code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase ): if len(_lowerCamelCase ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) lowerCamelCase__ : Tuple = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = 1_0_0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = True, ): '''simple docstring''' if audio_length_in_s is None: lowerCamelCase__ : str = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase__ : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase__ : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCamelCase__ : Dict = int(lowerCamelCase_ ) if sample_size % down_scale_factor != 0: lowerCamelCase__ : Union[str, Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ' process.' ) lowerCamelCase__ : Optional[Any] = int(lowerCamelCase_ ) lowerCamelCase__ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase__ : Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase_, lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ : Union[str, Any] = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_, device=self.device, dtype=lowerCamelCase_ ) # set step values self.scheduler.set_timesteps(lowerCamelCase_, device=audio.device ) lowerCamelCase__ : int = self.scheduler.timesteps.to(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase__ : List[Any] = self.unet(lowerCamelCase_, lowerCamelCase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase__ : List[str] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample lowerCamelCase__ : Union[str, Any] = audio.clamp(-1, 1 ).float().cpu().numpy() lowerCamelCase__ : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase_ )
696
0
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): A_ : Union[str, Any] = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: A_ : Dict = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : int = (images / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase__ : List[Any] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCamelCase__ : List[str] = numpy_to_pil(snake_case_ ) return images def lowerCamelCase_ ( _lowerCamelCase ): if images.ndim == 3: lowerCamelCase__ : List[str] = images[None, ...] lowerCamelCase__ : int = (images * 255).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowerCamelCase__ : str = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: lowerCamelCase__ : Tuple = [Image.fromarray(snake_case_ ) for image in images] return pil_images
710
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(lowerCamelCase_ ) ) vocab_file.flush() lowerCamelCase__ : Tuple = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCamelCase__ : Optional[Any] = BertModel(BertConfig(vocab_size=len(lowerCamelCase_ ) ) ) model.save_pretrained(lowerCamelCase_ ) self._test_export(lowerCamelCase_, 'pt', 1_2, lowerCamelCase_ ) @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Optional[Any] = self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Any = quantize(Path(lowerCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Any = self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = quantize(lowerCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowerCamelCase__ : str = Path(lowerCamelCase_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ) return path except Exception as e: self.fail(lowerCamelCase_ ) @require_torch @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : str = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'pt' ) @require_tf @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import TFBertModel lowerCamelCase__ : Dict = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Optional[int] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'tf' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = FeatureExtractionPipeline(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = infer_shapes(lowerCamelCase_, lowerCamelCase_ ) # Assert all variables are present self.assertEqual(len(lowerCamelCase_ ), len(lowerCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3], lowerCamelCase_ ) self.assertSequenceEqual(variable_names[3:], lowerCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name], {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'], {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'], {0: 'batch'} ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['input_ids', 'attention_mask', 'token_type_ids'] lowerCamelCase__ : Optional[int] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowerCamelCase__ , lowerCamelCase__ : str = ensure_valid_input(FuncContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase_ ), 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase_ ), set(lowerCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase_, (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCamelCase__ , lowerCamelCase__ : Any = ensure_valid_input(FuncNonContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase_ ), 1 ) self.assertEqual(len(lowerCamelCase_ ), 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0], tokens['input_ids'] ) self.assertEqual(ordered_input_names[0], 'input_ids' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ), '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx', generated.as_posix() )
696
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : Dict = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class a_ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'ibert' def __init__(self, lowerCamelCase_=3_0_5_2_2, lowerCamelCase_=7_6_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=3_0_7_2, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=1e-12, lowerCamelCase_=1, lowerCamelCase_=0, lowerCamelCase_=2, lowerCamelCase_="absolute", lowerCamelCase_=False, lowerCamelCase_="none", **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__, bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, **UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : Optional[int] = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Tuple = intermediate_size lowerCamelCase__ : int = hidden_dropout_prob lowerCamelCase__ : int = attention_probs_dropout_prob lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Union[str, Any] = type_vocab_size lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : Any = layer_norm_eps lowerCamelCase__ : List[Any] = position_embedding_type lowerCamelCase__ : List[str] = quant_mode lowerCamelCase__ : Tuple = force_dequant class a_ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def a__ (self ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
711
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase__ : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : str = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ : Any = False @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return self.time_input_dim @property def a__ (self ): '''simple docstring''' return self.time_input_dim * 4 @property def a__ (self ): '''simple docstring''' return 1_0_0 @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase__ : int = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def a__ (self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.dummy_unet lowerCamelCase__ : List[Any] = self.dummy_movq lowerCamelCase__ : Tuple = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase__ : Optional[Any] = DDIMScheduler(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image lowerCamelCase__ : Any = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase__ : Optional[Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint lowerCamelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : int = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = 'cpu' lowerCamelCase__ : List[Any] = self.get_dummy_components() lowerCamelCase__ : List[Any] = self.pipeline_class(**lowerCamelCase_ ) lowerCamelCase__ : Dict = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : str = pipe( **self.get_dummy_inputs(lowerCamelCase_ ), return_dict=lowerCamelCase_, )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : List[str] = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase__ : Any = init_image.resize((5_1_2, 5_1_2) ) lowerCamelCase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase__ : Any = torch.from_numpy(np.array(lowerCamelCase_ ) ).float() / 255.0 lowerCamelCase__ : Optional[int] = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowerCamelCase__ : Union[str, Any] = 'A robot, 4k photo' lowerCamelCase__ : Any = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth', torch_dtype=torch.floataa ) lowerCamelCase__ : int = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = pipe_prior( lowerCamelCase_, image=lowerCamelCase_, strength=0.85, generator=lowerCamelCase_, negative_prompt='', ).to_tuple() lowerCamelCase__ : Union[str, Any] = pipeline( image=lowerCamelCase_, image_embeds=lowerCamelCase_, negative_image_embeds=lowerCamelCase_, hint=lowerCamelCase_, generator=lowerCamelCase_, num_inference_steps=1_0_0, height=5_1_2, width=5_1_2, strength=0.5, output_type='np', ) lowerCamelCase__ : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ : Dict = "pt" elif is_tf_available(): A_ : Optional[int] = "tf" else: A_ : Tuple = "jax" class a_ ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = ByTaTokenizer lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : Tuple = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ (self ): '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **_lowerCamelCase ) def a__ (self, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=2_0, lowerCamelCase_=5 ): '''simple docstring''' lowerCamelCase__ : int = [] for i in range(len(_lowerCamelCase ) ): try: lowerCamelCase__ : Any = tokenizer.decode([i], clean_up_tokenization_spaces=_lowerCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase__ : Tuple = list(filter(lambda lowerCamelCase_ : re.match(r'^[ a-zA-Z]+$', t[1] ), _lowerCamelCase ) ) lowerCamelCase__ : Union[str, Any] = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_lowerCamelCase ), _lowerCamelCase ) ) if max_length is not None and len(_lowerCamelCase ) > max_length: lowerCamelCase__ : str = toks[:max_length] if min_length is not None and len(_lowerCamelCase ) < min_length and len(_lowerCamelCase ) > 0: while len(_lowerCamelCase ) < min_length: lowerCamelCase__ : List[Any] = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : List[Any] = [t[0] for t in toks] # Ensure consistency lowerCamelCase__ : Optional[Any] = tokenizer.decode(_lowerCamelCase, clean_up_tokenization_spaces=_lowerCamelCase ) if " " not in output_txt and len(_lowerCamelCase ) > 1: lowerCamelCase__ : Optional[int] = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_lowerCamelCase ) + ' ' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_lowerCamelCase ) ) if with_prefix_space: lowerCamelCase__ : List[str] = ' ' + output_txt lowerCamelCase__ : str = tokenizer.encode(_lowerCamelCase, add_special_tokens=_lowerCamelCase ) return output_txt, output_ids def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.ta_base_tokenizer lowerCamelCase__ : Union[str, Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) lowerCamelCase__ : Optional[int] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'], batch_without_eos_added['input_ids'] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.ta_base_tokenizer lowerCamelCase__ : Dict = 'Unicode €.' lowerCamelCase__ : List[str] = tokenizer(_lowerCamelCase ) lowerCamelCase__ : List[str] = [8_8, 1_1_3, 1_0_8, 1_0_2, 1_1_4, 1_0_3, 1_0_4, 3_5, 2_2_9, 1_3_3, 1_7_5, 4_9, 1] self.assertEqual(encoded['input_ids'], _lowerCamelCase ) # decoding lowerCamelCase__ : List[Any] = tokenizer.decode(_lowerCamelCase ) self.assertEqual(_lowerCamelCase, 'Unicode €.</s>' ) lowerCamelCase__ : Optional[Any] = tokenizer('e è é ê ë' ) lowerCamelCase__ : Dict = [1_0_4, 3_5, 1_9_8, 1_7_1, 3_5, 1_9_8, 1_7_2, 3_5, 1_9_8, 1_7_3, 3_5, 1_9_8, 1_7_4, 1] self.assertEqual(encoded['input_ids'], _lowerCamelCase ) # decoding lowerCamelCase__ : List[Any] = tokenizer.decode(_lowerCamelCase ) self.assertEqual(_lowerCamelCase, 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ), 'e è é ê ë</s>' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.ta_base_tokenizer lowerCamelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCamelCase__ : str = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 1, 0] # fmt: on lowerCamelCase__ : Dict = tokenizer(_lowerCamelCase, padding=_lowerCamelCase, return_tensors=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase, _lowerCamelCase ) if FRAMEWORK != "jax": lowerCamelCase__ : Optional[Any] = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase__ : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowerCamelCase, _lowerCamelCase ) self.assertEqual((2, 3_7), batch.input_ids.shape ) self.assertEqual((2, 3_7), batch.attention_mask.shape ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.ta_base_tokenizer lowerCamelCase__ : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCamelCase__ : List[Any] = tokenizer(_lowerCamelCase, padding=_lowerCamelCase, return_tensors=_lowerCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids', _lowerCamelCase ) self.assertIn('attention_mask', _lowerCamelCase ) self.assertNotIn('decoder_input_ids', _lowerCamelCase ) self.assertNotIn('decoder_attention_mask', _lowerCamelCase ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.ta_base_tokenizer lowerCamelCase__ : List[Any] = [ 'Summary of the text.', 'Another summary.', ] lowerCamelCase__ : List[str] = tokenizer( text_target=_lowerCamelCase, max_length=3_2, padding='max_length', truncation=_lowerCamelCase, return_tensors=_lowerCamelCase ) self.assertEqual(3_2, targets['input_ids'].shape[1] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.ta_base_tokenizer lowerCamelCase__ : List[str] = ['A long paragraph for summarization. </s>'] lowerCamelCase__ : int = ['Summary of the text. </s>'] # fmt: off lowerCamelCase__ : Dict = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 3_5, 1] lowerCamelCase__ : Optional[int] = [8_6, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_2_4, 3_5, 1_1_4, 1_0_5, 3_5, 1_1_9, 1_0_7, 1_0_4, 3_5, 1_1_9, 1_0_4, 1_2_3, 1_1_9, 4_9, 3_5, 1] # fmt: on lowerCamelCase__ : Optional[int] = tokenizer(_lowerCamelCase, text_target=_lowerCamelCase ) self.assertEqual(_lowerCamelCase, batch['input_ids'][0] ) self.assertEqual(_lowerCamelCase, batch['labels'][0] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 4_2 ) # Now let's start the test lowerCamelCase__ : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : List[str] = ' He is very happy, UNwant\u00E9d,running' lowerCamelCase__ : Optional[int] = tokenizer.encode(_lowerCamelCase, add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer.__class__.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : int = after_tokenizer.encode(_lowerCamelCase, add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase, _lowerCamelCase ) shutil.rmtree(_lowerCamelCase ) lowerCamelCase__ : List[str] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Union[str, Any] = tempfile.mkdtemp() lowerCamelCase__ : Dict = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCamelCase__ : Dict = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCamelCase__ : Optional[int] = tokenizer.encode(_lowerCamelCase, add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = tokenizer.__class__.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : int = after_tokenizer.encode(_lowerCamelCase, add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase, _lowerCamelCase ) self.assertIn('new_additional_special_token', after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 4_2 ) lowerCamelCase__ : Optional[Any] = tokenizer.__class__.from_pretrained(_lowerCamelCase, model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length, 4_3 ) shutil.rmtree(_lowerCamelCase ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : Union[str, Any] = json.load(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : Optional[int] = json.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] lowerCamelCase__ : List[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCamelCase__ : Dict = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_lowerCamelCase, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(_lowerCamelCase, _lowerCamelCase ) with open(os.path.join(_lowerCamelCase, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(_lowerCamelCase, _lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ : int = tokenizer_class.from_pretrained( _lowerCamelCase, ) self.assertIn( 'an_additional_special_token', tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ : List[Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token', lstrip=_lowerCamelCase )] lowerCamelCase__ : Optional[int] = tokenizer_class.from_pretrained( _lowerCamelCase, additional_special_tokens=_lowerCamelCase, ) self.assertIn('a_new_additional_special_token', tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCamelCase ) lowerCamelCase__ : Any = tokenizer_class.from_pretrained(_lowerCamelCase ) self.assertTrue(tokenizer.decode([2_5_5] ) == '' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.get_tokenizers(fast=_lowerCamelCase, do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Optional[Any] = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] lowerCamelCase__ : Optional[int] = tokenizer.convert_tokens_to_string(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase, _lowerCamelCase ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : List[str] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : List[Any] = tokenizer.convert_ids_to_tokens( _lowerCamelCase, skip_special_tokens=_lowerCamelCase ) for attr in attributes_list: setattr(_lowerCamelCase, attr + '_id', _lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase, _lowerCamelCase ), _lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase, attr + '_id' ), _lowerCamelCase ) setattr(_lowerCamelCase, attr + '_id', _lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase, _lowerCamelCase ), _lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase, attr + '_id' ), _lowerCamelCase ) setattr(_lowerCamelCase, 'additional_special_tokens_ids', [] ) self.assertListEqual(getattr(_lowerCamelCase, 'additional_special_tokens' ), [] ) self.assertListEqual(getattr(_lowerCamelCase, 'additional_special_tokens_ids' ), [] ) setattr(_lowerCamelCase, 'additional_special_tokens_ids', [token_id_to_test_setters] ) self.assertListEqual(getattr(_lowerCamelCase, 'additional_special_tokens' ), [token_to_test_setters] ) self.assertListEqual(getattr(_lowerCamelCase, 'additional_special_tokens_ids' ), [token_id_to_test_setters] )
712
"""simple docstring""" A_ : List[str] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
696
0
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Dict = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class a_ ( _A ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'umt5' lowerCamelCase__ : Union[str, Any] = ['past_key_values'] def __init__(self, lowerCamelCase_=2_5_0_1_1_2, lowerCamelCase_=5_1_2, lowerCamelCase_=6_4, lowerCamelCase_=1_0_2_4, lowerCamelCase_=8, lowerCamelCase_=None, lowerCamelCase_=6, lowerCamelCase_=3_2, lowerCamelCase_=1_2_8, lowerCamelCase_=0.1, lowerCamelCase_=1e-6, lowerCamelCase_=1.0, lowerCamelCase_="gated-gelu", lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_="T5Tokenizer", lowerCamelCase_=True, lowerCamelCase_=0, lowerCamelCase_=1, lowerCamelCase_=0, **lowerCamelCase_, ): '''simple docstring''' super().__init__( is_encoder_decoder=lowerCamelCase_, tokenizer_class=lowerCamelCase_, tie_word_embeddings=lowerCamelCase_, pad_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, decoder_start_token_id=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : str = vocab_size lowerCamelCase__ : Any = d_model lowerCamelCase__ : Optional[Any] = d_kv lowerCamelCase__ : Dict = d_ff lowerCamelCase__ : Dict = num_layers lowerCamelCase__ : Dict = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCamelCase__ : Union[str, Any] = num_heads lowerCamelCase__ : Optional[Any] = relative_attention_num_buckets lowerCamelCase__ : Any = relative_attention_max_distance lowerCamelCase__ : List[Any] = dropout_rate lowerCamelCase__ : Optional[int] = layer_norm_epsilon lowerCamelCase__ : Optional[int] = initializer_factor lowerCamelCase__ : Dict = feed_forward_proj lowerCamelCase__ : List[str] = use_cache lowerCamelCase__ : Any = self.feed_forward_proj.split('-' ) lowerCamelCase__ : Any = act_info[-1] lowerCamelCase__ : Optional[int] = act_info[0] == "gated" if len(lowerCamelCase_ ) > 1 and act_info[0] != "gated" or len(lowerCamelCase_ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": lowerCamelCase__ : Any = "gelu_new" @property def a__ (self ): '''simple docstring''' return self.d_model @property def a__ (self ): '''simple docstring''' return self.num_heads @property def a__ (self ): '''simple docstring''' return self.num_layers class a_ ( _A ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: lowerCamelCase__ : Tuple = "past_encoder_sequence + sequence" lowerCamelCase__ : str = {0: "batch"} lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowerCamelCase__ : List[str] = {0: "batch", 1: "decoder_sequence"} lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_, direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a__ (self ): '''simple docstring''' return 1_3 @property def a__ (self ): '''simple docstring''' return 5e-4
713
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 A_ : Optional[int] = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ = 1_4 ): '''simple docstring''' if group not in primes: raise ValueError('Unsupported Group' ) lowerCamelCase__ : int = primes[group]['prime'] lowerCamelCase__ : Optional[int] = primes[group]['generator'] lowerCamelCase__ : Any = int(hexlify(urandom(3_2 ) ), base=1_6 ) def a__ (self ): '''simple docstring''' return hex(self.__private_key )[2:] def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = pow(self.generator, self.__private_key, self.prime ) return hex(lowerCamelCase_ )[2:] def a__ (self, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase_, (self.prime - 1) // 2, self.prime ) == 1 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = int(lowerCamelCase_, base=1_6 ) if not self.is_valid_public_key(lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Tuple = pow(lowerCamelCase_, self.__private_key, self.prime ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase_, (prime - 1) // 2, lowerCamelCase_ ) == 1 ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 1_4 ): '''simple docstring''' lowerCamelCase__ : Dict = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[Any] = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[str] = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase_, lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Dict = pow(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
696
0
"""simple docstring""" import random def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False ): lowerCamelCase__ : Dict = {i: [] for i in range(a__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(a__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(a__ ): for j in range(i + 1 , a__ ): if random.random() < probability: graph[i].append(a__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(a__ ) return graph def lowerCamelCase_ ( _lowerCamelCase ): return { i: [j for j in range(a__ ) if i != j] for i in range(a__ ) } if __name__ == "__main__": import doctest doctest.testmod()
714
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_lowerCamelCase ) * abs(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
696
0
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = split_dict._to_yaml_list() assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = SplitDict._from_yaml_list(UpperCamelCase__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCamelCase__ : int = None # the split name of split_dict takes over the name of the split info object lowerCamelCase__ : Optional[int] = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=UpperCamelCase__ ), SplitInfo(dataset_name='my_dataset' )] ) def lowerCamelCase_ ( _lowerCamelCase ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowerCamelCase__ : Optional[int] = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
715
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : int = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : Optional[int] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : str = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : Optional[int] = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Tuple = c.n_embd + 1 # int lowerCamelCase__ : Union[str, Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : List[Any] = not c.scale_attn_weights # bool lowerCamelCase__ : List[Any] = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = PretrainedConfig() lowerCamelCase__ : Optional[Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : Any = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : int = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = mock.Mock() lowerCamelCase__ : List[str] = 5_0_0 lowerCamelCase__ : Any = {} lowerCamelCase__ : int = HTTPError lowerCamelCase__ : Optional[Any] = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : str = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : str = ['config.42.0.0.json'] lowerCamelCase__ : Union[str, Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Optional[int] = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Dict = 'v3.0.0' lowerCamelCase__ : List[str] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
696
0
"""simple docstring""" import os from pathlib import Path def lowerCamelCase_ ( ): from torch.utils.cpp_extension import load lowerCamelCase__ : str = Path(_UpperCAmelCase ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr' lowerCamelCase__ : Tuple = [ root / filename for filename in [ 'vision.cpp', os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ), os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ), ] ] load( 'MultiScaleDeformableAttention' , _UpperCAmelCase , with_cuda=_UpperCAmelCase , extra_include_paths=[str(_UpperCAmelCase )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[ '-DCUDA_HAS_FP16=1', '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
716
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' super().__init__() lowerCamelCase__ : Dict = value_function lowerCamelCase__ : int = unet lowerCamelCase__ : Union[str, Any] = scheduler lowerCamelCase__ : int = env lowerCamelCase__ : List[Any] = env.get_dataset() lowerCamelCase__ : Dict = {} for key in self.data.keys(): try: lowerCamelCase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowerCamelCase__ : Optional[int] = {} for key in self.data.keys(): try: lowerCamelCase__ : Tuple = self.data[key].std() except: # noqa: E722 pass lowerCamelCase__ : Optional[Any] = env.observation_space.shape[0] lowerCamelCase__ : List[str] = env.action_space.shape[0] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def a__ (self, lowerCamelCase_ ): '''simple docstring''' if type(lowerCamelCase_ ) is dict: return {k: self.to_torch(lowerCamelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase_, device=self.unet.device ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for key, val in cond.items(): lowerCamelCase__ : Optional[Any] = val.clone() return x_in def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = x.shape[0] lowerCamelCase__ : Tuple = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCamelCase__ : Dict = torch.full((batch_size,), lowerCamelCase_, device=self.unet.device, dtype=torch.long ) for _ in range(lowerCamelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCamelCase__ : str = self.value_function(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample lowerCamelCase__ : Union[str, Any] = torch.autograd.grad([y.sum()], [x] )[0] lowerCamelCase__ : Optional[int] = self.scheduler._get_variance(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = torch.exp(0.5 * posterior_variance ) lowerCamelCase__ : Tuple = model_std * grad lowerCamelCase__ : str = 0 lowerCamelCase__ : Dict = x.detach() lowerCamelCase__ : Dict = x + scale * grad lowerCamelCase__ : Optional[int] = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : Tuple = self.unet(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample.permute(0, 2, 1 ) # TODO: verify deprecation of this kwarg lowerCamelCase__ : Optional[Any] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, predict_epsilon=lowerCamelCase_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowerCamelCase__ : Any = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) return x, y def __call__(self, lowerCamelCase_, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=0.1 ): '''simple docstring''' lowerCamelCase__ : Dict = self.normalize(lowerCamelCase_, 'observations' ) lowerCamelCase__ : List[str] = obs[None].repeat(lowerCamelCase_, axis=0 ) lowerCamelCase__ : str = {0: self.to_torch(lowerCamelCase_ )} lowerCamelCase__ : Optional[Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCamelCase__ : List[Any] = randn_tensor(lowerCamelCase_, device=self.unet.device ) lowerCamelCase__ : int = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) # run the diffusion process lowerCamelCase__ , lowerCamelCase__ : List[str] = self.run_diffusion(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # sort output trajectories by value lowerCamelCase__ : Union[str, Any] = y.argsort(0, descending=lowerCamelCase_ ).squeeze() lowerCamelCase__ : List[str] = x[sorted_idx] lowerCamelCase__ : Optional[Any] = sorted_values[:, :, : self.action_dim] lowerCamelCase__ : Union[str, Any] = actions.detach().cpu().numpy() lowerCamelCase__ : Union[str, Any] = self.de_normalize(lowerCamelCase_, key='actions' ) # select the action with the highest value if y is not None: lowerCamelCase__ : str = 0 else: # if we didn't run value guiding, select a random action lowerCamelCase__ : Optional[Any] = np.random.randint(0, lowerCamelCase_ ) lowerCamelCase__ : Tuple = denorm_actions[selected_index, 0] return denorm_actions
696
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Union[str, Any] = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys A_ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
717
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : List[str] = analyze_text(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. lowerCamelCase__ : List[Any] = sum(single_char_strings.values() ) # one length string lowerCamelCase__ : str = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCamelCase__ : Tuple = single_char_strings[ch] lowerCamelCase__ : Union[str, Any] = my_str / all_sum my_fir_sum += prob * math.loga(_lowerCamelCase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string lowerCamelCase__ : Dict = sum(two_char_strings.values() ) lowerCamelCase__ : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCamelCase__ : int = cha + cha if sequence in two_char_strings: lowerCamelCase__ : int = two_char_strings[sequence] lowerCamelCase__ : Tuple = int(_lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(_lowerCamelCase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = Counter() # type: ignore lowerCamelCase__ : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase_ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
696
0
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() A_ : Any = logging.get_logger(__name__) A_ : List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } A_ : int = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): for attribute in key.split('.' ): lowerCamelCase__ : Optional[int] = getattr(_lowercase , _lowercase ) if weight_type is not None: lowerCamelCase__ : Optional[Any] = getattr(_lowercase , _lowercase ).shape else: lowerCamelCase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCamelCase__ : Any = value elif weight_type == "weight_g": lowerCamelCase__ : List[Any] = value elif weight_type == "weight_v": lowerCamelCase__ : Optional[int] = value elif weight_type == "bias": lowerCamelCase__ : List[Any] = value else: lowerCamelCase__ : Union[str, Any] = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : Optional[int] = fairseq_model.state_dict() lowerCamelCase__ : Optional[int] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowerCamelCase__ : Tuple = None for name, value in fairseq_dict.items(): lowerCamelCase__ : int = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == 'group' , ) lowerCamelCase__ : Optional[Any] = True elif name.split('.' )[0] == "proj": lowerCamelCase__ : str = fairseq_model.proj lowerCamelCase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowerCamelCase__ : Optional[Any] = True if "*" in mapped_key: lowerCamelCase__ : List[Any] = name.split(_lowercase )[0].split('.' )[-2] lowerCamelCase__ : Optional[int] = mapped_key.replace('*' , _lowercase ) if "weight_g" in name: lowerCamelCase__ : int = 'weight_g' elif "weight_v" in name: lowerCamelCase__ : Dict = 'weight_v' elif "bias" in name: lowerCamelCase__ : Dict = 'bias' elif "weight" in name: lowerCamelCase__ : str = 'weight' else: lowerCamelCase__ : List[Any] = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) return proj_weight def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = full_name.split('conv_layers.' )[-1] lowerCamelCase__ : Tuple = name.split('.' ) lowerCamelCase__ : Optional[int] = int(items[0] ) lowerCamelCase__ : Any = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowerCamelCase__ : List[str] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowerCamelCase__ : Optional[Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowerCamelCase__ : Dict = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowerCamelCase__ : Union[str, Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowercase ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : List[Any] = emb.weight.shape lowerCamelCase__ : Any = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) lowerCamelCase__ : Union[str, Any] = emb.weight.data return lin_layer def lowerCamelCase_ ( _lowerCamelCase ): with open(_lowercase , 'r' , encoding='utf-8' ) as f: lowerCamelCase__ : Optional[int] = f.readlines() lowerCamelCase__ : str = [line.split(' ' )[0] for line in lines] lowerCamelCase__ : Tuple = len(_lowercase ) lowerCamelCase__ : Dict = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(_lowercase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowerCamelCase__ : Optional[int] = WavaVecaConfig.from_pretrained(_lowercase ) lowerCamelCase__ : str = SpeechaTextaConfig.from_pretrained( _lowercase , vocab_size=_lowercase , decoder_layers=_lowercase , do_stable_layer_norm=_lowercase ) lowerCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowerCamelCase__ : Any = model[0].eval() # set weights for wav2vec2 encoder lowerCamelCase__ : Optional[int] = WavaVecaModel(_lowercase ) lowerCamelCase__ : Optional[int] = recursively_load_weights_wavaveca(model.encoder , _lowercase ) lowerCamelCase__ : int = SpeechaTextaForCausalLM(_lowercase ) lowerCamelCase__ , lowerCamelCase__ : str = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowercase ) # set output linear layer unexpected_keys.remove('embed_out' ) lowerCamelCase__ : Tuple = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowerCamelCase__ : Any = SpeechEncoderDecoderModel(encoder=_lowercase , decoder=_lowercase ) lowerCamelCase__ : str = False # add projection layer lowerCamelCase__ : str = nn.Parameter(projection_layer.weight ) lowerCamelCase__ : Dict = nn.Parameter(projection_layer.bias ) lowerCamelCase__ : Optional[Any] = create_vocab_dict(_lowercase ) with open(os.path.join(_lowercase , 'vocab.json' ) , 'w' ) as fp: json.dump(_lowercase , _lowercase ) lowerCamelCase__ : Dict = SpeechaTextaTokenizer(os.path.join(_lowercase , 'vocab.json' ) ) tokenizer.save_pretrained(_lowercase ) lowerCamelCase__ : List[str] = hf_wavavec.config.to_dict() lowerCamelCase__ : int = tokenizer.pad_token_id lowerCamelCase__ : int = tokenizer.bos_token_id lowerCamelCase__ : Dict = tokenizer.eos_token_id lowerCamelCase__ : int = 'speech_to_text_2' lowerCamelCase__ : List[Any] = 'wav2vec2' lowerCamelCase__ : Dict = SpeechEncoderDecoderConfig.from_dict(_lowercase ) hf_wavavec.save_pretrained(_lowercase ) feature_extractor.save_pretrained(_lowercase ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_02_24, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") A_ : Optional[int] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
718
"""simple docstring""" import os def lowerCamelCase_ ( ): with open(os.path.dirname(_lowerCamelCase ) + '/p022_names.txt' ) as file: lowerCamelCase__ : Union[str, Any] = str(file.readlines()[0] ) lowerCamelCase__ : int = names.replace('"' , '' ).split(',' ) names.sort() lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : str = 0 for i, name in enumerate(_lowerCamelCase ): for letter in name: name_score += ord(_lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowerCamelCase__ : Dict = 0 return total_score if __name__ == "__main__": print(solution())
696
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class a_ : '''simple docstring''' lowerCamelCase__ : Any = 42 lowerCamelCase__ : Any = 42 class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : list[list[Edge]] = [[] for _ in range(_lowercase )] lowerCamelCase__ : Dict = size def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' return iter(self._graph[vertex] ) @property def a__ (self ): '''simple docstring''' return self._size def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(_lowercase, _lowercase ) ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = deque([start_vertex] ) lowerCamelCase__ : list[int | None] = [None] * self.size lowerCamelCase__ : Tuple = 0 while queue: lowerCamelCase__ : Union[str, Any] = queue.popleft() lowerCamelCase__ : Any = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCamelCase__ : Union[str, Any] = current_distance + edge.weight lowerCamelCase__ : Dict = distances[edge.destination_vertex] if ( isinstance(_lowercase, _lowercase ) and new_distance >= dest_vertex_distance ): continue lowerCamelCase__ : Optional[Any] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
719
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = 'Speech2TextFeatureExtractor' lowerCamelCase__ : Dict = 'Speech2TextTokenizer' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.feature_extractor lowerCamelCase__ : List[Any] = False def __call__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_, **lowerCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ : Optional[int] = kwargs.pop('raw_speech' ) else: lowerCamelCase__ : int = kwargs.pop('audio', lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = kwargs.pop('sampling_rate', lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('text', lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowerCamelCase__ : List[str] = args[0] lowerCamelCase__ : Any = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ : Union[str, Any] = self.feature_extractor(lowerCamelCase_, *lowerCamelCase_, sampling_rate=lowerCamelCase_, **lowerCamelCase_ ) if text is not None: lowerCamelCase__ : List[Any] = self.tokenizer(lowerCamelCase_, **lowerCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Tuple = encodings['input_ids'] return inputs def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @contextmanager def a__ (self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ : int = True lowerCamelCase__ : List[Any] = self.tokenizer yield lowerCamelCase__ : Optional[int] = self.feature_extractor lowerCamelCase__ : List[Any] = False
696
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase = 1000 ): lowerCamelCase__ : Dict = -1 lowerCamelCase__ : str = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c lowerCamelCase__ : Optional[int] = (n * n - 2 * a * n) // (2 * n - 2 * a) lowerCamelCase__ : List[str] = n - a - b if c * c == (a * a + b * b): lowerCamelCase__ : Tuple = a * b * c if candidate >= product: lowerCamelCase__ : Dict = candidate return product if __name__ == "__main__": print(f"{solution() = }")
720
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : Optional[Any] = use_input_mask lowerCamelCase__ : List[Any] = use_token_type_ids lowerCamelCase__ : List[Any] = use_labels lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : Optional[int] = embedding_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Optional[Any] = num_labels lowerCamelCase__ : Dict = num_choices lowerCamelCase__ : Tuple = scope def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : List[str] = None if self.use_input_mask: lowerCamelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_token_type_ids: lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Any = None lowerCamelCase__ : Union[str, Any] = None if self.use_labels: lowerCamelCase__ : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, embedding_size=self.embedding_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, next_sentence_label=lowerCamelCase_, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, start_positions=lowerCamelCase_, end_positions=lowerCamelCase_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : int = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.num_choices lowerCamelCase__ : Dict = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : int = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : List[str] = config_and_inputs lowerCamelCase__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : int = True def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase_ ) return inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = MobileBertModelTester(self ) lowerCamelCase__ : List[str] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): return torch.tensor( _lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , ) A_ : Tuple = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(lowerCamelCase_ ) lowerCamelCase__ : Tuple = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ )[0] lowerCamelCase__ : Optional[int] = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [ [ [-2.4_736_526e07, 8.2_691_656e04, 1.6_521_838e05], [-5.7_541_704e-01, 3.9_056_022e00, 4.4_011_507e00], [2.6_047_359e00, 1.5_677_652e00, -1.7_324_188e-01], ] ], device=lowerCamelCase_, ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCamelCase__ : Optional[int] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCamelCase__ : Any = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
696
0
"""simple docstring""" import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class a_ : '''simple docstring''' @property def a__ (self ): '''simple docstring''' return self.get_dummy_input() @property def a__ (self ): '''simple docstring''' if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def a__ (self, lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_=False, lowerCamelCase_=False, ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 4 lowerCamelCase__ : Tuple = 3_2 lowerCamelCase__ : int = (3_2, 3_2) lowerCamelCase__ : Tuple = torch.manual_seed(0 ) lowerCamelCase__ : Tuple = torch.device(_a ) lowerCamelCase__ : int = (batch_size, num_channels) + sizes lowerCamelCase__ : Optional[int] = randn_tensor(_a, generator=_a, device=_a ) lowerCamelCase__ : Dict = {'hidden_states': hidden_states} if include_temb: lowerCamelCase__ : Tuple = 1_2_8 lowerCamelCase__ : List[Any] = randn_tensor((batch_size, temb_channels), generator=_a, device=_a ) if include_res_hidden_states_tuple: lowerCamelCase__ : Optional[int] = torch.manual_seed(1 ) lowerCamelCase__ : Union[str, Any] = (randn_tensor(_a, generator=_a, device=_a ),) if include_encoder_hidden_states: lowerCamelCase__ : List[str] = floats_tensor((batch_size, 3_2, 3_2) ).to(_a ) if include_skip_sample: lowerCamelCase__ : List[Any] = randn_tensor(((batch_size, 3) + sizes), generator=_a, device=_a ) return dummy_input def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = { 'in_channels': 3_2, 'out_channels': 3_2, 'temb_channels': 1_2_8, } if self.block_type == "up": lowerCamelCase__ : int = 3_2 if self.block_type == "mid": init_dict.pop('out_channels' ) lowerCamelCase__ : Optional[int] = self.dummy_input return init_dict, inputs_dict def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.prepare_init_args_and_inputs_for_common() lowerCamelCase__ : Dict = self.block_class(**_a ) unet_block.to(_a ) unet_block.eval() with torch.no_grad(): lowerCamelCase__ : Optional[Any] = unet_block(**_a ) if isinstance(_a, _a ): lowerCamelCase__ : Dict = output[0] self.assertEqual(output.shape, self.output_shape ) lowerCamelCase__ : List[str] = output[0, -1, -3:, -3:] lowerCamelCase__ : str = torch.tensor(_a ).to(_a ) assert torch_all_close(output_slice.flatten(), _a, atol=5e-3 ) @unittest.skipIf(torch_device == 'mps', 'Training is not supported in mps' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = self.prepare_init_args_and_inputs_for_common() lowerCamelCase__ : Optional[int] = self.block_class(**_a ) model.to(_a ) model.train() lowerCamelCase__ : Any = model(**_a ) if isinstance(_a, _a ): lowerCamelCase__ : str = output[0] lowerCamelCase__ : Optional[int] = torch.device(_a ) lowerCamelCase__ : Optional[Any] = randn_tensor(output.shape, device=_a ) lowerCamelCase__ : Tuple = torch.nn.functional.mse_loss(_a, _a ) loss.backward()
721
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A_ : str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=1 ): '''simple docstring''' lowerCamelCase__ : Any = tokenizer lowerCamelCase__ : Optional[Any] = dataset lowerCamelCase__ : int = len(lowerCamelCase_ ) if n_tasks is None else n_tasks lowerCamelCase__ : Any = n_copies def __iter__(self ): '''simple docstring''' lowerCamelCase__ : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ : Optional[int] = self.tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = start_length lowerCamelCase__ : List[str] = eof_strings lowerCamelCase__ : List[str] = tokenizer def __call__(self, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ : Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ): lowerCamelCase__ : List[str] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): lowerCamelCase__ : str = batch['ids'].shape[-1] lowerCamelCase__ : int = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times lowerCamelCase__ : Optional[Any] = batch['task_id'].repeat(_lowerCamelCase ) lowerCamelCase__ : List[Any] = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ : List[Any] = generated_tokens.cpu().numpy() lowerCamelCase__ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) lowerCamelCase__ : str = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ : Optional[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase_ ( ): # Setup configuration lowerCamelCase__ : int = HfArgumentParser(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ : Tuple = 'false' if args.num_workers is None: lowerCamelCase__ : List[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ : List[Any] = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ : Optional[int] = tokenizer.eos_token lowerCamelCase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ : Optional[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric lowerCamelCase__ : Any = load_dataset('openai_humaneval' ) lowerCamelCase__ : Optional[int] = load_metric('code_eval' ) lowerCamelCase__ : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ : Optional[int] = args.n_samples // args.batch_size lowerCamelCase__ : Tuple = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ : Union[str, Any] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ : List[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ : str = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: lowerCamelCase__ : List[str] = [] for task in tqdm(range(_lowerCamelCase ) ): lowerCamelCase__ : int = human_eval['test'][task]['test'] lowerCamelCase__ : Union[str, Any] = f'''check({human_eval['test'][task]['entry_point']})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ : Any = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
696
0
"""simple docstring""" from __future__ import annotations from typing import Any class a_ ( snake_case_ ): '''simple docstring''' pass class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = data lowerCamelCase__ : Optional[int] = None def __iter__(self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self lowerCamelCase__ : Tuple = [] while node: if node in visited: raise ContainsLoopError visited.append(UpperCamelCase__ ) yield node.data lowerCamelCase__ : Optional[Any] = node.next_node @property def a__ (self ): '''simple docstring''' try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": A_ : List[Any] = Node(1) A_ : str = Node(2) A_ : Optional[Any] = Node(3) A_ : List[Any] = Node(4) print(root_node.has_loop) # False A_ : Tuple = root_node.next_node print(root_node.has_loop) # True A_ : List[Any] = Node(5) A_ : Dict = Node(6) A_ : List[str] = Node(5) A_ : Any = Node(6) print(root_node.has_loop) # False A_ : Dict = Node(1) print(root_node.has_loop) # False
700
"""simple docstring""" from ..utils import DummyObject, requires_backends class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] ) class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] )
696
0
