ): '''simple docstring''' lowerCamelCase__ : Any = RegNetConfig lowerCamelCase__ : List[Any] = """regnet""" lowerCamelCase__ : Tuple = """pixel_values""" @property def a__ (self ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4), dtype=tf.floataa )} A_ : Optional[int] = r"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" A_ : Dict = r"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , _UpperCAmelCase , ) class a_ ( _UpperCAmelCase ): '''simple docstring''' def __init__(self, lowerCamelCase_, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' super().__init__(lowercase__, *lowercase__, **lowercase__ ) lowerCamelCase__ : Tuple = TFRegNetMainLayer(lowercase__, name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(lowercase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=lowercase__, config_class=_CONFIG_FOR_DOC, modality='vision', expected_output=_EXPECTED_OUTPUT_SHAPE, ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_=False, ): '''simple docstring''' lowerCamelCase__ : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase__ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__ : Dict = self.regnet( pixel_values=lowercase__, output_hidden_states=lowercase__, return_dict=lowercase__, training=lowercase__, ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state, pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , _UpperCAmelCase , ) class a_ ( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' def __init__(self, lowerCamelCase_, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' super().__init__(lowercase__, *lowercase__, **lowercase__ ) lowerCamelCase__ : Optional[int] = config.num_labels lowerCamelCase__ : List[str] = TFRegNetMainLayer(lowercase__, name='regnet' ) # classification head lowerCamelCase__ : Dict = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels, name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowercase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=lowercase__, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def a__ (self, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_=False, ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase__ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__ : List[Any] = self.regnet( lowercase__, output_hidden_states=lowercase__, return_dict=lowercase__, training=lowercase__ ) lowerCamelCase__ : List[Any] = outputs.pooler_output if return_dict else outputs[1] lowerCamelCase__ : Tuple = self.classifier[0](lowercase__ ) lowerCamelCase__ : Optional[int] = self.classifier[1](lowercase__ ) lowerCamelCase__ : Any = None if labels is None else self.hf_compute_loss(labels=lowercase__, logits=lowercase__ ) if not return_dict: lowerCamelCase__ : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowercase__, logits=lowercase__, hidden_states=outputs.hidden_states )
704
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : str = use_input_mask lowerCamelCase__ : Optional[Any] = use_token_type_ids lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : Union[str, Any] = type_sequence_label_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : Union[str, Any] = num_choices lowerCamelCase__ : List[str] = scope lowerCamelCase__ : Dict = vocab_size - 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = self.get_config() return config, input_ids, input_mask, token_labels def a__ (self ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[Any] = True return config, input_ids, input_mask, token_labels def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = GPTNeoXModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = True lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : Optional[Any] = GPTNeoXForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = self.num_labels lowerCamelCase__ : Optional[int] = GPTNeoXForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[Any] = GPTNeoXForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Tuple = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : List[str] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : str = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : List[Any] = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and lowerCamelCase__ : Tuple = torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : Tuple = torch.cat([input_mask, next_mask], dim=-1 ) lowerCamelCase__ : List[str] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, output_hidden_states=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = output_from_no_past['hidden_states'][0] lowerCamelCase__ : Optional[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_, output_hidden_states=lowerCamelCase_, )['hidden_states'][0] # select random slice lowerCamelCase__ : Dict = ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-3 ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = config_and_inputs lowerCamelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : int = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase__ : Dict = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = GPTNeoXModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=6_4, num_attention_heads=8 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def a__ (self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = ids_tensor([1, 1_0], config.vocab_size ) lowerCamelCase__ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Any = GPTNeoXModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() lowerCamelCase__ : List[Any] = original_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Optional[int] = {'type': scaling_type, 'factor': 10.0} lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() lowerCamelCase__ : Tuple = scaled_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: lowerCamelCase__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer('My favorite food is', return_tensors='pt' ).to(lowerCamelCase_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCamelCase__ : Dict = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' lowerCamelCase__ : Dict = model.generate(**lowerCamelCase_, do_sample=lowerCamelCase_, max_new_tokens=2_0 ) lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ )[0] self.assertEqual(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" # Imports import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None ): '''simple docstring''' self.set_matricies(red=__snake_case, green=__snake_case, blue=__snake_case, red_edge=__snake_case, nir=__snake_case ) def a__ (self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None ): '''simple docstring''' if red is not None: lowerCamelCase__ : Union[str, Any] = red if green is not None: lowerCamelCase__ : Tuple = green if blue is not None: lowerCamelCase__ : Optional[Any] = blue if red_edge is not None: lowerCamelCase__ : Any = red_edge if nir is not None: lowerCamelCase__ : List[Any] = nir return True def a__ (self, lowerCamelCase_="", lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None ): '''simple docstring''' self.set_matricies(red=__snake_case, green=__snake_case, blue=__snake_case, red_edge=__snake_case, nir=__snake_case ) lowerCamelCase__ : List[Any] = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!' ) return False def a__ (self ): '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def a__ (self ): '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def a__ (self ): '''simple docstring''' return self.nir * (self.red / (self.green**2)) def a__ (self ): '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def a__ (self ): '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def a__ (self ): '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def a__ (self ): '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def a__ (self ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def a__ (self ): '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def a__ (self ): '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def a__ (self ): '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def a__ (self ): '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def a__ (self, lowerCamelCase_=0.08, lowerCamelCase_=1.22, lowerCamelCase_=0.03 ): '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def a__ (self ): '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def a__ (self ): '''simple docstring''' return (self.nir / self.green) - 1 def a__ (self ): '''simple docstring''' return (self.nir / self.redEdge) - 1 def a__ (self ): '''simple docstring''' return (self.red - self.blue) / self.red def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def a__ (self ): '''simple docstring''' return self.nir - self.green def a__ (self ): '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def a__ (self, lowerCamelCase_=0.16 ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def a__ (self, lowerCamelCase_=0.5 ): '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def a__ (self ): '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def a__ (self, lowerCamelCase_=None, lowerCamelCase_=None ): '''simple docstring''' return (self.nir - b) / (a * self.red) def a__ (self ): '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def a__ (self ): '''simple docstring''' return (self.red + self.green + self.blue) / 3_0.5 def a__ (self ): '''simple docstring''' return self.nir / self.red def a__ (self ): '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def a__ (self ): '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def a__ (self ): '''simple docstring''' return self.green / (self.nir + self.red + self.green) def a__ (self ): '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def a__ (self ): '''simple docstring''' return self.red / (self.nir + self.red + self.green) def a__ (self ): '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def a__ (self ): '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCamelCase__ : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def a__ (self ): '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def a__ (self ): '''simple docstring''' return self.nir / self.red def a__ (self ): '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def a__ (self ): '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
705
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : Dict = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. A_ : List[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A_ : Union[str, Any] = spec.loader.load_module() A_ : int = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A_ : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") A_ : str = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCamelCase__ : Dict = False # source code of `config_class` lowerCamelCase__ : str = inspect.getsource(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = _re_checkpoint.findall(_lowerCamelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCamelCase__ , lowerCamelCase__ : Optional[int] = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase__ : Any = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: lowerCamelCase__ : Any = True break lowerCamelCase__ : Dict = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ : Optional[Any] = '\n'.join(sorted(_lowerCamelCase ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
696
