code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: __magic_name__ : Tuple = """ylacombe/bark-small""" __magic_name__ : List[str] = tempfile.mkdtemp() __magic_name__ : Optional[Any] = """en_speaker_1""" __magic_name__ : Union[str, Any] = """This is a test string""" __magic_name__ : Optional[int] = """speaker_embeddings_path.json""" __magic_name__ : Any = """speaker_embeddings""" def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : str = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __magic_name__ : Union[str, Any] = 35 __magic_name__ : List[Any] = 2 __magic_name__ : Dict = 8 __magic_name__ : Tuple = { """semantic_prompt""": np.ones(lowerCAmelCase__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string ) __magic_name__ : List[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
342
def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = [0] * len(_A ) __magic_name__ : List[str] = [] __magic_name__ : List[str] = [1] * len(_A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: __magic_name__ : Dict = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __magic_name__ : int = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_A ) print(max(_A ) ) # Adjacency list of Graph __magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
1
def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : int = """""" for i in table: res += inp[i - 1] return res def UpperCamelCase ( _A ): """simple docstring""" return data[1:] + data[0] def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Any = """""" for i in range(len(_A ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : List[str] = int("""0b""" + data[0] + data[-1], 2 ) __magic_name__ : List[str] = int("""0b""" + data[1:3], 2 ) return bin(s[row][col] )[2:] def UpperCamelCase ( _A, _A, _A, _A, _A ): """simple docstring""" __magic_name__ : Union[str, Any] = message[:4] __magic_name__ : Dict = message[4:] __magic_name__ : int = apply_table(_A, _A ) __magic_name__ : Union[str, Any] = xor(_A, _A ) __magic_name__ : Tuple = apply_sbox(_A, temp[:4] ) # noqa: E741 __magic_name__ : int = apply_sbox(_A, temp[4:] ) __magic_name__ : Optional[int] = """0""" * (2 - len(_A )) + l # noqa: E741 __magic_name__ : Optional[Any] = """0""" * (2 - len(_A )) + r __magic_name__ : Dict = apply_table(l + r, _A ) __magic_name__ : int = xor(_A, _A ) return temp + right if __name__ == "__main__": __magic_name__: List[Any] = input("Enter 10 bit key: ") __magic_name__: Tuple = input("Enter 8 bit message: ") __magic_name__: int = [6, 3, 7, 4, 8, 5, 10, 9] __magic_name__: str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __magic_name__: List[Any] = [2, 4, 3, 1] __magic_name__: Optional[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __magic_name__: Tuple = [4, 1, 3, 5, 7, 2, 8, 6] __magic_name__: Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __magic_name__: Tuple = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __magic_name__: Optional[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __magic_name__: Optional[int] = apply_table(key, paa_table) __magic_name__: List[Any] = temp[:5] __magic_name__: int = temp[5:] __magic_name__: Dict = left_shift(left) __magic_name__: Optional[int] = left_shift(right) __magic_name__: Union[str, Any] = apply_table(left + right, pa_table) __magic_name__: Tuple = left_shift(left) __magic_name__: Optional[int] = left_shift(right) __magic_name__: Optional[int] = left_shift(left) __magic_name__: Union[str, Any] = left_shift(right) __magic_name__: Dict = apply_table(left + right, pa_table) # encryption __magic_name__: List[Any] = apply_table(message, IP) __magic_name__: Tuple = function(expansion, sa, sa, keya, temp) __magic_name__: Tuple = temp[4:] + temp[:4] __magic_name__: Optional[int] = function(expansion, sa, sa, keya, temp) __magic_name__: Optional[Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __magic_name__: List[Any] = apply_table(CT, IP) __magic_name__: int = function(expansion, sa, sa, keya, temp) __magic_name__: int = temp[4:] + temp[:4] __magic_name__: Optional[Any] = function(expansion, sa, sa, keya, temp) __magic_name__: Dict = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
342
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: __magic_name__ : Tuple = """ylacombe/bark-small""" __magic_name__ : List[str] = tempfile.mkdtemp() __magic_name__ : Optional[Any] = """en_speaker_1""" __magic_name__ : Union[str, Any] = """This is a test string""" __magic_name__ : Optional[int] = """speaker_embeddings_path.json""" __magic_name__ : Any = """speaker_embeddings""" def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : str = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __magic_name__ : Union[str, Any] = 35 __magic_name__ : List[Any] = 2 __magic_name__ : Dict = 8 __magic_name__ : Tuple = { """semantic_prompt""": np.ones(lowerCAmelCase__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string ) __magic_name__ : List[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
342
1
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : List[str] = BlenderbotSmallTokenizer lowercase__ : List[Any] = False def __magic_name__ ( self ) -> List[str]: super().setUp() __magic_name__ : str = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] __magic_name__ : Tuple = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Union[str, Any] = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] __magic_name__ : Union[str, Any] = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} __magic_name__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase__ ) ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> str: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> List[Any]: __magic_name__ : List[Any] = """adapt act apte""" __magic_name__ : Optional[int] = """adapt act apte""" return input_text, output_text def __magic_name__ ( self ) -> int: __magic_name__ : Any = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __magic_name__ : List[str] = """adapt act apte""" __magic_name__ : Dict = ["""adapt""", """act""", """ap@@""", """te"""] __magic_name__ : List[str] = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Optional[Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __magic_name__ : Optional[int] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [13_84] __magic_name__ : Tuple = """I am a small frog.""" __magic_name__ : Union[str, Any] = tok([src_text] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )["""input_ids"""] __magic_name__ : Dict = tok.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : List[Any] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) __magic_name__ : Any = """I am a small frog .""" __magic_name__ : Any = """.""" __magic_name__ : Optional[Any] = tok(lowerCAmelCase__ )["""input_ids"""] __magic_name__ : str = tok(lowerCAmelCase__ )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
342
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]: __magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} __magic_name__ : str = parent __magic_name__ : Any = batch_size __magic_name__ : Any = num_channels __magic_name__ : List[str] = image_size __magic_name__ : Tuple = min_resolution __magic_name__ : Union[str, Any] = max_resolution __magic_name__ : List[str] = do_resize __magic_name__ : Optional[Any] = size __magic_name__ : Optional[Any] = do_normalize __magic_name__ : Any = image_mean __magic_name__ : List[str] = image_std def __magic_name__ ( self ) -> List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = DPTImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Dict = DPTImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __magic_name__ ( self ) -> str: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Optional[Any]: # Initialize image_processing __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
342