"""simple docstring""" from __future__ import annotations from typing import Any def lowerCamelCase_ ( _lowerCamelCase ): create_state_space_tree(_lowerCamelCase , [] , 0 ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": A_ : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
701
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = 0 while number > 0: lowerCamelCase__ : List[str] = number % 10 sum_of_digits += last_digit lowerCamelCase__ : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase_ ( _lowerCamelCase = 100 ): lowerCamelCase__ : Union[str, Any] = factorial(_lowerCamelCase ) lowerCamelCase__ : List[Any] = split_and_add(_lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
696
0
"""simple docstring""" import math import sys def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = "" try: with open(SCREAMING_SNAKE_CASE_ , 'rb' ) as binary_file: lowerCamelCase__ : List[Any] = binary_file.read() for dat in data: lowerCamelCase__ : List[str] = f'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = {"0": "0", "1": "1"} lowerCamelCase__ : List[str] = "", "" lowerCamelCase__ : Dict = len(SCREAMING_SNAKE_CASE_ ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowerCamelCase__ : Optional[int] = lexicon[curr_string] result += last_match_id lowerCamelCase__ : int = last_match_id + "0" if math.loga(SCREAMING_SNAKE_CASE_ ).is_integer(): lowerCamelCase__ : List[str] = {} for curr_key in list(SCREAMING_SNAKE_CASE_ ): lowerCamelCase__ : str = lexicon.pop(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : int = new_lex lowerCamelCase__ : Optional[Any] = last_match_id + "1" index += 1 lowerCamelCase__ : List[Any] = "" return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = 8 try: with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as opened_file: lowerCamelCase__ : List[Any] = [ to_write[i : i + byte_length] for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(SCREAMING_SNAKE_CASE_ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 0 for letter in data_bits: if letter == "1": break counter += 1 lowerCamelCase__ : Dict = data_bits[counter:] lowerCamelCase__ : str = data_bits[counter + 1 :] return data_bits def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Dict = read_file_binary(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : List[Any] = remove_prefix(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : List[Any] = decompress_data(SCREAMING_SNAKE_CASE_ ) write_file_binary(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
702
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ : Dict = "pt" elif is_tf_available(): A_ : Union[str, Any] = "tf" else: A_ : List[str] = "jax" class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = PerceiverTokenizer lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ (self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=2_0, lowerCamelCase_=5 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [] for i in range(len(lowerCamelCase_ ) ): try: lowerCamelCase__ : Any = tokenizer.decode([i], clean_up_tokenization_spaces=lowerCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase__ : Any = list(filter(lambda lowerCamelCase_ : re.match(r'^[ a-zA-Z]+$', t[1] ), lowerCamelCase_ ) ) lowerCamelCase__ : Union[str, Any] = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=lowerCamelCase_ ), lowerCamelCase_ ) ) if max_length is not None and len(lowerCamelCase_ ) > max_length: lowerCamelCase__ : int = toks[:max_length] if min_length is not None and len(lowerCamelCase_ ) < min_length and len(lowerCamelCase_ ) > 0: while len(lowerCamelCase_ ) < min_length: lowerCamelCase__ : Dict = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : int = [t[0] for t in toks] # Ensure consistency lowerCamelCase__ : Optional[int] = tokenizer.decode(lowerCamelCase_, clean_up_tokenization_spaces=lowerCamelCase_ ) if " " not in output_txt and len(lowerCamelCase_ ) > 1: lowerCamelCase__ : List[Any] = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=lowerCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=lowerCamelCase_ ) ) if with_prefix_space: lowerCamelCase__ : Optional[Any] = ' ' + output_txt lowerCamelCase__ : List[Any] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) return output_txt, output_ids def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = 'Unicode €.' lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_ ) lowerCamelCase__ : Dict = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : int = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]Unicode €.[SEP]' ) lowerCamelCase__ : List[str] = tokenizer('e è é ê ë' ) lowerCamelCase__ : Dict = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : Any = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ), '[CLS]e è é ê ë[SEP]' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCamelCase__ : List[Any] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) if FRAMEWORK != "jax": lowerCamelCase__ : List[str] = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase__ : int = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertEqual((2, 3_8), batch.input_ids.shape ) self.assertEqual((2, 3_8), batch.attention_mask.shape ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.perceiver_tokenizer lowerCamelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCamelCase__ : List[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids', lowerCamelCase_ ) self.assertIn('attention_mask', lowerCamelCase_ ) self.assertNotIn('decoder_input_ids', lowerCamelCase_ ) self.assertNotIn('decoder_attention_mask', lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : int = [ 'Summary of the text.', 'Another summary.', ] lowerCamelCase__ : str = tokenizer( text_target=lowerCamelCase_, max_length=3_2, padding='max_length', truncation=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertEqual(3_2, targets['input_ids'].shape[1] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 4_2 ) # Now let's start the test lowerCamelCase__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : str = ' He is very happy, UNwant\u00E9d,running' lowerCamelCase__ : str = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : str = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) shutil.rmtree(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCamelCase__ : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCamelCase__ : List[str] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : int = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertIn('new_additional_special_token', after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 4_2 ) lowerCamelCase__ : List[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_, model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length, 4_3 ) shutil.rmtree(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : Optional[Any] = json.load(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : List[str] = json.load(lowerCamelCase_ ) lowerCamelCase__ : Any = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] lowerCamelCase__ : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCamelCase__ : List[str] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ : Dict = tokenizer_class.from_pretrained( lowerCamelCase_, ) self.assertIn( 'an_additional_special_token', tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token', lstrip=lowerCamelCase_ )] lowerCamelCase__ : Any = tokenizer_class.from_pretrained( lowerCamelCase_, additional_special_tokens=lowerCamelCase_, ) self.assertIn('a_new_additional_special_token', tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ), '�' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_tokenizers(fast=lowerCamelCase_, do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Tuple = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] lowerCamelCase__ : List[str] = tokenizer.convert_tokens_to_string(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[str] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 42 lowerCamelCase__ : Any = 42 class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : List[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[str] = capacity_factor lowerCamelCase__ : str = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self._buckets[ind] if not stored: lowerCamelCase__ : Union[str, Any] = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Any = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Optional[int] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : List[str] = [None] * new_size lowerCamelCase__ : Optional[Any] = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : int = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : int = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : Any = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
703
"""simple docstring""" from math import pi, sqrt, tan def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCamelCase__ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_lowerCamelCase , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCamelCase__ : Dict = (sidea + sidea + sidea) / 2 lowerCamelCase__ : str = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
696
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) lowerCamelCase__ : List[Any] = get_activation('gelu' ) self.assertTrue(torch.allclose(gelu_python(lowerCamelCase_ ), torch_builtin(lowerCamelCase_ ) ) ) self.assertFalse(torch.allclose(gelu_python(lowerCamelCase_ ), gelu_new(lowerCamelCase_ ) ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) lowerCamelCase__ : str = get_activation('gelu' ) lowerCamelCase__ : int = get_activation('gelu_10' ) lowerCamelCase__ : Optional[int] = torch_builtin(lowerCamelCase_ ) lowerCamelCase__ : Tuple = geluaa(lowerCamelCase_ ) lowerCamelCase__ : Dict = torch.where(y_gelu_aa < 10.0, 1, 0 ) self.assertTrue(torch.max(lowerCamelCase_ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask, y_gelu_aa * clipped_mask ) ) def a__ (self ): '''simple docstring''' get_activation('gelu' ) get_activation('gelu_10' ) get_activation('gelu_fast' ) get_activation('gelu_new' ) get_activation('gelu_python' ) get_activation('gelu_pytorch_tanh' ) get_activation('linear' ) get_activation('mish' ) get_activation('quick_gelu' ) get_activation('relu' ) get_activation('sigmoid' ) get_activation('silu' ) get_activation('swish' ) get_activation('tanh' ) with self.assertRaises(lowerCamelCase_ ): get_activation('bogus' ) with self.assertRaises(lowerCamelCase_ ): get_activation(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = get_activation('gelu' ) lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Optional[Any] = get_activation('gelu' ) self.assertEqual(acta.a, 1 ) with self.assertRaises(lowerCamelCase_ ): lowerCamelCase__ : str = acta.a
704
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : str = use_input_mask lowerCamelCase__ : Optional[Any] = use_token_type_ids lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : Union[str, Any] = type_sequence_label_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : Union[str, Any] = num_choices lowerCamelCase__ : List[str] = scope lowerCamelCase__ : Dict = vocab_size - 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = self.get_config() return config, input_ids, input_mask, token_labels def a__ (self ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[Any] = True return config, input_ids, input_mask, token_labels def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = GPTNeoXModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = True lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : Optional[Any] = GPTNeoXForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = self.num_labels lowerCamelCase__ : Optional[int] = GPTNeoXForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[Any] = GPTNeoXForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Tuple = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : List[str] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : str = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : List[Any] = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and lowerCamelCase__ : Tuple = torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : Tuple = torch.cat([input_mask, next_mask], dim=-1 ) lowerCamelCase__ : List[str] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, output_hidden_states=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = output_from_no_past['hidden_states'][0] lowerCamelCase__ : Optional[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_, output_hidden_states=lowerCamelCase_, )['hidden_states'][0] # select random slice lowerCamelCase__ : Dict = ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-3 ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = config_and_inputs lowerCamelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : int = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase__ : Dict = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = GPTNeoXModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=6_4, num_attention_heads=8 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def a__ (self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = ids_tensor([1, 1_0], config.vocab_size ) lowerCamelCase__ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Any = GPTNeoXModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() lowerCamelCase__ : List[Any] = original_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Optional[int] = {'type': scaling_type, 'factor': 10.0} lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() lowerCamelCase__ : Tuple = scaled_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: lowerCamelCase__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer('My favorite food is', return_tensors='pt' ).to(lowerCamelCase_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCamelCase__ : Dict = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' lowerCamelCase__ : Dict = model.generate(**lowerCamelCase_, do_sample=lowerCamelCase_, max_new_tokens=2_0 ) lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ )[0] self.assertEqual(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Optional[int] = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
705
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : Dict = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. A_ : List[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A_ : Union[str, Any] = spec.loader.load_module() A_ : int = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A_ : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") A_ : str = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCamelCase__ : Dict = False # source code of `config_class` lowerCamelCase__ : str = inspect.getsource(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = _re_checkpoint.findall(_lowerCamelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCamelCase__ , lowerCamelCase__ : Optional[int] = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase__ : Any = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: lowerCamelCase__ : Any = True break lowerCamelCase__ : Dict = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ : Optional[Any] = '\n'.join(sorted(_lowerCamelCase ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
696
0
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets A_ : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' A_ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' A_ : Optional[int] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def a__ (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ), reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ], ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(snake_case__, snake_case__, sample_weight=snake_case__ ) ), }
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
0
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' try: lowerCamelCase__ : Any = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowerCamelCase__ : int = default else: # KEY is set, convert it to True or False. try: lowerCamelCase__ : str = strtobool(lowerCAmelCase_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value A_ : str = parse_flag_from_env("RUN_SLOW", default=False) A_ : List[str] = parse_flag_from_env("RUN_REMOTE", default=False) A_ : List[str] = parse_flag_from_env("RUN_LOCAL", default=True) A_ : Optional[Any] = parse_flag_from_env("RUN_PACKAGED", default=True) # Compression A_ : Tuple = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4") A_ : List[Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr") A_ : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard") # Audio A_ : Optional[Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"), reason="test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ", ) # Beam A_ : List[Any] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"), reason="test requires apache-beam and a compatible dill version", ) # Dill-cloudpickle compatibility A_ : Any = pytest.mark.skipif( config.DILL_VERSION <= version.parse("0.3.2"), reason="test requires dill>0.3.2 for cloudpickle compatibility", ) # Windows A_ : Any = pytest.mark.skipif( sys.platform == "win32", reason="test should not be run on Windows", ) def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' try: import faiss # noqa except ImportError: lowerCamelCase__ : List[Any] = unittest.skip('test requires faiss' )(lowerCAmelCase_ ) return test_case def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' try: import regex # noqa except ImportError: lowerCamelCase__ : List[Any] = unittest.skip('test requires regex' )(lowerCAmelCase_ ) return test_case def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' try: import elasticsearch # noqa except ImportError: lowerCamelCase__ : List[str] = unittest.skip('test requires elasticsearch' )(lowerCAmelCase_ ) return test_case def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' try: import sqlalchemy # noqa except ImportError: lowerCamelCase__ : List[Any] = unittest.skip('test requires sqlalchemy' )(lowerCAmelCase_ ) return test_case def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' if not config.TORCH_AVAILABLE: lowerCamelCase__ : int = unittest.skip('test requires PyTorch' )(lowerCAmelCase_ ) return test_case def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' if not config.TF_AVAILABLE: lowerCamelCase__ : Optional[int] = unittest.skip('test requires TensorFlow' )(lowerCAmelCase_ ) return test_case def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' if not config.JAX_AVAILABLE: lowerCamelCase__ : Union[str, Any] = unittest.skip('test requires JAX' )(lowerCAmelCase_ ) return test_case def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' if not config.PIL_AVAILABLE: lowerCamelCase__ : List[Any] = unittest.skip('test requires Pillow' )(lowerCAmelCase_ ) return test_case def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(lowerCAmelCase_ ) else: return test_case def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(lowerCAmelCase_ ) else: return test_case def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(lowerCAmelCase_ ) else: return test_case def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' def _require_spacy_model(_lowerCamelCase ): try: import spacy # noqa F401 spacy.load(lowerCAmelCase_ ) except ImportError: return unittest.skip('test requires spacy' )(lowerCAmelCase_ ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(lowerCAmelCase_ ) )(lowerCAmelCase_ ) else: return test_case return _require_spacy_model def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(lowerCAmelCase_ ) else: return test_case def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(lowerCAmelCase_ ) else: return test_case def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: lowerCamelCase__ : Union[str, Any] = unittest.skip('test is slow' )(lowerCAmelCase_ ) return test_case def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: lowerCamelCase__ : int = unittest.skip('test is local' )(lowerCAmelCase_ ) return test_case def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: lowerCamelCase__ : Tuple = unittest.skip('test is packaged' )(lowerCAmelCase_ ) return test_case def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: lowerCamelCase__ : List[str] = unittest.skip('test requires remote' )(lowerCAmelCase_ ) return test_case def lowerCamelCase_ ( *_lowerCamelCase ): '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(lowerCAmelCase_ ) and name.startswith('test' ): for decorator in decorators: lowerCamelCase__ : Dict = decorator(lowerCAmelCase_ ) setattr(cls , lowerCAmelCase_ , lowerCAmelCase_ ) return cls return decorate class a_ ( __lowerCamelCase ): '''simple docstring''' pass class a_ ( __lowerCamelCase ): '''simple docstring''' lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : List[Any] = 2 @contextmanager def lowerCamelCase_ ( _lowerCamelCase=OfflineSimulationMode.CONNECTION_FAILS , _lowerCamelCase=1e-16 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = requests.Session().request def timeout_request(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ): # Change the url to an invalid url so that the connection hangs lowerCamelCase__ : Optional[Any] = "https://10.255.255.1" if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) lowerCamelCase__ : Dict = timeout try: return online_request(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier lowerCamelCase__ : str = url lowerCamelCase__ : Dict = e.args[0] lowerCamelCase__ : Dict = (max_retry_error.args[0].replace('10.255.255.1' , f'''OfflineMock[{url}]''' ),) lowerCamelCase__ : Tuple = (max_retry_error,) raise def raise_connection_error(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ): raise requests.ConnectionError('Offline mode is enabled.' , request=lowerCAmelCase_ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , lowerCAmelCase_ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , lowerCAmelCase_ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , lowerCAmelCase_ ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def lowerCamelCase_ ( *_lowerCamelCase , **_lowerCamelCase ): '''simple docstring''' lowerCamelCase__ : List[Any] = str(Path().resolve() ) with tempfile.TemporaryDirectory(*lowerCAmelCase_ , **lowerCAmelCase_ ) as tmp_dir: try: os.chdir(lowerCAmelCase_ ) yield finally: os.chdir(lowerCAmelCase_ ) @contextmanager def lowerCamelCase_ ( ): '''simple docstring''' import gc gc.collect() lowerCamelCase__ : Optional[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def lowerCamelCase_ ( ): '''simple docstring''' import gc gc.collect() lowerCamelCase__ : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return deepcopy(lowerCAmelCase_ ).integers(0 , 100 , 10 ).tolist() == deepcopy(lowerCAmelCase_ ).integers(0 , 100 , 10 ).tolist() def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ): try: return func(*lowerCAmelCase_ , **lowerCAmelCase_ ) except HTTPError as err: if str(lowerCAmelCase_ ).startswith('500' ) or str(lowerCAmelCase_ ).startswith('502' ): pytest.xfail(str(lowerCAmelCase_ ) ) raise err return decorator.decorator(_wrapper , lowerCAmelCase_ ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = returncode lowerCamelCase__ : Dict = stdout lowerCamelCase__ : int = stderr async def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' while True: lowerCamelCase__ : List[Any] = await stream.readline() if line: callback(lowerCAmelCase_ ) else: break async def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=False , _lowerCamelCase=False ): '''simple docstring''' if echo: print('\nRunning: ' , ' '.join(lowerCAmelCase_ ) ) lowerCamelCase__ : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCAmelCase_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCAmelCase_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowerCamelCase__ : str = [] lowerCamelCase__ : Tuple = [] def tee(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="" ): lowerCamelCase__ : Union[str, Any] = line.decode('utf-8' ).rstrip() sink.append(lowerCAmelCase_ ) if not quiet: print(lowerCAmelCase_ , lowerCAmelCase_ , file=lowerCAmelCase_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _lowerCamelCase : tee(lowerCAmelCase_ , lowerCAmelCase_ , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda _lowerCamelCase : tee(lowerCAmelCase_ , lowerCAmelCase_ , sys.stderr , label='stderr:' ) ), ] , timeout=lowerCAmelCase_ , ) return _RunOutput(await p.wait() , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=180 , _lowerCamelCase=False , _lowerCamelCase=True ): '''simple docstring''' lowerCamelCase__ : List[Any] = asyncio.get_event_loop() lowerCamelCase__ : List[str] = loop.run_until_complete( _stream_subprocess(lowerCAmelCase_ , env=lowerCAmelCase_ , stdin=lowerCAmelCase_ , timeout=lowerCAmelCase_ , quiet=lowerCAmelCase_ , echo=lowerCAmelCase_ ) ) lowerCamelCase__ : int = " ".join(lowerCAmelCase_ ) if result.returncode > 0: lowerCamelCase__ : Any = "\n".join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'''\'{cmd_str}\' produced no output.''' ) return result def lowerCamelCase_ ( ): '''simple docstring''' lowerCamelCase__ : int = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) lowerCamelCase__ : Dict = re.sub(r'^gw' , '' , lowerCAmelCase_ , 0 , re.M ) return int(lowerCAmelCase_ ) def lowerCamelCase_ ( ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = 2_9500 lowerCamelCase__ : Optional[Any] = pytest_xdist_worker_id() return port + uniq_delta
707
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A_ : Optional[int] = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A_ : List[str] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) A_ : Tuple = BeautifulSoup(res.text, "html.parser") A_ : Dict = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f"https://google.com{link.get('href')}")
696
0
"""simple docstring""" import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput A_ : Dict = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, *lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' super().__init__(*lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : Any = eval_examples lowerCamelCase__ : Optional[int] = post_process_function lowerCamelCase__ : Dict = quant_trainer_args lowerCamelCase__ : List[str] = 1_2_8 # default number of calibration samples def a__ (self, lowerCamelCase_=None ): '''simple docstring''' if calib_dataset is None and self.calib_dataset is None: raise ValueError('Trainer: calibration requires an calib_dataset.' ) lowerCamelCase__ : Optional[int] = calib_dataset if calib_dataset is not None else self.calib_dataset lowerCamelCase__ : List[str] = self._remove_unused_columns(lowerCamelCase_, description='Calibration' ) return DataLoader( lowerCamelCase_, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, shuffle=lowerCamelCase_, ) def a__ (self, lowerCamelCase_=None ): '''simple docstring''' lowerCamelCase__ : Dict = self.train_dataset if calib_dataset is None else calib_dataset lowerCamelCase__ : Dict = self.get_calib_dataloader(lowerCamelCase_ ) lowerCamelCase__ : Any = self.model quant_trainer.configure_model(lowerCamelCase_, self.quant_trainer_args, calib=lowerCamelCase_ ) model.eval() quant_trainer.enable_calibration(lowerCamelCase_ ) logger.info('***** Running calibration *****' ) logger.info(f''' Num examples = {self.calib_num}''' ) logger.info(f''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(lowerCamelCase_ ): # Prediction step lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.prediction_step(lowerCamelCase_, lowerCamelCase_, prediction_loss_only=lowerCamelCase_ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(lowerCamelCase_, self.quant_trainer_args ) lowerCamelCase__ : List[Any] = model def a__ (self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_ = "eval" ): '''simple docstring''' lowerCamelCase__ : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset lowerCamelCase__ : int = self.get_eval_dataloader(lowerCamelCase_ ) lowerCamelCase__ : Any = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase__ : str = self.compute_metrics lowerCamelCase__ : str = None lowerCamelCase__ : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase__ : Optional[Any] = eval_loop( lowerCamelCase_, description='Evaluation', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCamelCase_, ) finally: lowerCamelCase__ : Any = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: lowerCamelCase__ : Tuple = self.post_process_function(lowerCamelCase_, lowerCamelCase_, output.predictions ) lowerCamelCase__ : str = self.compute_metrics(lowerCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): lowerCamelCase__ : List[str] = metrics.pop(lowerCamelCase_ ) self.log(lowerCamelCase_ ) else: lowerCamelCase__ : Optional[Any] = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCamelCase__ : Dict = self.callback_handler.on_evaluate(self.args, self.state, self.control, lowerCamelCase_ ) return metrics def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_ = "test" ): '''simple docstring''' lowerCamelCase__ : Any = self.get_test_dataloader(lowerCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase__ : Optional[int] = self.compute_metrics lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase__ : Tuple = eval_loop( lowerCamelCase_, description='Prediction', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCamelCase_, ) finally: lowerCamelCase__ : Dict = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output lowerCamelCase__ : Union[str, Any] = self.post_process_function(lowerCamelCase_, lowerCamelCase_, output.predictions, 'predict' ) lowerCamelCase__ : Dict = self.compute_metrics(lowerCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): lowerCamelCase__ : Optional[Any] = metrics.pop(lowerCamelCase_ ) return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=lowerCamelCase_ ) def a__ (self, lowerCamelCase_="./" ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.eval_dataset lowerCamelCase__ : Tuple = self.get_eval_dataloader(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = next(iter(lowerCamelCase_ ) ) # saving device - to make it consistent lowerCamelCase__ : int = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) # convert to tuple lowerCamelCase__ : str = tuple(v.to(lowerCamelCase_ ) for k, v in batch.items() ) logger.info('Converting model to be onnx compatible' ) from pytorch_quantization.nn import TensorQuantizer lowerCamelCase__ : List[str] = True lowerCamelCase__ : Dict = self.model.to(lowerCamelCase_ ) model.eval() model.float() lowerCamelCase__ : Tuple = model.module if hasattr(lowerCamelCase_, 'module' ) else model quant_trainer.configure_model(lowerCamelCase_, self.quant_trainer_args ) lowerCamelCase__ : Dict = os.path.join(lowerCamelCase_, 'model.onnx' ) logger.info(f'''exporting model to {output_model_file}''' ) lowerCamelCase__ : str = {0: 'batch_size', 1: 'seq_len'} torch.onnx.export( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, export_params=lowerCamelCase_, opset_version=1_3, do_constant_folding=lowerCamelCase_, input_names=['input_ids', 'attention_mask', 'token_type_ids'], output_names=['output_start_logits', 'output_end_logits'], dynamic_axes={ 'input_ids': axes, 'attention_mask': axes, 'token_type_ids': axes, 'output_start_logits': axes, 'output_end_logits': axes, }, verbose=lowerCamelCase_, ) logger.info('onnx export finished' )
708
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCamelCase__ : Tuple = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_, cache_dir=lowerCamelCase_ ) lowerCamelCase__ : List[str] = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_, os.listdir(lowerCamelCase_ )[0], 'snapshots' ) )] lowerCamelCase__ : Optional[int] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[int] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Any = 4 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : List[Any] = num_samples * [prompt] lowerCamelCase__ : Optional[int] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : int = replicate(lowerCamelCase_ ) lowerCamelCase__ : Any = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : int = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1_514_745 ) < 1e-3 assert np.abs(np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 49_947.875 ) < 5e-1 lowerCamelCase__ : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase_ ) == num_samples def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='flax', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : int = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[str] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : List[str] = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = shard(lowerCamelCase_ ) lowerCamelCase__ : str = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05_652_401) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_383_808.2) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Union[str, Any] = 5_0 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : Tuple = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Any = replicate(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa ) lowerCamelCase__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Union[str, Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] = 5_0 lowerCamelCase__ : Tuple = jax.device_count() lowerCamelCase__ : Optional[int] = num_samples * [prompt] lowerCamelCase__ : str = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Optional[int] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : List[str] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = FlaxDDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', set_alpha_to_one=lowerCamelCase_, steps_offset=1, ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, scheduler=lowerCamelCase_, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : List[str] = scheduler.create_state() lowerCamelCase__ : int = scheduler_state lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : Optional[Any] = jax.device_count() lowerCamelCase__ : Any = num_samples * [prompt] lowerCamelCase__ : Any = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Dict = shard(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045_043_945) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_347_693.5) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : int = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : str = jax.random.split(jax.random.PRNGKey(0 ), lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Dict = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Tuple = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : int = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention lowerCamelCase__ , lowerCamelCase__ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, use_memory_efficient_attention=lowerCamelCase_, ) lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : Any = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Any = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
696
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ : Tuple = logging.get_logger(__name__) A_ : str = {'vocab_file': 'sentencepiece.model'} A_ : Optional[Any] = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } A_ : int = { 'google/rembert': 2_56, } class a_ ( lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = VOCAB_FILES_NAMES lowerCamelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_="[CLS]", lowerCamelCase_="[SEP]", lowerCamelCase_="[UNK]", lowerCamelCase_="[SEP]", lowerCamelCase_="[PAD]", lowerCamelCase_="[CLS]", lowerCamelCase_="[MASK]", **lowerCamelCase_, ): '''simple docstring''' super().__init__( do_lower_case=_SCREAMING_SNAKE_CASE, remove_space=_SCREAMING_SNAKE_CASE, keep_accents=_SCREAMING_SNAKE_CASE, bos_token=_SCREAMING_SNAKE_CASE, eos_token=_SCREAMING_SNAKE_CASE, unk_token=_SCREAMING_SNAKE_CASE, sep_token=_SCREAMING_SNAKE_CASE, pad_token=_SCREAMING_SNAKE_CASE, cls_token=_SCREAMING_SNAKE_CASE, mask_token=_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE, ) lowerCamelCase__ : Union[str, Any] = do_lower_case lowerCamelCase__ : Tuple = remove_space lowerCamelCase__ : Optional[int] = keep_accents lowerCamelCase__ : Optional[Any] = vocab_file lowerCamelCase__ : List[Any] = spm.SentencePieceProcessor() self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def a__ (self ): '''simple docstring''' return len(self.sp_model ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.__dict__.copy() lowerCamelCase__ : Union[str, Any] = None return state def __setstate__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = d lowerCamelCase__ : List[str] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def a__ (self, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Dict = self.sp_model.EncodeAsPieces(_SCREAMING_SNAKE_CASE ) return pieces def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.sp_model.decode_pieces(_SCREAMING_SNAKE_CASE ) return out_string def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : List[str] = [self.sep_token_id] lowerCamelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : List[str] = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error('Vocabulary path ({}) should be a directory'.format(_SCREAMING_SNAKE_CASE ) ) return lowerCamelCase__ : List[str] = os.path.join( _SCREAMING_SNAKE_CASE, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file, _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
709
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = 1_0_0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = True, ): '''simple docstring''' if audio_length_in_s is None: lowerCamelCase__ : str = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase__ : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase__ : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCamelCase__ : Dict = int(lowerCamelCase_ ) if sample_size % down_scale_factor != 0: lowerCamelCase__ : Union[str, Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ' process.' ) lowerCamelCase__ : Optional[Any] = int(lowerCamelCase_ ) lowerCamelCase__ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase__ : Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase_, lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ : Union[str, Any] = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_, device=self.device, dtype=lowerCamelCase_ ) # set step values self.scheduler.set_timesteps(lowerCamelCase_, device=audio.device ) lowerCamelCase__ : int = self.scheduler.timesteps.to(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase__ : List[Any] = self.unet(lowerCamelCase_, lowerCamelCase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase__ : List[str] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample lowerCamelCase__ : Union[str, Any] = audio.clamp(-1, 1 ).float().cpu().numpy() lowerCamelCase__ : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase_ )
696
0
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A_ : Union[str, Any] = abspath(join(dirname(dirname(__file__)), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def lowerCamelCase_ ( _lowerCamelCase ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(A_ ) def lowerCamelCase_ ( _lowerCamelCase ): from diffusers.utils.testing_utils import pytest_terminal_summary_main lowerCamelCase__ : Tuple = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(A_ , id=A_ )
710
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(lowerCamelCase_ ) ) vocab_file.flush() lowerCamelCase__ : Tuple = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCamelCase__ : Optional[Any] = BertModel(BertConfig(vocab_size=len(lowerCamelCase_ ) ) ) model.save_pretrained(lowerCamelCase_ ) self._test_export(lowerCamelCase_, 'pt', 1_2, lowerCamelCase_ ) @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Optional[Any] = self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Any = quantize(Path(lowerCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Any = self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = quantize(lowerCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowerCamelCase__ : str = Path(lowerCamelCase_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ) return path except Exception as e: self.fail(lowerCamelCase_ ) @require_torch @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : str = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'pt' ) @require_tf @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import TFBertModel lowerCamelCase__ : Dict = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Optional[int] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'tf' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = FeatureExtractionPipeline(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = infer_shapes(lowerCamelCase_, lowerCamelCase_ ) # Assert all variables are present self.assertEqual(len(lowerCamelCase_ ), len(lowerCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3], lowerCamelCase_ ) self.assertSequenceEqual(variable_names[3:], lowerCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name], {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'], {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'], {0: 'batch'} ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['input_ids', 'attention_mask', 'token_type_ids'] lowerCamelCase__ : Optional[int] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowerCamelCase__ , lowerCamelCase__ : str = ensure_valid_input(FuncContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase_ ), 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase_ ), set(lowerCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase_, (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCamelCase__ , lowerCamelCase__ : Any = ensure_valid_input(FuncNonContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase_ ), 1 ) self.assertEqual(len(lowerCamelCase_ ), 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0], tokens['input_ids'] ) self.assertEqual(ordered_input_names[0], 'input_ids' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ), '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx', generated.as_posix() )
696
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 100 , ): '''simple docstring''' lowerCamelCase__ : Any = x_start lowerCamelCase__ : List[str] = fnc(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = 0.0 for _ in range(_lowerCamelCase ): # Approximates small segments of curve as linear and solve # for trapezoidal area lowerCamelCase__ : Any = (x_end - x_start) / steps + xa lowerCamelCase__ : List[str] = fnc(_lowerCamelCase ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step lowerCamelCase__ : Any = xa lowerCamelCase__ : Dict = fxa return area if __name__ == "__main__": def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") A_ : Tuple = 10 while i <= 10_00_00: print(f"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 10
711
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase__ : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : str = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ : Any = False @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return self.time_input_dim @property def a__ (self ): '''simple docstring''' return self.time_input_dim * 4 @property def a__ (self ): '''simple docstring''' return 1_0_0 @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase__ : int = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def a__ (self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.dummy_unet lowerCamelCase__ : List[Any] = self.dummy_movq lowerCamelCase__ : Tuple = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase__ : Optional[Any] = DDIMScheduler(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image lowerCamelCase__ : Any = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase__ : Optional[Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint lowerCamelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : int = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = 'cpu' lowerCamelCase__ : List[Any] = self.get_dummy_components() lowerCamelCase__ : List[Any] = self.pipeline_class(**lowerCamelCase_ ) lowerCamelCase__ : Dict = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : str = pipe( **self.get_dummy_inputs(lowerCamelCase_ ), return_dict=lowerCamelCase_, )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : List[str] = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase__ : Any = init_image.resize((5_1_2, 5_1_2) ) lowerCamelCase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase__ : Any = torch.from_numpy(np.array(lowerCamelCase_ ) ).float() / 255.0 lowerCamelCase__ : Optional[int] = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowerCamelCase__ : Union[str, Any] = 'A robot, 4k photo' lowerCamelCase__ : Any = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth', torch_dtype=torch.floataa ) lowerCamelCase__ : int = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = pipe_prior( lowerCamelCase_, image=lowerCamelCase_, strength=0.85, generator=lowerCamelCase_, negative_prompt='', ).to_tuple() lowerCamelCase__ : Union[str, Any] = pipeline( image=lowerCamelCase_, image_embeds=lowerCamelCase_, negative_image_embeds=lowerCamelCase_, hint=lowerCamelCase_, generator=lowerCamelCase_, num_inference_steps=1_0_0, height=5_1_2, width=5_1_2, strength=0.5, output_type='np', ) lowerCamelCase__ : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging A_ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' super().__init__() if hasattr(scheduler.config, 'steps_offset' ) and scheduler.config.steps_offset != 1: lowerCamelCase__ : int = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' 'to update the config accordingly as leaving `steps_offset` might led to incorrect results' ' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,' ' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`' ' file' ) deprecate('steps_offset!=1', '1.0.0', __a, standard_warn=__a ) lowerCamelCase__ : Dict = dict(scheduler.config ) lowerCamelCase__ : str = 1 lowerCamelCase__ : str = FrozenDict(__a ) if hasattr(scheduler.config, 'skip_prk_steps' ) and scheduler.config.skip_prk_steps is False: lowerCamelCase__ : Any = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make' ' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to' ' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face' ' Hub, it would be very nice if you could open a Pull request for the' ' `scheduler/scheduler_config.json` file' ) deprecate('skip_prk_steps not set', '1.0.0', __a, standard_warn=__a ) lowerCamelCase__ : int = dict(scheduler.config ) lowerCamelCase__ : int = True lowerCamelCase__ : Optional[Any] = FrozenDict(__a ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( segmentation_model=__a, segmentation_processor=__a, vae=__a, text_encoder=__a, tokenizer=__a, unet=__a, scheduler=__a, safety_checker=__a, feature_extractor=__a, ) def a__ (self, lowerCamelCase_ = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase__ : Tuple = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a ) def a__ (self ): '''simple docstring''' self.enable_attention_slicing(__a ) def a__ (self ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowerCamelCase__ : List[str] = torch.device('cuda' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__a, __a ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def a__ (self ): '''simple docstring''' if self.device != torch.device('meta' ) or not hasattr(self.unet, '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(__a, '_hf_hook' ) and hasattr(module._hf_hook, 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 5_1_2, lowerCamelCase_ = 5_1_2, lowerCamelCase_ = 5_0, lowerCamelCase_ = 7.5, lowerCamelCase_ = None, lowerCamelCase_ = 1, lowerCamelCase_ = 0.0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = "pil", lowerCamelCase_ = True, lowerCamelCase_ = None, lowerCamelCase_ = 1, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Any = self.segmentation_processor( text=[text], images=[image], padding='max_length', return_tensors='pt' ).to(self.device ) lowerCamelCase__ : str = self.segmentation_model(**__a ) lowerCamelCase__ : Dict = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowerCamelCase__ : Optional[int] = self.numpy_to_pil(__a )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowerCamelCase__ : Dict = StableDiffusionInpaintPipeline( vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet, scheduler=self.scheduler, safety_checker=self.safety_checker, feature_extractor=self.feature_extractor, ) return inpainting_pipeline( prompt=__a, image=__a, mask_image=__a, height=__a, width=__a, num_inference_steps=__a, guidance_scale=__a, negative_prompt=__a, num_images_per_prompt=__a, eta=__a, generator=__a, latents=__a, output_type=__a, return_dict=__a, callback=__a, callback_steps=__a, )
712
"""simple docstring""" A_ : List[str] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
696