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A_ : Tuple = logging.get_logger(__name__) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ): lowerCamelCase__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): for i in range(config.num_hidden_layers ): lowerCamelCase__ : Tuple = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ : Optional[Any] = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' ) lowerCamelCase__ : Optional[Any] = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : List[Any] = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase__ : Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase__ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ : List[Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Dict = dct.pop(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = val @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[str] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase ) lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : int = False lowerCamelCase__ : int = False if "vqa" in checkpoint_url: lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : str = 3129 lowerCamelCase__ : Optional[Any] = 'huggingface/label-files' lowerCamelCase__ : Optional[int] = 'vqa2-id2label.json' lowerCamelCase__ : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ : Union[str, Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : List[str] = idalabel lowerCamelCase__ : Any = {v: k for k, v in idalabel.items()} lowerCamelCase__ : Union[str, Any] = ViltForQuestionAnswering(_lowerCamelCase ) elif "nlvr" in checkpoint_url: lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Tuple = 2 lowerCamelCase__ : List[str] = {0: 'False', 1: 'True'} lowerCamelCase__ : Tuple = {v: k for k, v in config.idalabel.items()} lowerCamelCase__ : List[Any] = 3 lowerCamelCase__ : Dict = ViltForImagesAndTextClassification(_lowerCamelCase ) elif "irtr" in checkpoint_url: lowerCamelCase__ : str = True lowerCamelCase__ : Optional[Any] = ViltForImageAndTextRetrieval(_lowerCamelCase ) elif "mlm_itm" in checkpoint_url: lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : Any = ViltForMaskedLM(_lowerCamelCase ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowerCamelCase__ : Any = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location='cpu' )['state_dict'] lowerCamelCase__ : List[Any] = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) if mlm_model or irtr_model: lowerCamelCase__ : Optional[int] = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCamelCase ) # Define processor lowerCamelCase__ : List[str] = ViltImageProcessor(size=384 ) lowerCamelCase__ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowerCamelCase__ : Tuple = ViltProcessor(_lowerCamelCase , _lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: lowerCamelCase__ : Any = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_lowerCamelCase ).raw ) lowerCamelCase__ : Optional[int] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_lowerCamelCase ).raw ) lowerCamelCase__ : List[str] = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowerCamelCase__ : Dict = processor(_lowerCamelCase , _lowerCamelCase , return_tensors='pt' ) lowerCamelCase__ : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors='pt' ) lowerCamelCase__ : Tuple = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowerCamelCase__ : Optional[int] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=_lowerCamelCase ).raw ) if mlm_model: lowerCamelCase__ : Optional[int] = 'a bunch of [MASK] laying on a [MASK].' else: lowerCamelCase__ : Union[str, Any] = 'How many cats are there?' lowerCamelCase__ : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors='pt' ) lowerCamelCase__ : Optional[int] = model(**_lowerCamelCase ) # Verify outputs if mlm_model: lowerCamelCase__ : str = torch.Size([1, 11, 3_0522] ) lowerCamelCase__ : Union[str, Any] = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" lowerCamelCase__ : str = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowerCamelCase__ : Optional[int] = torch.Size([1, 3129] ) lowerCamelCase__ : Optional[int] = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" lowerCamelCase__ : str = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowerCamelCase__ : Union[str, Any] = torch.Size([1, 2] ) lowerCamelCase__ : List[str] = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A_ : List[str] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
0
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class a_ ( _UpperCamelCase ): '''simple docstring''' lowerCamelCase__ : List[Any] = "EncodecFeatureExtractor" lowerCamelCase__ : Union[str, Any] = ("T5Tokenizer", "T5TokenizerFast") def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__(__a, __a ) lowerCamelCase__ : str = self.feature_extractor lowerCamelCase__ : int = False def a__ (self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=__a, language=__a, no_timestamps=__a ) def __call__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__a, **__a ) lowerCamelCase__ : Optional[int] = kwargs.pop('audio', __a ) lowerCamelCase__ : str = kwargs.pop('sampling_rate', __a ) lowerCamelCase__ : str = kwargs.pop('text', __a ) if len(__a ) > 0: lowerCamelCase__ : Dict = args[0] lowerCamelCase__ : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if text is not None: lowerCamelCase__ : List[str] = self.tokenizer(__a, **__a ) if audio is not None: lowerCamelCase__ : Optional[Any] = self.feature_extractor(__a, *__a, sampling_rate=__a, **__a ) if audio is None: return inputs elif text is None: return audio_inputs else: lowerCamelCase__ : Dict = audio_inputs["input_values"] if "padding_mask" in audio_inputs: lowerCamelCase__ : Optional[Any] = audio_inputs["padding_mask"] return inputs def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = kwargs.pop('audio', __a ) lowerCamelCase__ : List[Any] = kwargs.pop('padding_mask', __a ) if len(__a ) > 0: lowerCamelCase__ : List[str] = args[0] lowerCamelCase__ : Optional[int] = args[1:] if audio_values is not None: return self._decode_audio(__a, padding_mask=__a ) else: return self.tokenizer.batch_decode(*__a, **__a ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*__a, **__a ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : str = to_numpy(__a ) lowerCamelCase__ : Optional[Any] = audio_values.shape if padding_mask is None: return list(__a ) lowerCamelCase__ : Optional[int] = to_numpy(__a ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) lowerCamelCase__ : List[str] = seq_len - padding_mask.shape[-1] lowerCamelCase__ : List[str] = 1 - self.feature_extractor.padding_value lowerCamelCase__ : Optional[Any] = np.pad(__a, ((0, 0), (0, difference)), 'constant', constant_values=__a ) lowerCamelCase__ : Union[str, Any] = audio_values.tolist() for i in range(__a ): lowerCamelCase__ : Optional[int] = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] lowerCamelCase__ : Any = sliced_audio.reshape(__a, -1 ) return audio_values
707
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A_ : Optional[int] = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A_ : List[str] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) A_ : Tuple = BeautifulSoup(res.text, "html.parser") A_ : Dict = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f"https://google.com{link.get('href')}")
696
0
"""simple docstring""" from itertools import permutations def lowerCamelCase_ ( _lowerCamelCase ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCamelCase__ : Union[str, Any] = [7, 11, 13, 17] for i, test in enumerate(__UpperCamelCase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowerCamelCase_ ( _lowerCamelCase = 10 ): return sum( int(''.join(map(__UpperCamelCase , __UpperCamelCase ) ) ) for num in permutations(range(__UpperCamelCase ) ) if is_substring_divisible(__UpperCamelCase ) ) if __name__ == "__main__": print(f"{solution() = }")
708
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCamelCase__ : Tuple = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_, cache_dir=lowerCamelCase_ ) lowerCamelCase__ : List[str] = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_, os.listdir(lowerCamelCase_ )[0], 'snapshots' ) )] lowerCamelCase__ : Optional[int] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[int] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Any = 4 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : List[Any] = num_samples * [prompt] lowerCamelCase__ : Optional[int] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : int = replicate(lowerCamelCase_ ) lowerCamelCase__ : Any = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : int = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1_514_745 ) < 1e-3 assert np.abs(np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 49_947.875 ) < 5e-1 lowerCamelCase__ : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase_ ) == num_samples def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='flax', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : int = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[str] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : List[str] = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = shard(lowerCamelCase_ ) lowerCamelCase__ : str = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05_652_401) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_383_808.2) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Union[str, Any] = 5_0 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : Tuple = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Any = replicate(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa ) lowerCamelCase__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Union[str, Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] = 5_0 lowerCamelCase__ : Tuple = jax.device_count() lowerCamelCase__ : Optional[int] = num_samples * [prompt] lowerCamelCase__ : str = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Optional[int] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : List[str] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = FlaxDDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', set_alpha_to_one=lowerCamelCase_, steps_offset=1, ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, scheduler=lowerCamelCase_, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : List[str] = scheduler.create_state() lowerCamelCase__ : int = scheduler_state lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : Optional[Any] = jax.device_count() lowerCamelCase__ : Any = num_samples * [prompt] lowerCamelCase__ : Any = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Dict = shard(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045_043_945) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_347_693.5) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : int = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : str = jax.random.split(jax.random.PRNGKey(0 ), lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Dict = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Tuple = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : int = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention lowerCamelCase__ , lowerCamelCase__ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, use_memory_efficient_attention=lowerCamelCase_, ) lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : Any = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Any = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
696
0