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __magic_name__: Union[str, Any] = ["gpt2"] __magic_name__: Optional[Any] = "gpt2" if is_tf_available(): class snake_case__ ( tf.Module ): def __init__( self , lowerCAmelCase__ ) -> List[str]: super().__init__() __magic_name__ : int = tokenizer __magic_name__ : Optional[Any] = AutoConfig.from_pretrained(lowerCAmelCase__ ) __magic_name__ : Optional[int] = TFGPTaLMHeadModel.from_config(lowerCAmelCase__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: __magic_name__ : Union[str, Any] = self.tokenizer(lowerCAmelCase__ ) __magic_name__ : List[str] = tokenized["""input_ids"""].to_tensor() __magic_name__ : List[Any] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __magic_name__ : Dict = self.model(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )["""logits"""] return outputs @require_tf @require_keras_nlp class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Dict: super().setUp() __magic_name__ : Union[str, Any] = [GPTaTokenizer.from_pretrained(lowerCAmelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __magic_name__ : Any = [TFGPTaTokenizer.from_pretrained(lowerCAmelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __magic_name__ : Dict = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] __magic_name__ : Any = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def __magic_name__ ( self ) -> Any: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __magic_name__ : Tuple = tokenizer([test_inputs] , return_tensors="""tf""" ) __magic_name__ : Union[str, Any] = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __magic_name__ : List[Any] = python_outputs[key].numpy() __magic_name__ : str = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowerCAmelCase__ , tf.intaa ) == tf_outputs_values ) ) @slow def __magic_name__ ( self ) -> Any: for tf_tokenizer in self.tf_tokenizers: __magic_name__ : str = tf.function(lowerCAmelCase__ ) for test_inputs in self.test_sentences: __magic_name__ : List[Any] = tf.constant(lowerCAmelCase__ ) __magic_name__ : int = compiled_tokenizer(lowerCAmelCase__ ) __magic_name__ : Tuple = tf_tokenizer(lowerCAmelCase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def __magic_name__ ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: __magic_name__ : Any = ModelToSave(tokenizer=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) __magic_name__ : List[str] = model.serving(lowerCAmelCase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __magic_name__ : List[str] = Path(lowerCAmelCase__ ) / """saved.model""" tf.saved_model.save(lowerCAmelCase__ , lowerCAmelCase__ , signatures={"""serving_default""": model.serving} ) __magic_name__ : int = tf.saved_model.load(lowerCAmelCase__ ) __magic_name__ : List[str] = loaded_model.signatures["""serving_default"""](lowerCAmelCase__ )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def __magic_name__ ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: __magic_name__ : List[str] = tf.convert_to_tensor([self.test_sentences[0]] ) __magic_name__ : List[Any] = tf_tokenizer(lowerCAmelCase__ ) # Build model with some sample inputs __magic_name__ : List[Any] = tf_tokenizer.get_config() __magic_name__ : Union[str, Any] = TFGPTaTokenizer.from_config(lowerCAmelCase__ ) __magic_name__ : str = model_from_config(lowerCAmelCase__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def __magic_name__ ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: # for the test to run __magic_name__ : Any = 12_31_23 for max_length in [3, 5, 10_24]: __magic_name__ : str = tf.convert_to_tensor([self.test_sentences[0]] ) __magic_name__ : List[str] = tf_tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) __magic_name__ : List[Any] = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
342
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__: Tuple = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M''' lowercase__ : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowercase__ : List[str] = '''translator''' lowercase__ : Optional[Any] = AutoTokenizer lowercase__ : int = AutoModelForSeqaSeqLM lowercase__ : List[Any] = LANGUAGE_CODES lowercase__ : str = ['''text''', '''text''', '''text'''] lowercase__ : Any = ['''text'''] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) __magic_name__ : Tuple = self.lang_to_code[src_lang] __magic_name__ : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
342
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = ['''image_processor''', '''tokenizer'''] lowercase__ : Union[str, Any] = '''LayoutLMv3ImageProcessor''' lowercase__ : List[Any] = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Dict: __magic_name__ : Dict = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCAmelCase__ , ) __magic_name__ : str = kwargs.pop("""feature_extractor""" ) __magic_name__ : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) # first, apply the image processor __magic_name__ : Tuple = self.image_processor(images=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) __magic_name__ : List[str] = features["""words"""] __magic_name__ : Tuple = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) # add pixel values __magic_name__ : Union[str, Any] = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: __magic_name__ : Union[str, Any] = self.get_overflowing_images(lowerCAmelCase__ , encoded_inputs["""overflow_to_sample_mapping"""] ) __magic_name__ : Any = images return encoded_inputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __magic_name__ : Optional[int] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" F' {len(lowerCAmelCase__ )} and {len(lowerCAmelCase__ )}' ) return images_with_overflow def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__ ( self ) -> int: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __magic_name__ ( self ) -> str: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCAmelCase__ , ) return self.image_processor_class @property def __magic_name__ ( self ) -> List[Any]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCAmelCase__ , ) return self.image_processor
342
import math class snake_case__ : def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1 __magic_name__ : Tuple = n __magic_name__ : Union[str, Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # adjacency matrix for weight __magic_name__ : List[Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # dp[i][j] stores minimum distance from i to j def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Dict = w def __magic_name__ ( self ) -> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return self.dp[u][v] if __name__ == "__main__": __magic_name__: Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
342
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __magic_name__: str = pytest.mark.integration @require_faiss class snake_case__ ( _lowerCAmelCase ): def __magic_name__ ( self ) -> str: __magic_name__ : Optional[Any] = Dataset.from_dict({"""filename""": ["""my_name-train""" + """_""" + str(lowerCAmelCase__ ) for x in np.arange(30 ).tolist()]} ) return dset def __magic_name__ ( self ) -> List[str]: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() __magic_name__ : Union[str, Any] = dset.map( lambda lowerCAmelCase__ , lowerCAmelCase__ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ) __magic_name__ : Dict = dset.add_faiss_index("""vecs""" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) __magic_name__ ,__magic_name__ : str = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) dset.drop_index("""vecs""" ) def __magic_name__ ( self ) -> int: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __magic_name__ ,__magic_name__ : int = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def __magic_name__ ( self ) -> Optional[int]: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCAmelCase__ ) as tmp_file: dset.save_faiss_index("""vecs""" , tmp_file.name ) dset.load_faiss_index("""vecs2""" , tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ ,__magic_name__ : Dict = dset.get_nearest_examples("""vecs2""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" ) dset.drop_index("""vecs""" ) self.assertRaises(lowerCAmelCase__ , partial(dset.get_nearest_examples , """vecs2""" , np.ones(5 , dtype=np.floataa ) ) ) def __magic_name__ ( self ) -> List[str]: from elasticsearch import Elasticsearch __magic_name__ : Dataset = self._create_dummy_dataset() with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: __magic_name__ : List[Any] = {"""acknowledged""": True} mocked_bulk.return_value([(True, None)] * 30 ) __magic_name__ : int = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 29}]}} __magic_name__ : Optional[Any] = Elasticsearch() dset.add_elasticsearch_index("""filename""" , es_client=lowerCAmelCase__ ) __magic_name__ ,__magic_name__ : Any = dset.get_nearest_examples("""filename""" , """my_name-train_29""" ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) @require_faiss class snake_case__ ( _lowerCAmelCase ): def __magic_name__ ( self ) -> str: import faiss __magic_name__ : List[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __magic_name__ : int = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Dict = 1 __magic_name__ ,__magic_name__ : int = index.search(lowerCAmelCase__ ) self.assertRaises(lowerCAmelCase__ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __magic_name__ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1] __magic_name__ ,__magic_name__ : int = index.search_batch(lowerCAmelCase__ ) self.assertRaises(lowerCAmelCase__ , index.search_batch , queries[0] ) __magic_name__ : str = [scores[0] for scores in total_scores] __magic_name__ : Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCAmelCase__ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: import faiss __magic_name__ : List[str] = FaissIndex(string_factory="""Flat""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __magic_name__ : Dict = FaissIndex(string_factory="""LSH""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowerCAmelCase__ ): __magic_name__ : List[Any] = FaissIndex(string_factory="""Flat""" , custom_index=faiss.IndexFlat(5 ) ) def __magic_name__ ( self ) -> Optional[Any]: import faiss __magic_name__ : int = faiss.IndexFlat(5 ) __magic_name__ : Dict = FaissIndex(custom_index=lowerCAmelCase__ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __magic_name__ ( self ) -> str: import faiss __magic_name__ : str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCAmelCase__ ) as tmp_file: index.save(tmp_file.name ) __magic_name__ : str = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ : Union[str, Any] = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Union[str, Any] = 1 __magic_name__ ,__magic_name__ : Optional[int] = index.search(lowerCAmelCase__ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def UpperCamelCase ( _A ): """simple docstring""" import faiss __magic_name__ : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) __magic_name__ : List[Any] = """index.faiss""" __magic_name__ : Tuple = f'mock://{index_name}' index.save(_A, storage_options=mockfs.storage_options ) __magic_name__ : str = FaissIndex.load(_A, storage_options=mockfs.storage_options ) __magic_name__ : List[str] = np.zeros(5, dtype=np.floataa ) __magic_name__ : Union[str, Any] = 1 __magic_name__ ,__magic_name__ : List[Any] = index.search(_A ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class snake_case__ ( _lowerCAmelCase ): def __magic_name__ ( self ) -> Dict: from elasticsearch import Elasticsearch with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: __magic_name__ : str = Elasticsearch() __magic_name__ : List[Any] = {"""acknowledged""": True} __magic_name__ : Dict = ElasticSearchIndex(es_client=lowerCAmelCase__ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["""foo""", """bar""", """foobar"""] ) # single query __magic_name__ : Tuple = """foo""" __magic_name__ : Optional[int] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} __magic_name__ ,__magic_name__ : int = index.search(lowerCAmelCase__ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __magic_name__ : List[Any] = """foo""" __magic_name__ : Optional[int] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} __magic_name__ ,__magic_name__ : Any = index.search(lowerCAmelCase__ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __magic_name__ : List[Any] = ["""foo""", """bar""", """foobar"""] __magic_name__ : Optional[Any] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} __magic_name__ ,__magic_name__ : Union[str, Any] = index.search_batch(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = [scores[0] for scores in total_scores] __magic_name__ : Optional[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCAmelCase__ ) , 0 ) self.assertListEqual([1, 1, 1] , lowerCAmelCase__ ) # batched queries with timeout __magic_name__ : Any = ["""foo""", """bar""", """foobar"""] __magic_name__ : List[str] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} __magic_name__ ,__magic_name__ : Optional[Any] = index.search_batch(lowerCAmelCase__ , request_timeout=30 ) __magic_name__ : Tuple = [scores[0] for scores in total_scores] __magic_name__ : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCAmelCase__ ) , 0 ) self.assertListEqual([1, 1, 1] , lowerCAmelCase__ )
342
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__ : def __init__( self , lowerCAmelCase__ = None ) -> None: if components is None: __magic_name__ : Any = [] __magic_name__ : List[str] = list(lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : Dict = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : int = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... @overload def __mul__( self , lowerCAmelCase__ ) -> float: ... def __mul__( self , lowerCAmelCase__ ) -> float | Vector: if isinstance(lowerCAmelCase__ , (float, int) ): __magic_name__ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): __magic_name__ : Optional[Any] = len(self ) __magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __magic_name__ ( self ) -> Vector: return Vector(self.__components ) def __magic_name__ ( self , lowerCAmelCase__ ) -> float: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ : Optional[int] = value def __magic_name__ ( self ) -> float: if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __magic_name__ : Dict = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: __magic_name__ : Optional[Any] = self * other __magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase ( _A ): """simple docstring""" assert isinstance(_A, _A ) return Vector([0] * dimension ) def UpperCamelCase ( _A, _A ): """simple docstring""" assert isinstance(_A, _A ) and (isinstance(_A, _A )) __magic_name__ : Union[str, Any] = [0] * dimension __magic_name__ : Optional[int] = 1 return Vector(_A ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" assert ( isinstance(_A, _A ) and isinstance(_A, _A ) and (isinstance(_A, (int, float) )) ) return x * scalar + y def UpperCamelCase ( _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )] return Vector(_A ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Dict = matrix __magic_name__ : Tuple = w __magic_name__ : Union[str, Any] = h def __str__( self ) -> str: __magic_name__ : Dict = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Tuple = [] for i in range(self.__height ): __magic_name__ : Tuple = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Optional[Any] = [] for i in range(self.__height ): __magic_name__ : int = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Matrix: ... @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: __magic_name__ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ : Optional[int] = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar __magic_name__ : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def __magic_name__ ( self ) -> int: return self.__height def __magic_name__ ( self ) -> int: return self.__width def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): __magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __magic_name__ ( self ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )] return Matrix(_A, _A, _A ) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : list[list[float]] = [ [random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A ) ] return Matrix(_A, _A, _A )
342
1
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = MgpstrTokenizer lowercase__ : int = False lowercase__ : Any = {} lowercase__ : Optional[int] = False def __magic_name__ ( self ) -> Optional[Any]: super().setUp() # fmt: off __magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = """tester""" __magic_name__ : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Dict = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) __magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) __magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __magic_name__ ( self ) -> Optional[Any]: pass
342
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: int = "▁" __magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"} __magic_name__: List[str] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __magic_name__: Tuple = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off __magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = ['''input_ids''', '''attention_mask'''] lowercase__ : List[int] = [] lowercase__ : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) __magic_name__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__ : List[Any] = 1 __magic_name__ : Dict = len(self.sp_model ) __magic_name__ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } __magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} __magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __magic_name__ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn""" __magic_name__ : Any = self.lang_code_to_id[self._src_lang] __magic_name__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Any: __magic_name__ : List[Any] = self.__dict__.copy() __magic_name__ : int = None __magic_name__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ : Any = {} __magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __magic_name__ ( self ) -> str: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self ) -> str: return self._src_lang @src_lang.setter def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __magic_name__ : Optional[int] = [1] * len(self.prefix_tokens ) __magic_name__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : str = [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__ : Dict = src_lang __magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Tuple = tgt_lang_id return inputs def __magic_name__ ( self ) -> int: __magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip() return out_string def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , """wb""" ) as fi: __magic_name__ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding: __magic_name__ : List[str] = src_lang __magic_name__ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : str = [self.cur_lang_code] __magic_name__ : List[Any] = [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : Optional[int] = [self.cur_lang_code] __magic_name__ : Union[str, Any] = [self.eos_token_id]
342
1
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__: List[Any] = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Any = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __magic_name__: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
342