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a_ ( unittest.TestCase ): '''simple docstring''' @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : List[Any] = UNetaDModel( block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=3, out_channels=3, down_block_types=('DownBlock2D', 'AttnDownBlock2D'), up_block_types=('AttnUpBlock2D', 'UpBlock2D'), ) return model def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.dummy_uncond_unet lowerCamelCase__ : List[str] = ScoreSdeVeScheduler() lowerCamelCase__ : Any = ScoreSdeVePipeline(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) sde_ve.to(lowerCamelCase_ ) sde_ve.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Tuple = torch.manual_seed(0 ) lowerCamelCase__ : Tuple = sde_ve(num_inference_steps=2, output_type='numpy', generator=lowerCamelCase_ ).images lowerCamelCase__ : str = torch.manual_seed(0 ) lowerCamelCase__ : int = sde_ve(num_inference_steps=2, output_type='numpy', generator=lowerCamelCase_, return_dict=lowerCamelCase_ )[ 0 ] lowerCamelCase__ : Dict = image[0, -3:, -3:, -1] lowerCamelCase__ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase__ : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = """google/ncsnpp-church-256""" lowerCamelCase__ : Union[str, Any] = UNetaDModel.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = ScoreSdeVeScheduler.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = ScoreSdeVePipeline(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) sde_ve.to(lowerCamelCase_ ) sde_ve.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.manual_seed(0 ) lowerCamelCase__ : List[Any] = sde_ve(num_inference_steps=1_0, output_type='numpy', generator=lowerCamelCase_ ).images lowerCamelCase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) lowerCamelCase__ : Union[str, Any] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
713
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 A_ : Optional[int] = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ = 1_4 ): '''simple docstring''' if group not in primes: raise ValueError('Unsupported Group' ) lowerCamelCase__ : int = primes[group]['prime'] lowerCamelCase__ : Optional[int] = primes[group]['generator'] lowerCamelCase__ : Any = int(hexlify(urandom(3_2 ) ), base=1_6 ) def a__ (self ): '''simple docstring''' return hex(self.__private_key )[2:] def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = pow(self.generator, self.__private_key, self.prime ) return hex(lowerCamelCase_ )[2:] def a__ (self, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase_, (self.prime - 1) // 2, self.prime ) == 1 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = int(lowerCamelCase_, base=1_6 ) if not self.is_valid_public_key(lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Tuple = pow(lowerCamelCase_, self.__private_key, self.prime ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase_, (prime - 1) // 2, lowerCamelCase_ ) == 1 ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 1_4 ): '''simple docstring''' lowerCamelCase__ : Dict = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[Any] = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[str] = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase_, lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Dict = pow(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
696
0
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class a_ ( __lowerCamelCase ): '''simple docstring''' lowerCamelCase__ : Dict = 'char' lowerCamelCase__ : Union[str, Any] = 'bpe' lowerCamelCase__ : str = 'wp' A_ : Optional[int] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class a_ ( __lowerCamelCase ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ['image_processor', 'char_tokenizer'] lowerCamelCase__ : int = 'ViTImageProcessor' lowerCamelCase__ : Any = 'MgpstrTokenizer' def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', UpperCamelCase_, ) lowerCamelCase__ : Any = kwargs.pop('feature_extractor' ) lowerCamelCase__ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) lowerCamelCase__ : Optional[Any] = tokenizer lowerCamelCase__ : Tuple = AutoTokenizer.from_pretrained('gpt2' ) lowerCamelCase__ : int = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(UpperCamelCase_, UpperCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: lowerCamelCase__ : Tuple = self.image_processor(UpperCamelCase_, return_tensors=UpperCamelCase_, **UpperCamelCase_ ) if text is not None: lowerCamelCase__ : Optional[int] = self.char_tokenizer(UpperCamelCase_, return_tensors=UpperCamelCase_, **UpperCamelCase_ ) if text is None: return inputs elif images is None: return encodings else: lowerCamelCase__ : List[str] = encodings['input_ids'] return inputs def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = sequences lowerCamelCase__ : str = char_preds.size(0 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self._decode_helper(UpperCamelCase_, 'char' ) lowerCamelCase__ , lowerCamelCase__ : Any = self._decode_helper(UpperCamelCase_, 'bpe' ) lowerCamelCase__ , lowerCamelCase__ : Dict = self._decode_helper(UpperCamelCase_, 'wp' ) lowerCamelCase__ : Dict = [] lowerCamelCase__ : Tuple = [] for i in range(UpperCamelCase_ ): lowerCamelCase__ : Optional[int] = [char_scores[i], bpe_scores[i], wp_scores[i]] lowerCamelCase__ : List[str] = [char_strs[i], bpe_strs[i], wp_strs[i]] lowerCamelCase__ : List[Any] = scores.index(max(UpperCamelCase_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) lowerCamelCase__ : Optional[Any] = {} lowerCamelCase__ : int = final_strs lowerCamelCase__ : Tuple = final_scores lowerCamelCase__ : List[str] = char_strs lowerCamelCase__ : Dict = bpe_strs lowerCamelCase__ : Optional[Any] = wp_strs return out def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if format == DecodeType.CHARACTER: lowerCamelCase__ : Tuple = self.char_decode lowerCamelCase__ : Union[str, Any] = 1 lowerCamelCase__ : str = '[s]' elif format == DecodeType.BPE: lowerCamelCase__ : List[str] = self.bpe_decode lowerCamelCase__ : Union[str, Any] = 2 lowerCamelCase__ : str = '#' elif format == DecodeType.WORDPIECE: lowerCamelCase__ : Optional[int] = self.wp_decode lowerCamelCase__ : Any = 1_0_2 lowerCamelCase__ : List[Any] = '[SEP]' else: raise ValueError(f'''Format {format} is not supported.''' ) lowerCamelCase__ , lowerCamelCase__ : List[str] = [], [] lowerCamelCase__ : List[Any] = pred_logits.size(0 ) lowerCamelCase__ : Optional[Any] = pred_logits.size(1 ) lowerCamelCase__ , lowerCamelCase__ : Tuple = pred_logits.topk(1, dim=-1, largest=UpperCamelCase_, sorted=UpperCamelCase_ ) lowerCamelCase__ : List[str] = preds_index.view(-1, UpperCamelCase_ )[:, 1:] lowerCamelCase__ : List[str] = decoder(UpperCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = torch.nn.functional.softmax(UpperCamelCase_, dim=2 ).max(dim=2 ) lowerCamelCase__ : Union[str, Any] = preds_max_prob[:, 1:] for index in range(UpperCamelCase_ ): lowerCamelCase__ : Optional[int] = preds_str[index].find(UpperCamelCase_ ) lowerCamelCase__ : Any = preds_str[index][:pred_eos] lowerCamelCase__ : str = preds_index[index].cpu().tolist() lowerCamelCase__ : Tuple = pred_index.index(UpperCamelCase_ ) if eos_token in pred_index else -1 lowerCamelCase__ : Any = preds_max_prob[index][: pred_eos_index + 1] lowerCamelCase__ : str = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(UpperCamelCase_ ) conf_scores.append(UpperCamelCase_ ) return dec_strs, conf_scores def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(UpperCamelCase_ )] return decode_strs def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(UpperCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(UpperCamelCase_ )] return decode_strs
714
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_lowerCamelCase ) * abs(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
696
0
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class a_ ( _UpperCamelCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase_, 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(lowerCamelCase_, 'num_attention_heads' ) ) self.parent.assertTrue(hasattr(lowerCamelCase_, 'num_encoder_blocks' ) ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=6_4, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=[2, 2, 2, 2], lowerCamelCase_=[8, 4, 2, 1], lowerCamelCase_=[1_6, 3_2, 6_4, 1_2_8], lowerCamelCase_=[1, 4, 8, 1_6], lowerCamelCase_=[1, 2, 4, 8], lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Optional[int] = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : Tuple = image_size lowerCamelCase__ : int = num_channels lowerCamelCase__ : Optional[int] = num_encoder_blocks lowerCamelCase__ : Optional[Any] = sr_ratios lowerCamelCase__ : Any = depths lowerCamelCase__ : Dict = hidden_sizes lowerCamelCase__ : Union[str, Any] = downsampling_rates lowerCamelCase__ : str = num_attention_heads lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : Dict = use_labels lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Optional[Any] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Tuple = initializer_range lowerCamelCase__ : int = num_labels lowerCamelCase__ : Union[str, Any] = scope def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : List[Any] = None if self.use_labels: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) lowerCamelCase__ : List[Any] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return SegformerConfig( image_size=self.image_size, num_channels=self.num_channels, num_encoder_blocks=self.num_encoder_blocks, depths=self.depths, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = SegformerModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = self.num_labels lowerCamelCase__ : List[str] = SegformerForSemanticSegmentation(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss, 0.0 ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : List[Any] = SegformerForSemanticSegmentation(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = torch.randint(0, 1, (self.batch_size, self.image_size, self.image_size) ).to(lowerCamelCase_ ) lowerCamelCase__ : int = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertGreater(result.loss, 0.0 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.prepare_config_and_inputs() lowerCamelCase__ : Any = config_and_inputs lowerCamelCase__ : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) lowerCamelCase__ : Union[str, Any] = ( { 'feature-extraction': SegformerModel, 'image-classification': SegformerForImageClassification, 'image-segmentation': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ : Any = True lowerCamelCase__ : List[Any] = False lowerCamelCase__ : str = False lowerCamelCase__ : Any = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = SegformerModelTester(self ) lowerCamelCase__ : Union[str, Any] = SegformerConfigTester(self, config_class=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowerCamelCase_ ) @unittest.skip('SegFormer does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Any = model_class(lowerCamelCase_ ) lowerCamelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Tuple = [*signature.parameters.keys()] lowerCamelCase__ : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Union[str, Any] = True for model_class in self.all_model_classes: lowerCamelCase__ : Any = True lowerCamelCase__ : int = False lowerCamelCase__ : str = True lowerCamelCase__ : Union[str, Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ : Dict = outputs.attentions lowerCamelCase__ : Optional[int] = sum(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase_ ), lowerCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : Union[str, Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase__ : List[Any] = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ : Optional[int] = outputs.attentions self.assertEqual(len(lowerCamelCase_ ), lowerCamelCase_ ) # verify the first attentions (first block, first layer) lowerCamelCase__ : Optional[int] = (self.model_tester.image_size // 4) ** 2 lowerCamelCase__ : Dict = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) # verify the last attentions (last block, last layer) lowerCamelCase__ : Tuple = (self.model_tester.image_size // 3_2) ** 2 lowerCamelCase__ : Optional[int] = (self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ), [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len], ) lowerCamelCase__ : Optional[Any] = len(lowerCamelCase_ ) # Check attention is always last and order is fine lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : List[str] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) self.assertEqual(out_len + 1, len(lowerCamelCase_ ) ) lowerCamelCase__ : Any = outputs.attentions self.assertEqual(len(lowerCamelCase_ ), lowerCamelCase_ ) # verify the first attentions (first block, first layer) lowerCamelCase__ : Dict = (self.model_tester.image_size // 4) ** 2 lowerCamelCase__ : int = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) def a__ (self ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : List[str] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase__ : str = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ : Dict = outputs.hidden_states lowerCamelCase__ : int = self.model_tester.num_encoder_blocks self.assertEqual(len(lowerCamelCase_ ), lowerCamelCase_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ), [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[Any] = True check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : str = True check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if not self.model_tester.is_training: return lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase_ ): continue lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.train() lowerCamelCase__ : List[Any] = self._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) lowerCamelCase__ : Any = model(**lowerCamelCase_ ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def a__ (self ): '''simple docstring''' pass @slow def a__ (self ): '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : List[str] = SegformerModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2), keep_ratio=lowerCamelCase_, align=lowerCamelCase_, do_random_crop=lowerCamelCase_ ) lowerCamelCase__ : str = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( lowerCamelCase_ ) lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : List[Any] = image_processor(images=lowerCamelCase_, return_tensors='pt' ) lowerCamelCase__ : Optional[Any] = encoded_inputs.pixel_values.to(lowerCamelCase_ ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : int = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3], lowerCamelCase_, atol=1e-4 ) ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2), keep_ratio=lowerCamelCase_, align=lowerCamelCase_, do_random_crop=lowerCamelCase_ ) lowerCamelCase__ : Dict = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : List[str] = image_processor(images=lowerCamelCase_, return_tensors='pt' ) lowerCamelCase__ : Any = encoded_inputs.pixel_values.to(lowerCamelCase_ ) with torch.no_grad(): lowerCamelCase__ : Any = model(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Dict = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3], lowerCamelCase_, atol=1e-1 ) ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2), keep_ratio=lowerCamelCase_, align=lowerCamelCase_, do_random_crop=lowerCamelCase_ ) lowerCamelCase__ : Dict = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( lowerCamelCase_ ) lowerCamelCase__ : Tuple = prepare_img() lowerCamelCase__ : Dict = image_processor(images=lowerCamelCase_, return_tensors='pt' ) lowerCamelCase__ : int = encoded_inputs.pixel_values.to(lowerCamelCase_ ) with torch.no_grad(): lowerCamelCase__ : List[str] = model(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = outputs.logits.detach().cpu() lowerCamelCase__ : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase_, target_sizes=[(5_0_0, 3_0_0)] ) lowerCamelCase__ : Union[str, Any] = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape, lowerCamelCase_ ) lowerCamelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase_ ) lowerCamelCase__ : List[str] = torch.Size((1_2_8, 1_2_8) ) self.assertEqual(segmentation[0].shape, lowerCamelCase_ )
715
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : int = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : Optional[int] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : str = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : Optional[int] = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Tuple = c.n_embd + 1 # int lowerCamelCase__ : Union[str, Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : List[Any] = not c.scale_attn_weights # bool lowerCamelCase__ : List[Any] = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = PretrainedConfig() lowerCamelCase__ : Optional[Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : Any = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : int = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = mock.Mock() lowerCamelCase__ : List[str] = 5_0_0 lowerCamelCase__ : Any = {} lowerCamelCase__ : int = HTTPError lowerCamelCase__ : Optional[Any] = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : str = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : str = ['config.42.0.0.json'] lowerCamelCase__ : Union[str, Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Optional[int] = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Dict = 'v3.0.0' lowerCamelCase__ : List[str] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
696
0
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np A_ : List[str] = re.compile(r"\b(a|an|the)\b", re.UNICODE) A_ : Optional[int] = None def lowerCamelCase_ ( ): lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=a__ , default=1.0 , help='Predict \"\" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=a__ , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCamelCase__ : Optional[Any] = bool(qa['answers']['text'] ) return qid_to_has_ans def lowerCamelCase_ ( _lowerCamelCase ): def remove_articles(_lowerCamelCase ): return ARTICLES_REGEX.sub(' ' , a__ ) def white_space_fix(_lowerCamelCase ): return " ".join(text.split() ) def remove_punc(_lowerCamelCase ): lowerCamelCase__ : Tuple = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(a__ ) ) ) ) def lowerCamelCase_ ( _lowerCamelCase ): if not s: return [] return normalize_answer(a__ ).split() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return int(normalize_answer(a__ ) == normalize_answer(a__ ) ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = get_tokens(a__ ) lowerCamelCase__ : str = get_tokens(a__ ) lowerCamelCase__ : List[Any] = collections.Counter(a__ ) & collections.Counter(a__ ) lowerCamelCase__ : Dict = sum(common.values() ) if len(a__ ) == 0 or len(a__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 lowerCamelCase__ : int = 1.0 * num_same / len(a__ ) lowerCamelCase__ : List[Any] = 1.0 * num_same / len(a__ ) lowerCamelCase__ : Optional[Any] = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[str] = {} lowerCamelCase__ : List[Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCamelCase__ : Tuple = qa['id'] lowerCamelCase__ : List[str] = [t for t in qa['answers']['text'] if normalize_answer(a__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCamelCase__ : str = [''] if qid not in preds: print(f'''Missing prediction for {qid}''' ) continue lowerCamelCase__ : Optional[Any] = preds[qid] # Take max over all gold answers lowerCamelCase__ : Any = max(compute_exact(a__ , a__ ) for a in gold_answers ) lowerCamelCase__ : Tuple = max(compute_fa(a__ , a__ ) for a in gold_answers ) return exact_scores, fa_scores def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = {} for qid, s in scores.items(): lowerCamelCase__ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCamelCase__ : List[Any] = float(not qid_to_has_ans[qid] ) else: lowerCamelCase__ : str = s return new_scores def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): if not qid_list: lowerCamelCase__ : List[str] = len(a__ ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores.values() ) / total), ('f1', 100.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: lowerCamelCase__ : List[Any] = len(a__ ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): for k in new_eval: lowerCamelCase__ : int = new_eval[k] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): plt.step(a__ , a__ , color='b' , alpha=0.2 , where='post' ) plt.fill_between(a__ , a__ , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(a__ ) plt.savefig(a__ ) plt.clf() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): lowerCamelCase__ : Optional[Any] = sorted(a__ , key=lambda _lowerCamelCase : na_probs[k] ) lowerCamelCase__ : Any = 0.0 lowerCamelCase__ : List[Any] = 1.0 lowerCamelCase__ : Union[str, Any] = 0.0 lowerCamelCase__ : str = [1.0] lowerCamelCase__ : Dict = [0.0] lowerCamelCase__ : int = 0.0 for i, qid in enumerate(a__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCamelCase__ : List[Any] = true_pos / float(i + 1 ) lowerCamelCase__ : Dict = true_pos / float(a__ ) if i == len(a__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(a__ ) recalls.append(a__ ) if out_image: plot_pr_curve(a__ , a__ , a__ , a__ ) return {"ap": 100.0 * avg_prec} def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if out_image_dir and not os.path.exists(a__ ): os.makedirs(a__ ) lowerCamelCase__ : Union[str, Any] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return lowerCamelCase__ : Dict = make_precision_recall_eval( a__ , a__ , a__ , a__ , out_image=os.path.join(a__ , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) lowerCamelCase__ : Optional[int] = make_precision_recall_eval( a__ , a__ , a__ , a__ , out_image=os.path.join(a__ , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) lowerCamelCase__ : List[str] = {k: float(a__ ) for k, v in qid_to_has_ans.items()} lowerCamelCase__ : Dict = make_precision_recall_eval( a__ , a__ , a__ , a__ , out_image=os.path.join(a__ , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(a__ , a__ , 'pr_exact' ) merge_eval(a__ , a__ , 'pr_f1' ) merge_eval(a__ , a__ , 'pr_oracle' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if not qid_list: return lowerCamelCase__ : Dict = [na_probs[k] for k in qid_list] lowerCamelCase__ : int = np.ones_like(a__ ) / float(len(a__ ) ) plt.hist(a__ , weights=a__ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(f'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(a__ , f'''na_prob_hist_{name}.png''' ) ) plt.clf() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) lowerCamelCase__ : str = num_no_ans lowerCamelCase__ : str = cur_score lowerCamelCase__ : Union[str, Any] = 0.0 lowerCamelCase__ : Tuple = sorted(a__ , key=lambda _lowerCamelCase : na_probs[k] ) for i, qid in enumerate(a__ ): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCamelCase__ : List[Any] = scores[qid] else: if preds[qid]: lowerCamelCase__ : Union[str, Any] = -1 else: lowerCamelCase__ : int = 0 cur_score += diff if cur_score > best_score: lowerCamelCase__ : Any = cur_score lowerCamelCase__ : Union[str, Any] = na_probs[qid] return 100.0 * best_score / len(a__ ), best_thresh def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : str = find_best_thresh(a__ , a__ , a__ , a__ ) lowerCamelCase__ , lowerCamelCase__ : int = find_best_thresh(a__ , a__ , a__ , a__ ) lowerCamelCase__ : str = best_exact lowerCamelCase__ : Optional[Any] = exact_thresh lowerCamelCase__ : int = best_fa lowerCamelCase__ : Optional[int] = fa_thresh def lowerCamelCase_ ( ): with open(OPTS.data_file ) as f: lowerCamelCase__ : Optional[int] = json.load(a__ ) lowerCamelCase__ : Any = dataset_json['data'] with open(OPTS.pred_file ) as f: lowerCamelCase__ : List[Any] = json.load(a__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: lowerCamelCase__ : str = json.load(a__ ) else: lowerCamelCase__ : Optional[int] = {k: 0.0 for k in preds} lowerCamelCase__ : List[str] = make_qid_to_has_ans(a__ ) # maps qid to True/False lowerCamelCase__ : int = [k for k, v in qid_to_has_ans.items() if v] lowerCamelCase__ : Optional[Any] = [k for k, v in qid_to_has_ans.items() if not v] lowerCamelCase__ , lowerCamelCase__ : Tuple = get_raw_scores(a__ , a__ ) lowerCamelCase__ : Tuple = apply_no_ans_threshold(a__ , a__ , a__ , OPTS.na_prob_thresh ) lowerCamelCase__ : Union[str, Any] = apply_no_ans_threshold(a__ , a__ , a__ , OPTS.na_prob_thresh ) lowerCamelCase__ : Tuple = make_eval_dict(a__ , a__ ) if has_ans_qids: lowerCamelCase__ : Optional[Any] = make_eval_dict(a__ , a__ , qid_list=a__ ) merge_eval(a__ , a__ , 'HasAns' ) if no_ans_qids: lowerCamelCase__ : Any = make_eval_dict(a__ , a__ , qid_list=a__ ) merge_eval(a__ , a__ , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(a__ , a__ , a__ , a__ , a__ , a__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(a__ , a__ , a__ , a__ , a__ , OPTS.out_image_dir ) histogram_na_prob(a__ , a__ , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(a__ , a__ , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(a__ , a__ ) else: print(json.dumps(a__ , indent=2 ) ) if __name__ == "__main__": A_ : Optional[Any] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
716
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' super().__init__() lowerCamelCase__ : Dict = value_function lowerCamelCase__ : int = unet lowerCamelCase__ : Union[str, Any] = scheduler lowerCamelCase__ : int = env lowerCamelCase__ : List[Any] = env.get_dataset() lowerCamelCase__ : Dict = {} for key in self.data.keys(): try: lowerCamelCase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowerCamelCase__ : Optional[int] = {} for key in self.data.keys(): try: lowerCamelCase__ : Tuple = self.data[key].std() except: # noqa: E722 pass lowerCamelCase__ : Optional[Any] = env.observation_space.shape[0] lowerCamelCase__ : List[str] = env.action_space.shape[0] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def a__ (self, lowerCamelCase_ ): '''simple docstring''' if type(lowerCamelCase_ ) is dict: return {k: self.to_torch(lowerCamelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase_, device=self.unet.device ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for key, val in cond.items(): lowerCamelCase__ : Optional[Any] = val.clone() return x_in def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = x.shape[0] lowerCamelCase__ : Tuple = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCamelCase__ : Dict = torch.full((batch_size,), lowerCamelCase_, device=self.unet.device, dtype=torch.long ) for _ in range(lowerCamelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCamelCase__ : str = self.value_function(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample lowerCamelCase__ : Union[str, Any] = torch.autograd.grad([y.sum()], [x] )[0] lowerCamelCase__ : Optional[int] = self.scheduler._get_variance(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = torch.exp(0.5 * posterior_variance ) lowerCamelCase__ : Tuple = model_std * grad lowerCamelCase__ : str = 0 lowerCamelCase__ : Dict = x.detach() lowerCamelCase__ : Dict = x + scale * grad lowerCamelCase__ : Optional[int] = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : Tuple = self.unet(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample.permute(0, 2, 1 ) # TODO: verify deprecation of this kwarg lowerCamelCase__ : Optional[Any] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, predict_epsilon=lowerCamelCase_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowerCamelCase__ : Any = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) return x, y def __call__(self, lowerCamelCase_, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=0.1 ): '''simple docstring''' lowerCamelCase__ : Dict = self.normalize(lowerCamelCase_, 'observations' ) lowerCamelCase__ : List[str] = obs[None].repeat(lowerCamelCase_, axis=0 ) lowerCamelCase__ : str = {0: self.to_torch(lowerCamelCase_ )} lowerCamelCase__ : Optional[Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCamelCase__ : List[Any] = randn_tensor(lowerCamelCase_, device=self.unet.device ) lowerCamelCase__ : int = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) # run the diffusion process lowerCamelCase__ , lowerCamelCase__ : List[str] = self.run_diffusion(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # sort output trajectories by value lowerCamelCase__ : Union[str, Any] = y.argsort(0, descending=lowerCamelCase_ ).squeeze() lowerCamelCase__ : List[str] = x[sorted_idx] lowerCamelCase__ : Optional[Any] = sorted_values[:, :, : self.action_dim] lowerCamelCase__ : Union[str, Any] = actions.detach().cpu().numpy() lowerCamelCase__ : Union[str, Any] = self.de_normalize(lowerCamelCase_, key='actions' ) # select the action with the highest value if y is not None: lowerCamelCase__ : str = 0 else: # if we didn't run value guiding, select a random action lowerCamelCase__ : Optional[Any] = np.random.randint(0, lowerCamelCase_ ) lowerCamelCase__ : Tuple = denorm_actions[selected_index, 0] return denorm_actions
696
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = len(snake_case__ ) for i in range(snake_case__ ): for j in range(i + 1 , snake_case__ ): if numbers[j] < numbers[i]: lowerCamelCase__ , lowerCamelCase__ : List[str] = numbers[j], numbers[i] return numbers if __name__ == "__main__": A_ : Optional[Any] = input("Enter numbers separated by a comma:\n").strip() A_ : Tuple = [int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
717
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : List[str] = analyze_text(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. lowerCamelCase__ : List[Any] = sum(single_char_strings.values() ) # one length string lowerCamelCase__ : str = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCamelCase__ : Tuple = single_char_strings[ch] lowerCamelCase__ : Union[str, Any] = my_str / all_sum my_fir_sum += prob * math.loga(_lowerCamelCase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string lowerCamelCase__ : Dict = sum(two_char_strings.values() ) lowerCamelCase__ : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCamelCase__ : int = cha + cha if sequence in two_char_strings: lowerCamelCase__ : int = two_char_strings[sequence] lowerCamelCase__ : Tuple = int(_lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(_lowerCamelCase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = Counter() # type: ignore lowerCamelCase__ : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase_ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
696
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = parent lowerCamelCase__ : Dict = batch_size lowerCamelCase__ : List[str] = seq_length lowerCamelCase__ : Dict = is_training lowerCamelCase__ : List[Any] = use_token_type_ids lowerCamelCase__ : List[str] = use_labels lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Optional[int] = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Tuple = intermediate_size lowerCamelCase__ : Dict = hidden_act lowerCamelCase__ : List[str] = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : List[str] = type_vocab_size lowerCamelCase__ : Any = type_sequence_label_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : List[str] = num_labels lowerCamelCase__ : Union[str, Any] = num_choices lowerCamelCase__ : List[str] = scope lowerCamelCase__ : Optional[Any] = self.vocab_size - 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : List[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : Tuple = None lowerCamelCase__ : Optional[Any] = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase__ : Tuple = OpenAIGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) lowerCamelCase__ : List[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, *lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = OpenAIGPTModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCamelCase__ : Optional[Any] = model(UpperCAmelCase__, token_type_ids=UpperCAmelCase__, head_mask=UpperCAmelCase__ ) lowerCamelCase__ : int = model(UpperCAmelCase__, token_type_ids=UpperCAmelCase__ ) lowerCamelCase__ : Optional[Any] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, *lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = OpenAIGPTLMHeadModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCamelCase__ : Any = model(UpperCAmelCase__, token_type_ids=UpperCAmelCase__, labels=UpperCAmelCase__ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, *lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = OpenAIGPTDoubleHeadsModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCamelCase__ : int = model(UpperCAmelCase__, token_type_ids=UpperCAmelCase__, labels=UpperCAmelCase__ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, *lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = self.num_labels lowerCamelCase__ : List[str] = OpenAIGPTForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : str = model(UpperCAmelCase__, token_type_ids=UpperCAmelCase__, labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.prepare_config_and_inputs() ( lowerCamelCase__ ) : List[Any] = config_and_inputs lowerCamelCase__ : Tuple = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowerCamelCase__ : List[str] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowerCamelCase__ : List[str] = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : str = super()._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__, return_labels=UpperCAmelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=UpperCAmelCase__, ) lowerCamelCase__ : Dict = inputs_dict['''labels'''] lowerCamelCase__ : Optional[int] = inputs_dict['''labels'''] lowerCamelCase__ : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=UpperCAmelCase__, ) lowerCamelCase__ : Dict = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=UpperCAmelCase__ ) return inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = OpenAIGPTModelTester(self ) lowerCamelCase__ : int = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*UpperCAmelCase__ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCAmelCase__ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*UpperCAmelCase__ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*UpperCAmelCase__ ) @slow def a__ (self ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(UpperCAmelCase__ ) lowerCamelCase__ : Optional[Any] = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]], dtype=torch.long, device=UpperCAmelCase__ ) # the president is lowerCamelCase__ : str = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase__ : Tuple = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__ ) self.assertListEqual(output_ids[0].tolist(), UpperCAmelCase__ )
718
"""simple docstring""" import os def lowerCamelCase_ ( ): with open(os.path.dirname(_lowerCamelCase ) + '/p022_names.txt' ) as file: lowerCamelCase__ : Union[str, Any] = str(file.readlines()[0] ) lowerCamelCase__ : int = names.replace('"' , '' ).split(',' ) names.sort() lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : str = 0 for i, name in enumerate(_lowerCamelCase ): for letter in name: name_score += ord(_lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowerCamelCase__ : Dict = 0 return total_score if __name__ == "__main__": print(solution())
696
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() A_ : str = logging.get_logger(__name__) A_ : Any = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } A_ : Optional[int] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[int] = {} with open(_lowerCamelCase , 'r' ) as file: for line_number, line in enumerate(_lowerCamelCase ): lowerCamelCase__ : Optional[Any] = line.strip() if line: lowerCamelCase__ : Tuple = line.split() lowerCamelCase__ : Optional[int] = line_number lowerCamelCase__ : Optional[Any] = words[0] lowerCamelCase__ : Optional[int] = value return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): for attribute in key.split('.' ): lowerCamelCase__ : int = getattr(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = PARAM_MAPPING[full_name.split('.' )[-1]] lowerCamelCase__ : List[Any] = "param" if weight_type is not None and weight_type != "param": lowerCamelCase__ : Union[str, Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": lowerCamelCase__ : Dict = hf_pointer for attribute in hf_param_name.split('.' ): lowerCamelCase__ : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : List[str] = shape_pointer.shape # let's reduce dimension lowerCamelCase__ : int = value[0] else: lowerCamelCase__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCamelCase__ : int = value elif weight_type == "weight_g": lowerCamelCase__ : Any = value elif weight_type == "weight_v": lowerCamelCase__ : List[str] = value elif weight_type == "bias": lowerCamelCase__ : str = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): lowerCamelCase__ : List[str] = getattr(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = value else: lowerCamelCase__ : str = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = PARAM_MAPPING[full_name.split('.' )[-1]] lowerCamelCase__ : Dict = "param" if weight_type is not None and weight_type != "param": lowerCamelCase__ : Optional[int] = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": lowerCamelCase__ : List[str] = ".".join([key, hf_param_name] ) else: lowerCamelCase__ : Union[str, Any] = key lowerCamelCase__ : Union[str, Any] = value if "lm_head" in full_key else value[0] A_ : int = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): lowerCamelCase__ : Optional[Any] = False for key, mapped_key in MAPPING.items(): lowerCamelCase__ : List[Any] = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowerCamelCase__ : Any = True if "*" in mapped_key: lowerCamelCase__ : Optional[Any] = name.split(_lowerCamelCase )[0].split('.' )[-2] lowerCamelCase__ : str = mapped_key.replace('*' , _lowerCamelCase ) if "weight_g" in name: lowerCamelCase__ : Optional[int] = "weight_g" elif "weight_v" in name: lowerCamelCase__ : Optional[int] = "weight_v" elif "bias" in name: lowerCamelCase__ : List[str] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__ : Tuple = "weight" else: lowerCamelCase__ : str = None if hf_dict is not None: rename_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return is_used return is_used def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Dict = [] lowerCamelCase__ : Any = fairseq_model.state_dict() lowerCamelCase__ : int = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__ : List[str] = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == 'group' , ) lowerCamelCase__ : int = True else: lowerCamelCase__ : Optional[int] = load_wavaveca_layer(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = full_name.split('conv_layers.' )[-1] lowerCamelCase__ : Any = name.split('.' ) lowerCamelCase__ : List[Any] = int(items[0] ) lowerCamelCase__ : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowerCamelCase__ : Tuple = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowerCamelCase__ : int = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) lowerCamelCase__ : Optional[int] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) lowerCamelCase__ : List[Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=False ): if config_path is not None: lowerCamelCase__ : Any = WavaVecaConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : List[str] = WavaVecaConfig() if is_seq_class: lowerCamelCase__ : List[Any] = read_txt_into_dict(_lowerCamelCase ) lowerCamelCase__ : int = idalabel lowerCamelCase__ : Any = WavaVecaForSequenceClassification(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) feature_extractor.save_pretrained(_lowerCamelCase ) elif is_finetuned: if dict_path: lowerCamelCase__ : List[str] = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__ : Tuple = target_dict.pad_index lowerCamelCase__ : str = target_dict.bos_index lowerCamelCase__ : int = target_dict.eos_index lowerCamelCase__ : Any = len(target_dict.symbols ) lowerCamelCase__ : int = os.path.join(_lowerCamelCase , 'vocab.json' ) if not os.path.isdir(_lowerCamelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) lowerCamelCase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : Dict = 1 with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_lowerCamelCase , ) lowerCamelCase__ : List[str] = True if config.feat_extract_norm == "layer" else False lowerCamelCase__ : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) lowerCamelCase__ : str = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) lowerCamelCase__ : int = WavaVecaForCTC(_lowerCamelCase ) else: lowerCamelCase__ : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) if is_finetuned or is_seq_class: lowerCamelCase__ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: lowerCamelCase__ : List[Any] = argparse.Namespace(task='audio_pretraining' ) lowerCamelCase__ : Optional[int] = fairseq.tasks.setup_task(_lowerCamelCase ) lowerCamelCase__ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) lowerCamelCase__ : Optional[int] = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": A_ : List[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) A_ : List[str] = parser.parse_args() A_ : List[str] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
719
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = 'Speech2TextFeatureExtractor' lowerCamelCase__ : Dict = 'Speech2TextTokenizer' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.feature_extractor lowerCamelCase__ : List[Any] = False def __call__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_, **lowerCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ : Optional[int] = kwargs.pop('raw_speech' ) else: lowerCamelCase__ : int = kwargs.pop('audio', lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = kwargs.pop('sampling_rate', lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('text', lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowerCamelCase__ : List[str] = args[0] lowerCamelCase__ : Any = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ : Union[str, Any] = self.feature_extractor(lowerCamelCase_, *lowerCamelCase_, sampling_rate=lowerCamelCase_, **lowerCamelCase_ ) if text is not None: lowerCamelCase__ : List[Any] = self.tokenizer(lowerCamelCase_, **lowerCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Tuple = encodings['input_ids'] return inputs def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @contextmanager def a__ (self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ : int = True lowerCamelCase__ : List[Any] = self.tokenizer yield lowerCamelCase__ : Optional[int] = self.feature_extractor lowerCamelCase__ : List[Any] = False
696
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A_ : List[Any] = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys A_ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : Optional[Any] = use_input_mask lowerCamelCase__ : List[Any] = use_token_type_ids lowerCamelCase__ : List[Any] = use_labels lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : Optional[int] = embedding_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Optional[Any] = num_labels lowerCamelCase__ : Dict = num_choices lowerCamelCase__ : Tuple = scope def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : List[str] = None if self.use_input_mask: lowerCamelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_token_type_ids: lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Any = None lowerCamelCase__ : Union[str, Any] = None if self.use_labels: lowerCamelCase__ : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, embedding_size=self.embedding_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, next_sentence_label=lowerCamelCase_, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, start_positions=lowerCamelCase_, end_positions=lowerCamelCase_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : int = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.num_choices lowerCamelCase__ : Dict = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : int = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : List[str] = config_and_inputs lowerCamelCase__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : int = True def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase_ ) return inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = MobileBertModelTester(self ) lowerCamelCase__ : List[str] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): return torch.tensor( _lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , ) A_ : Tuple = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(lowerCamelCase_ ) lowerCamelCase__ : Tuple = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ )[0] lowerCamelCase__ : Optional[int] = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [ [ [-2.4_736_526e07, 8.2_691_656e04, 1.6_521_838e05], [-5.7_541_704e-01, 3.9_056_022e00, 4.4_011_507e00], [2.6_047_359e00, 1.5_677_652e00, -1.7_324_188e-01], ] ], device=lowerCamelCase_, ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCamelCase__ : Optional[int] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCamelCase__ : Any = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
696
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : Union[str, Any] = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A_ : str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=1 ): '''simple docstring''' lowerCamelCase__ : Any = tokenizer lowerCamelCase__ : Optional[Any] = dataset lowerCamelCase__ : int = len(lowerCamelCase_ ) if n_tasks is None else n_tasks lowerCamelCase__ : Any = n_copies def __iter__(self ): '''simple docstring''' lowerCamelCase__ : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ : Optional[int] = self.tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = start_length lowerCamelCase__ : List[str] = eof_strings lowerCamelCase__ : List[str] = tokenizer def __call__(self, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ : Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ): lowerCamelCase__ : List[str] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): lowerCamelCase__ : str = batch['ids'].shape[-1] lowerCamelCase__ : int = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times lowerCamelCase__ : Optional[Any] = batch['task_id'].repeat(_lowerCamelCase ) lowerCamelCase__ : List[Any] = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ : List[Any] = generated_tokens.cpu().numpy() lowerCamelCase__ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) lowerCamelCase__ : str = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ : Optional[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase_ ( ): # Setup configuration lowerCamelCase__ : int = HfArgumentParser(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ : Tuple = 'false' if args.num_workers is None: lowerCamelCase__ : List[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ : List[Any] = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ : Optional[int] = tokenizer.eos_token lowerCamelCase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ : Optional[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric lowerCamelCase__ : Any = load_dataset('openai_humaneval' ) lowerCamelCase__ : Optional[int] = load_metric('code_eval' ) lowerCamelCase__ : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ : Optional[int] = args.n_samples // args.batch_size lowerCamelCase__ : Tuple = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ : Union[str, Any] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ : List[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ : str = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: lowerCamelCase__ : List[str] = [] for task in tqdm(range(_lowerCamelCase ) ): lowerCamelCase__ : int = human_eval['test'][task]['test'] lowerCamelCase__ : Union[str, Any] = f'''check({human_eval['test'][task]['entry_point']})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ : Any = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
696
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[str] = logging.get_logger(__name__) A_ : Tuple = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class a_ ( lowercase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = 'xlm-roberta-xl' def __init__(self, lowerCamelCase_=2_5_0_8_8_0, lowerCamelCase_=2_5_6_0, lowerCamelCase_=3_6, lowerCamelCase_=3_2, lowerCamelCase_=1_0_2_4_0, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_4, lowerCamelCase_=1, lowerCamelCase_=0.02, lowerCamelCase_=1e-05, lowerCamelCase_=1, lowerCamelCase_=0, lowerCamelCase_=2, lowerCamelCase_="absolute", lowerCamelCase_=True, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase__, bos_token_id=UpperCAmelCase__, eos_token_id=UpperCAmelCase__, **UpperCAmelCase__ ) lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : str = num_attention_heads lowerCamelCase__ : Optional[int] = hidden_act lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : Optional[Any] = initializer_range lowerCamelCase__ : Optional[Any] = layer_norm_eps lowerCamelCase__ : Dict = position_embedding_type lowerCamelCase__ : int = use_cache lowerCamelCase__ : Optional[int] = classifier_dropout class a_ ( lowercase__ ): '''simple docstring''' @property def a__ (self ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Any = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
700
"""simple docstring""" from ..utils import DummyObject, requires_backends class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] ) class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] )
696
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Tuple = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
701
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = 0 while number > 0: lowerCamelCase__ : List[str] = number % 10 sum_of_digits += last_digit lowerCamelCase__ : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase_ ( _lowerCamelCase = 100 ): lowerCamelCase__ : Union[str, Any] = factorial(_lowerCamelCase ) lowerCamelCase__ : List[Any] = split_and_add(_lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
696
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: A_ : Any = None A_ : int = logging.get_logger(__name__) A_ : Dict = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A_ : Union[str, Any] = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } A_ : Any = { 'google/bigbird-roberta-base': 40_96, 'google/bigbird-roberta-large': 40_96, 'google/bigbird-base-trivia-itc': 40_96, } A_ : Union[str, Any] = '▁' class a_ ( lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = VOCAB_FILES_NAMES lowerCamelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Optional[int] = BigBirdTokenizer lowerCamelCase__ : int = ['input_ids', 'attention_mask'] lowerCamelCase__ : Union[str, Any] = [] def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_="<unk>", lowerCamelCase_="<s>", lowerCamelCase_="</s>", lowerCamelCase_="<pad>", lowerCamelCase_="[SEP]", lowerCamelCase_="[MASK]", lowerCamelCase_="[CLS]", **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : List[Any] = AddedToken(__lowerCamelCase, lstrip=__lowerCamelCase, rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase, __lowerCamelCase ) else bos_token lowerCamelCase__ : Any = AddedToken(__lowerCamelCase, lstrip=__lowerCamelCase, rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase, __lowerCamelCase ) else eos_token lowerCamelCase__ : Optional[int] = AddedToken(__lowerCamelCase, lstrip=__lowerCamelCase, rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase, __lowerCamelCase ) else unk_token lowerCamelCase__ : Union[str, Any] = AddedToken(__lowerCamelCase, lstrip=__lowerCamelCase, rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase, __lowerCamelCase ) else pad_token lowerCamelCase__ : Optional[int] = AddedToken(__lowerCamelCase, lstrip=__lowerCamelCase, rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase, __lowerCamelCase ) else cls_token lowerCamelCase__ : str = AddedToken(__lowerCamelCase, lstrip=__lowerCamelCase, rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase, __lowerCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : Optional[Any] = AddedToken(__lowerCamelCase, lstrip=__lowerCamelCase, rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase, __lowerCamelCase ) else mask_token super().__init__( __lowerCamelCase, tokenizer_file=__lowerCamelCase, bos_token=__lowerCamelCase, eos_token=__lowerCamelCase, unk_token=__lowerCamelCase, sep_token=__lowerCamelCase, pad_token=__lowerCamelCase, cls_token=__lowerCamelCase, mask_token=__lowerCamelCase, **__lowerCamelCase, ) lowerCamelCase__ : List[Any] = vocab_file lowerCamelCase__ : List[Any] = False if not self.vocab_file else True def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Any = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : List[str] = [self.sep_token_id] lowerCamelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ : Dict = os.path.join( __lowerCamelCase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file, __lowerCamelCase ) return (out_vocab_file,)
702
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ : Dict = "pt" elif is_tf_available(): A_ : Union[str, Any] = "tf" else: A_ : List[str] = "jax" class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = PerceiverTokenizer lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ (self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=2_0, lowerCamelCase_=5 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [] for i in range(len(lowerCamelCase_ ) ): try: lowerCamelCase__ : Any = tokenizer.decode([i], clean_up_tokenization_spaces=lowerCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase__ : Any = list(filter(lambda lowerCamelCase_ : re.match(r'^[ a-zA-Z]+$', t[1] ), lowerCamelCase_ ) ) lowerCamelCase__ : Union[str, Any] = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=lowerCamelCase_ ), lowerCamelCase_ ) ) if max_length is not None and len(lowerCamelCase_ ) > max_length: lowerCamelCase__ : int = toks[:max_length] if min_length is not None and len(lowerCamelCase_ ) < min_length and len(lowerCamelCase_ ) > 0: while len(lowerCamelCase_ ) < min_length: lowerCamelCase__ : Dict = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : int = [t[0] for t in toks] # Ensure consistency lowerCamelCase__ : Optional[int] = tokenizer.decode(lowerCamelCase_, clean_up_tokenization_spaces=lowerCamelCase_ ) if " " not in output_txt and len(lowerCamelCase_ ) > 1: lowerCamelCase__ : List[Any] = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=lowerCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=lowerCamelCase_ ) ) if with_prefix_space: lowerCamelCase__ : Optional[Any] = ' ' + output_txt lowerCamelCase__ : List[Any] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) return output_txt, output_ids def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = 'Unicode €.' lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_ ) lowerCamelCase__ : Dict = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : int = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]Unicode €.[SEP]' ) lowerCamelCase__ : List[str] = tokenizer('e è é ê ë' ) lowerCamelCase__ : Dict = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : Any = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ), '[CLS]e è é ê ë[SEP]' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCamelCase__ : List[Any] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) if FRAMEWORK != "jax": lowerCamelCase__ : List[str] = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase__ : int = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertEqual((2, 3_8), batch.input_ids.shape ) self.assertEqual((2, 3_8), batch.attention_mask.shape ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.perceiver_tokenizer lowerCamelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCamelCase__ : List[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids', lowerCamelCase_ ) self.assertIn('attention_mask', lowerCamelCase_ ) self.assertNotIn('decoder_input_ids', lowerCamelCase_ ) self.assertNotIn('decoder_attention_mask', lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : int = [ 'Summary of the text.', 'Another summary.', ] lowerCamelCase__ : str = tokenizer( text_target=lowerCamelCase_, max_length=3_2, padding='max_length', truncation=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertEqual(3_2, targets['input_ids'].shape[1] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 4_2 ) # Now let's start the test lowerCamelCase__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : str = ' He is very happy, UNwant\u00E9d,running' lowerCamelCase__ : str = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : str = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) shutil.rmtree(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCamelCase__ : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCamelCase__ : List[str] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : int = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertIn('new_additional_special_token', after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 4_2 ) lowerCamelCase__ : List[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_, model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length, 4_3 ) shutil.rmtree(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : Optional[Any] = json.load(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : List[str] = json.load(lowerCamelCase_ ) lowerCamelCase__ : Any = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] lowerCamelCase__ : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCamelCase__ : List[str] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ : Dict = tokenizer_class.from_pretrained( lowerCamelCase_, ) self.assertIn( 'an_additional_special_token', tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token', lstrip=lowerCamelCase_ )] lowerCamelCase__ : Any = tokenizer_class.from_pretrained( lowerCamelCase_, additional_special_tokens=lowerCamelCase_, ) self.assertIn('a_new_additional_special_token', tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ), '�' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_tokenizers(fast=lowerCamelCase_, do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Tuple = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] lowerCamelCase__ : List[str] = tokenizer.convert_tokens_to_string(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase = 10 ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or n < 0: raise ValueError('Invalid input' ) lowerCamelCase__ : str = 10**n lowerCamelCase__ : Tuple = 2_8433 * (pow(2 , 783_0457 , UpperCamelCase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(10) = }")
703
"""simple docstring""" from math import pi, sqrt, tan def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCamelCase__ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_lowerCamelCase , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCamelCase__ : Dict = (sidea + sidea + sidea) / 2 lowerCamelCase__ : str = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
696
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar A_ : str = TypeVar("T") A_ : Any = TypeVar("U") class a_ ( Generic[T, U] ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = key lowerCamelCase__ : List[Any] = val lowerCamelCase__ : DoubleLinkedListNode[T, U] | None = None lowerCamelCase__ : DoubleLinkedListNode[T, U] | None = None def __repr__(self ): '''simple docstring''' return ( f'''Node: key: {self.key}, val: {self.val}, ''' f'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class a_ ( Generic[T, U] ): '''simple docstring''' def __init__(self ): '''simple docstring''' lowerCamelCase__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase_, lowercase_ ) lowerCamelCase__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase_, lowercase_ ) lowerCamelCase__ : Union[str, Any] = self.rear, self.head def __repr__(self ): '''simple docstring''' lowerCamelCase__ : Dict = ["DoubleLinkedList"] lowerCamelCase__ : Dict = self.head while node.next is not None: rep.append(str(lowercase_ ) ) lowerCamelCase__ : List[str] = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None lowerCamelCase__ : Tuple = node lowerCamelCase__ : str = previous lowerCamelCase__ : Optional[Any] = node lowerCamelCase__ : Any = self.rear def a__ (self, lowerCamelCase_ ): '''simple docstring''' if node.prev is None or node.next is None: return None lowerCamelCase__ : Union[str, Any] = node.next lowerCamelCase__ : Optional[int] = node.prev lowerCamelCase__ : str = None lowerCamelCase__ : int = None return node class a_ ( Generic[T, U] ): '''simple docstring''' lowerCamelCase__ : List[str] = {} def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : DoubleLinkedList[T, U] = DoubleLinkedList() lowerCamelCase__ : List[str] = capacity lowerCamelCase__ : Any = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__(self ): '''simple docstring''' return ( f'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' f'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__(self, lowerCamelCase_ ): '''simple docstring''' return key in self.cache def a__ (self, lowerCamelCase_ ): '''simple docstring''' if key in self.cache: self.hits += 1 lowerCamelCase__ : DoubleLinkedListNode[T, U] = self.cache[key] lowerCamelCase__ : Optional[Any] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase_ ) return node.val self.miss += 1 return None def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity lowerCamelCase__ : Optional[Any] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase_ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 lowerCamelCase__ : Dict = DoubleLinkedListNode(lowercase_, lowercase_ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value lowerCamelCase__ : List[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list lowerCamelCase__ : Optional[Any] = value self.list.add(lowercase_ ) @classmethod def a__ (cls, lowerCamelCase_ = 1_2_8 ): '''simple docstring''' def cache_decorator_inner(lowerCamelCase_ ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase_ ) -> U: if func not in cls.decorator_function_to_instance_map: lowerCamelCase__ : List[str] = LRUCache(lowercase_ ) lowerCamelCase__ : Optional[Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: lowerCamelCase__ : Any = func(*lowercase_ ) cls.decorator_function_to_instance_map[func].put(args[0], lowercase_ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase_, 'cache_info', lowercase_ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
704
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : str = use_input_mask lowerCamelCase__ : Optional[Any] = use_token_type_ids lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : Union[str, Any] = type_sequence_label_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : Union[str, Any] = num_choices lowerCamelCase__ : List[str] = scope lowerCamelCase__ : Dict = vocab_size - 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = self.get_config() return config, input_ids, input_mask, token_labels def a__ (self ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[Any] = True return config, input_ids, input_mask, token_labels def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = GPTNeoXModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = True lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : Optional[Any] = GPTNeoXForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = self.num_labels lowerCamelCase__ : Optional[int] = GPTNeoXForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[Any] = GPTNeoXForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Tuple = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : List[str] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : str = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : List[Any] = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and lowerCamelCase__ : Tuple = torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : Tuple = torch.cat([input_mask, next_mask], dim=-1 ) lowerCamelCase__ : List[str] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, output_hidden_states=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = output_from_no_past['hidden_states'][0] lowerCamelCase__ : Optional[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_, output_hidden_states=lowerCamelCase_, )['hidden_states'][0] # select random slice lowerCamelCase__ : Dict = ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-3 ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = config_and_inputs lowerCamelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : int = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase__ : Dict = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = GPTNeoXModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=6_4, num_attention_heads=8 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def a__ (self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = ids_tensor([1, 1_0], config.vocab_size ) lowerCamelCase__ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Any = GPTNeoXModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() lowerCamelCase__ : List[Any] = original_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Optional[int] = {'type': scaling_type, 'factor': 10.0} lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() lowerCamelCase__ : Tuple = scaled_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: lowerCamelCase__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer('My favorite food is', return_tensors='pt' ).to(lowerCamelCase_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCamelCase__ : Dict = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' lowerCamelCase__ : Dict = model.generate(**lowerCamelCase_, do_sample=lowerCamelCase_, max_new_tokens=2_0 ) lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ )[0] self.assertEqual(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ : Optional[Any] = logging.get_logger(__name__) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : int = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase__ : Tuple = 192 lowerCamelCase__ : Optional[Any] = 768 lowerCamelCase__ : Optional[Any] = 12 lowerCamelCase__ : int = 3 lowerCamelCase__ : Tuple = [800, 1333] lowerCamelCase__ : Union[str, Any] = False elif yolos_name == "yolos_s_dWr": lowerCamelCase__ : Tuple = 330 lowerCamelCase__ : str = 14 lowerCamelCase__ : int = 6 lowerCamelCase__ : Optional[int] = 1320 elif "yolos_s" in yolos_name: lowerCamelCase__ : Union[str, Any] = 384 lowerCamelCase__ : Optional[int] = 1536 lowerCamelCase__ : str = 12 lowerCamelCase__ : Tuple = 6 elif "yolos_b" in yolos_name: lowerCamelCase__ : Union[str, Any] = [800, 1344] lowerCamelCase__ : List[Any] = 91 lowerCamelCase__ : Union[str, Any] = 'huggingface/label-files' lowerCamelCase__ : List[Any] = 'coco-detection-id2label.json' lowerCamelCase__ : str = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ : List[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : List[str] = idalabel lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ : str = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) lowerCamelCase__ : Optional[int] = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Union[str, Any] = in_proj_weight[: config.hidden_size, :] lowerCamelCase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowerCamelCase__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ : Dict = in_proj_weight[-config.hidden_size :, :] lowerCamelCase__ : Union[str, Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( _lowerCamelCase ): if "backbone" in name: lowerCamelCase__ : List[Any] = name.replace('backbone' , 'vit' ) if "cls_token" in name: lowerCamelCase__ : Tuple = name.replace('cls_token' , 'embeddings.cls_token' ) if "det_token" in name: lowerCamelCase__ : Optional[Any] = name.replace('det_token' , 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: lowerCamelCase__ : str = name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' ) if "pos_embed" in name: lowerCamelCase__ : List[Any] = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowerCamelCase__ : Optional[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "blocks" in name: lowerCamelCase__ : Optional[int] = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: lowerCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCamelCase__ : Any = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCamelCase__ : Optional[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCamelCase__ : Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCamelCase__ : List[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCamelCase__ : List[Any] = name.replace('mlp.fc2' , 'output.dense' ) if "class_embed" in name: lowerCamelCase__ : str = name.replace('class_embed' , 'class_labels_classifier' ) if "bbox_embed" in name: lowerCamelCase__ : int = name.replace('bbox_embed' , 'bbox_predictor' ) if "vit.norm" in name: lowerCamelCase__ : int = name.replace('vit.norm' , 'vit.layernorm' ) return name def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): for key in orig_state_dict.copy().keys(): lowerCamelCase__ : str = orig_state_dict.pop(_lowerCamelCase ) if "qkv" in key: lowerCamelCase__ : List[str] = key.split('.' ) lowerCamelCase__ : Optional[int] = int(key_split[2] ) lowerCamelCase__ : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase__ : List[str] = val[:dim, :] lowerCamelCase__ : Union[str, Any] = val[ dim : dim * 2, : ] lowerCamelCase__ : Any = val[-dim:, :] else: lowerCamelCase__ : str = val[:dim] lowerCamelCase__ : Union[str, Any] = val[dim : dim * 2] lowerCamelCase__ : List[Any] = val[-dim:] else: lowerCamelCase__ : int = val return orig_state_dict def lowerCamelCase_ ( ): lowerCamelCase__ : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False ): lowerCamelCase__ : Any = get_yolos_config(_lowerCamelCase ) # load original state_dict lowerCamelCase__ : List[Any] = torch.load(_lowerCamelCase , map_location='cpu' )['model'] # load 🤗 model lowerCamelCase__ : List[str] = YolosForObjectDetection(_lowerCamelCase ) model.eval() lowerCamelCase__ : str = convert_state_dict(_lowerCamelCase , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase__ : Dict = 800 if yolos_name != 'yolos_ti' else 512 lowerCamelCase__ : Any = YolosImageProcessor(format='coco_detection' , size=_lowerCamelCase ) lowerCamelCase__ : List[Any] = image_processor(images=prepare_img() , return_tensors='pt' ) lowerCamelCase__ : Optional[int] = model(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ : Tuple = outputs.logits, outputs.pred_boxes lowerCamelCase__ , lowerCamelCase__ : Any = None, None if yolos_name == "yolos_ti": lowerCamelCase__ : Optional[Any] = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] ) lowerCamelCase__ : Optional[Any] = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase__ : Any = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] ) lowerCamelCase__ : List[str] = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase__ : List[str] = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] ) lowerCamelCase__ : int = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase__ : str = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] ) lowerCamelCase__ : Tuple = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] ) elif yolos_name == "yolos_base": lowerCamelCase__ : Optional[int] = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] ) lowerCamelCase__ : Tuple = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] ) else: raise ValueError(f'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(f'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: lowerCamelCase__ : str = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) lowerCamelCase__ : Union[str, Any] = model_mapping[yolos_name] image_processor.push_to_hub(_lowerCamelCase , organization='hustvl' ) model.push_to_hub(_lowerCamelCase , organization='hustvl' ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) A_ : Any = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
705
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : Dict = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. A_ : List[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A_ : Union[str, Any] = spec.loader.load_module() A_ : int = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A_ : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") A_ : str = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCamelCase__ : Dict = False # source code of `config_class` lowerCamelCase__ : str = inspect.getsource(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = _re_checkpoint.findall(_lowerCamelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCamelCase__ , lowerCamelCase__ : Optional[int] = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase__ : Any = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: lowerCamelCase__ : Any = True break lowerCamelCase__ : Dict = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ : Optional[Any] = '\n'.join(sorted(_lowerCamelCase ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
696
0
"""simple docstring""" from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class a_ ( __lowercase ): '''simple docstring''' def a__ (self ): '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self._create_example_records() lowerCamelCase__ : Optional[int] = Dataset.from_list(lowerCamelCase_ ) self.assertListEqual(dset.column_names, ['col_1', 'col_2'] ) for i, r in enumerate(lowerCamelCase_ ): self.assertDictEqual(lowerCamelCase_, example_records[i] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._create_example_records() lowerCamelCase__ : Dict = Dataset.from_list(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info, dset_from_dict.info ) def a__ (self ): # checks what happens with missing columns '''simple docstring''' lowerCamelCase__ : List[Any] = [{"col_1": 1}, {"col_2": "x"}] lowerCamelCase__ : int = Dataset.from_list(lowerCamelCase_ ) self.assertDictEqual(dset[0], {'col_1': 1} ) self.assertDictEqual(dset[1], {'col_1': None} ) # NB: first record is used for columns def a__ (self ): # checks if the type can be inferred from the second record '''simple docstring''' lowerCamelCase__ : int = [{"col_1": []}, {"col_1": [1, 2]}] lowerCamelCase__ : Any = Dataset.from_list(lowerCamelCase_ ) self.assertEqual(dset.info.features['col_1'], Sequence(Value('int64' ) ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = Dataset.from_list([] ) self.assertEqual(len(lowerCamelCase_ ), 0 ) self.assertListEqual(dset.column_names, [] )
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
0
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 A_ : Optional[int] = get_tests_dir("fixtures") class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : Dict = 5_0_0 lowerCamelCase__ : int = {} lowerCamelCase__ : Dict = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Optional[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=__UpperCamelCase ) as mock_head: lowerCamelCase__ : Optional[int] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def a__ (self ): '''simple docstring''' with self.assertRaises(__UpperCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Any = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) lowerCamelCase__ : int = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' ) self.assertIsNotNone(__UpperCamelCase ) @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Dict = TOKEN HfFolder.save_token(__UpperCamelCase ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = ViTImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub('test-image-processor', use_auth_token=self._token ) lowerCamelCase__ : Union[str, Any] = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase, getattr(__UpperCamelCase, __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token, repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __UpperCamelCase, repo_id='test-image-processor', push_to_hub=__UpperCamelCase, use_auth_token=self._token ) lowerCamelCase__ : Any = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase, getattr(__UpperCamelCase, __UpperCamelCase ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = ViTImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token ) lowerCamelCase__ : List[str] = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase, getattr(__UpperCamelCase, __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __UpperCamelCase, repo_id='valid_org/test-image-processor-org', push_to_hub=__UpperCamelCase, use_auth_token=self._token ) lowerCamelCase__ : Union[str, Any] = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase, getattr(__UpperCamelCase, __UpperCamelCase ) ) def a__ (self ): '''simple docstring''' CustomImageProcessor.register_for_auto_class() lowerCamelCase__ : Any = CustomImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, ) lowerCamelCase__ : Dict = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''', trust_remote_code=__UpperCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
707
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A_ : Optional[int] = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A_ : List[str] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) A_ : Tuple = BeautifulSoup(res.text, "html.parser") A_ : Dict = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f"https://google.com{link.get('href')}")
696
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : int = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class a_ ( A_ ): '''simple docstring''' lowerCamelCase__ : Any = '''nllb-moe''' lowerCamelCase__ : Tuple = ['''past_key_values'''] lowerCamelCase__ : Any = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__(self, lowerCamelCase_=1_2_8_1_1_2, lowerCamelCase_=1_0_2_4, lowerCamelCase_=1_2, lowerCamelCase_=4_0_9_6, lowerCamelCase_=1_6, lowerCamelCase_=1_2, lowerCamelCase_=4_0_9_6, lowerCamelCase_=1_6, lowerCamelCase_=0.05, lowerCamelCase_=0.05, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_="relu", lowerCamelCase_=1_0_2_4, lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=0.0, lowerCamelCase_=0.02, lowerCamelCase_=2, lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_="float32", lowerCamelCase_=False, lowerCamelCase_=1_2_8, lowerCamelCase_=6_4, lowerCamelCase_=4, lowerCamelCase_=4, lowerCamelCase_=0.001, lowerCamelCase_=0.001, lowerCamelCase_="all", lowerCamelCase_=False, lowerCamelCase_=False, lowerCamelCase_=1.0, lowerCamelCase_=0.2, lowerCamelCase_=1, lowerCamelCase_=0, lowerCamelCase_=2, lowerCamelCase_=False, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : int = max_position_embeddings lowerCamelCase__ : str = d_model lowerCamelCase__ : Optional[int] = encoder_ffn_dim lowerCamelCase__ : Union[str, Any] = encoder_layers lowerCamelCase__ : List[Any] = encoder_attention_heads lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim lowerCamelCase__ : Optional[Any] = decoder_layers lowerCamelCase__ : List[Any] = decoder_attention_heads lowerCamelCase__ : Dict = dropout lowerCamelCase__ : Optional[int] = attention_dropout lowerCamelCase__ : Optional[int] = activation_dropout lowerCamelCase__ : Optional[Any] = activation_function lowerCamelCase__ : int = init_std lowerCamelCase__ : str = encoder_layerdrop lowerCamelCase__ : Dict = decoder_layerdrop lowerCamelCase__ : List[Any] = use_cache lowerCamelCase__ : Dict = encoder_layers lowerCamelCase__ : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase__ : Optional[Any] = router_z_loss_coef lowerCamelCase__ : Tuple = router_aux_loss_coef lowerCamelCase__ : Optional[int] = decoder_sparse_step lowerCamelCase__ : Optional[Any] = encoder_sparse_step lowerCamelCase__ : Union[str, Any] = num_experts lowerCamelCase__ : int = expert_capacity lowerCamelCase__ : Tuple = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) lowerCamelCase__ : List[str] = router_dtype lowerCamelCase__ : str = router_ignore_padding_tokens lowerCamelCase__ : int = batch_prioritized_routing lowerCamelCase__ : List[Any] = second_expert_policy lowerCamelCase__ : Dict = normalize_router_prob_before_dropping lowerCamelCase__ : Any = moe_eval_capacity_token_fraction lowerCamelCase__ : Optional[Any] = moe_token_dropout lowerCamelCase__ : Dict = output_router_logits super().__init__( pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, is_encoder_decoder=lowerCamelCase_, decoder_start_token_id=lowerCamelCase_, **lowerCamelCase_, )
708
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCamelCase__ : Tuple = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_, cache_dir=lowerCamelCase_ ) lowerCamelCase__ : List[str] = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_, os.listdir(lowerCamelCase_ )[0], 'snapshots' ) )] lowerCamelCase__ : Optional[int] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[int] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Any = 4 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : List[Any] = num_samples * [prompt] lowerCamelCase__ : Optional[int] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : int = replicate(lowerCamelCase_ ) lowerCamelCase__ : Any = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : int = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1_514_745 ) < 1e-3 assert np.abs(np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 49_947.875 ) < 5e-1 lowerCamelCase__ : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase_ ) == num_samples def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='flax', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : int = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[str] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : List[str] = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = shard(lowerCamelCase_ ) lowerCamelCase__ : str = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05_652_401) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_383_808.2) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Union[str, Any] = 5_0 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : Tuple = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Any = replicate(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa ) lowerCamelCase__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Union[str, Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] = 5_0 lowerCamelCase__ : Tuple = jax.device_count() lowerCamelCase__ : Optional[int] = num_samples * [prompt] lowerCamelCase__ : str = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Optional[int] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : List[str] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = FlaxDDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', set_alpha_to_one=lowerCamelCase_, steps_offset=1, ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, scheduler=lowerCamelCase_, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : List[str] = scheduler.create_state() lowerCamelCase__ : int = scheduler_state lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : Optional[Any] = jax.device_count() lowerCamelCase__ : Any = num_samples * [prompt] lowerCamelCase__ : Any = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Dict = shard(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045_043_945) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_347_693.5) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : int = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : str = jax.random.split(jax.random.PRNGKey(0 ), lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Dict = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Tuple = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : int = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention lowerCamelCase__ , lowerCamelCase__ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, use_memory_efficient_attention=lowerCamelCase_, ) lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : Any = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Any = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
696
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = [ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys A_ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
709
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = 1_0_0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = True, ): '''simple docstring''' if audio_length_in_s is None: lowerCamelCase__ : str = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase__ : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase__ : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCamelCase__ : Dict = int(lowerCamelCase_ ) if sample_size % down_scale_factor != 0: lowerCamelCase__ : Union[str, Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ' process.' ) lowerCamelCase__ : Optional[Any] = int(lowerCamelCase_ ) lowerCamelCase__ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase__ : Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase_, lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ : Union[str, Any] = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_, device=self.device, dtype=lowerCamelCase_ ) # set step values self.scheduler.set_timesteps(lowerCamelCase_, device=audio.device ) lowerCamelCase__ : int = self.scheduler.timesteps.to(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase__ : List[Any] = self.unet(lowerCamelCase_, lowerCamelCase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase__ : List[str] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample lowerCamelCase__ : Union[str, Any] = audio.clamp(-1, 1 ).float().cpu().numpy() lowerCamelCase__ : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase_ )
696
0
"""simple docstring""" from manim import * class a_ ( a__ ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = Rectangle(height=0.5, width=0.5 ) lowerCamelCase__ : Any = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0 ) lowerCamelCase__ : List[str] = [mem.copy() for i in range(6 )] lowerCamelCase__ : Optional[int] = [mem.copy() for i in range(6 )] lowerCamelCase__ : str = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_, buff=0 ) lowerCamelCase__ : Dict = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_, buff=0 ) lowerCamelCase__ : Union[str, Any] = VGroup(lowerCamelCase_, lowerCamelCase_ ).arrange(lowerCamelCase_, buff=0 ) lowerCamelCase__ : Dict = Text('CPU', font_size=2_4 ) lowerCamelCase__ : Optional[int] = Group(lowerCamelCase_, lowerCamelCase_ ).arrange(lowerCamelCase_, buff=0.5, aligned_edge=lowerCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = [mem.copy() for i in range(1 )] lowerCamelCase__ : int = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_, buff=0 ) lowerCamelCase__ : List[str] = Text('GPU', font_size=2_4 ) lowerCamelCase__ : Dict = Group(lowerCamelCase_, lowerCamelCase_ ).arrange(lowerCamelCase_, buff=0.5, aligned_edge=lowerCamelCase_ ) gpu.align_to(lowerCamelCase_, lowerCamelCase_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase_ ) lowerCamelCase__ : Any = [mem.copy() for i in range(6 )] lowerCamelCase__ : int = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_, buff=0 ) lowerCamelCase__ : Dict = Text('Model', font_size=2_4 ) lowerCamelCase__ : Union[str, Any] = Group(lowerCamelCase_, lowerCamelCase_ ).arrange(lowerCamelCase_, buff=0.5, aligned_edge=lowerCamelCase_ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase_, run_time=1 ), Create(lowerCamelCase_, run_time=1 ), Create(lowerCamelCase_, run_time=1 ), ) lowerCamelCase__ : List[Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''', font_size=2_4, ) lowerCamelCase__ : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase__ : List[str] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''', font_size=1_8, ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_, run_time=2.5 ), Write(lowerCamelCase_ ), Write(lowerCamelCase_ ) ) self.add(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : int = [] lowerCamelCase__ : int = [] for i, rect in enumerate(lowerCamelCase_ ): lowerCamelCase__ : List[str] = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_, opacity=0.7 ) cpu_target.move_to(lowerCamelCase_ ) cpu_target.generate_target() lowerCamelCase__ : Any = 0.46 / 4 lowerCamelCase__ : Tuple = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ), buff=0.02, direction=lowerCamelCase_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target, direction=lowerCamelCase_, buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target, direction=lowerCamelCase_, buff=0.0 ) cpu_targs.append(lowerCamelCase_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase_ ) ) second_animations.append(MoveToTarget(lowerCamelCase_, run_time=1.5 ) ) self.play(*lowerCamelCase_ ) self.play(*lowerCamelCase_ ) self.wait()
710
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(lowerCamelCase_ ) ) vocab_file.flush() lowerCamelCase__ : Tuple = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCamelCase__ : Optional[Any] = BertModel(BertConfig(vocab_size=len(lowerCamelCase_ ) ) ) model.save_pretrained(lowerCamelCase_ ) self._test_export(lowerCamelCase_, 'pt', 1_2, lowerCamelCase_ ) @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Optional[Any] = self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Any = quantize(Path(lowerCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Any = self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = quantize(lowerCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowerCamelCase__ : str = Path(lowerCamelCase_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ) return path except Exception as e: self.fail(lowerCamelCase_ ) @require_torch @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : str = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'pt' ) @require_tf @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import TFBertModel lowerCamelCase__ : Dict = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Optional[int] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'tf' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = FeatureExtractionPipeline(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = infer_shapes(lowerCamelCase_, lowerCamelCase_ ) # Assert all variables are present self.assertEqual(len(lowerCamelCase_ ), len(lowerCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3], lowerCamelCase_ ) self.assertSequenceEqual(variable_names[3:], lowerCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name], {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'], {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'], {0: 'batch'} ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['input_ids', 'attention_mask', 'token_type_ids'] lowerCamelCase__ : Optional[int] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowerCamelCase__ , lowerCamelCase__ : str = ensure_valid_input(FuncContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase_ ), 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase_ ), set(lowerCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase_, (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCamelCase__ , lowerCamelCase__ : Any = ensure_valid_input(FuncNonContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase_ ), 1 ) self.assertEqual(len(lowerCamelCase_ ), 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0], tokens['input_ids'] ) self.assertEqual(ordered_input_names[0], 'input_ids' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ), '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx', generated.as_posix() )
696
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : int = logging.get_logger(__name__) A_ : Tuple = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class a_ ( lowercase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = '''dpr''' def __init__(self, lowerCamelCase_=3_0_5_2_2, lowerCamelCase_=7_6_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=3_0_7_2, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=1e-12, lowerCamelCase_=0, lowerCamelCase_="absolute", lowerCamelCase_ = 0, **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__, **UpperCamelCase__ ) lowerCamelCase__ : List[str] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[str] = num_attention_heads lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : str = layer_norm_eps lowerCamelCase__ : List[Any] = projection_dim lowerCamelCase__ : Optional[Any] = position_embedding_type
711
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase__ : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : str = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ : Any = False @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return self.time_input_dim @property def a__ (self ): '''simple docstring''' return self.time_input_dim * 4 @property def a__ (self ): '''simple docstring''' return 1_0_0 @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase__ : int = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def a__ (self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.dummy_unet lowerCamelCase__ : List[Any] = self.dummy_movq lowerCamelCase__ : Tuple = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase__ : Optional[Any] = DDIMScheduler(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image lowerCamelCase__ : Any = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase__ : Optional[Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint lowerCamelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : int = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = 'cpu' lowerCamelCase__ : List[Any] = self.get_dummy_components() lowerCamelCase__ : List[Any] = self.pipeline_class(**lowerCamelCase_ ) lowerCamelCase__ : Dict = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : str = pipe( **self.get_dummy_inputs(lowerCamelCase_ ), return_dict=lowerCamelCase_, )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : List[str] = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase__ : Any = init_image.resize((5_1_2, 5_1_2) ) lowerCamelCase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase__ : Any = torch.from_numpy(np.array(lowerCamelCase_ ) ).float() / 255.0 lowerCamelCase__ : Optional[int] = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowerCamelCase__ : Union[str, Any] = 'A robot, 4k photo' lowerCamelCase__ : Any = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth', torch_dtype=torch.floataa ) lowerCamelCase__ : int = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = pipe_prior( lowerCamelCase_, image=lowerCamelCase_, strength=0.85, generator=lowerCamelCase_, negative_prompt='', ).to_tuple() lowerCamelCase__ : Union[str, Any] = pipeline( image=lowerCamelCase_, image_embeds=lowerCamelCase_, negative_image_embeds=lowerCamelCase_, hint=lowerCamelCase_, generator=lowerCamelCase_, num_inference_steps=1_0_0, height=5_1_2, width=5_1_2, strength=0.5, output_type='np', ) lowerCamelCase__ : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version A_ : List[Any] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") A_ : Any = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization A_ : List[Any] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } A_ : List[Any] = sorted(arg_to_scheduler.keys()) A_ : List[Any] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class a_ ( pl.LightningModule ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_="base", lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowerCAmelCase_ ) lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : str = Path(self.hparams.output_dir ) lowerCamelCase__ : List[str] = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: lowerCamelCase__ : List[str] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path, **({'num_labels': num_labels} if num_labels is not None else {}), cache_dir=lowerCAmelCase_, **lowerCAmelCase_, ) else: lowerCamelCase__ : Optional[Any] = config lowerCamelCase__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams, lowerCAmelCase_, lowerCAmelCase_ ): assert hasattr(self.config, lowerCAmelCase_ ), f'''model config doesn\'t have a `{p}` attribute''' setattr(self.config, lowerCAmelCase_, getattr(self.hparams, lowerCAmelCase_ ) ) if tokenizer is None: lowerCamelCase__ : Optional[int] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path, cache_dir=lowerCAmelCase_, ) else: lowerCamelCase__ : List[Any] = tokenizer lowerCamelCase__ : Dict = MODEL_MODES[mode] if model is None: lowerCamelCase__ : List[str] = self.model_type.from_pretrained( self.hparams.model_name_or_path, from_tf=bool('.ckpt' in self.hparams.model_name_or_path ), config=self.config, cache_dir=lowerCAmelCase_, ) else: lowerCamelCase__ : Tuple = model def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.model_type.from_pretrained(*lowerCAmelCase_, **lowerCAmelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = arg_to_scheduler[self.hparams.lr_scheduler] lowerCamelCase__ : Dict = get_schedule_func( self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=self.total_steps() ) lowerCamelCase__ : Dict = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model lowerCamelCase__ : Union[str, Any] = ['bias', 'LayerNorm.weight'] lowerCamelCase__ : Dict = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: lowerCamelCase__ : Optional[Any] = Adafactor( lowerCAmelCase_, lr=self.hparams.learning_rate, scale_parameter=lowerCAmelCase_, relative_step=lowerCAmelCase_ ) else: lowerCamelCase__ : Optional[Any] = AdamW( lowerCAmelCase_, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon ) lowerCamelCase__ : Tuple = optimizer lowerCamelCase__ : Optional[int] = self.get_lr_scheduler() return [optimizer], [scheduler] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return self.validation_step(lowerCAmelCase_, lowerCAmelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.validation_end(lowerCAmelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = max(1, self.hparams.gpus ) # TODO: consider num_tpu_cores lowerCamelCase__ : Any = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def a__ (self, lowerCamelCase_ ): '''simple docstring''' if stage == "test": lowerCamelCase__ : Optional[Any] = len(self.test_dataloader().dataset ) else: lowerCamelCase__ : Optional[int] = self.get_dataloader('train', self.hparams.train_batch_size, shuffle=lowerCAmelCase_ ) lowerCamelCase__ : Optional[int] = len(self.train_dataloader().dataset ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = False ): '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def a__ (self ): '''simple docstring''' return self.train_loader def a__ (self ): '''simple docstring''' return self.get_dataloader('dev', self.hparams.eval_batch_size, shuffle=lowerCAmelCase_ ) def a__ (self ): '''simple docstring''' return self.get_dataloader('test', self.hparams.eval_batch_size, shuffle=lowerCAmelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return os.path.join( self.hparams.data_dir, 'cached_{}_{}_{}'.format( lowerCAmelCase_, list(filter(lowerCAmelCase_, self.hparams.model_name_or_path.split('/' ) ) ).pop(), str(self.hparams.max_seq_length ), ), ) @pl.utilities.rank_zero_only def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.output_dir.joinpath('best_tfmr' ) lowerCamelCase__ : List[Any] = self.step_count self.model.save_pretrained(lowerCAmelCase_ ) self.tokenizer.save_pretrained(lowerCAmelCase_ ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' parser.add_argument( '--model_name_or_path', default=lowerCAmelCase_, type=lowerCAmelCase_, required=lowerCAmelCase_, help='Path to pretrained model or model identifier from huggingface.co/models', ) parser.add_argument( '--config_name', default='', type=lowerCAmelCase_, help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name', default=lowerCAmelCase_, type=lowerCAmelCase_, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--cache_dir', default=str(Path(lowerCAmelCase_ ).parent / 'test_run' / 'cache' ), type=lowerCAmelCase_, help='Where do you want to store the pre-trained models downloaded from huggingface.co', ) parser.add_argument( '--encoder_layerdrop', type=lowerCAmelCase_, help='Encoder layer dropout probability (Optional). Goes into model.config', ) parser.add_argument( '--decoder_layerdrop', type=lowerCAmelCase_, help='Decoder layer dropout probability (Optional). Goes into model.config', ) parser.add_argument( '--dropout', type=lowerCAmelCase_, help='Dropout probability (Optional). Goes into model.config', ) parser.add_argument( '--attention_dropout', type=lowerCAmelCase_, help='Attention dropout probability (Optional). Goes into model.config', ) parser.add_argument('--learning_rate', default=5e-5, type=lowerCAmelCase_, help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler', default='linear', choices=lowerCAmelCase_, metavar=lowerCAmelCase_, type=lowerCAmelCase_, help='Learning rate scheduler', ) parser.add_argument('--weight_decay', default=0.0, type=lowerCAmelCase_, help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon', default=1e-8, type=lowerCAmelCase_, help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps', default=0, type=lowerCAmelCase_, help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers', default=4, type=lowerCAmelCase_, help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs', dest='max_epochs', default=3, type=lowerCAmelCase_ ) parser.add_argument('--train_batch_size', default=3_2, type=lowerCAmelCase_ ) parser.add_argument('--eval_batch_size', default=3_2, type=lowerCAmelCase_ ) parser.add_argument('--adafactor', action='store_true' ) class a_ ( pl.Callback ): '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class a_ ( pl.Callback ): '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowerCAmelCase_ ) class a_ ( pl.Callback ): '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = trainer.lr_schedulers[0]['scheduler'] lowerCamelCase__ : Optional[int] = {f'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowerCAmelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' rank_zero_info('***** Validation results *****' ) lowerCamelCase__ : List[str] = trainer.callback_metrics # Log results for key in sorted(lowerCAmelCase_ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(lowerCAmelCase_, str(metrics[key] ) ) ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' rank_zero_info('***** Test results *****' ) lowerCamelCase__ : List[Any] = trainer.callback_metrics # Log and save results to file lowerCamelCase__ : List[Any] = os.path.join(pl_module.hparams.output_dir, 'test_results.txt' ) with open(lowerCAmelCase_, 'w' ) as writer: for key in sorted(lowerCAmelCase_ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(lowerCAmelCase_, str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(lowerCAmelCase_, str(metrics[key] ) ) ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): parser.add_argument( '--output_dir' , default=str(Path(__lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=__lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=__lowerCAmelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=__lowerCAmelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=__lowerCAmelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=__lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(__lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=__lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[] , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ): pl.seed_everything(args.seed ) # init model lowerCamelCase__ : Tuple = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=__lowerCAmelCase ) # add custom checkpoints if checkpoint_callback is None: lowerCamelCase__ : int = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(__lowerCAmelCase ) if logging_callback is None: lowerCamelCase__ : List[Any] = LoggingCallback() lowerCamelCase__ : List[str] = {} if args.fpaa: lowerCamelCase__ : List[str] = 16 if args.gpus > 1: lowerCamelCase__ : Dict = 'auto' lowerCamelCase__ : Any = 'ddp' lowerCamelCase__ : List[Any] = args.accumulate_grad_batches lowerCamelCase__ : List[str] = None lowerCamelCase__ : Any = 'auto' lowerCamelCase__ : Any = pl.Trainer.from_argparse_args( __lowerCAmelCase , weights_summary=__lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=__lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **__lowerCAmelCase , ) if args.do_train: trainer.fit(__lowerCAmelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