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Dict = MobileBertConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ : Tuple = MobileBertForPreTraining(_A ) # Load weights from tf checkpoint __magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _A ) if __name__ == "__main__": __magic_name__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__: Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
342
1
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __magic_name__: Any = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex __magic_name__: List[Any] = 10 __magic_name__: Union[str, Any] = 256 def UpperCamelCase ( _A ): """simple docstring""" if len(_A ) < MIN_NUM_TOKENS: return None __magic_name__ : List[Any] = MinHash(num_perm=_A ) for token in set(_A ): min_hash.update(token.encode() ) return min_hash def UpperCamelCase ( _A ): """simple docstring""" return {t for t in NON_ALPHA.split(_A ) if len(t.strip() ) > 0} class snake_case__ : def __init__( self , *, lowerCAmelCase__ = 0.8_5 , ) -> Any: __magic_name__ : Optional[int] = duplication_jaccard_threshold __magic_name__ : Optional[int] = NUM_PERM __magic_name__ : Any = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __magic_name__ : Any = defaultdict(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : List[str] = self._index.query(lowerCAmelCase__ ) if code_key in self._index.keys: print(F'Duplicate key {code_key}' ) return self._index.insert(lowerCAmelCase__ , lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[List[Dict]]: __magic_name__ : str = [] for base, duplicates in self._duplicate_clusters.items(): __magic_name__ : Union[str, Any] = [base] + list(lowerCAmelCase__ ) # reformat the cluster to be a list of dict __magic_name__ : Optional[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase__ ) return duplicate_clusters def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Any = self.get_duplicate_clusters() with open(lowerCAmelCase__ , """w""" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ ,__magic_name__ : Tuple = element __magic_name__ : int = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCamelCase ( _A ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash, ThreadedIterator(_A, max_queue_size=10000 ), chunksize=100, ): if data is not None: yield data def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Any = DuplicationIndex(duplication_jaccard_threshold=_A ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_A ) ), max_queue_size=100 ) ): di.add(_A, _A ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Tuple = get_tokens(_A ) __magic_name__ : str = get_tokens(_A ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __magic_name__: List[Any] = None def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : List[str] = [] for elementa in cluster: __magic_name__ : Tuple = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __magic_name__ : List[Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(_A, _A ) >= jaccard_threshold: elementa["copies"] += 1 break else: __magic_name__ : Union[str, Any] = 1 extremes.append(_A ) return extremes def UpperCamelCase ( _A, _A, _A ): """simple docstring""" global _shared_dataset __magic_name__ : str = dataset __magic_name__ : Optional[int] = [] __magic_name__ : Tuple = partial(_find_cluster_extremes_shared, jaccard_threshold=_A ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _A, _A, ), total=len(_A ), ): extremes_list.append(_A ) return extremes_list def UpperCamelCase ( _A, _A = 0.85 ): """simple docstring""" __magic_name__ : List[Any] = make_duplicate_clusters(_A, _A ) __magic_name__ : List[str] = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __magic_name__ : Tuple = {} __magic_name__ : Union[str, Any] = find_extremes(_A, _A, _A ) for extremes in extremes_clusters: for element in extremes: __magic_name__ : Tuple = element __magic_name__ : Tuple = duplicate_indices - set(extreme_dict.keys() ) __magic_name__ : Tuple = dataset.filter(lambda _A, _A : idx not in remove_indices, with_indices=_A ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __magic_name__ : List[str] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __magic_name__ : Dict = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(_A )}' ) print(f'Number of duplicate clusters: {len(_A )}' ) print(f'Files in duplicate cluster: {len(_A )}' ) print(f'Unique files in duplicate cluster: {len(_A )}' ) print(f'Filtered dataset size: {len(_A )}' ) return ds_filter, duplicate_clusters
342
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = MgpstrTokenizer lowercase__ : int = False lowercase__ : Any = {} lowercase__ : Optional[int] = False def __magic_name__ ( self ) -> Optional[Any]: super().setUp() # fmt: off __magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = """tester""" __magic_name__ : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Dict = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) __magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) __magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __magic_name__ ( self ) -> Optional[Any]: pass
342
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__: Dict = logging.get_logger(__name__) __magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __magic_name__: Optional[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __magic_name__: List[Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Any = ( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) __magic_name__ : Any = bs[:] __magic_name__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 __magic_name__ : List[str] = [chr(_A ) for n in cs] return dict(zip(_A, _A ) ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = set() __magic_name__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[Any] = char return pairs class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict: __magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ ) __magic_name__ : Any = {v: k for k, v in self.encoder.items()} __magic_name__ : Tuple = errors # how to handle errors in decoding __magic_name__ : Tuple = bytes_to_unicode() __magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1] __magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : str = {} __magic_name__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __magic_name__ ( self ) -> Optional[Any]: return len(self.encoder ) def __magic_name__ ( self ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if token in self.cache: return self.cache[token] __magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ ,__magic_name__ : List[str] = bigram __magic_name__ : Any = [] __magic_name__ : Any = 0 while i < len(lowerCAmelCase__ ): try: __magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Optional[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : str = tuple(lowerCAmelCase__ ) __magic_name__ : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __magic_name__ : List[str] = get_pairs(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ ) __magic_name__ : str = word return word def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : str = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __magic_name__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Tuple = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __magic_name__ : Optional[Any] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : Optional[int] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] __magic_name__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : Dict = [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __magic_name__ : List[Any] = """ """ + text return (text, kwargs)
342
import re def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(_A, _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
342
1
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __magic_name__: Union[str, Any] = logging.getLogger() def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) __magic_name__ : Optional[int] = parser.parse_args() return args.f class snake_case__ ( _lowerCAmelCase ): def __magic_name__ ( self ) -> None: __magic_name__ : Optional[int] = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Union[str, Any] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(lowerCAmelCase__ , """argv""" , lowerCAmelCase__ ): __magic_name__ : List[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCAmelCase__ , 0.6_6_6 ) @slow @require_torch_non_multi_gpu def __magic_name__ ( self ) -> Tuple: __magic_name__ : Any = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(lowerCAmelCase__ ) __magic_name__ : Any = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(lowerCAmelCase__ ) __magic_name__ : Optional[int] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(lowerCAmelCase__ )
342