712
"""simple docstring""" A_ : List[str] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
696
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Dict = len(a_ ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase__ : Optional[int] = 0 print(a_ , end=',' ) # Consider rest of the activities for j in range(a_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(a_ , end=',' ) lowerCamelCase__ : Optional[Any] = j if __name__ == "__main__": import doctest doctest.testmod() A_ : List[str] = [1, 3, 0, 5, 8, 5] A_ : Optional[int] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
713
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 A_ : Optional[int] = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ = 1_4 ): '''simple docstring''' if group not in primes: raise ValueError('Unsupported Group' ) lowerCamelCase__ : int = primes[group]['prime'] lowerCamelCase__ : Optional[int] = primes[group]['generator'] lowerCamelCase__ : Any = int(hexlify(urandom(3_2 ) ), base=1_6 ) def a__ (self ): '''simple docstring''' return hex(self.__private_key )[2:] def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = pow(self.generator, self.__private_key, self.prime ) return hex(lowerCamelCase_ )[2:] def a__ (self, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase_, (self.prime - 1) // 2, self.prime ) == 1 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = int(lowerCamelCase_, base=1_6 ) if not self.is_valid_public_key(lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Tuple = pow(lowerCamelCase_, self.__private_key, self.prime ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase_, (prime - 1) // 2, lowerCamelCase_ ) == 1 ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 1_4 ): '''simple docstring''' lowerCamelCase__ : Dict = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[Any] = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[str] = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase_, lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Dict = pow(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
696
0
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' lowerCamelCase__ : Dict = {} # Mapping from char to TrieNode lowerCamelCase__ : int = False def a__ (self, lowerCamelCase_ ): '''simple docstring''' for word in words: self.insert(_A ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self for char in word: if char not in curr.nodes: lowerCamelCase__ : Any = TrieNode() lowerCamelCase__ : int = curr.nodes[char] lowerCamelCase__ : int = True def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self for char in word: if char not in curr.nodes: return False lowerCamelCase__ : Optional[Any] = curr.nodes[char] return curr.is_leaf def a__ (self, lowerCamelCase_ ): '''simple docstring''' def _delete(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) -> bool: if index == len(_A ): # If word does not exist if not curr.is_leaf: return False lowerCamelCase__ : Dict = False return len(curr.nodes ) == 0 lowerCamelCase__ : Union[str, Any] = word[index] lowerCamelCase__ : str = curr.nodes.get(_A ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted lowerCamelCase__ : Any = _delete(_A, _A, index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self, _A, 0 ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if node.is_leaf: print(UpperCAmelCase__ , end=' ' ) for key, value in node.nodes.items(): print_words(UpperCAmelCase__ , word + key ) def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = 'banana bananas bandana band apple all beast'.split() lowerCamelCase__ : Any = TrieNode() root.insert_many(UpperCAmelCase__ ) # print_words(root, "") assert all(root.find(UpperCAmelCase__ ) for word in words ) assert root.find('banana' ) assert not root.find('bandanas' ) assert not root.find('apps' ) assert root.find('apple' ) assert root.find('all' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): print(str(UpperCAmelCase__ ) , 'works!' if passes else 'doesn\'t work :(' ) def lowerCamelCase_ ( ): assert test_trie() def lowerCamelCase_ ( ): print_results('Testing trie functionality' , test_trie() ) if __name__ == "__main__": main()
714
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_lowerCamelCase ) * abs(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
696
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return 1 if input_a == input_a else 0 def lowerCamelCase_ ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
715
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : int = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : Optional[int] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : str = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : Optional[int] = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Tuple = c.n_embd + 1 # int lowerCamelCase__ : Union[str, Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : List[Any] = not c.scale_attn_weights # bool lowerCamelCase__ : List[Any] = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = PretrainedConfig() lowerCamelCase__ : Optional[Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : Any = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : int = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = mock.Mock() lowerCamelCase__ : List[str] = 5_0_0 lowerCamelCase__ : Any = {} lowerCamelCase__ : int = HTTPError lowerCamelCase__ : Optional[Any] = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : str = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : str = ['config.42.0.0.json'] lowerCamelCase__ : Union[str, Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Optional[int] = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Dict = 'v3.0.0' lowerCamelCase__ : List[str] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
696
0
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a_ : '''simple docstring''' @staticmethod def a__ (*lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' pass @is_pipeline_test @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification', ) lowerCamelCase__ : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase__ : Optional[int] = image_classifier(lowerCamelCase_, candidate_labels=['a', 'b', 'c'] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowerCamelCase_ ), [ [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}], [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'c'}, {'score': 0.333, 'label': 'b'}], ], ) lowerCamelCase__ : int = image_classifier([image] * 5, candidate_labels=['A', 'B', 'C'], batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ ), [ [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], ], ) @require_tf def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification', framework='tf' ) lowerCamelCase__ : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase__ : List[Any] = image_classifier(lowerCamelCase_, candidate_labels=['a', 'b', 'c'] ) self.assertEqual( nested_simplify(lowerCamelCase_ ), [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}], ) lowerCamelCase__ : Any = image_classifier([image] * 5, candidate_labels=['A', 'B', 'C'], batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ ), [ [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], ], ) @slow @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = pipeline( task='zero-shot-image-classification', model='openai/clip-vit-base-patch32', ) # This is an image of 2 cats with remotes and no planes lowerCamelCase__ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase__ : Tuple = image_classifier(lowerCamelCase_, candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(lowerCamelCase_ ), [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ) lowerCamelCase__ : Optional[int] = image_classifier([image] * 5, candidate_labels=['cat', 'plane', 'remote'], batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ ), [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5, ) @slow @require_tf def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = pipeline( task='zero-shot-image-classification', model='openai/clip-vit-base-patch32', framework='tf' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase__ : Optional[int] = image_classifier(lowerCamelCase_, candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(lowerCamelCase_ ), [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ) lowerCamelCase__ : Optional[int] = image_classifier([image] * 5, candidate_labels=['cat', 'plane', 'remote'], batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ ), [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5, )
716
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' super().__init__() lowerCamelCase__ : Dict = value_function lowerCamelCase__ : int = unet lowerCamelCase__ : Union[str, Any] = scheduler lowerCamelCase__ : int = env lowerCamelCase__ : List[Any] = env.get_dataset() lowerCamelCase__ : Dict = {} for key in self.data.keys(): try: lowerCamelCase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowerCamelCase__ : Optional[int] = {} for key in self.data.keys(): try: lowerCamelCase__ : Tuple = self.data[key].std() except: # noqa: E722 pass lowerCamelCase__ : Optional[Any] = env.observation_space.shape[0] lowerCamelCase__ : List[str] = env.action_space.shape[0] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def a__ (self, lowerCamelCase_ ): '''simple docstring''' if type(lowerCamelCase_ ) is dict: return {k: self.to_torch(lowerCamelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase_, device=self.unet.device ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for key, val in cond.items(): lowerCamelCase__ : Optional[Any] = val.clone() return x_in def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = x.shape[0] lowerCamelCase__ : Tuple = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCamelCase__ : Dict = torch.full((batch_size,), lowerCamelCase_, device=self.unet.device, dtype=torch.long ) for _ in range(lowerCamelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCamelCase__ : str = self.value_function(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample lowerCamelCase__ : Union[str, Any] = torch.autograd.grad([y.sum()], [x] )[0] lowerCamelCase__ : Optional[int] = self.scheduler._get_variance(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = torch.exp(0.5 * posterior_variance ) lowerCamelCase__ : Tuple = model_std * grad lowerCamelCase__ : str = 0 lowerCamelCase__ : Dict = x.detach() lowerCamelCase__ : Dict = x + scale * grad lowerCamelCase__ : Optional[int] = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : Tuple = self.unet(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample.permute(0, 2, 1 ) # TODO: verify deprecation of this kwarg lowerCamelCase__ : Optional[Any] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, predict_epsilon=lowerCamelCase_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowerCamelCase__ : Any = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) return x, y def __call__(self, lowerCamelCase_, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=0.1 ): '''simple docstring''' lowerCamelCase__ : Dict = self.normalize(lowerCamelCase_, 'observations' ) lowerCamelCase__ : List[str] = obs[None].repeat(lowerCamelCase_, axis=0 ) lowerCamelCase__ : str = {0: self.to_torch(lowerCamelCase_ )} lowerCamelCase__ : Optional[Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCamelCase__ : List[Any] = randn_tensor(lowerCamelCase_, device=self.unet.device ) lowerCamelCase__ : int = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) # run the diffusion process lowerCamelCase__ , lowerCamelCase__ : List[str] = self.run_diffusion(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # sort output trajectories by value lowerCamelCase__ : Union[str, Any] = y.argsort(0, descending=lowerCamelCase_ ).squeeze() lowerCamelCase__ : List[str] = x[sorted_idx] lowerCamelCase__ : Optional[Any] = sorted_values[:, :, : self.action_dim] lowerCamelCase__ : Union[str, Any] = actions.detach().cpu().numpy() lowerCamelCase__ : Union[str, Any] = self.de_normalize(lowerCamelCase_, key='actions' ) # select the action with the highest value if y is not None: lowerCamelCase__ : str = 0 else: # if we didn't run value guiding, select a random action lowerCamelCase__ : Optional[Any] = np.random.randint(0, lowerCamelCase_ ) lowerCamelCase__ : Tuple = denorm_actions[selected_index, 0] return denorm_actions
696
0
"""simple docstring""" from __future__ import annotations import typing from collections import Counter def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Dict = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(_lowerCamelCase , max_perimeter + 1 ): lowerCamelCase__ : Any = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(_lowerCamelCase ): lowerCamelCase__ : Dict = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCamelCase_ ( _lowerCamelCase = 1000 ): lowerCamelCase__ : int = pythagorean_triple(_lowerCamelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"Perimeter {solution()} has maximum solutions")
717
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : List[str] = analyze_text(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. lowerCamelCase__ : List[Any] = sum(single_char_strings.values() ) # one length string lowerCamelCase__ : str = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCamelCase__ : Tuple = single_char_strings[ch] lowerCamelCase__ : Union[str, Any] = my_str / all_sum my_fir_sum += prob * math.loga(_lowerCamelCase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string lowerCamelCase__ : Dict = sum(two_char_strings.values() ) lowerCamelCase__ : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCamelCase__ : int = cha + cha if sequence in two_char_strings: lowerCamelCase__ : int = two_char_strings[sequence] lowerCamelCase__ : Tuple = int(_lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(_lowerCamelCase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = Counter() # type: ignore lowerCamelCase__ : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase_ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
696
0
"""simple docstring""" from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = k_size // 2 lowerCamelCase__ : Union[str, Any] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] lowerCamelCase__ : Tuple = 1 / (2 * pi * sigma) * exp(-(square(_lowerCamelCase ) + square(_lowerCamelCase )) / (2 * square(_lowerCamelCase )) ) return g def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Dict = image.shape[0], image.shape[1] # dst image height and width lowerCamelCase__ : Dict = height - k_size + 1 lowerCamelCase__ : str = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows lowerCamelCase__ : Any = zeros((dst_height * dst_width, k_size * k_size) ) lowerCamelCase__ : Dict = 0 for i, j in product(range(_lowerCamelCase ) , range(_lowerCamelCase ) ): lowerCamelCase__ : List[Any] = ravel(image[i : i + k_size, j : j + k_size] ) lowerCamelCase__ : Optional[int] = window row += 1 # turn the kernel into shape(k*k, 1) lowerCamelCase__ : Optional[Any] = gen_gaussian_kernel(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = ravel(_lowerCamelCase ) # reshape and get the dst image lowerCamelCase__ : List[Any] = dot(_lowerCamelCase , _lowerCamelCase ).reshape(_lowerCamelCase , _lowerCamelCase ).astype(_lowerCamelCase ) return dst if __name__ == "__main__": # read original image A_ : Optional[Any] = imread(r"../image_data/lena.jpg") # turn image in gray scale value A_ : Dict = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size A_ : List[Any] = gaussian_filter(gray, 3, sigma=1) A_ : Any = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
718
"""simple docstring""" import os def lowerCamelCase_ ( ): with open(os.path.dirname(_lowerCamelCase ) + '/p022_names.txt' ) as file: lowerCamelCase__ : Union[str, Any] = str(file.readlines()[0] ) lowerCamelCase__ : int = names.replace('"' , '' ).split(',' ) names.sort() lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : str = 0 for i, name in enumerate(_lowerCamelCase ): for letter in name: name_score += ord(_lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowerCamelCase__ : Dict = 0 return total_score if __name__ == "__main__": print(solution())
696
0
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A_ : Optional[Any] = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Dict = os.path.abspath(os.path.join('examples', 'by_feature' ) ) lowerCamelCase__ : List[Any] = os.path.abspath('examples' ) for item in os.listdir(lowerCamelCase_ ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase__ : Tuple = os.path.join(lowerCamelCase_, lowerCamelCase_ ) if os.path.isfile(lowerCamelCase_ ) and ".py" in item_path: with self.subTest( tested_script=lowerCamelCase_, feature_script=lowerCamelCase_, tested_section='main()' if parser_only else 'training_function()', ): lowerCamelCase__ : List[Any] = compare_against_test( os.path.join(lowerCamelCase_, lowerCamelCase_ ), lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : str = '''\n'''.join(lowerCamelCase_ ) if special_strings is not None: for string in special_strings: lowerCamelCase__ : Union[str, Any] = diff.replace(lowerCamelCase_, '' ) self.assertEqual(lowerCamelCase_, '' ) def a__ (self ): '''simple docstring''' self.one_complete_example('complete_nlp_example.py', lowerCamelCase_ ) self.one_complete_example('complete_nlp_example.py', lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = os.path.abspath(os.path.join('examples', 'cv_example.py' ) ) lowerCamelCase__ : Dict = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('complete_cv_example.py', lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) self.one_complete_example('complete_cv_example.py', lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class a_ ( UpperCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = False @classmethod def a__ (cls ): '''simple docstring''' super().setUpClass() lowerCamelCase__ : List[Any] = tempfile.mkdtemp() lowerCamelCase__ : Tuple = os.path.join(cls._tmpdir, 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase__ : Dict = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def a__ (cls ): '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = f'''\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir, 'epoch_0' ) ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = f'''\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '''.split() lowerCamelCase__ : List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir, 'step_2' ) ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = f'''\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir, 'epoch_0' )}\n '''.split() lowerCamelCase__ : Dict = run_command(self._launch_args + testargs, return_stdout=lowerCamelCase_ ) self.assertNotIn('epoch 0:', lowerCamelCase_ ) self.assertIn('epoch 1:', lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = f'''\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir, 'step_2' )}\n '''.split() lowerCamelCase__ : Dict = run_command(self._launch_args + testargs, return_stdout=lowerCamelCase_ ) if torch.cuda.is_available(): lowerCamelCase__ : List[str] = torch.cuda.device_count() else: lowerCamelCase__ : List[Any] = 1 if num_processes > 1: self.assertNotIn('epoch 0:', lowerCamelCase_ ) self.assertIn('epoch 1:', lowerCamelCase_ ) else: self.assertIn('epoch 0:', lowerCamelCase_ ) self.assertIn('epoch 1:', lowerCamelCase_ ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ, {'TESTING_MOCKED_DATALOADERS': '0'} ): lowerCamelCase__ : Any = run_command(self._launch_args + testargs, return_stdout=lowerCamelCase_ ) lowerCamelCase__ : Dict = re.findall('({.+})', lowerCamelCase_ ) lowerCamelCase__ : int = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase__ : List[str] = ast.literal_eval(lowerCamelCase_ ) self.assertGreaterEqual(results['accuracy'], 0.75 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'} ) def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase__ : Optional[int] = f'''\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_, 'tracking' ) ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
719
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = 'Speech2TextFeatureExtractor' lowerCamelCase__ : Dict = 'Speech2TextTokenizer' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.feature_extractor lowerCamelCase__ : List[Any] = False def __call__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_, **lowerCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ : Optional[int] = kwargs.pop('raw_speech' ) else: lowerCamelCase__ : int = kwargs.pop('audio', lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = kwargs.pop('sampling_rate', lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('text', lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowerCamelCase__ : List[str] = args[0] lowerCamelCase__ : Any = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ : Union[str, Any] = self.feature_extractor(lowerCamelCase_, *lowerCamelCase_, sampling_rate=lowerCamelCase_, **lowerCamelCase_ ) if text is not None: lowerCamelCase__ : List[Any] = self.tokenizer(lowerCamelCase_, **lowerCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Tuple = encodings['input_ids'] return inputs def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @contextmanager def a__ (self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ : int = True lowerCamelCase__ : List[Any] = self.tokenizer yield lowerCamelCase__ : Optional[int] = self.feature_extractor lowerCamelCase__ : List[Any] = False
696
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig class a_ ( lowercase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = '''bert-generation''' def __init__(self, lowerCamelCase_=5_0_3_5_8, lowerCamelCase_=1_0_2_4, lowerCamelCase_=2_4, lowerCamelCase_=1_6, lowerCamelCase_=4_0_9_6, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=0.02, lowerCamelCase_=1e-12, lowerCamelCase_=0, lowerCamelCase_=2, lowerCamelCase_=1, lowerCamelCase_="absolute", lowerCamelCase_=True, **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Union[str, Any] = num_attention_heads lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : int = intermediate_size lowerCamelCase__ : Any = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : List[Any] = layer_norm_eps lowerCamelCase__ : Dict = position_embedding_type lowerCamelCase__ : Optional[Any] = use_cache
720
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : Optional[Any] = use_input_mask lowerCamelCase__ : List[Any] = use_token_type_ids lowerCamelCase__ : List[Any] = use_labels lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : Optional[int] = embedding_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Optional[Any] = num_labels lowerCamelCase__ : Dict = num_choices lowerCamelCase__ : Tuple = scope def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : List[str] = None if self.use_input_mask: lowerCamelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_token_type_ids: lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Any = None lowerCamelCase__ : Union[str, Any] = None if self.use_labels: lowerCamelCase__ : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, embedding_size=self.embedding_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, next_sentence_label=lowerCamelCase_, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, start_positions=lowerCamelCase_, end_positions=lowerCamelCase_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : int = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.num_choices lowerCamelCase__ : Dict = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : int = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : List[str] = config_and_inputs lowerCamelCase__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : int = True def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase_ ) return inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = MobileBertModelTester(self ) lowerCamelCase__ : List[str] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): return torch.tensor( _lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , ) A_ : Tuple = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(lowerCamelCase_ ) lowerCamelCase__ : Tuple = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ )[0] lowerCamelCase__ : Optional[int] = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [ [ [-2.4_736_526e07, 8.2_691_656e04, 1.6_521_838e05], [-5.7_541_704e-01, 3.9_056_022e00, 4.4_011_507e00], [2.6_047_359e00, 1.5_677_652e00, -1.7_324_188e-01], ] ], device=lowerCamelCase_, ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCamelCase__ : Optional[int] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCamelCase__ : Any = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
696
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase__ : str = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase__ : int = test_metrics @require_cpu def a__ (self ): '''simple docstring''' debug_launcher(self.test_metrics.main, num_processes=1 ) @require_cpu def a__ (self ): '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def a__ (self ): '''simple docstring''' self.test_metrics.main() @require_multi_gpu def a__ (self ): '''simple docstring''' print(f'''Found {torch.cuda.device_count()} devices.''' ) lowerCamelCase__ : Optional[Any] = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase_, env=os.environ.copy() )
721
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A_ : str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=1 ): '''simple docstring''' lowerCamelCase__ : Any = tokenizer lowerCamelCase__ : Optional[Any] = dataset lowerCamelCase__ : int = len(lowerCamelCase_ ) if n_tasks is None else n_tasks lowerCamelCase__ : Any = n_copies def __iter__(self ): '''simple docstring''' lowerCamelCase__ : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ : Optional[int] = self.tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = start_length lowerCamelCase__ : List[str] = eof_strings lowerCamelCase__ : List[str] = tokenizer def __call__(self, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ : Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ): lowerCamelCase__ : List[str] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): lowerCamelCase__ : str = batch['ids'].shape[-1] lowerCamelCase__ : int = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times lowerCamelCase__ : Optional[Any] = batch['task_id'].repeat(_lowerCamelCase ) lowerCamelCase__ : List[Any] = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ : List[Any] = generated_tokens.cpu().numpy() lowerCamelCase__ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) lowerCamelCase__ : str = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ : Optional[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase_ ( ): # Setup configuration lowerCamelCase__ : int = HfArgumentParser(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ : Tuple = 'false' if args.num_workers is None: lowerCamelCase__ : List[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ : List[Any] = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ : Optional[int] = tokenizer.eos_token lowerCamelCase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ : Optional[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric lowerCamelCase__ : Any = load_dataset('openai_humaneval' ) lowerCamelCase__ : Optional[int] = load_metric('code_eval' ) lowerCamelCase__ : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ : Optional[int] = args.n_samples // args.batch_size lowerCamelCase__ : Tuple = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ : Union[str, Any] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ : List[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ : str = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: lowerCamelCase__ : List[str] = [] for task in tqdm(range(_lowerCamelCase ) ): lowerCamelCase__ : int = human_eval['test'][task]['test'] lowerCamelCase__ : Union[str, Any] = f'''check({human_eval['test'][task]['entry_point']})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ : Any = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
696
0
"""simple docstring""" import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = f'''{sampling_rate}''' lowerCamelCase__ : Union[str, Any] = '1' lowerCamelCase__ : List[Any] = 'f32le' lowerCamelCase__ : Optional[int] = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(_lowerCamelCase , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowerCamelCase__ : Union[str, Any] = ffmpeg_process.communicate(_lowerCamelCase ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error lowerCamelCase__ : Optional[Any] = output_stream[0] lowerCamelCase__ : str = np.frombuffer(_lowerCamelCase , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "f32le" , ): lowerCamelCase__ : Union[str, Any] = f'''{sampling_rate}''' lowerCamelCase__ : Dict = '1' if format_for_conversion == "s16le": lowerCamelCase__ : Optional[int] = 2 elif format_for_conversion == "f32le": lowerCamelCase__ : Any = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) lowerCamelCase__ : int = platform.system() if system == "Linux": lowerCamelCase__ : Optional[int] = 'alsa' lowerCamelCase__ : str = 'default' elif system == "Darwin": lowerCamelCase__ : Any = 'avfoundation' lowerCamelCase__ : Tuple = ':0' elif system == "Windows": lowerCamelCase__ : Any = 'dshow' lowerCamelCase__ : List[Any] = 'default' lowerCamelCase__ : Any = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] lowerCamelCase__ : Union[str, Any] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCamelCase__ : str = _ffmpeg_stream(_lowerCamelCase , _lowerCamelCase ) for item in iterator: yield item def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "f32le" , ): if stream_chunk_s is not None: lowerCamelCase__ : Any = stream_chunk_s else: lowerCamelCase__ : List[str] = chunk_length_s lowerCamelCase__ : Any = ffmpeg_microphone(_lowerCamelCase , _lowerCamelCase , format_for_conversion=_lowerCamelCase ) if format_for_conversion == "s16le": lowerCamelCase__ : int = np.intaa lowerCamelCase__ : int = 2 elif format_for_conversion == "f32le": lowerCamelCase__ : Optional[Any] = np.floataa lowerCamelCase__ : Any = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: lowerCamelCase__ : Optional[Any] = chunk_length_s / 6 lowerCamelCase__ : Tuple = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(_lowerCamelCase , (int, float) ): lowerCamelCase__ : List[Any] = [stride_length_s, stride_length_s] lowerCamelCase__ : Tuple = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCamelCase__ : Any = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCamelCase__ : Tuple = datetime.datetime.now() lowerCamelCase__ : int = datetime.timedelta(seconds=_lowerCamelCase ) for item in chunk_bytes_iter(_lowerCamelCase , _lowerCamelCase , stride=(stride_left, stride_right) , stream=_lowerCamelCase ): # Put everything back in numpy scale lowerCamelCase__ : Optional[int] = np.frombuffer(item['raw'] , dtype=_lowerCamelCase ) lowerCamelCase__ : Tuple = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) lowerCamelCase__ : Optional[int] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False ): lowerCamelCase__ : Tuple = b'' lowerCamelCase__ : List[Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) lowerCamelCase__ : int = 0 for raw in iterator: acc += raw if stream and len(_lowerCamelCase ) < chunk_len: lowerCamelCase__ : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(_lowerCamelCase ) >= chunk_len: # We are flushing the accumulator lowerCamelCase__ : str = (_stride_left, stride_right) lowerCamelCase__ : List[Any] = {'raw': acc[:chunk_len], 'stride': stride} if stream: lowerCamelCase__ : List[Any] = False yield item lowerCamelCase__ : List[Any] = stride_left lowerCamelCase__ : Union[str, Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(_lowerCamelCase ) > stride_left: lowerCamelCase__ : Optional[Any] = {'raw': acc, 'stride': (_stride_left, 0)} if stream: lowerCamelCase__ : Any = False yield item def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = 2**24 # 16Mo try: with subprocess.Popen(_lowerCamelCase , stdout=subprocess.PIPE , bufsize=_lowerCamelCase ) as ffmpeg_process: while True: lowerCamelCase__ : Union[str, Any] = ffmpeg_process.stdout.read(_lowerCamelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
700
"""simple docstring""" from ..utils import DummyObject, requires_backends class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] ) class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] )
696
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(1_00, 0.25) = }") print(f"{price_plus_tax(125.50, 0.05) = }")
701
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = 0 while number > 0: lowerCamelCase__ : List[str] = number % 10 sum_of_digits += last_digit lowerCamelCase__ : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase_ ( _lowerCamelCase = 100 ): lowerCamelCase__ : Union[str, Any] = factorial(_lowerCamelCase ) lowerCamelCase__ : List[Any] = split_and_add(_lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
696
0
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin A_ : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model") A_ : str = get_tests_dir("fixtures/test_sentencepiece_bpe.model") A_ : int = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = CamembertTokenizer lowerCamelCase__ : Optional[Any] = CamembertTokenizerFast lowerCamelCase__ : Tuple = True lowerCamelCase__ : Any = True def a__ (self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ : Optional[Any] = CamembertTokenizer(lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = '<pad>' lowerCamelCase__ : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ), lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ), lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '<s>NOTUSED' ) self.assertEqual(vocab_keys[1], '<pad>' ) self.assertEqual(vocab_keys[-1], '<mask>' ) self.assertEqual(len(lowerCamelCase_ ), 1_0_0_4 ) def a__ (self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1_0_0_5 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = CamembertTokenizer(lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) lowerCamelCase__ : List[str] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) lowerCamelCase__ : List[Any] = 'I was born in 92000, and this is falsé.' lowerCamelCase__ : Tuple = tokenizer.encode(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Any = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = rust_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) lowerCamelCase__ : Tuple = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) lowerCamelCase__ : List[str] = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase__ : Dict = self.get_tokenizer() lowerCamelCase__ : Dict = self.get_rust_tokenizer() lowerCamelCase__ : str = 'I was born in 92000, and this is falsé.' lowerCamelCase__ : List[str] = tokenizer.tokenize(lowerCamelCase_ ) lowerCamelCase__ : str = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : str = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = rust_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = self.get_rust_tokenizer() lowerCamelCase__ : Dict = tokenizer.encode(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = {'input_ids': [[5, 5_4, 7_1_9_6, 2_9_7, 3_0, 2_3, 7_7_6, 1_8, 1_1, 3_2_1_5, 3_7_0_5, 8_2_5_2, 2_2, 3_1_6_4, 1_1_8_1, 2_1_1_6, 2_9, 1_6, 8_1_3, 2_5, 7_9_1, 3_3_1_4, 2_0, 3_4_4_6, 3_8, 2_7_5_7_5, 1_2_0, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_6_8, 1_7, 1_1, 9_0_8_8, 2_0, 1_5_1_7, 8, 2_2_8_0_4, 1_8_8_1_8, 1_0, 3_8, 6_2_9, 6_0_7, 6_0_7, 1_4_2, 1_9, 7_1_9_6, 8_6_7, 5_6, 1_0_3_2_6, 2_4, 2_2_6_7, 2_0, 4_1_6, 5_0_7_2, 1_5_6_1_2, 2_3_3, 7_3_4, 7, 2_3_9_9, 2_7, 1_6, 3_0_1_5, 1_6_4_9, 7, 2_4, 2_0, 4_3_3_8, 2_3_9_9, 2_7, 1_3, 3_4_0_0, 1_4, 1_3, 6_1_8_9, 8, 9_3_0, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. lowerCamelCase__ : List[str] = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_, model_name='camembert-base', revision='3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf', sequences=lowerCamelCase_, )
702
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ : Dict = "pt" elif is_tf_available(): A_ : Union[str, Any] = "tf" else: A_ : List[str] = "jax" class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = PerceiverTokenizer lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ (self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=2_0, lowerCamelCase_=5 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [] for i in range(len(lowerCamelCase_ ) ): try: lowerCamelCase__ : Any = tokenizer.decode([i], clean_up_tokenization_spaces=lowerCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase__ : Any = list(filter(lambda lowerCamelCase_ : re.match(r'^[ a-zA-Z]+$', t[1] ), lowerCamelCase_ ) ) lowerCamelCase__ : Union[str, Any] = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=lowerCamelCase_ ), lowerCamelCase_ ) ) if max_length is not None and len(lowerCamelCase_ ) > max_length: lowerCamelCase__ : int = toks[:max_length] if min_length is not None and len(lowerCamelCase_ ) < min_length and len(lowerCamelCase_ ) > 0: while len(lowerCamelCase_ ) < min_length: lowerCamelCase__ : Dict = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : int = [t[0] for t in toks] # Ensure consistency lowerCamelCase__ : Optional[int] = tokenizer.decode(lowerCamelCase_, clean_up_tokenization_spaces=lowerCamelCase_ ) if " " not in output_txt and len(lowerCamelCase_ ) > 1: lowerCamelCase__ : List[Any] = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=lowerCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=lowerCamelCase_ ) ) if with_prefix_space: lowerCamelCase__ : Optional[Any] = ' ' + output_txt lowerCamelCase__ : List[Any] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) return output_txt, output_ids def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = 'Unicode €.' lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_ ) lowerCamelCase__ : Dict = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : int = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]Unicode €.[SEP]' ) lowerCamelCase__ : List[str] = tokenizer('e è é ê ë' ) lowerCamelCase__ : Dict = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : Any = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ), '[CLS]e è é ê ë[SEP]' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCamelCase__ : List[Any] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) if FRAMEWORK != "jax": lowerCamelCase__ : List[str] = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase__ : int = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertEqual((2, 3_8), batch.input_ids.shape ) self.assertEqual((2, 3_8), batch.attention_mask.shape ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.perceiver_tokenizer lowerCamelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCamelCase__ : List[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids', lowerCamelCase_ ) self.assertIn('attention_mask', lowerCamelCase_ ) self.assertNotIn('decoder_input_ids', lowerCamelCase_ ) self.assertNotIn('decoder_attention_mask', lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : int = [ 'Summary of the text.', 'Another summary.', ] lowerCamelCase__ : str = tokenizer( text_target=lowerCamelCase_, max_length=3_2, padding='max_length', truncation=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertEqual(3_2, targets['input_ids'].shape[1] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 4_2 ) # Now let's start the test lowerCamelCase__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : str = ' He is very happy, UNwant\u00E9d,running' lowerCamelCase__ : str = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : str = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) shutil.rmtree(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCamelCase__ : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCamelCase__ : List[str] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : int = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertIn('new_additional_special_token', after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 4_2 ) lowerCamelCase__ : List[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_, model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length, 4_3 ) shutil.rmtree(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : Optional[Any] = json.load(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : List[str] = json.load(lowerCamelCase_ ) lowerCamelCase__ : Any = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] lowerCamelCase__ : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCamelCase__ : List[str] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ : Dict = tokenizer_class.from_pretrained( lowerCamelCase_, ) self.assertIn( 'an_additional_special_token', tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token', lstrip=lowerCamelCase_ )] lowerCamelCase__ : Any = tokenizer_class.from_pretrained( lowerCamelCase_, additional_special_tokens=lowerCamelCase_, ) self.assertIn('a_new_additional_special_token', tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ), '�' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_tokenizers(fast=lowerCamelCase_, do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Tuple = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] lowerCamelCase__ : List[str] = tokenizer.convert_tokens_to_string(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" from jiwer import compute_measures import datasets A_ : List[str] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" A_ : List[str] = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" A_ : int = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def a__ (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('string', id='sequence' ), 'references': datasets.Value('string', id='sequence' ), } ), codebase_urls=['https://github.com/jitsi/jiwer/'], reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ], ) def a__ (self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=False ): '''simple docstring''' if concatenate_texts: return compute_measures(lowerCamelCase_, lowerCamelCase_ )["wer"] else: lowerCamelCase__ : Any = 0 lowerCamelCase__ : Dict = 0 for prediction, reference in zip(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Union[str, Any] = compute_measures(lowerCamelCase_, lowerCamelCase_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
703
"""simple docstring""" from math import pi, sqrt, tan def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCamelCase__ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_lowerCamelCase , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCamelCase__ : Dict = (sidea + sidea + sidea) / 2 lowerCamelCase__ : str = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
696
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[torch.FloatTensor] = None lowerCamelCase__ : torch.FloatTensor = None lowerCamelCase__ : Optional[Tuple[torch.FloatTensor]] = None lowerCamelCase__ : Optional[Tuple[torch.FloatTensor]] = None class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_=1, lowerCamelCase_=0, lowerCamelCase_=2, lowerCamelCase_=5_1_2, lowerCamelCase_="cls", lowerCamelCase_=False, lowerCamelCase_=True, **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : List[str] = project_dim lowerCamelCase__ : int = pooler_fn lowerCamelCase__ : Dict = learn_encoder lowerCamelCase__ : Dict = use_attention_mask class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = [R'pooler', R'logit_scale'] lowerCamelCase__ : Optional[Any] = [R'position_ids', R'predictions.decoder.bias'] lowerCamelCase__ : str = 'roberta' lowerCamelCase__ : List[str] = RobertaSeriesConfig def __init__(self, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = XLMRobertaModel(lowerCamelCase_ ) lowerCamelCase__ : List[str] = nn.Linear(config.hidden_size, config.project_dim ) lowerCamelCase__ : int = getattr(lowerCamelCase_, 'has_pre_transformation', lowerCamelCase_ ) if self.has_pre_transformation: lowerCamelCase__ : int = nn.Linear(config.hidden_size, config.project_dim ) lowerCamelCase__ : Optional[int] = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps ) self.post_init() def a__ (self, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, ): '''simple docstring''' lowerCamelCase__ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__ : Optional[int] = self.base_model( input_ids=lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, position_ids=lowerCamelCase_, head_mask=lowerCamelCase_, inputs_embeds=lowerCamelCase_, encoder_hidden_states=lowerCamelCase_, encoder_attention_mask=lowerCamelCase_, output_attentions=lowerCamelCase_, output_hidden_states=True if self.has_pre_transformation else output_hidden_states, return_dict=lowerCamelCase_, ) if self.has_pre_transformation: lowerCamelCase__ : Any = outputs['hidden_states'][-2] lowerCamelCase__ : int = self.pre_LN(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = self.transformation_pre(lowerCamelCase_ ) return TransformationModelOutput( projection_state=lowerCamelCase_, last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) else: lowerCamelCase__ : List[str] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=lowerCamelCase_, last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