import doctest from collections import deque import numpy as np class snake_case__ : def __init__( self ) -> None: __magic_name__ : Any = [2, 1, 2, -1] __magic_name__ : Tuple = [1, 2, 3, 4] def __magic_name__ ( self ) -> list[float]: __magic_name__ : Optional[Any] = len(self.first_signal ) __magic_name__ : Dict = len(self.second_signal ) __magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ ) # create a zero matrix of max_length x max_length __magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__ ): __magic_name__ : List[str] = deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase__ ) for j, item in enumerate(lowerCAmelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal __magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
342
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __magic_name__: Tuple = logging.get_logger(__name__) __magic_name__: Optional[Any] = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase ): lowercase__ : str = '''swin''' lowercase__ : str = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowerCAmelCase__=2_24 , lowerCAmelCase__=4 , lowerCAmelCase__=3 , lowerCAmelCase__=96 , lowerCAmelCase__=[2, 2, 6, 2] , lowerCAmelCase__=[3, 6, 12, 24] , lowerCAmelCase__=7 , lowerCAmelCase__=4.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=32 , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> List[Any]: super().__init__(**lowerCAmelCase__ ) __magic_name__ : Tuple = image_size __magic_name__ : Tuple = patch_size __magic_name__ : Any = num_channels __magic_name__ : Union[str, Any] = embed_dim __magic_name__ : int = depths __magic_name__ : List[str] = len(lowerCAmelCase__ ) __magic_name__ : Optional[int] = num_heads __magic_name__ : Any = window_size __magic_name__ : Any = mlp_ratio __magic_name__ : Dict = qkv_bias __magic_name__ : Optional[int] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : int = drop_path_rate __magic_name__ : int = hidden_act __magic_name__ : Dict = use_absolute_embeddings __magic_name__ : Dict = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : str = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __magic_name__ : Optional[int] = int(embed_dim * 2 ** (len(lowerCAmelCase__ ) - 1) ) __magic_name__ : List[str] = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(lowerCAmelCase__ ) + 1 )] __magic_name__ ,__magic_name__ : Dict = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names ) class snake_case__ ( _lowerCAmelCase ): lowercase__ : Tuple = version.parse('''1.11''' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __magic_name__ ( self ) -> float: return 1e-4
342
from math import factorial def UpperCamelCase ( _A, _A, _A ): """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(_A, _A ) or not isinstance(_A, _A ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) __magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __magic_name__ : Any = float(factorial(_A ) ) coefficient /= factorial(_A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
342
1
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def UpperCamelCase ( _A = 8 ): """simple docstring""" __magic_name__ : Optional[Any] = ascii_letters + digits + punctuation return "".join(secrets.choice(_A ) for _ in range(_A ) ) def UpperCamelCase ( _A, _A ): """simple docstring""" i -= len(_A ) __magic_name__ : Optional[Any] = i // 3 __magic_name__ : Any = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) __magic_name__ : Optional[int] = ( chars_incl + random(_A, quotient + remainder ) + random(_A, _A ) + random(_A, _A ) ) __magic_name__ : str = list(_A ) shuffle(_A ) return "".join(_A ) # random is a generalised function for letters, characters and numbers def UpperCamelCase ( _A, _A ): """simple docstring""" return "".join(secrets.choice(_A ) for _ in range(_A ) ) def UpperCamelCase ( _A, _A ): """simple docstring""" pass # Put your code here... def UpperCamelCase ( _A, _A ): """simple docstring""" pass # Put your code here... def UpperCamelCase ( _A, _A ): """simple docstring""" pass # Put your code here... def UpperCamelCase ( _A, _A = 8 ): """simple docstring""" if len(_A ) < min_length: # Your Password must be at least 8 characters long return False __magic_name__ : int = any(char in ascii_uppercase for char in password ) __magic_name__ : List[Any] = any(char in ascii_lowercase for char in password ) __magic_name__ : List[Any] = any(char in digits for char in password ) __magic_name__ : Optional[Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Any = int(input("""Please indicate the max length of your password: """ ).strip() ) __magic_name__ : Tuple = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""", password_generator(_A ) ) print( """Alternative Password generated:""", alternative_password_generator(_A, _A ), ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
342
from __future__ import annotations def UpperCamelCase ( _A ): # This function is recursive """simple docstring""" __magic_name__ : str = len(_A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __magic_name__ : Dict = array[0] __magic_name__ : Optional[Any] = False __magic_name__ : Tuple = 1 __magic_name__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __magic_name__ : Union[str, Any] = True __magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]] __magic_name__ : Dict = longest_subsequence(_A ) if len(_A ) > len(_A ): __magic_name__ : Tuple = temp_array else: i += 1 __magic_name__ : Any = [element for element in array[1:] if element >= pivot] __magic_name__ : Dict = [pivot, *longest_subsequence(_A )] if len(_A ) > len(_A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
342
1
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar __magic_name__: Dict = TypeVar("T") class snake_case__ ( Generic[T] ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Any | T = None __magic_name__ : int = len(lowerCAmelCase__ ) __magic_name__ : list[T] = [any_type for _ in range(self.N )] + arr __magic_name__ : Any = fnc self.build() def __magic_name__ ( self ) -> None: for p in range(self.N - 1 , 0 , -1 ): __magic_name__ : Optional[int] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: p += self.N __magic_name__ : str = v while p > 1: __magic_name__ : Tuple = p // 2 __magic_name__ : Union[str, Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> T | None: # noqa: E741 __magic_name__ ,__magic_name__ : Dict = l + self.N, r + self.N __magic_name__ : T | None = None while l <= r: if l % 2 == 1: __magic_name__ : Any = self.st[l] if res is None else self.fn(lowerCAmelCase__ , self.st[l] ) if r % 2 == 0: __magic_name__ : Union[str, Any] = self.st[r] if res is None else self.fn(lowerCAmelCase__ , self.st[r] ) __magic_name__ ,__magic_name__ : str = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce __magic_name__: int = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] __magic_name__: List[str] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } __magic_name__: List[Any] = SegmentTree(test_array, min) __magic_name__: Dict = SegmentTree(test_array, max) __magic_name__: Optional[int] = SegmentTree(test_array, lambda a, b: a + b) def UpperCamelCase ( ): """simple docstring""" for i in range(len(_A ) ): for j in range(_A, len(_A ) ): __magic_name__ : List[Any] = reduce(_A, test_array[i : j + 1] ) __magic_name__ : Optional[int] = reduce(_A, test_array[i : j + 1] ) __magic_name__ : Any = reduce(lambda _A, _A : a + b, test_array[i : j + 1] ) assert min_range == min_segment_tree.query(_A, _A ) assert max_range == max_segment_tree.query(_A, _A ) assert sum_range == sum_segment_tree.query(_A, _A ) test_all_segments() for index, value in test_updates.items(): __magic_name__: List[str] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
342
import argparse import os import re __magic_name__: Optional[Any] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings __magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def UpperCamelCase ( _A, _A = False ): """simple docstring""" with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : Any = f.read() __magic_name__ : List[Any] = content.split("""\n""" ) __magic_name__ : List[str] = [] __magic_name__ : Union[str, Any] = 0 while line_idx < len(_A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 __magic_name__ : List[Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __magic_name__ : List[str] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_A, """w""", encoding="""utf-8""" ) as f: f.write("""\n""".join(_A ) ) elif "\n".join(_A ) != content: return True def UpperCamelCase ( _A = False ): """simple docstring""" __magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )] __magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames] if not overwrite and any(_A ): __magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix' """ this.""" ) if __name__ == "__main__": __magic_name__: List[str] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __magic_name__: List[str] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
342
1
from __future__ import annotations from math import pi def UpperCamelCase ( _A, _A, _A ): """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
342