704
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : str = use_input_mask lowerCamelCase__ : Optional[Any] = use_token_type_ids lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : Union[str, Any] = type_sequence_label_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : Union[str, Any] = num_choices lowerCamelCase__ : List[str] = scope lowerCamelCase__ : Dict = vocab_size - 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = self.get_config() return config, input_ids, input_mask, token_labels def a__ (self ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[Any] = True return config, input_ids, input_mask, token_labels def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = GPTNeoXModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = True lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : Optional[Any] = GPTNeoXForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = self.num_labels lowerCamelCase__ : Optional[int] = GPTNeoXForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[Any] = GPTNeoXForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Tuple = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : List[str] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : str = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : List[Any] = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and lowerCamelCase__ : Tuple = torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : Tuple = torch.cat([input_mask, next_mask], dim=-1 ) lowerCamelCase__ : List[str] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, output_hidden_states=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = output_from_no_past['hidden_states'][0] lowerCamelCase__ : Optional[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_, output_hidden_states=lowerCamelCase_, )['hidden_states'][0] # select random slice lowerCamelCase__ : Dict = ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-3 ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = config_and_inputs lowerCamelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : int = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase__ : Dict = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = GPTNeoXModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=6_4, num_attention_heads=8 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def a__ (self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = ids_tensor([1, 1_0], config.vocab_size ) lowerCamelCase__ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Any = GPTNeoXModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() lowerCamelCase__ : List[Any] = original_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Optional[int] = {'type': scaling_type, 'factor': 10.0} lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() lowerCamelCase__ : Tuple = scaled_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: lowerCamelCase__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer('My favorite food is', return_tensors='pt' ).to(lowerCamelCase_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCamelCase__ : Dict = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' lowerCamelCase__ : Dict = model.generate(**lowerCamelCase_, do_sample=lowerCamelCase_, max_new_tokens=2_0 ) lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ )[0] self.assertEqual(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = 0 while number > 0: lowerCamelCase__ : List[str] = number % 10 sum_of_digits += last_digit lowerCamelCase__ : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase_ ( _lowerCamelCase = 100 ): lowerCamelCase__ : Union[str, Any] = factorial(_lowerCamelCase ) lowerCamelCase__ : List[Any] = split_and_add(_lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
705
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : Dict = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. A_ : List[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A_ : Union[str, Any] = spec.loader.load_module() A_ : int = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A_ : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") A_ : str = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCamelCase__ : Dict = False # source code of `config_class` lowerCamelCase__ : str = inspect.getsource(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = _re_checkpoint.findall(_lowerCamelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCamelCase__ , lowerCamelCase__ : Optional[int] = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase__ : Any = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: lowerCamelCase__ : Any = True break lowerCamelCase__ : Dict = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ : Optional[Any] = '\n'.join(sorted(_lowerCamelCase ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
696
0
"""simple docstring""" import numpy as np from transformers import Pipeline def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = np.max(_lowerCamelCase , axis=-1 , keepdims=_lowerCamelCase ) lowerCamelCase__ : List[Any] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class a_ ( snake_case_ ): '''simple docstring''' def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = {} if "second_text" in kwargs: lowerCamelCase__ : Tuple = kwargs['second_text'] return preprocess_kwargs, {}, {} def a__ (self, lowerCamelCase_, lowerCamelCase_=None ): '''simple docstring''' return self.tokenizer(lowerCamelCase_, text_pair=lowerCamelCase_, return_tensors=self.framework ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.model(**lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = model_outputs.logits[0].numpy() lowerCamelCase__ : List[str] = softmax(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = np.argmax(lowerCamelCase_ ) lowerCamelCase__ : str = self.model.config.idalabel[best_class] lowerCamelCase__ : List[str] = probabilities[best_class].item() lowerCamelCase__ : Union[str, Any] = logits.tolist() return {"label": label, "score": score, "logits": logits}
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): '''simple docstring''' return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
707
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A_ : Optional[int] = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A_ : List[str] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) A_ : Tuple = BeautifulSoup(res.text, "html.parser") A_ : Dict = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f"https://google.com{link.get('href')}")
696
0
"""simple docstring""" import math def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowerCamelCase ) if number < 1: lowerCamelCase__ : Optional[int] = f'''Input value of [number={number}] must be > 0''' raise ValueError(_lowerCamelCase ) elif number == 1: return 3 elif number == 2: return 5 else: lowerCamelCase__ : Any = int(math.log(number // 3 , 2 ) ) + 2 lowerCamelCase__ : List[Any] = [3, 5] lowerCamelCase__ : List[Any] = 2 lowerCamelCase__ : List[Any] = 3 for block in range(1 , _lowerCamelCase ): for _ in range(_lowerCamelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): A_ : Dict = 0 try: A_ : Any = proth(number) except ValueError: print(f"ValueError: there is no {number}th Proth number") continue print(f"The {number}th Proth number: {value}")
708
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCamelCase__ : Tuple = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_, cache_dir=lowerCamelCase_ ) lowerCamelCase__ : List[str] = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_, os.listdir(lowerCamelCase_ )[0], 'snapshots' ) )] lowerCamelCase__ : Optional[int] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[int] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Any = 4 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : List[Any] = num_samples * [prompt] lowerCamelCase__ : Optional[int] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : int = replicate(lowerCamelCase_ ) lowerCamelCase__ : Any = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : int = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1_514_745 ) < 1e-3 assert np.abs(np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 49_947.875 ) < 5e-1 lowerCamelCase__ : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase_ ) == num_samples def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='flax', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : int = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[str] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : List[str] = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = shard(lowerCamelCase_ ) lowerCamelCase__ : str = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05_652_401) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_383_808.2) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Union[str, Any] = 5_0 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : Tuple = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Any = replicate(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa ) lowerCamelCase__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Union[str, Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] = 5_0 lowerCamelCase__ : Tuple = jax.device_count() lowerCamelCase__ : Optional[int] = num_samples * [prompt] lowerCamelCase__ : str = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Optional[int] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : List[str] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = FlaxDDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', set_alpha_to_one=lowerCamelCase_, steps_offset=1, ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, scheduler=lowerCamelCase_, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : List[str] = scheduler.create_state() lowerCamelCase__ : int = scheduler_state lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : Optional[Any] = jax.device_count() lowerCamelCase__ : Any = num_samples * [prompt] lowerCamelCase__ : Any = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Dict = shard(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045_043_945) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_347_693.5) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : int = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : str = jax.random.split(jax.random.PRNGKey(0 ), lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Dict = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Tuple = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : int = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention lowerCamelCase__ , lowerCamelCase__ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, use_memory_efficient_attention=lowerCamelCase_, ) lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : Any = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Any = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
696
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ : List[str] = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ : str = False lowerCamelCase__ : List[Any] = False def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : int = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : str = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa ) return inputs_dict class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=3_2, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : List[str] = parent lowerCamelCase__ : List[str] = batch_size lowerCamelCase__ : str = seq_length lowerCamelCase__ : int = is_training lowerCamelCase__ : Tuple = use_input_mask lowerCamelCase__ : List[str] = use_token_type_ids lowerCamelCase__ : Any = use_labels lowerCamelCase__ : List[Any] = vocab_size lowerCamelCase__ : Optional[int] = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : int = num_attention_heads lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : Tuple = hidden_act lowerCamelCase__ : Any = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : Optional[Any] = max_position_embeddings lowerCamelCase__ : int = type_vocab_size lowerCamelCase__ : int = type_sequence_label_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Any = num_labels lowerCamelCase__ : Union[str, Any] = num_choices lowerCamelCase__ : List[str] = scope lowerCamelCase__ : Tuple = embedding_size def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_input_mask: lowerCamelCase__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : int = None if self.use_token_type_ids: lowerCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Dict = None lowerCamelCase__ : List[Any] = None if self.use_labels: lowerCamelCase__ : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase__ : Tuple = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = TFMobileBertModel(config=lowerCamelCase_ ) lowerCamelCase__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCamelCase__ : List[str] = model(lowerCamelCase_ ) lowerCamelCase__ : Dict = [input_ids, input_mask] lowerCamelCase__ : int = model(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = TFMobileBertForMaskedLM(config=lowerCamelCase_ ) lowerCamelCase__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = TFMobileBertForNextSentencePrediction(config=lowerCamelCase_ ) lowerCamelCase__ : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCamelCase__ : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = TFMobileBertForPreTraining(config=lowerCamelCase_ ) lowerCamelCase__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.num_labels lowerCamelCase__ : Union[str, Any] = TFMobileBertForSequenceClassification(config=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = self.num_choices lowerCamelCase__ : List[Any] = TFMobileBertForMultipleChoice(config=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = tf.tile(tf.expand_dims(lowerCamelCase_, 1 ), (1, self.num_choices, 1) ) lowerCamelCase__ : int = tf.tile(tf.expand_dims(lowerCamelCase_, 1 ), (1, self.num_choices, 1) ) lowerCamelCase__ : Dict = tf.tile(tf.expand_dims(lowerCamelCase_, 1 ), (1, self.num_choices, 1) ) lowerCamelCase__ : Optional[int] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCamelCase__ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Optional[int] = TFMobileBertForTokenClassification(config=lowerCamelCase_ ) lowerCamelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCamelCase__ : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFMobileBertForQuestionAnswering(config=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() ( lowerCamelCase__ ) : Tuple = config_and_inputs lowerCamelCase__ : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFMobileBertModelTest.TFMobileBertModelTester(self ) lowerCamelCase__ : Optional[Any] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) @slow def a__ (self ): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: lowerCamelCase__ : str = TFMobileBertModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) lowerCamelCase__ : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase__ : List[Any] = model(lowerCamelCase_ )[0] lowerCamelCase__ : Union[str, Any] = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape, lowerCamelCase_ ) lowerCamelCase__ : List[Any] = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3], lowerCamelCase_, atol=1e-4 )
709
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = 1_0_0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = True, ): '''simple docstring''' if audio_length_in_s is None: lowerCamelCase__ : str = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase__ : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase__ : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCamelCase__ : Dict = int(lowerCamelCase_ ) if sample_size % down_scale_factor != 0: lowerCamelCase__ : Union[str, Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ' process.' ) lowerCamelCase__ : Optional[Any] = int(lowerCamelCase_ ) lowerCamelCase__ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase__ : Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase_, lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ : Union[str, Any] = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_, device=self.device, dtype=lowerCamelCase_ ) # set step values self.scheduler.set_timesteps(lowerCamelCase_, device=audio.device ) lowerCamelCase__ : int = self.scheduler.timesteps.to(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase__ : List[Any] = self.unet(lowerCamelCase_, lowerCamelCase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase__ : List[str] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample lowerCamelCase__ : Union[str, Any] = audio.clamp(-1, 1 ).float().cpu().numpy() lowerCamelCase__ : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase_ )
696
0
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : str = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase ) lowerCamelCase__ : Any = checkpoints.load_tax_checkpoint(_lowerCamelCase ) lowerCamelCase__ : Dict = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": lowerCamelCase__ : Union[str, Any] = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": lowerCamelCase__ : Optional[int] = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase__ : str = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): lowerCamelCase__ : Any = f'''layers_{str(_lowerCamelCase )}''' # Self-Attention lowerCamelCase__ : Tuple = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] lowerCamelCase__ : str = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] lowerCamelCase__ : int = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] lowerCamelCase__ : Union[str, Any] = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase__ : Union[str, Any] = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization lowerCamelCase__ : List[str] = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: lowerCamelCase__ : Tuple = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] lowerCamelCase__ : List[Any] = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: lowerCamelCase__ : Tuple = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] lowerCamelCase__ : Any = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization lowerCamelCase__ : Dict = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning lowerCamelCase__ : Union[str, Any] = flax_model.params['encoder']['block'][str(_lowerCamelCase )]['layer'] lowerCamelCase__ : Optional[int] = tax_attention_key lowerCamelCase__ : Dict = tax_attention_out lowerCamelCase__ : Union[str, Any] = tax_attention_query lowerCamelCase__ : Dict = tax_attention_value lowerCamelCase__ : str = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase__ : Optional[int] = tax_global_layer_norm if split_mlp_wi: lowerCamelCase__ : Tuple = tax_mlp_wi_a lowerCamelCase__ : Optional[Any] = tax_mlp_wi_a else: lowerCamelCase__ : str = tax_mlp_wi lowerCamelCase__ : str = tax_mlp_wo lowerCamelCase__ : Tuple = tax_mlp_layer_norm lowerCamelCase__ : int = flax_model_encoder_layer_block # Only for layer 0: lowerCamelCase__ : Optional[int] = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T lowerCamelCase__ : Any = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase__ : Optional[Any] = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T lowerCamelCase__ : str = tax_encoder_global_rel_embedding # Assigning lowerCamelCase__ : str = tax_model['target']['encoder']['encoder_norm']['scale'] lowerCamelCase__ : str = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): lowerCamelCase__ : Optional[int] = f'''layers_{str(_lowerCamelCase )}''' # Self-Attention lowerCamelCase__ : Dict = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] lowerCamelCase__ : Dict = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] lowerCamelCase__ : List[Any] = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] lowerCamelCase__ : str = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization lowerCamelCase__ : Union[str, Any] = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention lowerCamelCase__ : Tuple = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] lowerCamelCase__ : int = tax_enc_dec_attention_module['key']['kernel'] lowerCamelCase__ : Dict = tax_enc_dec_attention_module['out']['kernel'] lowerCamelCase__ : int = tax_enc_dec_attention_module['query']['kernel'] lowerCamelCase__ : int = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization lowerCamelCase__ : Dict = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: lowerCamelCase__ : Dict = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] lowerCamelCase__ : int = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: lowerCamelCase__ : str = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] lowerCamelCase__ : Any = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization lowerCamelCase__ : Optional[int] = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning lowerCamelCase__ : Union[str, Any] = flax_model.params['decoder']['block'][str(_lowerCamelCase )]['layer'] lowerCamelCase__ : List[str] = tax_attention_key lowerCamelCase__ : int = tax_attention_out lowerCamelCase__ : Optional[Any] = tax_attention_query lowerCamelCase__ : Union[str, Any] = tax_attention_value lowerCamelCase__ : Union[str, Any] = tax_pre_attention_layer_norm lowerCamelCase__ : Optional[int] = tax_enc_dec_attention_key lowerCamelCase__ : str = tax_enc_dec_attention_out lowerCamelCase__ : Union[str, Any] = tax_enc_dec_attention_query lowerCamelCase__ : Dict = tax_enc_dec_attention_value lowerCamelCase__ : List[str] = tax_cross_layer_norm if split_mlp_wi: lowerCamelCase__ : Optional[int] = tax_mlp_wi_a lowerCamelCase__ : Union[str, Any] = tax_mlp_wi_a else: lowerCamelCase__ : Tuple = tax_mlp_wi lowerCamelCase__ : Dict = tax_mlp_wo lowerCamelCase__ : Any = txa_mlp_layer_norm lowerCamelCase__ : str = flax_model_decoder_layer_block # Decoder Normalization lowerCamelCase__ : str = tax_model['target']['decoder']['decoder_norm']['scale'] lowerCamelCase__ : Dict = txa_decoder_norm # Only for layer 0: lowerCamelCase__ : List[str] = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T lowerCamelCase__ : Dict = tax_decoder_rel_embedding # Token Embeddings lowerCamelCase__ : List[Any] = tax_model['target']['token_embedder']['embedding'] lowerCamelCase__ : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowerCamelCase__ : List[Any] = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(_lowerCamelCase ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) A_ : int = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
710
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(lowerCamelCase_ ) ) vocab_file.flush() lowerCamelCase__ : Tuple = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCamelCase__ : Optional[Any] = BertModel(BertConfig(vocab_size=len(lowerCamelCase_ ) ) ) model.save_pretrained(lowerCamelCase_ ) self._test_export(lowerCamelCase_, 'pt', 1_2, lowerCamelCase_ ) @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Optional[Any] = self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Any = quantize(Path(lowerCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Any = self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = quantize(lowerCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowerCamelCase__ : str = Path(lowerCamelCase_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ) return path except Exception as e: self.fail(lowerCamelCase_ ) @require_torch @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : str = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'pt' ) @require_tf @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import TFBertModel lowerCamelCase__ : Dict = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Optional[int] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'tf' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = FeatureExtractionPipeline(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = infer_shapes(lowerCamelCase_, lowerCamelCase_ ) # Assert all variables are present self.assertEqual(len(lowerCamelCase_ ), len(lowerCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3], lowerCamelCase_ ) self.assertSequenceEqual(variable_names[3:], lowerCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name], {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'], {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'], {0: 'batch'} ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['input_ids', 'attention_mask', 'token_type_ids'] lowerCamelCase__ : Optional[int] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowerCamelCase__ , lowerCamelCase__ : str = ensure_valid_input(FuncContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase_ ), 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase_ ), set(lowerCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase_, (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCamelCase__ , lowerCamelCase__ : Any = ensure_valid_input(FuncNonContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase_ ), 1 ) self.assertEqual(len(lowerCamelCase_ ), 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0], tokens['input_ids'] ) self.assertEqual(ordered_input_names[0], 'input_ids' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ), '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx', generated.as_posix() )
696
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): # noqa: E741 '''simple docstring''' lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : int = 0 lowerCamelCase__ : Any = [0] * n lowerCamelCase__ : str = [False] * n lowerCamelCase__ : Optional[int] = [False] * n def dfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if parent == root: out_edge_count += 1 lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : Any = at for to in l[at]: if to == parent: pass elif not visited[to]: lowerCamelCase__ : str = dfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : str = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: lowerCamelCase__ : Union[str, Any] = True # AP found via cycle if at == low[to]: lowerCamelCase__ : List[str] = True else: lowerCamelCase__ : Dict = min(low[at] , _lowerCamelCase ) return out_edge_count for i in range(_lowerCamelCase ): if not visited[i]: lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : str = dfs(_lowerCamelCase , _lowerCamelCase , -1 , _lowerCamelCase ) lowerCamelCase__ : int = out_edge_count > 1 for x in range(len(_lowerCamelCase ) ): if is_art[x] is True: print(_lowerCamelCase ) # Adjacency list of graph A_ : Any = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
711
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase__ : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : str = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ : Any = False @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return self.time_input_dim @property def a__ (self ): '''simple docstring''' return self.time_input_dim * 4 @property def a__ (self ): '''simple docstring''' return 1_0_0 @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase__ : int = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def a__ (self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.dummy_unet lowerCamelCase__ : List[Any] = self.dummy_movq lowerCamelCase__ : Tuple = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase__ : Optional[Any] = DDIMScheduler(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image lowerCamelCase__ : Any = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase__ : Optional[Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint lowerCamelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : int = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = 'cpu' lowerCamelCase__ : List[Any] = self.get_dummy_components() lowerCamelCase__ : List[Any] = self.pipeline_class(**lowerCamelCase_ ) lowerCamelCase__ : Dict = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : str = pipe( **self.get_dummy_inputs(lowerCamelCase_ ), return_dict=lowerCamelCase_, )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : List[str] = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase__ : Any = init_image.resize((5_1_2, 5_1_2) ) lowerCamelCase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase__ : Any = torch.from_numpy(np.array(lowerCamelCase_ ) ).float() / 255.0 lowerCamelCase__ : Optional[int] = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowerCamelCase__ : Union[str, Any] = 'A robot, 4k photo' lowerCamelCase__ : Any = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth', torch_dtype=torch.floataa ) lowerCamelCase__ : int = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = pipe_prior( lowerCamelCase_, image=lowerCamelCase_, strength=0.85, generator=lowerCamelCase_, negative_prompt='', ).to_tuple() lowerCamelCase__ : Union[str, Any] = pipeline( image=lowerCamelCase_, image_embeds=lowerCamelCase_, negative_image_embeds=lowerCamelCase_, hint=lowerCamelCase_, generator=lowerCamelCase_, num_inference_steps=1_0_0, height=5_1_2, width=5_1_2, strength=0.5, output_type='np', ) lowerCamelCase__ : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[int] = 0.00 lowerCamelCase__ : int = 0 for resistor in resistors: if resistor <= 0: lowerCamelCase__ : Union[str, Any] = f'''Resistor at index {index} has a negative or zero value!''' raise ValueError(_lowerCamelCase ) first_sum += 1 / float(_lowerCamelCase ) index += 1 return 1 / first_sum def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : str = 0.00 lowerCamelCase__ : Optional[int] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCamelCase__ : Optional[int] = f'''Resistor at index {index} has a negative value!''' raise ValueError(_lowerCamelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
712
"""simple docstring""" A_ : List[str] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
696
0
"""simple docstring""" from __future__ import annotations import math def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) ) def lowerCamelCase_ ( ): lowerCamelCase__ : List[str] = [90, 23, 6, 33, 21, 65, 123, 3_4423] lowerCamelCase__ : List[Any] = math.log(len(_lowerCamelCase ) , 2 ) print(f'''Optimal value : {minimax(0 , 0 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
713
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 A_ : Optional[int] = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ = 1_4 ): '''simple docstring''' if group not in primes: raise ValueError('Unsupported Group' ) lowerCamelCase__ : int = primes[group]['prime'] lowerCamelCase__ : Optional[int] = primes[group]['generator'] lowerCamelCase__ : Any = int(hexlify(urandom(3_2 ) ), base=1_6 ) def a__ (self ): '''simple docstring''' return hex(self.__private_key )[2:] def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = pow(self.generator, self.__private_key, self.prime ) return hex(lowerCamelCase_ )[2:] def a__ (self, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase_, (self.prime - 1) // 2, self.prime ) == 1 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = int(lowerCamelCase_, base=1_6 ) if not self.is_valid_public_key(lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Tuple = pow(lowerCamelCase_, self.__private_key, self.prime ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase_, (prime - 1) // 2, lowerCamelCase_ ) == 1 ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 1_4 ): '''simple docstring''' lowerCamelCase__ : Dict = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[Any] = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[str] = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase_, lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Dict = pow(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
696
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase__ : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : str = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ : Any = False @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return self.time_input_dim @property def a__ (self ): '''simple docstring''' return self.time_input_dim * 4 @property def a__ (self ): '''simple docstring''' return 1_0_0 @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase__ : int = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def a__ (self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.dummy_unet lowerCamelCase__ : List[Any] = self.dummy_movq lowerCamelCase__ : Tuple = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase__ : Optional[Any] = DDIMScheduler(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image lowerCamelCase__ : Any = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase__ : Optional[Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint lowerCamelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : int = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = 'cpu' lowerCamelCase__ : List[Any] = self.get_dummy_components() lowerCamelCase__ : List[Any] = self.pipeline_class(**lowerCamelCase_ ) lowerCamelCase__ : Dict = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : str = pipe( **self.get_dummy_inputs(lowerCamelCase_ ), return_dict=lowerCamelCase_, )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : List[str] = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase__ : Any = init_image.resize((5_1_2, 5_1_2) ) lowerCamelCase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase__ : Any = torch.from_numpy(np.array(lowerCamelCase_ ) ).float() / 255.0 lowerCamelCase__ : Optional[int] = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowerCamelCase__ : Union[str, Any] = 'A robot, 4k photo' lowerCamelCase__ : Any = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth', torch_dtype=torch.floataa ) lowerCamelCase__ : int = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ : Optional[Any] = pipe_prior( lowerCamelCase_, image=lowerCamelCase_, strength=0.85, generator=lowerCamelCase_, negative_prompt='', ).to_tuple() lowerCamelCase__ : Union[str, Any] = pipeline( image=lowerCamelCase_, image_embeds=lowerCamelCase_, negative_image_embeds=lowerCamelCase_, hint=lowerCamelCase_, generator=lowerCamelCase_, num_inference_steps=1_0_0, height=5_1_2, width=5_1_2, strength=0.5, output_type='np', ) lowerCamelCase__ : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase_, lowerCamelCase_ )
714
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_lowerCamelCase ) * abs(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
696
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = False ): if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis lowerCamelCase__ : Dict = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] lowerCamelCase__ : str = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_lowerCamelCase , 1 ): if n < _p: # then we have our last prime to check lowerCamelCase__ : Any = primes[:idx] break lowerCamelCase__ : int = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCamelCase__ : Optional[Any] = False for r in range(_lowerCamelCase ): lowerCamelCase__ : Any = pow(_lowerCamelCase , d * 2**r , _lowerCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCamelCase__ : Dict = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowerCamelCase_ ( ): assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
715
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : int = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : Optional[int] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : str = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : Optional[int] = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Tuple = c.n_embd + 1 # int lowerCamelCase__ : Union[str, Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : List[Any] = not c.scale_attn_weights # bool lowerCamelCase__ : List[Any] = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = PretrainedConfig() lowerCamelCase__ : Optional[Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : Any = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : int = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = mock.Mock() lowerCamelCase__ : List[str] = 5_0_0 lowerCamelCase__ : Any = {} lowerCamelCase__ : int = HTTPError lowerCamelCase__ : Optional[Any] = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : str = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : str = ['config.42.0.0.json'] lowerCamelCase__ : Union[str, Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Optional[int] = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Dict = 'v3.0.0' lowerCamelCase__ : List[str] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
696
0
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCamelCase_ ( _lowerCamelCase ): return np.dot(_lowerCamelCase , _lowerCamelCase ) class a_ : '''simple docstring''' def __init__(self, *, lowerCamelCase_ = np.inf, lowerCamelCase_ = "linear", lowerCamelCase_ = 0.0, ): '''simple docstring''' lowerCamelCase__ : Any = regularization lowerCamelCase__ : Optional[int] = gamma if kernel == "linear": lowerCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma' ) if not isinstance(self.gamma, (float, int) ): raise ValueError('gamma must be float or int' ) if not self.gamma > 0: raise ValueError('gamma must be > 0' ) lowerCamelCase__ : List[str] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: lowerCamelCase__ : List[Any] = f'''Unknown kernel: {kernel}''' raise ValueError(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return np.dot(lowerCamelCase_, lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = observations lowerCamelCase__ : Union[str, Any] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations (lowerCamelCase__ ) : List[Any] = np.shape(lowerCamelCase_ ) def to_minimize(lowerCamelCase_ ) -> float: lowerCamelCase__ : Union[str, Any] = 0 (lowerCamelCase__ ) : Tuple = np.shape(lowerCamelCase_ ) for i in range(lowerCamelCase_ ): for j in range(lowerCamelCase_ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i], observations[j] ) ) return 1 / 2 * s - sum(lowerCamelCase_ ) lowerCamelCase__ : Dict = LinearConstraint(lowerCamelCase_, 0, 0 ) lowerCamelCase__ : int = Bounds(0, self.regularization ) lowerCamelCase__ : int = minimize( lowerCamelCase_, np.ones(lowerCamelCase_ ), bounds=lowerCamelCase_, constraints=[ly_contraint] ).x lowerCamelCase__ : Union[str, Any] = l_star # calculating mean offset of separation plane to points lowerCamelCase__ : int = 0 for i in range(lowerCamelCase_ ): for j in range(lowerCamelCase_ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i], observations[j] ) lowerCamelCase__ : Optional[Any] = s / n def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n], lowerCamelCase_ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
716
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' super().__init__() lowerCamelCase__ : Dict = value_function lowerCamelCase__ : int = unet lowerCamelCase__ : Union[str, Any] = scheduler lowerCamelCase__ : int = env lowerCamelCase__ : List[Any] = env.get_dataset() lowerCamelCase__ : Dict = {} for key in self.data.keys(): try: lowerCamelCase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowerCamelCase__ : Optional[int] = {} for key in self.data.keys(): try: lowerCamelCase__ : Tuple = self.data[key].std() except: # noqa: E722 pass lowerCamelCase__ : Optional[Any] = env.observation_space.shape[0] lowerCamelCase__ : List[str] = env.action_space.shape[0] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def a__ (self, lowerCamelCase_ ): '''simple docstring''' if type(lowerCamelCase_ ) is dict: return {k: self.to_torch(lowerCamelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase_, device=self.unet.device ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for key, val in cond.items(): lowerCamelCase__ : Optional[Any] = val.clone() return x_in def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = x.shape[0] lowerCamelCase__ : Tuple = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCamelCase__ : Dict = torch.full((batch_size,), lowerCamelCase_, device=self.unet.device, dtype=torch.long ) for _ in range(lowerCamelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCamelCase__ : str = self.value_function(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample lowerCamelCase__ : Union[str, Any] = torch.autograd.grad([y.sum()], [x] )[0] lowerCamelCase__ : Optional[int] = self.scheduler._get_variance(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = torch.exp(0.5 * posterior_variance ) lowerCamelCase__ : Tuple = model_std * grad lowerCamelCase__ : str = 0 lowerCamelCase__ : Dict = x.detach() lowerCamelCase__ : Dict = x + scale * grad lowerCamelCase__ : Optional[int] = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : Tuple = self.unet(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample.permute(0, 2, 1 ) # TODO: verify deprecation of this kwarg lowerCamelCase__ : Optional[Any] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, predict_epsilon=lowerCamelCase_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowerCamelCase__ : Any = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) return x, y def __call__(self, lowerCamelCase_, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=0.1 ): '''simple docstring''' lowerCamelCase__ : Dict = self.normalize(lowerCamelCase_, 'observations' ) lowerCamelCase__ : List[str] = obs[None].repeat(lowerCamelCase_, axis=0 ) lowerCamelCase__ : str = {0: self.to_torch(lowerCamelCase_ )} lowerCamelCase__ : Optional[Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCamelCase__ : List[Any] = randn_tensor(lowerCamelCase_, device=self.unet.device ) lowerCamelCase__ : int = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) # run the diffusion process lowerCamelCase__ , lowerCamelCase__ : List[str] = self.run_diffusion(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # sort output trajectories by value lowerCamelCase__ : Union[str, Any] = y.argsort(0, descending=lowerCamelCase_ ).squeeze() lowerCamelCase__ : List[str] = x[sorted_idx] lowerCamelCase__ : Optional[Any] = sorted_values[:, :, : self.action_dim] lowerCamelCase__ : Union[str, Any] = actions.detach().cpu().numpy() lowerCamelCase__ : Union[str, Any] = self.de_normalize(lowerCamelCase_, key='actions' ) # select the action with the highest value if y is not None: lowerCamelCase__ : str = 0 else: # if we didn't run value guiding, select a random action lowerCamelCase__ : Optional[Any] = np.random.randint(0, lowerCamelCase_ ) lowerCamelCase__ : Tuple = denorm_actions[selected_index, 0] return denorm_actions
696
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = False while is_sorted is False: # Until all the indices are traversed keep looping lowerCamelCase__ : Dict = True for i in range(0 , len(_lowerCamelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowerCamelCase__ : str = input_list[i + 1], input_list[i] # swapping if elements not in order lowerCamelCase__ : List[Any] = False for i in range(1 , len(_lowerCamelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowerCamelCase__ : Tuple = input_list[i + 1], input_list[i] # swapping if elements not in order lowerCamelCase__ : Optional[int] = False return input_list if __name__ == "__main__": print("Enter list to be sorted") A_ : Any = [int(x) for x in input().split()] # inputing elements of the list in one line A_ : Tuple = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
717
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : List[str] = analyze_text(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. lowerCamelCase__ : List[Any] = sum(single_char_strings.values() ) # one length string lowerCamelCase__ : str = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCamelCase__ : Tuple = single_char_strings[ch] lowerCamelCase__ : Union[str, Any] = my_str / all_sum my_fir_sum += prob * math.loga(_lowerCamelCase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string lowerCamelCase__ : Dict = sum(two_char_strings.values() ) lowerCamelCase__ : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCamelCase__ : int = cha + cha if sequence in two_char_strings: lowerCamelCase__ : int = two_char_strings[sequence] lowerCamelCase__ : Tuple = int(_lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(_lowerCamelCase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = Counter() # type: ignore lowerCamelCase__ : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase_ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
696
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : List[Any] = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = ["OwlViTFeatureExtractor"] A_ : List[str] = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
718
"""simple docstring""" import os def lowerCamelCase_ ( ): with open(os.path.dirname(_lowerCamelCase ) + '/p022_names.txt' ) as file: lowerCamelCase__ : Union[str, Any] = str(file.readlines()[0] ) lowerCamelCase__ : int = names.replace('"' , '' ).split(',' ) names.sort() lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : str = 0 for i, name in enumerate(_lowerCamelCase ): for letter in name: name_score += ord(_lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowerCamelCase__ : Dict = 0 return total_score if __name__ == "__main__": print(solution())
696
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Dict = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys A_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = 'Speech2TextFeatureExtractor' lowerCamelCase__ : Dict = 'Speech2TextTokenizer' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.feature_extractor lowerCamelCase__ : List[Any] = False def __call__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_, **lowerCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ : Optional[int] = kwargs.pop('raw_speech' ) else: lowerCamelCase__ : int = kwargs.pop('audio', lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = kwargs.pop('sampling_rate', lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('text', lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowerCamelCase__ : List[str] = args[0] lowerCamelCase__ : Any = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ : Union[str, Any] = self.feature_extractor(lowerCamelCase_, *lowerCamelCase_, sampling_rate=lowerCamelCase_, **lowerCamelCase_ ) if text is not None: lowerCamelCase__ : List[Any] = self.tokenizer(lowerCamelCase_, **lowerCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Tuple = encodings['input_ids'] return inputs def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @contextmanager def a__ (self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ : int = True lowerCamelCase__ : List[Any] = self.tokenizer yield lowerCamelCase__ : Optional[int] = self.feature_extractor lowerCamelCase__ : List[Any] = False
696
0