__magic_name__: str = [0, 2, 4, 6, 8] __magic_name__: Optional[int] = [1, 3, 5, 7, 9] def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __magic_name__ : List[Any] = 0 for digit in range(10 ): __magic_name__ : Optional[int] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, _A, _A ) return result __magic_name__ : str = 0 for digita in range(10 ): __magic_name__ : Optional[Any] = digita if (remainder + digita) % 2 == 0: __magic_name__ : Tuple = ODD_DIGITS else: __magic_name__ : str = EVEN_DIGITS for digita in other_parity_digits: __magic_name__ : Tuple = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, ) return result def UpperCamelCase ( _A = 9 ): """simple docstring""" __magic_name__ : List[str] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(_A, 0, [0] * length, _A ) return result if __name__ == "__main__": print(F"""{solution() = }""")
342
1
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCamelCase ( _A, _A=7 ): """simple docstring""" __magic_name__ : Any = None if token is not None: __magic_name__ : Tuple = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} # The id of a workflow (not of a workflow run) __magic_name__ : Any = """636036""" __magic_name__ : Dict = f'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' __magic_name__ : List[Any] = requests.get(_A, headers=_A ).json() return result["workflow_runs"] def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Optional[int] = get_daily_ci_runs(_A ) __magic_name__ : Tuple = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": __magic_name__ : int = workflow_run["""id"""] break return workflow_run_id def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Dict = get_last_daily_ci_runs(_A ) if workflow_run_id is not None: __magic_name__ : Optional[Any] = get_artifacts_links(worflow_run_id=_A, token=_A ) for artifact_name in artifact_names: if artifact_name in artifacts_links: __magic_name__ : Optional[Any] = artifacts_links[artifact_name] download_artifact( artifact_name=_A, artifact_url=_A, output_dir=_A, token=_A ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" get_last_daily_ci_artifacts(_A, _A, _A ) __magic_name__ : List[str] = {} for artifact_name in artifact_names: __magic_name__ : Dict = os.path.join(_A, f'{artifact_name}.zip' ) if os.path.isfile(_A ): __magic_name__ : Union[str, Any] = {} with zipfile.ZipFile(_A ) as z: for filename in z.namelist(): if not os.path.isdir(_A ): # read the file with z.open(_A ) as f: __magic_name__ : Tuple = f.read().decode("""UTF-8""" ) return results
342
def UpperCamelCase ( _A ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) __magic_name__ : int = sorted(string.lower() ) return len(_A ) == len(set(_A ) ) if __name__ == "__main__": __magic_name__: Dict = input("Enter a string ").strip() __magic_name__: Union[str, Any] = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
342
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = ['''image_processor''', '''tokenizer'''] lowercase__ : Union[str, Any] = '''AutoImageProcessor''' lowercase__ : Optional[Any] = '''AutoTokenizer''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[str] = self.image_processor def __call__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Optional[int]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __magic_name__ : Tuple = self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if images is not None: __magic_name__ : str = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None and images is not None: __magic_name__ : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase__ ) , tensor_type=lowerCAmelCase__ ) def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__ ( self ) -> str: return ["input_ids", "attention_mask", "pixel_values"]
342
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
342
1
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class snake_case__ : lowercase__ : int lowercase__ : Node | None = None lowercase__ : Node | None = None def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Dict = Node(1 ) __magic_name__ : int = Node(2 ) __magic_name__ : Any = Node(3 ) __magic_name__ : List[Any] = Node(4 ) __magic_name__ : Optional[Any] = Node(5 ) return tree def UpperCamelCase ( _A ): """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase ( _A ): """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase ( _A ): """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase ( _A ): """simple docstring""" return (max(height(root.left ), height(root.right ) ) + 1) if root else 0 def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : list[Any] = [] if root is None: return output __magic_name__ : str = deque([root] ) while process_queue: __magic_name__ : Union[str, Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : list[Any] = [] def populate_output(_A, _A ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left, level - 1 ) populate_output(root.right, level - 1 ) populate_output(_A, _A ) return output def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : list[Any] = [] def populate_output(_A, _A ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right, level - 1 ) populate_output(root.left, level - 1 ) populate_output(_A, _A ) return output def UpperCamelCase ( _A ): """simple docstring""" if root is None: return [] __magic_name__ : list[Sequence[Node | None]] = [] __magic_name__ : str = 0 __magic_name__ : Tuple = height(_A ) for h in range(1, height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_A, _A ) ) __magic_name__ : str = 1 else: output.append(get_nodes_from_right_to_left(_A, _A ) ) __magic_name__ : Optional[int] = 0 return output def UpperCamelCase ( ): # Main function for testing. """simple docstring""" __magic_name__ : str = make_tree() print(f'In-order Traversal: {inorder(_A )}' ) print(f'Pre-order Traversal: {preorder(_A )}' ) print(f'Post-order Traversal: {postorder(_A )}', """\n""" ) print(f'Height of Tree: {height(_A )}', """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_A ), """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1, height(_A ) + 1 ): print(f'Level {level}:', get_nodes_from_left_to_right(_A, level=_A ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
342
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]: __magic_name__ : str = parent __magic_name__ : Dict = do_resize __magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88} __magic_name__ : Union[str, Any] = size_divisor __magic_name__ : Union[str, Any] = do_rescale __magic_name__ : Dict = rescale_factor __magic_name__ : Union[str, Any] = do_normalize __magic_name__ : List[str] = do_center_crop __magic_name__ : Tuple = image_mean __magic_name__ : Tuple = image_std __magic_name__ : Tuple = do_pad __magic_name__ : int = batch_size __magic_name__ : List[Any] = num_channels __magic_name__ : int = min_resolution __magic_name__ : str = max_resolution def __magic_name__ ( self ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int: if not batched: __magic_name__ : Dict = self.size["""shortest_edge"""] __magic_name__ : List[str] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): __magic_name__ ,__magic_name__ : List[Any] = image.size else: __magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2] __magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ ) if h < w: __magic_name__ ,__magic_name__ : str = size, scale * w else: __magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size __magic_name__ : Tuple = int((13_33 / 8_00) * size ) if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size: __magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = newh * scale __magic_name__ : Any = neww * scale __magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 ) __magic_name__ ,__magic_name__ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __magic_name__ : Union[str, Any] = [] for image in image_inputs: __magic_name__ ,__magic_name__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] __magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = BridgeTowerImageProcessingTester(self ) @property def __magic_name__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Any: __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) ) def __magic_name__ ( self ) -> Optional[int]: pass def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> str: # Initialize image processor __magic_name__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
342
1