"""simple docstring""" import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : torch.FloatTensor lowerCamelCase__ : Optional[torch.FloatTensor] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=0.999 , _lowerCamelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCamelCase__ : Optional[Any] = [] for i in range(_lowerCamelCase ): lowerCamelCase__ : int = i / num_diffusion_timesteps lowerCamelCase__ : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) ) return torch.tensor(_lowerCamelCase , dtype=torch.floataa ) class a_ ( snake_case_ , snake_case_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = 1 @register_to_config def __init__(self, lowerCamelCase_ = 1_0_0_0, lowerCamelCase_ = 0.0_001, lowerCamelCase_ = 0.02, lowerCamelCase_ = "linear", lowerCamelCase_ = None, lowerCamelCase_ = True, lowerCamelCase_ = True, lowerCamelCase_ = 0, lowerCamelCase_ = "epsilon", lowerCamelCase_ = 1.0, **lowerCamelCase_, ): '''simple docstring''' if kwargs.get('set_alpha_to_one', lowerCamelCase_ ) is not None: lowerCamelCase__ : Union[str, Any] = ( 'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.' ) deprecate('set_alpha_to_one', '1.0.0', lowerCamelCase_, standard_warn=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = kwargs['set_alpha_to_one'] if trained_betas is not None: lowerCamelCase__ : Union[str, Any] = torch.tensor(lowerCamelCase_, dtype=torch.floataa ) elif beta_schedule == "linear": lowerCamelCase__ : Dict = torch.linspace(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCamelCase__ : Optional[int] = ( torch.linspace(beta_start**0.5, beta_end**0.5, lowerCamelCase_, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCamelCase__ : Dict = betas_for_alpha_bar(lowerCamelCase_ ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCamelCase__ : Tuple = 1.0 - self.betas lowerCamelCase__ : Optional[Any] = torch.cumprod(self.alphas, dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. lowerCamelCase__ : Tuple = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution lowerCamelCase__ : List[Any] = 1.0 # setable values lowerCamelCase__ : List[str] = None lowerCamelCase__ : str = torch.from_numpy(np.arange(0, lowerCamelCase_ ).copy().astype(np.intaa ) ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' return sample def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) lowerCamelCase__ : List[str] = num_inference_steps lowerCamelCase__ : Union[str, Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCamelCase__ : List[str] = (np.arange(0, lowerCamelCase_ ) * step_ratio).round().copy().astype(np.intaa ) lowerCamelCase__ : Dict = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) self.timesteps += self.config.steps_offset def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 0.0, lowerCamelCase_ = False, lowerCamelCase_ = None, lowerCamelCase_ = True, ): '''simple docstring''' lowerCamelCase__ : str = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process lowerCamelCase__ : Union[str, Any] = self.alphas_cumprod[timestep] lowerCamelCase__ : Tuple = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) lowerCamelCase__ : Dict = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": lowerCamelCase__ : str = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 lowerCamelCase__ : int = model_output elif self.config.prediction_type == "sample": lowerCamelCase__ : Optional[int] = model_output lowerCamelCase__ : int = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": lowerCamelCase__ : List[str] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output lowerCamelCase__ : Dict = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ' `v_prediction`' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: lowerCamelCase__ : Tuple = pred_original_sample.clamp( -self.config.clip_sample_range, self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Optional[Any] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Optional[int] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCamelCase_, pred_original_sample=lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self.config.num_train_timesteps
720
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : Optional[Any] = use_input_mask lowerCamelCase__ : List[Any] = use_token_type_ids lowerCamelCase__ : List[Any] = use_labels lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : Optional[int] = embedding_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Optional[Any] = num_labels lowerCamelCase__ : Dict = num_choices lowerCamelCase__ : Tuple = scope def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : List[str] = None if self.use_input_mask: lowerCamelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_token_type_ids: lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Any = None lowerCamelCase__ : Union[str, Any] = None if self.use_labels: lowerCamelCase__ : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, embedding_size=self.embedding_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, next_sentence_label=lowerCamelCase_, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, start_positions=lowerCamelCase_, end_positions=lowerCamelCase_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : int = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.num_choices lowerCamelCase__ : Dict = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : int = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : List[str] = config_and_inputs lowerCamelCase__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : int = True def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase_ ) return inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = MobileBertModelTester(self ) lowerCamelCase__ : List[str] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): return torch.tensor( _lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , ) A_ : Tuple = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(lowerCamelCase_ ) lowerCamelCase__ : Tuple = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ )[0] lowerCamelCase__ : Optional[int] = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [ [ [-2.4_736_526e07, 8.2_691_656e04, 1.6_521_838e05], [-5.7_541_704e-01, 3.9_056_022e00, 4.4_011_507e00], [2.6_047_359e00, 1.5_677_652e00, -1.7_324_188e-01], ] ], device=lowerCamelCase_, ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCamelCase__ : Optional[int] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCamelCase__ : Any = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
696
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = tempfile.mkdtemp() # fmt: off lowerCamelCase__ : int = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCamelCase__ : Union[str, Any] = dict(zip(lowerCamelCase_, range(len(lowerCamelCase_ ) ) ) ) lowerCamelCase__ : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCamelCase__ : str = {'unk_token': '<unk>'} lowerCamelCase__ : Dict = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ : str = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase_ ) ) lowerCamelCase__ : Union[str, Any] = { 'do_resize': True, 'size': 2_0, 'do_center_crop': True, 'crop_size': 1_8, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCamelCase__ : Tuple = os.path.join(self.tmpdirname, lowerCamelCase_ ) with open(self.image_processor_file, 'w', encoding='utf-8' ) as fp: json.dump(lowerCamelCase_, lowerCamelCase_ ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = [np.random.randint(2_5_5, size=(3, 3_0, 4_0_0), dtype=np.uinta )] lowerCamelCase__ : Tuple = [Image.fromarray(np.moveaxis(lowerCamelCase_, 0, -1 ) ) for x in image_inputs] return image_inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.get_tokenizer() lowerCamelCase__ : Optional[int] = self.get_rust_tokenizer() lowerCamelCase__ : Any = self.get_image_processor() lowerCamelCase__ : Dict = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Dict = CLIPProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, lowerCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer, lowerCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, lowerCamelCase_ ) self.assertIsInstance(processor_fast.image_processor, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = CLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : List[Any] = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) lowerCamelCase__ : Optional[Any] = self.get_image_processor(do_normalize=lowerCamelCase_, padding_value=1.0 ) lowerCamelCase__ : int = CLIPProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCamelCase_, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : Any = self.get_tokenizer() lowerCamelCase__ : List[str] = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = self.prepare_image_inputs() lowerCamelCase__ : int = image_processor(lowerCamelCase_, return_tensors='np' ) lowerCamelCase__ : Optional[Any] = processor(images=lowerCamelCase_, return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : str = self.get_tokenizer() lowerCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = 'lower newer' lowerCamelCase__ : Optional[int] = processor(text=lowerCamelCase_ ) lowerCamelCase__ : Dict = tokenizer(lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_image_processor() lowerCamelCase__ : Tuple = self.get_tokenizer() lowerCamelCase__ : List[Any] = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : str = 'lower newer' lowerCamelCase__ : Optional[Any] = self.prepare_image_inputs() lowerCamelCase__ : Tuple = processor(text=lowerCamelCase_, images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ), ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.get_image_processor() lowerCamelCase__ : Optional[int] = self.get_tokenizer() lowerCamelCase__ : Tuple = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ : Union[str, Any] = processor.batch_decode(lowerCamelCase_ ) lowerCamelCase__ : Tuple = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_image_processor() lowerCamelCase__ : str = self.get_tokenizer() lowerCamelCase__ : int = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : str = 'lower newer' lowerCamelCase__ : List[Any] = self.prepare_image_inputs() lowerCamelCase__ : Dict = processor(text=lowerCamelCase_, images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
721
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A_ : str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=1 ): '''simple docstring''' lowerCamelCase__ : Any = tokenizer lowerCamelCase__ : Optional[Any] = dataset lowerCamelCase__ : int = len(lowerCamelCase_ ) if n_tasks is None else n_tasks lowerCamelCase__ : Any = n_copies def __iter__(self ): '''simple docstring''' lowerCamelCase__ : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ : Optional[int] = self.tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = start_length lowerCamelCase__ : List[str] = eof_strings lowerCamelCase__ : List[str] = tokenizer def __call__(self, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ : Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ): lowerCamelCase__ : List[str] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): lowerCamelCase__ : str = batch['ids'].shape[-1] lowerCamelCase__ : int = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times lowerCamelCase__ : Optional[Any] = batch['task_id'].repeat(_lowerCamelCase ) lowerCamelCase__ : List[Any] = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ : List[Any] = generated_tokens.cpu().numpy() lowerCamelCase__ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) lowerCamelCase__ : str = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ : Optional[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase_ ( ): # Setup configuration lowerCamelCase__ : int = HfArgumentParser(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ : Tuple = 'false' if args.num_workers is None: lowerCamelCase__ : List[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ : List[Any] = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ : Optional[int] = tokenizer.eos_token lowerCamelCase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ : Optional[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric lowerCamelCase__ : Any = load_dataset('openai_humaneval' ) lowerCamelCase__ : Optional[int] = load_metric('code_eval' ) lowerCamelCase__ : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ : Optional[int] = args.n_samples // args.batch_size lowerCamelCase__ : Tuple = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ : Union[str, Any] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ : List[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ : str = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: lowerCamelCase__ : List[str] = [] for task in tqdm(range(_lowerCamelCase ) ): lowerCamelCase__ : int = human_eval['test'][task]['test'] lowerCamelCase__ : Union[str, Any] = f'''check({human_eval['test'][task]['entry_point']})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ : Any = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
696
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging A_ : Tuple = logging.get_logger(__name__) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['input_features', 'attention_mask'] def __init__(self, lowerCamelCase_=8_0, lowerCamelCase_=1_6_0_0_0, lowerCamelCase_=0.0, lowerCamelCase_=1_0, lowerCamelCase_=2_5, lowerCamelCase_="hamming_window", lowerCamelCase_=3_2_7_6_8.0, lowerCamelCase_=0.97, lowerCamelCase_=1.0, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=False, **lowerCamelCase_, ): '''simple docstring''' super().__init__(feature_size=lowerCamelCase_, sampling_rate=lowerCamelCase_, padding_value=lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : List[str] = feature_size lowerCamelCase__ : Union[str, Any] = sampling_rate lowerCamelCase__ : List[str] = padding_value lowerCamelCase__ : Optional[int] = hop_length lowerCamelCase__ : List[Any] = win_length lowerCamelCase__ : Tuple = frame_signal_scale lowerCamelCase__ : Tuple = preemphasis_coeff lowerCamelCase__ : Optional[Any] = mel_floor lowerCamelCase__ : str = normalize_means lowerCamelCase__ : Dict = normalize_vars lowerCamelCase__ : List[str] = win_function lowerCamelCase__ : Optional[Any] = return_attention_mask lowerCamelCase__ : int = win_length * sampling_rate // 1_0_0_0 lowerCamelCase__ : Any = hop_length * sampling_rate // 1_0_0_0 lowerCamelCase__ : List[str] = optimal_fft_length(self.sample_size ) lowerCamelCase__ : str = (self.n_fft // 2) + 1 def a__ (self, lowerCamelCase_ ): '''simple docstring''' if self.win_function == "hamming_window": lowerCamelCase__ : str = window_function(window_length=self.sample_size, name=self.win_function, periodic=lowerCamelCase_ ) else: lowerCamelCase__ : str = window_function(window_length=self.sample_size, name=self.win_function ) lowerCamelCase__ : List[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs, num_mel_filters=self.feature_size, min_frequency=0.0, max_frequency=self.sampling_rate / 2.0, sampling_rate=self.sampling_rate, ) lowerCamelCase__ : List[Any] = spectrogram( one_waveform * self.frame_signal_scale, window=lowerCamelCase_, frame_length=self.sample_size, hop_length=self.sample_stride, fft_length=self.n_fft, center=lowerCamelCase_, preemphasis=self.preemphasis_coeff, mel_filters=lowerCamelCase_, mel_floor=self.mel_floor, log_mel='log', ) return msfc_features.T def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self.normalize_means: lowerCamelCase__ : Tuple = x[:input_length].mean(axis=0 ) lowerCamelCase__ : Optional[int] = np.subtract(lowerCamelCase_, lowerCamelCase_ ) if self.normalize_vars: lowerCamelCase__ : Dict = x[:input_length].std(axis=0 ) lowerCamelCase__ : Dict = np.divide(lowerCamelCase_, lowerCamelCase_ ) if input_length < x.shape[0]: lowerCamelCase__ : Optional[Any] = padding_value # make sure array is in float32 lowerCamelCase__ : int = x.astype(np.floataa ) return x def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(lowerCamelCase_, lowerCamelCase_, self.padding_value ) for x, n in zip(lowerCamelCase_, lowerCamelCase_ )] def __call__(self, lowerCamelCase_, lowerCamelCase_ = False, lowerCamelCase_ = None, lowerCamelCase_ = False, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowerCamelCase__ : List[Any] = isinstance(lowerCamelCase_, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCamelCase__ : int = is_batched_numpy or ( isinstance(lowerCamelCase_, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase__ : int = [np.asarray(lowerCamelCase_, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase_, np.ndarray ): lowerCamelCase__ : Tuple = np.asarray(lowerCamelCase_, dtype=np.floataa ) elif isinstance(lowerCamelCase_, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase__ : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase__ : str = [raw_speech] # extract fbank features lowerCamelCase__ : Dict = [self._extract_mfsc_features(lowerCamelCase_ ) for one_waveform in raw_speech] # convert into correct format for padding lowerCamelCase__ : List[str] = BatchFeature({'input_features': features} ) lowerCamelCase__ : Any = self.pad( lowerCamelCase_, padding=lowerCamelCase_, max_length=lowerCamelCase_, truncation=lowerCamelCase_, pad_to_multiple_of=lowerCamelCase_, return_attention_mask=lowerCamelCase_, **lowerCamelCase_, ) # make sure list is in array format lowerCamelCase__ : int = padded_inputs.get('input_features' ) if isinstance(input_features[0], lowerCamelCase_ ): lowerCamelCase__ : Dict = [np.asarray(lowerCamelCase_, dtype=np.floataa ) for feature in input_features] lowerCamelCase__ : Any = padded_inputs.get('attention_mask' ) if attention_mask is not None: lowerCamelCase__ : int = [np.asarray(lowerCamelCase_, dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: lowerCamelCase__ : int = ( np.array(lowerCamelCase_, dtype=np.intaa ) if self._get_padding_strategies(lowerCamelCase_, max_length=lowerCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) lowerCamelCase__ : Tuple = self.normalize( padded_inputs['input_features'], attention_mask=lowerCamelCase_ ) if return_tensors is not None: lowerCamelCase__ : str = padded_inputs.convert_to_tensors(lowerCamelCase_ ) return padded_inputs
700
"""simple docstring""" from ..utils import DummyObject, requires_backends class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] ) class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['speech'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['speech'] )
696
0
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig A_ : Optional[int] = logging.get_logger(__name__) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = question_encoder lowerCamelCase__ : Optional[int] = generator lowerCamelCase__ : Optional[Any] = self.question_encoder def a__ (self, lowerCamelCase_ ): '''simple docstring''' if os.path.isfile(lowerCamelCase_ ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowerCamelCase_, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : str = os.path.join(lowerCamelCase_, 'question_encoder_tokenizer' ) lowerCamelCase__ : str = os.path.join(lowerCamelCase_, 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowerCamelCase_ ) self.generator.save_pretrained(lowerCamelCase_ ) @classmethod def a__ (cls, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer lowerCamelCase__ : List[Any] = kwargs.pop('config', lowerCamelCase_ ) if config is None: lowerCamelCase__ : int = RagConfig.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained( lowerCamelCase_, config=config.question_encoder, subfolder='question_encoder_tokenizer' ) lowerCamelCase__ : Any = AutoTokenizer.from_pretrained( lowerCamelCase_, config=config.generator, subfolder='generator_tokenizer' ) return cls(question_encoder=lowerCamelCase_, generator=lowerCamelCase_ ) def __call__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.current_tokenizer(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.generator.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.generator.decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.question_encoder def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.generator def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = "longest", lowerCamelCase_ = None, lowerCamelCase_ = True, **lowerCamelCase_, ): '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details', lowerCamelCase_, ) if max_length is None: lowerCamelCase__ : Dict = self.current_tokenizer.model_max_length lowerCamelCase__ : Union[str, Any] = self( lowerCamelCase_, add_special_tokens=lowerCamelCase_, return_tensors=lowerCamelCase_, max_length=lowerCamelCase_, padding=lowerCamelCase_, truncation=lowerCamelCase_, **lowerCamelCase_, ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: lowerCamelCase__ : str = self.current_tokenizer.model_max_length lowerCamelCase__ : Union[str, Any] = self( text_target=lowerCamelCase_, add_special_tokens=lowerCamelCase_, return_tensors=lowerCamelCase_, padding=lowerCamelCase_, max_length=lowerCamelCase_, truncation=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : Tuple = labels['input_ids'] return model_inputs
701
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = 0 while number > 0: lowerCamelCase__ : List[str] = number % 10 sum_of_digits += last_digit lowerCamelCase__ : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase_ ( _lowerCamelCase = 100 ): lowerCamelCase__ : Union[str, Any] = factorial(_lowerCamelCase ) lowerCamelCase__ : List[Any] = split_and_add(_lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
696
0
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : str = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality lowerCamelCase__ : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors lowerCamelCase__ : List[str] = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowerCamelCase__ : Any = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowerCamelCase__ : int = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowerCamelCase__ : Optional[int] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowerCamelCase__ : Union[str, Any] = tf.placeholder('float64' , [dim] ) lowerCamelCase__ : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase , _lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowerCamelCase__ : Any = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowerCamelCase__ : Union[str, Any] = tf.placeholder('int32' ) lowerCamelCase__ : Dict = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase , _lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowerCamelCase__ : Optional[Any] = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowerCamelCase__ : List[Any] = tf.reduce_mean(_lowerCamelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowerCamelCase__ : Tuple = tf.placeholder('float' , [dim] ) lowerCamelCase__ : Union[str, Any] = tf.placeholder('float' , [dim] ) lowerCamelCase__ : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase , _lowerCamelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowerCamelCase__ : Union[str, Any] = tf.placeholder('float' , [noofclusters] ) lowerCamelCase__ : Optional[Any] = tf.argmin(_lowerCamelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowerCamelCase__ : Any = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowerCamelCase__ : Tuple = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): lowerCamelCase__ : Union[str, Any] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowerCamelCase__ : Dict = [ sess.run(_lowerCamelCase , feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowerCamelCase__ : List[str] = sess.run( _lowerCamelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster lowerCamelCase__ : Any = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowerCamelCase__ : int = sess.run( _lowerCamelCase , feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowerCamelCase__ : Tuple = sess.run(_lowerCamelCase ) lowerCamelCase__ : List[Any] = sess.run(_lowerCamelCase ) return centroids, assignments
702
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ : Dict = "pt" elif is_tf_available(): A_ : Union[str, Any] = "tf" else: A_ : List[str] = "jax" class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = PerceiverTokenizer lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ (self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=2_0, lowerCamelCase_=5 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [] for i in range(len(lowerCamelCase_ ) ): try: lowerCamelCase__ : Any = tokenizer.decode([i], clean_up_tokenization_spaces=lowerCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase__ : Any = list(filter(lambda lowerCamelCase_ : re.match(r'^[ a-zA-Z]+$', t[1] ), lowerCamelCase_ ) ) lowerCamelCase__ : Union[str, Any] = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=lowerCamelCase_ ), lowerCamelCase_ ) ) if max_length is not None and len(lowerCamelCase_ ) > max_length: lowerCamelCase__ : int = toks[:max_length] if min_length is not None and len(lowerCamelCase_ ) < min_length and len(lowerCamelCase_ ) > 0: while len(lowerCamelCase_ ) < min_length: lowerCamelCase__ : Dict = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : int = [t[0] for t in toks] # Ensure consistency lowerCamelCase__ : Optional[int] = tokenizer.decode(lowerCamelCase_, clean_up_tokenization_spaces=lowerCamelCase_ ) if " " not in output_txt and len(lowerCamelCase_ ) > 1: lowerCamelCase__ : List[Any] = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=lowerCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=lowerCamelCase_ ) ) if with_prefix_space: lowerCamelCase__ : Optional[Any] = ' ' + output_txt lowerCamelCase__ : List[Any] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) return output_txt, output_ids def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = 'Unicode €.' lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_ ) lowerCamelCase__ : Dict = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : int = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]Unicode €.[SEP]' ) lowerCamelCase__ : List[str] = tokenizer('e è é ê ë' ) lowerCamelCase__ : Dict = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'], lowerCamelCase_ ) # decoding lowerCamelCase__ : Any = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ), '[CLS]e è é ê ë[SEP]' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCamelCase__ : List[Any] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) if FRAMEWORK != "jax": lowerCamelCase__ : List[str] = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase__ : int = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertEqual((2, 3_8), batch.input_ids.shape ) self.assertEqual((2, 3_8), batch.attention_mask.shape ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.perceiver_tokenizer lowerCamelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCamelCase__ : List[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids', lowerCamelCase_ ) self.assertIn('attention_mask', lowerCamelCase_ ) self.assertNotIn('decoder_input_ids', lowerCamelCase_ ) self.assertNotIn('decoder_attention_mask', lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.perceiver_tokenizer lowerCamelCase__ : int = [ 'Summary of the text.', 'Another summary.', ] lowerCamelCase__ : str = tokenizer( text_target=lowerCamelCase_, max_length=3_2, padding='max_length', truncation=lowerCamelCase_, return_tensors=lowerCamelCase_ ) self.assertEqual(3_2, targets['input_ids'].shape[1] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 4_2 ) # Now let's start the test lowerCamelCase__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : str = ' He is very happy, UNwant\u00E9d,running' lowerCamelCase__ : str = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : str = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) shutil.rmtree(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCamelCase__ : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCamelCase__ : List[str] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : int = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = after_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertIn('new_additional_special_token', after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 4_2 ) lowerCamelCase__ : List[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_, model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length, 4_3 ) shutil.rmtree(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : Optional[Any] = json.load(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file: lowerCamelCase__ : List[str] = json.load(lowerCamelCase_ ) lowerCamelCase__ : Any = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] lowerCamelCase__ : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCamelCase__ : List[str] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowerCamelCase_, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(lowerCamelCase_, lowerCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ : Dict = tokenizer_class.from_pretrained( lowerCamelCase_, ) self.assertIn( 'an_additional_special_token', tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token', lstrip=lowerCamelCase_ )] lowerCamelCase__ : Any = tokenizer_class.from_pretrained( lowerCamelCase_, additional_special_tokens=lowerCamelCase_, ) self.assertIn('a_new_additional_special_token', tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ), '�' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_tokenizers(fast=lowerCamelCase_, do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Tuple = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] lowerCamelCase__ : List[str] = tokenizer.convert_tokens_to_string(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): if attention_mask is None: lowerCamelCase__ : Union[str, Any] = tf.cast(tf.math.not_equal(_lowerCamelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a_ : '''simple docstring''' lowerCamelCase__ : Tuple = OPTConfig lowerCamelCase__ : Any = {} lowerCamelCase__ : Union[str, Any] = 'gelu' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_=9_9, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=4, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=2_0, lowerCamelCase_=2, lowerCamelCase_=1, lowerCamelCase_=0, lowerCamelCase_=1_6, lowerCamelCase_=1_6, ): '''simple docstring''' lowerCamelCase__ : int = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : Optional[int] = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : Optional[int] = use_labels lowerCamelCase__ : int = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : str = num_attention_heads lowerCamelCase__ : Optional[Any] = intermediate_size lowerCamelCase__ : Dict = hidden_act lowerCamelCase__ : List[str] = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Union[str, Any] = eos_token_id lowerCamelCase__ : Optional[Any] = pad_token_id lowerCamelCase__ : str = bos_token_id lowerCamelCase__ : int = embed_dim lowerCamelCase__ : List[str] = word_embed_proj_dim lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) lowerCamelCase__ : Any = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) lowerCamelCase__ : Tuple = tf.concat([input_ids, eos_tensor], axis=1 ) lowerCamelCase__ : str = self.config_cls( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, embed_dim=self.embed_dim, word_embed_proj_dim=self.word_embed_proj_dim, is_encoder_decoder=lowerCamelCase_, **self.config_updates, ) lowerCamelCase__ : List[str] = prepare_opt_inputs_dict(lowerCamelCase_, lowerCamelCase_ ) return config, inputs_dict def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = TFOPTModel(config=lowerCamelCase_ ) lowerCamelCase__ : str = inputs_dict['input_ids'] lowerCamelCase__ : int = input_ids[:1, :] lowerCamelCase__ : List[str] = inputs_dict['attention_mask'][:1, :] lowerCamelCase__ : Dict = 1 # first forward pass lowerCamelCase__ : List[str] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : List[str] = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : Dict = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and lowerCamelCase__ : Dict = tf.concat([input_ids, next_tokens], axis=-1 ) lowerCamelCase__ : List[Any] = tf.concat([attention_mask, next_attn_mask], axis=-1 ) lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ )[0] lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice lowerCamelCase__ : Union[str, Any] = int(ids_tensor((1,), output_from_past.shape[-1] ) ) lowerCamelCase__ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase__ : Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase_, lowerCamelCase_, rtol=1e-3 ) @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ : Union[str, Any] = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ : Optional[int] = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : Optional[Any] = 10 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = TFOPTModelTester(self ) lowerCamelCase__ : Tuple = ConfigTester(self, config_class=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCamelCase_, lowerCamelCase_ ): if hasattr(lowerCamelCase_, 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCamelCase_, 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings lowerCamelCase__ : Optional[int] = model_class(config=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = _get_word_embedding_weight(lowerCamelCase_, model.get_input_embeddings() ) lowerCamelCase__ : Union[str, Any] = _get_word_embedding_weight(lowerCamelCase_, model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowerCamelCase_ ) lowerCamelCase__ : Tuple = _get_word_embedding_weight(lowerCamelCase_, model.get_input_embeddings() ) lowerCamelCase__ : str = _get_word_embedding_weight(lowerCamelCase_, model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCamelCase__ : Dict = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0], lowerCamelCase_ ) # check that weights remain the same after resizing lowerCamelCase__ : Union[str, Any] = True for pa, pa in zip(old_input_embeddings.value(), new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase__ : List[Any] = False self.assertTrue(lowerCamelCase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0], lowerCamelCase_ ) lowerCamelCase__ : str = True for pa, pa in zip(old_output_embeddings.value(), new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase__ : Tuple = False self.assertTrue(lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): return tf.constant(_lowerCamelCase , dtype=tf.intaa ) @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 99 def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = tf.ones((4, 1), dtype=tf.intaa ) * 2 lowerCamelCase__ : Optional[int] = tf.concat([ids_tensor((4, 6), self.vocab_size - 3 ) + 3, eos_column_vector], axis=1 ) lowerCamelCase__ : str = input_ids.shape[0] lowerCamelCase__ : List[str] = OPTConfig( vocab_size=self.vocab_size, hidden_size=2_4, num_hidden_layers=2, num_attention_heads=2, ffn_dim=3_2, max_position_embeddings=4_8, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFOPTModel.from_pretrained('facebook/opt-350m' ) lowerCamelCase__ : Dict = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCamelCase__ : str = tf.not_equal(lowerCamelCase_, model.config.pad_token_id ) with tf.GradientTape(): lowerCamelCase__ : List[str] = model(input_ids=lowerCamelCase_, attention_mask=lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[Any] = (1, 1_1, 5_1_2) self.assertEqual(output.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3], lowerCamelCase_, atol=4e-3 ) ) lowerCamelCase__ : str = tf.function(lowerCamelCase_, jit_compile=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = xla_generate(lowerCamelCase_, lowerCamelCase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3], lowerCamelCase_, atol=4e-2 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : Dict = 'facebook/opt-350m' def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCamelCase__ : Dict = GPTaTokenizer.from_pretrained(self.path_model ) lowerCamelCase__ : Tuple = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCamelCase__ : Dict = tokenizer(lowerCamelCase_, return_tensors='tf', padding=lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = tf.math.reduce_mean(model(inputs.input_ids, attention_mask=inputs.attention_mask )[0], axis=-1 ) lowerCamelCase__ : Any = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-4 ) ) lowerCamelCase__ : int = tf.function(lowerCamelCase_, jit_compile=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids, attention_mask=inputs.attention_mask )[0], axis=-1 ) self.assertTrue(np.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-4 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' @property def a__ (self ): '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = 'facebook/opt-125m' lowerCamelCase__ : str = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = GPTaTokenizer.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Dict = TFOPTForCausalLM.from_pretrained(lowerCamelCase_ ) for prompt in self.prompts: lowerCamelCase__ : int = tokenizer(lowerCamelCase_, return_tensors='tf' ).input_ids lowerCamelCase__ : Union[str, Any] = model.generate(lowerCamelCase_, max_length=1_0 ) lowerCamelCase__ : List[Any] = tokenizer.batch_decode(lowerCamelCase_, skip_special_tokens=lowerCamelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = 'facebook/opt-350m' lowerCamelCase__ : Dict = GPTaTokenizer.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = TFOPTForCausalLM.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 'left' # use different length sentences to test batching lowerCamelCase__ : Union[str, Any] = [ 'Hello, my dog is a little', 'Today, I', ] lowerCamelCase__ : List[str] = tokenizer(lowerCamelCase_, return_tensors='tf', padding=lowerCamelCase_ ) lowerCamelCase__ : List[str] = inputs['input_ids'] lowerCamelCase__ : Optional[int] = model.generate(input_ids=lowerCamelCase_, attention_mask=inputs['attention_mask'] ) lowerCamelCase__ : List[str] = tokenizer(sentences[0], return_tensors='tf' ).input_ids lowerCamelCase__ : Optional[Any] = model.generate(input_ids=lowerCamelCase_ ) lowerCamelCase__ : Any = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1], tf.intaa ) ) lowerCamelCase__ : List[str] = tokenizer(sentences[1], return_tensors='tf' ).input_ids lowerCamelCase__ : Union[str, Any] = model.generate(input_ids=lowerCamelCase_, max_length=model.config.max_length - num_paddings ) lowerCamelCase__ : List[Any] = tokenizer.batch_decode(lowerCamelCase_, skip_special_tokens=lowerCamelCase_ ) lowerCamelCase__ : str = tokenizer.decode(output_non_padded[0], skip_special_tokens=lowerCamelCase_ ) lowerCamelCase__ : Tuple = tokenizer.decode(output_padded[0], skip_special_tokens=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, [non_padded_sentence, padded_sentence] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = 'facebook/opt-350m' lowerCamelCase__ : Union[str, Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = GPTaTokenizer.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowerCamelCase_ ) for prompt in self.prompts: lowerCamelCase__ : Tuple = tokenizer(lowerCamelCase_, return_tensors='tf' ).input_ids lowerCamelCase__ : int = model.generate(lowerCamelCase_, max_length=1_0 ) lowerCamelCase__ : List[str] = tokenizer.batch_decode(lowerCamelCase_, skip_special_tokens=lowerCamelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase_, lowerCamelCase_ )
703
"""simple docstring""" from math import pi, sqrt, tan def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCamelCase__ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_lowerCamelCase , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase_ ( _lowerCamelCase ): if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCamelCase__ : Dict = (sidea + sidea + sidea) / 2 lowerCamelCase__ : str = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( _lowerCamelCase ): if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
696
0
"""simple docstring""" from scipy.stats import pearsonr import datasets A_ : Any = "\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n" A_ : Union[str, Any] = "\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results['pearsonr'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n ['p-value', 'pearsonr']\n >>> print(round(results['pearsonr'], 2))\n -0.74\n >>> print(round(results['p-value'], 2))\n 0.15\n" A_ : Optional[int] = "\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def a__ (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ), reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'], ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' if return_pvalue: lowerCamelCase__ : List[Any] = pearsonr(lowerCamelCase_, lowerCamelCase_ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_, lowerCamelCase_ )[0] )}
704
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : str = use_input_mask lowerCamelCase__ : Optional[Any] = use_token_type_ids lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : Union[str, Any] = type_sequence_label_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : Union[str, Any] = num_choices lowerCamelCase__ : List[str] = scope lowerCamelCase__ : Dict = vocab_size - 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = self.get_config() return config, input_ids, input_mask, token_labels def a__ (self ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[Any] = True return config, input_ids, input_mask, token_labels def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = GPTNeoXModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = True lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : Optional[Any] = GPTNeoXForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = self.num_labels lowerCamelCase__ : Optional[int] = GPTNeoXForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[Any] = GPTNeoXForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Tuple = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : List[str] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : str = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : List[Any] = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and lowerCamelCase__ : Tuple = torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : Tuple = torch.cat([input_mask, next_mask], dim=-1 ) lowerCamelCase__ : List[str] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, output_hidden_states=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = output_from_no_past['hidden_states'][0] lowerCamelCase__ : Optional[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_, output_hidden_states=lowerCamelCase_, )['hidden_states'][0] # select random slice lowerCamelCase__ : Dict = ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-3 ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = config_and_inputs lowerCamelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : int = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase__ : Dict = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = GPTNeoXModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=6_4, num_attention_heads=8 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def a__ (self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = ids_tensor([1, 1_0], config.vocab_size ) lowerCamelCase__ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Any = GPTNeoXModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() lowerCamelCase__ : List[Any] = original_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Optional[int] = {'type': scaling_type, 'factor': 10.0} lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() lowerCamelCase__ : Tuple = scaled_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: lowerCamelCase__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer('My favorite food is', return_tensors='pt' ).to(lowerCamelCase_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCamelCase__ : Dict = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' lowerCamelCase__ : Dict = model.generate(**lowerCamelCase_, do_sample=lowerCamelCase_, max_new_tokens=2_0 ) lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ )[0] self.assertEqual(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCamelCase__ : Tuple = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_, cache_dir=lowerCamelCase_ ) lowerCamelCase__ : List[str] = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_, os.listdir(lowerCamelCase_ )[0], 'snapshots' ) )] lowerCamelCase__ : Optional[int] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[int] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Any = 4 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : List[Any] = num_samples * [prompt] lowerCamelCase__ : Optional[int] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : int = replicate(lowerCamelCase_ ) lowerCamelCase__ : Any = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : int = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1_514_745 ) < 1e-3 assert np.abs(np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 lowerCamelCase__ : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase_ ) == num_samples def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='flax', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : int = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[str] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : List[str] = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = shard(lowerCamelCase_ ) lowerCamelCase__ : str = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05_652_401) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Union[str, Any] = 5_0 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : Tuple = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Any = replicate(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa ) lowerCamelCase__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Union[str, Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] = 5_0 lowerCamelCase__ : Tuple = jax.device_count() lowerCamelCase__ : Optional[int] = num_samples * [prompt] lowerCamelCase__ : str = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Optional[int] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : List[str] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = FlaxDDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', set_alpha_to_one=lowerCamelCase_, steps_offset=1, ) lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, scheduler=lowerCamelCase_, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : List[str] = scheduler.create_state() lowerCamelCase__ : int = scheduler_state lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : Optional[Any] = jax.device_count() lowerCamelCase__ : Any = num_samples * [prompt] lowerCamelCase__ : Any = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Dict = shard(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045_043_945) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : int = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : str = jax.random.split(jax.random.PRNGKey(0 ), lowerCamelCase_ ) lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Dict = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Tuple = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : int = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention lowerCamelCase__ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, use_memory_efficient_attention=lowerCamelCase_, ) lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : Any = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Any = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
705
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : Dict = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. A_ : List[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A_ : Union[str, Any] = spec.loader.load_module() A_ : int = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A_ : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") A_ : str = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCamelCase__ : Dict = False # source code of `config_class` lowerCamelCase__ : str = inspect.getsource(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = _re_checkpoint.findall(_lowerCamelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCamelCase__ , lowerCamelCase__ : Optional[int] = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase__ : Any = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: lowerCamelCase__ : Any = True break lowerCamelCase__ : Dict = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ : Optional[Any] = '\n'.join(sorted(_lowerCamelCase ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
696
0
"""simple docstring""" from __future__ import annotations class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = text, pattern lowerCamelCase__ : List[Any] = len(lowerCamelCase_ ), len(lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' for i in range(self.patLen - 1, -1, -1 ): if char == self.pattern[i]: return i return -1 def a__ (self, lowerCamelCase_ ): '''simple docstring''' for i in range(self.patLen - 1, -1, -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = [] for i in range(self.textLen - self.patLen + 1 ): lowerCamelCase__ : Tuple = self.mismatch_in_text(lowerCamelCase_ ) if mismatch_index == -1: positions.append(lowerCamelCase_ ) else: lowerCamelCase__ : Any = self.match_in_pattern(self.text[mismatch_index] ) lowerCamelCase__ : List[Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A_ : Dict = "ABAABA" A_ : Any = "AB" A_ : Optional[int] = BoyerMooreSearch(text, pattern) A_ : Union[str, Any] = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor A_ : Optional[int] = logging.get_logger(__name__) class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.', lowerCamelCase_, ) super().__init__(*lowerCamelCase_, **lowerCamelCase_ )
707
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A_ : Optional[int] = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A_ : List[str] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) A_ : Tuple = BeautifulSoup(res.text, "html.parser") A_ : Dict = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f"https://google.com{link.get('href')}")
696
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer A_ : List[Any] = logging.get_logger(__name__) A_ : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A_ : List[Any] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } A_ : Dict = {"mobilebert-uncased": 5_12} A_ : int = {} class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase__ : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : int = MobileBertTokenizer def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=True, lowerCamelCase_="[UNK]", lowerCamelCase_="[SEP]", lowerCamelCase_="[PAD]", lowerCamelCase_="[CLS]", lowerCamelCase_="[MASK]", lowerCamelCase_=True, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' super().__init__( lowerCamelCase_, tokenizer_file=lowerCamelCase_, do_lower_case=lowerCamelCase_, unk_token=lowerCamelCase_, sep_token=lowerCamelCase_, pad_token=lowerCamelCase_, cls_token=lowerCamelCase_, mask_token=lowerCamelCase_, tokenize_chinese_chars=lowerCamelCase_, strip_accents=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase', lowerCamelCase_ ) != do_lower_case or normalizer_state.get('strip_accents', lowerCamelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars', lowerCamelCase_ ) != tokenize_chinese_chars ): lowerCamelCase__ : Optional[Any] = getattr(lowerCamelCase_, normalizer_state.pop('type' ) ) lowerCamelCase__ : Optional[int] = do_lower_case lowerCamelCase__ : Tuple = strip_accents lowerCamelCase__ : str = tokenize_chinese_chars lowerCamelCase__ : int = normalizer_class(**lowerCamelCase_ ) lowerCamelCase__ : str = do_lower_case def a__ (self, lowerCamelCase_, lowerCamelCase_=None ): '''simple docstring''' lowerCamelCase__ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Dict = [self.sep_token_id] lowerCamelCase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : List[Any] = self._tokenizer.model.save(lowerCamelCase_, name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
708
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCamelCase__ : Tuple = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_, cache_dir=lowerCamelCase_ ) lowerCamelCase__ : List[str] = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_, os.listdir(lowerCamelCase_ )[0], 'snapshots' ) )] lowerCamelCase__ : Optional[int] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[int] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Any = 4 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : List[Any] = num_samples * [prompt] lowerCamelCase__ : Optional[int] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : int = replicate(lowerCamelCase_ ) lowerCamelCase__ : Any = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : int = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1_514_745 ) < 1e-3 assert np.abs(np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 49_947.875 ) < 5e-1 lowerCamelCase__ : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase_ ) == num_samples def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='flax', safety_checker=lowerCamelCase_ ) lowerCamelCase__ : int = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[str] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : List[str] = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = shard(lowerCamelCase_ ) lowerCamelCase__ : str = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05_652_401) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_383_808.2) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : List[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Union[str, Any] = 5_0 lowerCamelCase__ : Any = jax.device_count() lowerCamelCase__ : Tuple = num_samples * [prompt] lowerCamelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Any = replicate(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa ) lowerCamelCase__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Union[str, Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] = 5_0 lowerCamelCase__ : Tuple = jax.device_count() lowerCamelCase__ : Optional[int] = num_samples * [prompt] lowerCamelCase__ : str = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Optional[int] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : List[str] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = FlaxDDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', set_alpha_to_one=lowerCamelCase_, steps_offset=1, ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, scheduler=lowerCamelCase_, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : List[str] = scheduler.create_state() lowerCamelCase__ : int = scheduler_state lowerCamelCase__ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : Optional[Any] = jax.random.PRNGKey(0 ) lowerCamelCase__ : int = 5_0 lowerCamelCase__ : Optional[Any] = jax.device_count() lowerCamelCase__ : Any = num_samples * [prompt] lowerCamelCase__ : Any = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Dict = shard(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045_043_945) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_, dtype=np.floataa ).sum() - 2_347_693.5) ) < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCamelCase__ : int = jax.device_count() lowerCamelCase__ : Dict = num_samples * [prompt] lowerCamelCase__ : str = jax.random.split(jax.random.PRNGKey(0 ), lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = replicate(lowerCamelCase_ ) lowerCamelCase__ : Dict = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Tuple = shard(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : int = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention lowerCamelCase__ , lowerCamelCase__ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='bf16', dtype=jnp.bfloataa, safety_checker=lowerCamelCase_, use_memory_efficient_attention=lowerCamelCase_, ) lowerCamelCase__ : Dict = replicate(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = shard(lowerCamelCase_ ) lowerCamelCase__ : Any = pipeline(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, jit=lowerCamelCase_ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Any = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
696
0
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = DownBlockaD # noqa F405 lowerCamelCase__ : Tuple = 'down' def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [-0.0_232, -0.9_869, 0.8_054, -0.0_637, -0.1_688, -1.4_264, 0.4_470, -1.3_394, 0.0_904] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = ResnetDownsampleBlockaD # noqa F405 lowerCamelCase__ : int = 'down' def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [0.0_710, 0.2_410, -0.7_320, -1.0_757, -1.1_343, 0.3_540, -0.0_133, -0.2_576, 0.0_948] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Tuple = AttnDownBlockaD # noqa F405 lowerCamelCase__ : Optional[int] = 'down' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [0.0_636, 0.8_964, -0.6_234, -1.0_131, 0.0_844, 0.4_935, 0.3_437, 0.0_911, -0.2_957] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Tuple = CrossAttnDownBlockaD # noqa F405 lowerCamelCase__ : List[str] = 'down' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super().prepare_init_args_and_inputs_for_common() lowerCamelCase__ : Dict = 3_2 return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = [0.2_238, -0.7_396, -0.2_255, -0.3_829, 0.1_925, 1.1_665, 0.0_603, -0.7_295, 0.1_983] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Tuple = SimpleCrossAttnDownBlockaD # noqa F405 lowerCamelCase__ : Optional[int] = 'down' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = super().prepare_init_args_and_inputs_for_common() lowerCamelCase__ : List[str] = 3_2 return init_dict, inputs_dict @unittest.skipIf(torch_device == 'mps', 'MPS result is not consistent' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = [0.7_921, -0.0_992, -0.1_962, -0.7_695, -0.4_242, 0.7_804, 0.4_737, 0.2_765, 0.3_338] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = SkipDownBlockaD # noqa F405 lowerCamelCase__ : List[str] = 'down' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_skip_sample=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = [-0.0_845, -0.2_087, -0.2_465, 0.0_971, 0.1_900, -0.0_484, 0.2_664, 0.4_179, 0.5_069] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = AttnSkipDownBlockaD # noqa F405 lowerCamelCase__ : List[str] = 'down' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_skip_sample=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = [0.5_539, 0.1_609, 0.4_924, 0.0_537, -0.1_995, 0.4_050, 0.0_979, -0.2_721, -0.0_642] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[str] = DownEncoderBlockaD # noqa F405 lowerCamelCase__ : Optional[int] = 'down' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_temb=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = { 'in_channels': 3_2, 'out_channels': 3_2, } lowerCamelCase__ : Optional[int] = self.dummy_input return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [1.1_102, 0.5_302, 0.4_872, -0.0_023, -0.8_042, 0.0_483, -0.3_489, -0.5_632, 0.7_626] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = AttnDownEncoderBlockaD # noqa F405 lowerCamelCase__ : Any = 'down' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_temb=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = { 'in_channels': 3_2, 'out_channels': 3_2, } lowerCamelCase__ : int = self.dummy_input return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = [0.8_966, -0.1_486, 0.8_568, 0.8_141, -0.9_046, -0.1_342, -0.0_972, -0.7_417, 0.1_538] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Tuple = UNetMidBlockaD # noqa F405 lowerCamelCase__ : str = 'mid' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = { 'in_channels': 3_2, 'temb_channels': 1_2_8, } lowerCamelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [-0.1_062, 1.7_248, 0.3_494, 1.4_569, -0.0_910, -1.2_421, -0.9_984, 0.6_736, 1.0_028] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[Any] = UNetMidBlockaDCrossAttn # noqa F405 lowerCamelCase__ : List[str] = 'mid' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = super().prepare_init_args_and_inputs_for_common() lowerCamelCase__ : Dict = 3_2 return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [0.0_187, 2.4_220, 0.4_484, 1.1_203, -0.6_121, -1.5_122, -0.8_270, 0.7_851, 1.8_335] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowerCamelCase__ : Optional[Any] = 'mid' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = super().prepare_init_args_and_inputs_for_common() lowerCamelCase__ : List[str] = 3_2 return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = [0.7_143, 1.9_974, 0.5_448, 1.3_977, 0.1_282, -1.1_237, -1.4_238, 0.5_530, 0.8_880] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = UpBlockaD # noqa F405 lowerCamelCase__ : Optional[Any] = 'up' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [-0.2_041, -0.4_165, -0.3_022, 0.0_041, -0.6_628, -0.7_053, 0.1_928, -0.0_325, 0.0_523] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ResnetUpsampleBlockaD # noqa F405 lowerCamelCase__ : str = 'up' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [0.2_287, 0.3_549, -0.1_346, 0.4_797, -0.1_715, -0.9_649, 0.7_305, -0.5_864, -0.6_244] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[Any] = CrossAttnUpBlockaD # noqa F405 lowerCamelCase__ : List[str] = 'up' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = super().prepare_init_args_and_inputs_for_common() lowerCamelCase__ : Tuple = 3_2 return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = [-0.1_403, -0.3_515, -0.0_420, -0.1_425, 0.3_167, 0.5_094, -0.2_181, 0.5_931, 0.5_582] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = SimpleCrossAttnUpBlockaD # noqa F405 lowerCamelCase__ : Optional[Any] = 'up' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCamelCase_, include_encoder_hidden_states=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = super().prepare_init_args_and_inputs_for_common() lowerCamelCase__ : List[Any] = 3_2 return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = [0.2_645, 0.1_480, 0.0_909, 0.8_044, -0.9_758, -0.9_083, 0.0_994, -1.1_453, -0.7_402] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[int] = AttnUpBlockaD # noqa F405 lowerCamelCase__ : Any = 'up' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCamelCase_ ) @unittest.skipIf(torch_device == 'mps', 'MPS result is not consistent' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [0.0_979, 0.1_326, 0.0_021, 0.0_659, 0.2_249, 0.0_059, 0.1_132, 0.5_952, 0.1_033] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = SkipUpBlockaD # noqa F405 lowerCamelCase__ : Union[str, Any] = 'up' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = [-0.0_893, -0.1_234, -0.1_506, -0.0_332, 0.0_123, -0.0_211, 0.0_566, 0.0_143, 0.0_362] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = AttnSkipUpBlockaD # noqa F405 lowerCamelCase__ : Any = 'up' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = [0.0_361, 0.0_617, 0.2_787, -0.0_350, 0.0_342, 0.3_421, -0.0_843, 0.0_913, 0.3_015] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = UpDecoderBlockaD # noqa F405 lowerCamelCase__ : Dict = 'up' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_temb=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = {'in_channels': 3_2, 'out_channels': 3_2} lowerCamelCase__ : List[str] = self.dummy_input return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = [0.4_404, 0.1_998, -0.9_886, -0.3_320, -0.3_128, -0.7_034, -0.6_955, -0.2_338, -0.3_137] super().test_output(lowerCamelCase_ ) class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = AttnUpDecoderBlockaD # noqa F405 lowerCamelCase__ : Any = 'up' @property def a__ (self ): '''simple docstring''' return super().get_dummy_input(include_temb=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = {'in_channels': 3_2, 'out_channels': 3_2} lowerCamelCase__ : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [0.6_738, 0.4_491, 0.1_055, 1.0_710, 0.7_316, 0.3_339, 0.3_352, 0.1_023, 0.3_568] super().test_output(lowerCamelCase_ )
709
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = 1_0_0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = True, ): '''simple docstring''' if audio_length_in_s is None: lowerCamelCase__ : str = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase__ : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase__ : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCamelCase__ : Dict = int(lowerCamelCase_ ) if sample_size % down_scale_factor != 0: lowerCamelCase__ : Union[str, Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ' process.' ) lowerCamelCase__ : Optional[Any] = int(lowerCamelCase_ ) lowerCamelCase__ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase__ : Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase_, lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ : Union[str, Any] = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_, device=self.device, dtype=lowerCamelCase_ ) # set step values self.scheduler.set_timesteps(lowerCamelCase_, device=audio.device ) lowerCamelCase__ : int = self.scheduler.timesteps.to(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase__ : List[Any] = self.unet(lowerCamelCase_, lowerCamelCase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase__ : List[str] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample lowerCamelCase__ : Union[str, Any] = audio.clamp(-1, 1 ).float().cpu().numpy() lowerCamelCase__ : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase_ )
696
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError('check_bouncy() accepts only integer arguments' ) lowerCamelCase__ : List[Any] = str(_lowerCamelCase ) lowerCamelCase__ : str = ''.join(sorted(_lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def lowerCamelCase_ ( _lowerCamelCase = 99 ): if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = 1 while True: if check_bouncy(_lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
710
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return None class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) @require_torch @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(lowerCamelCase_ ) ) vocab_file.flush() lowerCamelCase__ : Tuple = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCamelCase__ : Optional[Any] = BertModel(BertConfig(vocab_size=len(lowerCamelCase_ ) ) ) model.save_pretrained(lowerCamelCase_ ) self._test_export(lowerCamelCase_, 'pt', 1_2, lowerCamelCase_ ) @require_tf @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Optional[Any] = self._test_export(lowerCamelCase_, 'tf', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Any = quantize(Path(lowerCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def a__ (self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ : Any = self._test_export(lowerCamelCase_, 'pt', 1_2, **lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = quantize(lowerCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowerCamelCase__ : str = Path(lowerCamelCase_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ) return path except Exception as e: self.fail(lowerCamelCase_ ) @require_torch @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ : str = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'pt' ) @require_tf @require_tokenizers @slow def a__ (self ): '''simple docstring''' from transformers import TFBertModel lowerCamelCase__ : Dict = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase__ : Optional[int] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_, lowerCamelCase_, 'tf' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = FeatureExtractionPipeline(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = infer_shapes(lowerCamelCase_, lowerCamelCase_ ) # Assert all variables are present self.assertEqual(len(lowerCamelCase_ ), len(lowerCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3], lowerCamelCase_ ) self.assertSequenceEqual(variable_names[3:], lowerCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name], {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'], {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'], {0: 'batch'} ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['input_ids', 'attention_mask', 'token_type_ids'] lowerCamelCase__ : Optional[int] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowerCamelCase__ , lowerCamelCase__ : str = ensure_valid_input(FuncContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase_ ), 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase_ ), set(lowerCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase_, (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCamelCase__ , lowerCamelCase__ : Any = ensure_valid_input(FuncNonContiguousArgs(), lowerCamelCase_, lowerCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase_ ), 1 ) self.assertEqual(len(lowerCamelCase_ ), 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0], tokens['input_ids'] ) self.assertEqual(ordered_input_names[0], 'input_ids' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ), '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx', generated.as_posix() )
696
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = 1_0_0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = True, ): '''simple docstring''' if audio_length_in_s is None: lowerCamelCase__ : str = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase__ : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase__ : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCamelCase__ : Dict = int(lowerCamelCase_ ) if sample_size % down_scale_factor != 0: lowerCamelCase__ : Union[str, Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ' process.' ) lowerCamelCase__ : Optional[Any] = int(lowerCamelCase_ ) lowerCamelCase__ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase__ : Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase_, lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ : Union[str, Any] = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_, device=self.device, dtype=lowerCamelCase_ ) # set step values self.scheduler.set_timesteps(lowerCamelCase_, device=audio.device ) lowerCamelCase__ : int = self.scheduler.timesteps.to(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase__ : List[Any] = self.unet(lowerCamelCase_, lowerCamelCase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase__ : List[str] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample lowerCamelCase__ : Union[str, Any] = audio.clamp(-1, 1 ).float().cpu().numpy() lowerCamelCase__ : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase_ )
711
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase__ : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : str = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ : Any = False @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return self.time_input_dim @property def a__ (self ): '''simple docstring''' return self.time_input_dim * 4 @property def a__ (self ): '''simple docstring''' return 1_0_0 @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase__ : int = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def a__ (self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.dummy_unet lowerCamelCase__ : List[Any] = self.dummy_movq lowerCamelCase__ : Tuple = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase__ : Optional[Any] = DDIMScheduler(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image lowerCamelCase__ : Any = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase__ : Optional[Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint lowerCamelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : int = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = 'cpu' lowerCamelCase__ : List[Any] = self.get_dummy_components() lowerCamelCase__ : List[Any] = self.pipeline_class(**lowerCamelCase_ ) lowerCamelCase__ : Dict = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : str = pipe( **self.get_dummy_inputs(lowerCamelCase_ ), return_dict=lowerCamelCase_, )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : List[str] = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase__ : Any = init_image.resize((5_1_2, 5_1_2) ) lowerCamelCase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase__ : Any = torch.from_numpy(np.array(lowerCamelCase_ ) ).float() / 255.0 lowerCamelCase__ : Optional[int] = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowerCamelCase__ : Union[str, Any] = 'A robot, 4k photo' lowerCamelCase__ : Any = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth', torch_dtype=torch.floataa ) lowerCamelCase__ : int = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = pipe_prior( lowerCamelCase_, image=lowerCamelCase_, strength=0.85, generator=lowerCamelCase_, negative_prompt='', ).to_tuple() lowerCamelCase__ : Union[str, Any] = pipeline( image=lowerCamelCase_, image_embeds=lowerCamelCase_, negative_image_embeds=lowerCamelCase_, hint=lowerCamelCase_, generator=lowerCamelCase_, num_inference_steps=1_0_0, height=5_1_2, width=5_1_2, strength=0.5, output_type='np', ) lowerCamelCase__ : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase_, lowerCamelCase_ )
696
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ : Optional[datasets.Features] = None class a_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ : Tuple = PandasConfig def a__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) lowerCamelCase__ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCamelCase_, (str, list, tuple) ): lowerCamelCase__ : Optional[int] = data_files if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Tuple = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase__ : Union[str, Any] = [dl_manager.iter_files(lowerCamelCase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'files': files} )] lowerCamelCase__ : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase__ : List[Any] = [dl_manager.iter_files(lowerCamelCase_ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCamelCase_, gen_kwargs={'files': files} ) ) return splits def a__ (self, lowerCamelCase_ ): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCamelCase__ : Optional[int] = table_cast(lowerCamelCase_, self.config.features.arrow_schema ) return pa_table def a__ (self, lowerCamelCase_ ): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(lowerCamelCase_ ) ): with open(lowerCamelCase_, 'rb' ) as f: lowerCamelCase__ : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(lowerCamelCase_ ) ) yield i, self._cast_table(lowerCamelCase_ )
712
"""simple docstring""" A_ : List[str] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
696
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : Optional[int] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = 'megatron-bert' def __init__(self, lowerCamelCase_=2_9_0_5_6, lowerCamelCase_=1_0_2_4, lowerCamelCase_=2_4, lowerCamelCase_=1_6, lowerCamelCase_=4_0_9_6, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=1e-12, lowerCamelCase_=0, lowerCamelCase_="absolute", lowerCamelCase_=True, **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : List[Any] = vocab_size lowerCamelCase__ : Any = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : List[str] = num_attention_heads lowerCamelCase__ : Tuple = hidden_act lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : List[Any] = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : Union[str, Any] = layer_norm_eps lowerCamelCase__ : Optional[Any] = position_embedding_type lowerCamelCase__ : Optional[int] = use_cache
713
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 A_ : Optional[int] = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ = 1_4 ): '''simple docstring''' if group not in primes: raise ValueError('Unsupported Group' ) lowerCamelCase__ : int = primes[group]['prime'] lowerCamelCase__ : Optional[int] = primes[group]['generator'] lowerCamelCase__ : Any = int(hexlify(urandom(3_2 ) ), base=1_6 ) def a__ (self ): '''simple docstring''' return hex(self.__private_key )[2:] def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = pow(self.generator, self.__private_key, self.prime ) return hex(lowerCamelCase_ )[2:] def a__ (self, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase_, (self.prime - 1) // 2, self.prime ) == 1 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = int(lowerCamelCase_, base=1_6 ) if not self.is_valid_public_key(lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Tuple = pow(lowerCamelCase_, self.__private_key, self.prime ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase_, (prime - 1) // 2, lowerCamelCase_ ) == 1 ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 1_4 ): '''simple docstring''' lowerCamelCase__ : Dict = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[Any] = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[str] = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase_, lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Dict = pow(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
696
0
"""simple docstring""" from typing import Any import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return np.array_equal(_lowerCamelCase , matrix.conjugate().T ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = v.conjugate().T lowerCamelCase__ : Optional[Any] = v_star.dot(_lowerCamelCase ) assert isinstance(_lowerCamelCase , np.ndarray ) return (v_star_dot.dot(_lowerCamelCase )) / (v_star.dot(_lowerCamelCase )) def lowerCamelCase_ ( ): lowerCamelCase__ : List[str] = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) lowerCamelCase__ : int = np.array([[1], [2], [3]] ) assert is_hermitian(_lowerCamelCase ), f'''{a} is not hermitian.''' print(rayleigh_quotient(_lowerCamelCase , _lowerCamelCase ) ) lowerCamelCase__ : Any = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_lowerCamelCase ), f'''{a} is not hermitian.''' assert rayleigh_quotient(_lowerCamelCase , _lowerCamelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
714
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_lowerCamelCase ) * abs(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
696
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer A_ : Union[str, Any] = logging.get_logger(__name__) A_ : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A_ : Tuple = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] A_ : Optional[Any] = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } A_ : Dict = {f"funnel-transformer/{name}": 5_12 for name in _model_names} A_ : str = {f"funnel-transformer/{name}": {"do_lower_case": True} for name in _model_names} class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = VOCAB_FILES_NAMES lowerCamelCase__ : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ : List[str] = FunnelTokenizer lowerCamelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : int = 2 def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=True, lowerCamelCase_="<unk>", lowerCamelCase_="<sep>", lowerCamelCase_="<pad>", lowerCamelCase_="<cls>", lowerCamelCase_="<mask>", lowerCamelCase_="<s>", lowerCamelCase_="</s>", lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=None, lowerCamelCase_="##", **lowerCamelCase_, ): '''simple docstring''' super().__init__( lowerCamelCase_, tokenizer_file=lowerCamelCase_, do_lower_case=lowerCamelCase_, unk_token=lowerCamelCase_, sep_token=lowerCamelCase_, pad_token=lowerCamelCase_, cls_token=lowerCamelCase_, mask_token=lowerCamelCase_, bos_token=lowerCamelCase_, eos_token=lowerCamelCase_, clean_text=lowerCamelCase_, tokenize_chinese_chars=lowerCamelCase_, strip_accents=lowerCamelCase_, wordpieces_prefix=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase', lowerCamelCase_ ) != do_lower_case or normalizer_state.get('strip_accents', lowerCamelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars', lowerCamelCase_ ) != tokenize_chinese_chars ): lowerCamelCase__ : List[str] = getattr(lowerCamelCase_, normalizer_state.pop('type' ) ) lowerCamelCase__ : Optional[int] = do_lower_case lowerCamelCase__ : Dict = strip_accents lowerCamelCase__ : Any = tokenize_chinese_chars lowerCamelCase__ : List[str] = normalizer_class(**lowerCamelCase_ ) lowerCamelCase__ : int = do_lower_case def a__ (self, lowerCamelCase_, lowerCamelCase_=None ): '''simple docstring''' lowerCamelCase__ : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Dict = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._tokenizer.model.save(lowerCamelCase_, name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
715
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : int = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : Optional[int] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : str = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : Optional[int] = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Tuple = c.n_embd + 1 # int lowerCamelCase__ : Union[str, Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : List[Any] = not c.scale_attn_weights # bool lowerCamelCase__ : List[Any] = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = PretrainedConfig() lowerCamelCase__ : Optional[Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : Any = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : int = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = mock.Mock() lowerCamelCase__ : List[str] = 5_0_0 lowerCamelCase__ : Any = {} lowerCamelCase__ : int = HTTPError lowerCamelCase__ : Optional[Any] = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : str = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : str = ['config.42.0.0.json'] lowerCamelCase__ : Union[str, Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Optional[int] = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Dict = 'v3.0.0' lowerCamelCase__ : List[str] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
696
0
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets A_ : Union[str, Any] = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" A_ : List[str] = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" A_ : Union[str, Any] = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def a__ (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ), reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ], ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(lowerCamelCase_, lowerCamelCase_, sample_weight=lowerCamelCase_ ) ), }
716
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' super().__init__() lowerCamelCase__ : Dict = value_function lowerCamelCase__ : int = unet lowerCamelCase__ : Union[str, Any] = scheduler lowerCamelCase__ : int = env lowerCamelCase__ : List[Any] = env.get_dataset() lowerCamelCase__ : Dict = {} for key in self.data.keys(): try: lowerCamelCase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowerCamelCase__ : Optional[int] = {} for key in self.data.keys(): try: lowerCamelCase__ : Tuple = self.data[key].std() except: # noqa: E722 pass lowerCamelCase__ : Optional[Any] = env.observation_space.shape[0] lowerCamelCase__ : List[str] = env.action_space.shape[0] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def a__ (self, lowerCamelCase_ ): '''simple docstring''' if type(lowerCamelCase_ ) is dict: return {k: self.to_torch(lowerCamelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase_, device=self.unet.device ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for key, val in cond.items(): lowerCamelCase__ : Optional[Any] = val.clone() return x_in def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = x.shape[0] lowerCamelCase__ : Tuple = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCamelCase__ : Dict = torch.full((batch_size,), lowerCamelCase_, device=self.unet.device, dtype=torch.long ) for _ in range(lowerCamelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCamelCase__ : str = self.value_function(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample lowerCamelCase__ : Union[str, Any] = torch.autograd.grad([y.sum()], [x] )[0] lowerCamelCase__ : Optional[int] = self.scheduler._get_variance(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = torch.exp(0.5 * posterior_variance ) lowerCamelCase__ : Tuple = model_std * grad lowerCamelCase__ : str = 0 lowerCamelCase__ : Dict = x.detach() lowerCamelCase__ : Dict = x + scale * grad lowerCamelCase__ : Optional[int] = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : Tuple = self.unet(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample.permute(0, 2, 1 ) # TODO: verify deprecation of this kwarg lowerCamelCase__ : Optional[Any] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, predict_epsilon=lowerCamelCase_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowerCamelCase__ : Any = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) return x, y def __call__(self, lowerCamelCase_, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=0.1 ): '''simple docstring''' lowerCamelCase__ : Dict = self.normalize(lowerCamelCase_, 'observations' ) lowerCamelCase__ : List[str] = obs[None].repeat(lowerCamelCase_, axis=0 ) lowerCamelCase__ : str = {0: self.to_torch(lowerCamelCase_ )} lowerCamelCase__ : Optional[Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCamelCase__ : List[Any] = randn_tensor(lowerCamelCase_, device=self.unet.device ) lowerCamelCase__ : int = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) # run the diffusion process lowerCamelCase__ , lowerCamelCase__ : List[str] = self.run_diffusion(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # sort output trajectories by value lowerCamelCase__ : Union[str, Any] = y.argsort(0, descending=lowerCamelCase_ ).squeeze() lowerCamelCase__ : List[str] = x[sorted_idx] lowerCamelCase__ : Optional[Any] = sorted_values[:, :, : self.action_dim] lowerCamelCase__ : Union[str, Any] = actions.detach().cpu().numpy() lowerCamelCase__ : Union[str, Any] = self.de_normalize(lowerCamelCase_, key='actions' ) # select the action with the highest value if y is not None: lowerCamelCase__ : str = 0 else: # if we didn't run value guiding, select a random action lowerCamelCase__ : Optional[Any] = np.random.randint(0, lowerCamelCase_ ) lowerCamelCase__ : Tuple = denorm_actions[selected_index, 0] return denorm_actions
696
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
717
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : List[str] = analyze_text(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. lowerCamelCase__ : List[Any] = sum(single_char_strings.values() ) # one length string lowerCamelCase__ : str = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCamelCase__ : Tuple = single_char_strings[ch] lowerCamelCase__ : Union[str, Any] = my_str / all_sum my_fir_sum += prob * math.loga(_lowerCamelCase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string lowerCamelCase__ : Dict = sum(two_char_strings.values() ) lowerCamelCase__ : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCamelCase__ : int = cha + cha if sequence in two_char_strings: lowerCamelCase__ : int = two_char_strings[sequence] lowerCamelCase__ : Tuple = int(_lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(_lowerCamelCase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = Counter() # type: ignore lowerCamelCase__ : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase_ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
696
0
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): return [char.split() for char in re.split(r'[^ a-z A-Z 0-9 \s]' , str_ )] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[int] = split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): try: lowerCamelCase__ : List[Any] = split_input(_lowerCamelCase ) if upper: lowerCamelCase__ : Any = ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: lowerCamelCase__ : Union[str, Any] = ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def lowerCamelCase_ ( _lowerCamelCase ): return to_simple_case(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): try: lowerCamelCase__ : Union[str, Any] = to_simple_case(_lowerCamelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return to_complex_case(_lowerCamelCase , _lowerCamelCase , '_' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return to_complex_case(_lowerCamelCase , _lowerCamelCase , '-' ) if __name__ == "__main__": __import__("doctest").testmod()
718
"""simple docstring""" import os def lowerCamelCase_ ( ): with open(os.path.dirname(_lowerCamelCase ) + '/p022_names.txt' ) as file: lowerCamelCase__ : Union[str, Any] = str(file.readlines()[0] ) lowerCamelCase__ : int = names.replace('"' , '' ).split(',' ) names.sort() lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : str = 0 for i, name in enumerate(_lowerCamelCase ): for letter in name: name_score += ord(_lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowerCamelCase__ : Dict = 0 return total_score if __name__ == "__main__": print(solution())
696
0
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=2_2_4, lowerCamelCase_=1_0_0_0, lowerCamelCase_=[3, 3, 6, 4], lowerCamelCase_=[4_8, 5_6, 1_1_2, 2_2_0], ): '''simple docstring''' lowerCamelCase__ : Any = parent lowerCamelCase__ : List[str] = batch_size lowerCamelCase__ : List[str] = num_channels lowerCamelCase__ : Any = is_training lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : Any = image_size lowerCamelCase__ : List[Any] = layer_depths lowerCamelCase__ : Dict = embed_dims def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Dict = None if self.use_labels: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size], self.num_labels ) lowerCamelCase__ : Optional[Any] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths, embed_dims=self.embed_dims, mlp_ratio=4, downsamples=[True, True, True, True], hidden_act='gelu', num_labels=self.num_labels, down_patch_size=3, down_stride=2, down_pad=1, drop_rate=0.0, drop_path_rate=0.0, use_layer_scale=lowerCamelCase_, layer_scale_init_value=1e-5, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = SwiftFormerModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dims[-1], 7, 7) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = self.num_labels lowerCamelCase__ : Optional[Any] = SwiftFormerForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) lowerCamelCase__ : Any = SwiftFormerForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self ): '''simple docstring''' (lowerCamelCase__) : Optional[Any] = self.prepare_config_and_inputs() lowerCamelCase__ : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCamelCase__ : Tuple = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SwiftFormerModelTester(self ) lowerCamelCase__ : Dict = ConfigTester( self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7, num_attention_heads=1_2, num_hidden_layers=1_2, ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Union[str, Any] = model_class(lowerCamelCase_ ) lowerCamelCase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, nn.Linear ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) lowerCamelCase__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : List[Any] = [*signature.parameters.keys()] lowerCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def a__ (self ): '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Dict = SwiftFormerModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @unittest.skip(reason='SwiftFormer does not output attentions' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Optional[Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Any = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ : Any = outputs.hidden_states lowerCamelCase__ : Dict = 8 self.assertEqual(len(lowerCamelCase_ ), lowerCamelCase_ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCamelCase_ ) ): self.assertEqual( hidden_states[i].shape, torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ), ) lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = True check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : int = True check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' def _config_zero_init(lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = copy.deepcopy(lowerCamelCase_ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCamelCase_, lowerCamelCase_, 1e-10 ) if isinstance(getattr(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ), lowerCamelCase_ ): lowerCamelCase__ : List[Any] = _config_zero_init(getattr(lowerCamelCase_, lowerCamelCase_ ) ) setattr(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return configs_no_init lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Any = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: lowerCamelCase__ : Union[str, Any] = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item(), [0.0, 1.0], msg=f'''Parameter {name} of model {model_class} seems not properly initialized''', ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def a__ (self ): '''simple docstring''' pass def lowerCamelCase_ ( ): lowerCamelCase__ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(lowerCamelCase_ ) lowerCamelCase__ : str = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Tuple = image_processor(images=lowerCamelCase_, return_tensors='pt' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : Tuple = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : List[str] = torch.tensor([[-2.1_703e00, 2.1_107e00, -2.0_811e00]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
719
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = 'Speech2TextFeatureExtractor' lowerCamelCase__ : Dict = 'Speech2TextTokenizer' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.feature_extractor lowerCamelCase__ : List[Any] = False def __call__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_, **lowerCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ : Optional[int] = kwargs.pop('raw_speech' ) else: lowerCamelCase__ : int = kwargs.pop('audio', lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = kwargs.pop('sampling_rate', lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('text', lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowerCamelCase__ : List[str] = args[0] lowerCamelCase__ : Any = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ : Union[str, Any] = self.feature_extractor(lowerCamelCase_, *lowerCamelCase_, sampling_rate=lowerCamelCase_, **lowerCamelCase_ ) if text is not None: lowerCamelCase__ : List[Any] = self.tokenizer(lowerCamelCase_, **lowerCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Tuple = encodings['input_ids'] return inputs def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @contextmanager def a__ (self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ : int = True lowerCamelCase__ : List[Any] = self.tokenizer yield lowerCamelCase__ : Optional[int] = self.feature_extractor lowerCamelCase__ : List[Any] = False
696
0
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' super().__init__() lowerCamelCase__ : Dict = value_function lowerCamelCase__ : int = unet lowerCamelCase__ : Union[str, Any] = scheduler lowerCamelCase__ : int = env lowerCamelCase__ : List[Any] = env.get_dataset() lowerCamelCase__ : Dict = {} for key in self.data.keys(): try: lowerCamelCase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowerCamelCase__ : Optional[int] = {} for key in self.data.keys(): try: lowerCamelCase__ : Tuple = self.data[key].std() except: # noqa: E722 pass lowerCamelCase__ : Optional[Any] = env.observation_space.shape[0] lowerCamelCase__ : List[str] = env.action_space.shape[0] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def a__ (self, lowerCamelCase_ ): '''simple docstring''' if type(lowerCamelCase_ ) is dict: return {k: self.to_torch(lowerCamelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase_, device=self.unet.device ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for key, val in cond.items(): lowerCamelCase__ : Optional[Any] = val.clone() return x_in def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = x.shape[0] lowerCamelCase__ : Tuple = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCamelCase__ : Dict = torch.full((batch_size,), lowerCamelCase_, device=self.unet.device, dtype=torch.long ) for _ in range(lowerCamelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCamelCase__ : str = self.value_function(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample lowerCamelCase__ : Union[str, Any] = torch.autograd.grad([y.sum()], [x] )[0] lowerCamelCase__ : Optional[int] = self.scheduler._get_variance(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = torch.exp(0.5 * posterior_variance ) lowerCamelCase__ : Tuple = model_std * grad lowerCamelCase__ : str = 0 lowerCamelCase__ : Dict = x.detach() lowerCamelCase__ : Dict = x + scale * grad lowerCamelCase__ : Optional[int] = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : Tuple = self.unet(x.permute(0, 2, 1 ), lowerCamelCase_ ).sample.permute(0, 2, 1 ) # TODO: verify deprecation of this kwarg lowerCamelCase__ : Optional[Any] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, predict_epsilon=lowerCamelCase_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowerCamelCase__ : Any = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) return x, y def __call__(self, lowerCamelCase_, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=0.1 ): '''simple docstring''' lowerCamelCase__ : Dict = self.normalize(lowerCamelCase_, 'observations' ) lowerCamelCase__ : List[str] = obs[None].repeat(lowerCamelCase_, axis=0 ) lowerCamelCase__ : str = {0: self.to_torch(lowerCamelCase_ )} lowerCamelCase__ : Optional[Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCamelCase__ : List[Any] = randn_tensor(lowerCamelCase_, device=self.unet.device ) lowerCamelCase__ : int = self.reset_xa(lowerCamelCase_, lowerCamelCase_, self.action_dim ) lowerCamelCase__ : List[str] = self.to_torch(lowerCamelCase_ ) # run the diffusion process lowerCamelCase__ : List[str] = self.run_diffusion(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # sort output trajectories by value lowerCamelCase__ : Union[str, Any] = y.argsort(0, descending=lowerCamelCase_ ).squeeze() lowerCamelCase__ : List[str] = x[sorted_idx] lowerCamelCase__ : Optional[Any] = sorted_values[:, :, : self.action_dim] lowerCamelCase__ : Union[str, Any] = actions.detach().cpu().numpy() lowerCamelCase__ : Union[str, Any] = self.de_normalize(lowerCamelCase_, key='actions' ) # select the action with the highest value if y is not None: lowerCamelCase__ : str = 0 else: # if we didn't run value guiding, select a random action lowerCamelCase__ : Optional[Any] = np.random.randint(0, lowerCamelCase_ ) lowerCamelCase__ : Tuple = denorm_actions[selected_index, 0] return denorm_actions
720
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : Optional[Any] = use_input_mask lowerCamelCase__ : List[Any] = use_token_type_ids lowerCamelCase__ : List[Any] = use_labels lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : Optional[int] = embedding_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Optional[Any] = num_labels lowerCamelCase__ : Dict = num_choices lowerCamelCase__ : Tuple = scope def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : List[str] = None if self.use_input_mask: lowerCamelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_token_type_ids: lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Any = None lowerCamelCase__ : Union[str, Any] = None if self.use_labels: lowerCamelCase__ : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, embedding_size=self.embedding_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, next_sentence_label=lowerCamelCase_, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, start_positions=lowerCamelCase_, end_positions=lowerCamelCase_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : int = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.num_choices lowerCamelCase__ : Dict = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase__ : int = model( lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : List[str] = config_and_inputs lowerCamelCase__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : int = True def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase_ ) return inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = MobileBertModelTester(self ) lowerCamelCase__ : List[str] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): return torch.tensor( _lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , ) A_ : Tuple = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(lowerCamelCase_ ) lowerCamelCase__ : Tuple = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ )[0] lowerCamelCase__ : Optional[int] = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [ [ [-2.4_736_526e07, 8.2_691_656e04, 1.6_521_838e05], [-5.7_541_704e-01, 3.9_056_022e00, 4.4_011_507e00], [2.6_047_359e00, 1.5_677_652e00, -1.7_324_188e-01], ] ], device=lowerCamelCase_, ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCamelCase__ : Optional[int] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCamelCase__ : Any = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
696
0