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__: Optional[int] = logging.get_logger(__name__) __magic_name__: Any = { "facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json", # See all DETR models at https://huggingface.co/models?filter=detr } class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = '''detr''' lowercase__ : Union[str, Any] = ['''past_key_values'''] lowercase__ : Dict = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=3 , lowerCAmelCase__=1_00 , lowerCAmelCase__=6 , lowerCAmelCase__=20_48 , lowerCAmelCase__=8 , lowerCAmelCase__=6 , lowerCAmelCase__=20_48 , lowerCAmelCase__=8 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__="relu" , lowerCAmelCase__=2_56 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1.0 , lowerCAmelCase__=False , lowerCAmelCase__="sine" , lowerCAmelCase__="resnet50" , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=1 , lowerCAmelCase__=5 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=1 , lowerCAmelCase__=5 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , **lowerCAmelCase__ , ) -> Any: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __magic_name__ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Optional[int] = backbone_config.get("""model_type""" ) __magic_name__ : List[str] = CONFIG_MAPPING[backbone_model_type] __magic_name__ : List[str] = config_class.from_dict(lowerCAmelCase__ ) # set timm attributes to None __magic_name__ ,__magic_name__ ,__magic_name__ : Optional[Any] = None, None, None __magic_name__ : Any = use_timm_backbone __magic_name__ : Any = backbone_config __magic_name__ : Tuple = num_channels __magic_name__ : Any = num_queries __magic_name__ : Dict = d_model __magic_name__ : int = encoder_ffn_dim __magic_name__ : Optional[int] = encoder_layers __magic_name__ : int = encoder_attention_heads __magic_name__ : List[str] = decoder_ffn_dim __magic_name__ : List[str] = decoder_layers __magic_name__ : int = decoder_attention_heads __magic_name__ : Union[str, Any] = dropout __magic_name__ : int = attention_dropout __magic_name__ : Dict = activation_dropout __magic_name__ : List[Any] = activation_function __magic_name__ : Dict = init_std __magic_name__ : Union[str, Any] = init_xavier_std __magic_name__ : int = encoder_layerdrop __magic_name__ : Union[str, Any] = decoder_layerdrop __magic_name__ : Dict = encoder_layers __magic_name__ : Any = auxiliary_loss __magic_name__ : Any = position_embedding_type __magic_name__ : List[str] = backbone __magic_name__ : Union[str, Any] = use_pretrained_backbone __magic_name__ : List[str] = dilation # Hungarian matcher __magic_name__ : Optional[int] = class_cost __magic_name__ : List[str] = bbox_cost __magic_name__ : Any = giou_cost # Loss coefficients __magic_name__ : str = mask_loss_coefficient __magic_name__ : Any = dice_loss_coefficient __magic_name__ : Dict = bbox_loss_coefficient __magic_name__ : str = giou_loss_coefficient __magic_name__ : List[str] = eos_coefficient super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__ ( self ) -> int: return self.encoder_attention_heads @property def __magic_name__ ( self ) -> int: return self.d_model @classmethod def __magic_name__ ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: return cls(backbone_config=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Dict[str, any]: __magic_name__ : List[str] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __magic_name__ : List[Any] = self.backbone_config.to_dict() __magic_name__ : Union[str, Any] = self.__class__.model_type return output class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = version.parse('''1.11''' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def __magic_name__ ( self ) -> float: return 1e-5 @property def __magic_name__ ( self ) -> int: return 12
342
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__: Tuple = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Union[str, Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __magic_name__: Optional[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
342
1
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def UpperCamelCase ( _A, _A, _A = False ): """simple docstring""" if radian_mode: return [magnitude * cos(_A ), magnitude * sin(_A )] return [magnitude * cos(radians(_A ) ), magnitude * sin(radians(_A ) )] def UpperCamelCase ( _A, _A, _A = 10**-1 ): """simple docstring""" __magic_name__ : NDArray[floataa] = cross(_A, _A ) __magic_name__ : float = sum(_A ) return abs(_A ) < eps if __name__ == "__main__": # Test to check if it works __magic_name__: Tuple = array( [ polar_force(7_18.4, 180 - 30), polar_force(8_79.54, 45), polar_force(100, -90), ] ) __magic_name__: NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg __magic_name__: Tuple = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) __magic_name__: List[Any] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg __magic_name__: Optional[Any] = array([[0, -2_000], [0, -1_200], [0, 15_600], [0, -12_400]]) __magic_name__: Optional[Any] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
342
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__: Dict = logging.get_logger(__name__) __magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __magic_name__: Optional[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __magic_name__: List[Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Any = ( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) __magic_name__ : Any = bs[:] __magic_name__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 __magic_name__ : List[str] = [chr(_A ) for n in cs] return dict(zip(_A, _A ) ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = set() __magic_name__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[Any] = char return pairs class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict: __magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ ) __magic_name__ : Any = {v: k for k, v in self.encoder.items()} __magic_name__ : Tuple = errors # how to handle errors in decoding __magic_name__ : Tuple = bytes_to_unicode() __magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1] __magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : str = {} __magic_name__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __magic_name__ ( self ) -> Optional[Any]: return len(self.encoder ) def __magic_name__ ( self ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if token in self.cache: return self.cache[token] __magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ ,__magic_name__ : List[str] = bigram __magic_name__ : Any = [] __magic_name__ : Any = 0 while i < len(lowerCAmelCase__ ): try: __magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Optional[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : str = tuple(lowerCAmelCase__ ) __magic_name__ : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __magic_name__ : List[str] = get_pairs(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ ) __magic_name__ : str = word return word def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : str = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __magic_name__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Tuple = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __magic_name__ : Optional[Any] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : Optional[int] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] __magic_name__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : Dict = [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __magic_name__ : List[Any] = """ """ + text return (text, kwargs)
342
1
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput __magic_name__: Dict = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class snake_case__ ( _lowerCAmelCase ): def __init__( self , *lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Any: super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Tuple = eval_examples __magic_name__ : Tuple = post_process_function __magic_name__ : Dict = quant_trainer_args __magic_name__ : Dict = 1_28 # default number of calibration samples def __magic_name__ ( self , lowerCAmelCase__=None ) -> Dict: if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) __magic_name__ : Optional[Any] = calib_dataset if calib_dataset is not None else self.calib_dataset __magic_name__ : List[Any] = self._remove_unused_columns(lowerCAmelCase__ , description="""Calibration""" ) return DataLoader( lowerCAmelCase__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=lowerCAmelCase__ , ) def __magic_name__ ( self , lowerCAmelCase__=None ) -> str: __magic_name__ : List[Any] = self.train_dataset if calib_dataset is None else calib_dataset __magic_name__ : List[Any] = self.get_calib_dataloader(lowerCAmelCase__ ) __magic_name__ : Any = self.model quant_trainer.configure_model(lowerCAmelCase__ , self.quant_trainer_args , calib=lowerCAmelCase__ ) model.eval() quant_trainer.enable_calibration(lowerCAmelCase__ ) logger.info("""***** Running calibration *****""" ) logger.info(F' Num examples = {self.calib_num}' ) logger.info(F' Batch size = {calib_dataloader.batch_size}' ) for step, inputs in enumerate(lowerCAmelCase__ ): # Prediction step __magic_name__ ,__magic_name__ ,__magic_name__ : Optional[int] = self.prediction_step(lowerCAmelCase__ , lowerCAmelCase__ , prediction_loss_only=lowerCAmelCase__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(lowerCAmelCase__ , self.quant_trainer_args ) __magic_name__ : List[Any] = model def __magic_name__ ( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = "eval" ) -> List[str]: __magic_name__ : str = self.eval_dataset if eval_dataset is None else eval_dataset __magic_name__ : str = self.get_eval_dataloader(lowerCAmelCase__ ) __magic_name__ : Any = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __magic_name__ : Dict = self.compute_metrics __magic_name__ : Optional[Any] = None __magic_name__ : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __magic_name__ : Any = eval_loop( lowerCAmelCase__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , ) finally: __magic_name__ : Union[str, Any] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: __magic_name__ : Optional[int] = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , output.predictions ) __magic_name__ : List[Any] = self.compute_metrics(lowerCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): __magic_name__ : Tuple = metrics.pop(lowerCAmelCase__ ) self.log(lowerCAmelCase__ ) else: __magic_name__ : Optional[int] = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __magic_name__ : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCAmelCase__ ) return metrics def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__ = "test" ) -> Optional[Any]: __magic_name__ : Optional[int] = self.get_test_dataloader(lowerCAmelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. __magic_name__ : Union[str, Any] = self.compute_metrics __magic_name__ : str = None __magic_name__ : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __magic_name__ : List[Any] = eval_loop( lowerCAmelCase__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , ) finally: __magic_name__ : List[str] = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output __magic_name__ : Optional[int] = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , output.predictions , """predict""" ) __magic_name__ : str = self.compute_metrics(lowerCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): __magic_name__ : List[Any] = metrics.pop(lowerCAmelCase__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__="./" ) -> str: __magic_name__ : List[str] = self.eval_dataset __magic_name__ : Optional[Any] = self.get_eval_dataloader(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = next(iter(lowerCAmelCase__ ) ) # saving device - to make it consistent __magic_name__ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple __magic_name__ : Tuple = tuple(v.to(lowerCAmelCase__ ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer __magic_name__ : Tuple = True __magic_name__ : Union[str, Any] = self.model.to(lowerCAmelCase__ ) model.eval() model.float() __magic_name__ : List[str] = model.module if hasattr(lowerCAmelCase__ , """module""" ) else model quant_trainer.configure_model(lowerCAmelCase__ , self.quant_trainer_args ) __magic_name__ : List[str] = os.path.join(lowerCAmelCase__ , """model.onnx""" ) logger.info(F'exporting model to {output_model_file}' ) __magic_name__ : List[str] = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , export_params=lowerCAmelCase__ , opset_version=13 , do_constant_folding=lowerCAmelCase__ , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=lowerCAmelCase__ , ) logger.info("""onnx export finished""" )
342
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str: __magic_name__ : Optional[int] = parent __magic_name__ : Any = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[int] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : str = embed_dim __magic_name__ : int = hidden_sizes __magic_name__ : Union[str, Any] = depths __magic_name__ : List[str] = num_heads __magic_name__ : str = window_size __magic_name__ : Optional[Any] = mlp_ratio __magic_name__ : Dict = qkv_bias __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = drop_path_rate __magic_name__ : Optional[Any] = hidden_act __magic_name__ : int = use_absolute_embeddings __magic_name__ : Dict = patch_norm __magic_name__ : Tuple = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[int] = is_training __magic_name__ : Optional[Any] = scope __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = encoder_stride __magic_name__ : List[Any] = out_features __magic_name__ : Union[str, Any] = out_indices def __magic_name__ ( self ) -> str: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Dict = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Tuple = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __magic_name__ : Optional[Any] = None __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : str = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : int = self.type_sequence_label_size __magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> int: __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs __magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ : Any = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ : Dict = False lowercase__ : Dict = False lowercase__ : int = False lowercase__ : Tuple = False lowercase__ : Optional[Any] = False def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = FocalNetModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> List[str]: return def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __magic_name__ ( self ) -> List[str]: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self ) -> List[Any]: __magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : str = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # FocalNet has a different seq_length __magic_name__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ : str = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape __magic_name__ : Union[str, Any] = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __magic_name__ : List[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = 3 __magic_name__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __magic_name__ : Optional[int] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @slow def __magic_name__ ( self ) -> Union[str, Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: __magic_name__ : Any = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.default_image_processor __magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : List[Any] = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else () lowercase__ : Optional[int] = FocalNetConfig lowercase__ : Dict = False def __magic_name__ ( self ) -> int: __magic_name__ : Dict = FocalNetModelTester(self )
342
1
class snake_case__ : def __init__( self ) -> Optional[Any]: __magic_name__ : Optional[Any] = {} def __magic_name__ ( self ) -> None: print(self.vertex ) for i in self.vertex: print(lowerCAmelCase__ , """ -> """ , """ -> """.join([str(lowerCAmelCase__ ) for j in self.vertex[i]] ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(lowerCAmelCase__ ) else: # else make a new vertex __magic_name__ : Dict = [to_vertex] def __magic_name__ ( self ) -> None: # visited array for storing already visited nodes __magic_name__ : List[Any] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: # mark start vertex as visited __magic_name__ : Union[str, Any] = True print(lowerCAmelCase__ , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": __magic_name__: Dict = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
342
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]: __magic_name__ : int = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = image_size __magic_name__ : str = num_channels __magic_name__ : Dict = patch_size __magic_name__ : Tuple = num_frames __magic_name__ : List[Any] = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : Dict = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Tuple = attention_type __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = scope __magic_name__ : Tuple = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __magic_name__ : str = (image_size // patch_size) ** 2 __magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : str = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> str: __magic_name__ : Dict = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __magic_name__ : Optional[Any] = self.num_labels return config def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[Any] = model(lowerCAmelCase__ ) # verify the logits shape __magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs __magic_name__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ : Union[str, Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : Any = False def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[Any] = TimesformerModelTester(self ) __magic_name__ : List[str] = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]: __magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Optional[int] = [*signature.parameters.keys()] __magic_name__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Optional[int]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: if not self.has_attentions: pass else: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True for model_class in self.all_model_classes: __magic_name__ : Tuple = self.model_tester.seq_length __magic_name__ : int = self.model_tester.num_frames __magic_name__ : Any = True __magic_name__ : Tuple = False __magic_name__ : Optional[int] = True __magic_name__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ : Optional[Any] = True __magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : int = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __magic_name__ : Union[str, Any] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : Optional[Any] = True __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) __magic_name__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" ) __magic_name__ : List[str] = np.load(_A ) return list(_A ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowerCAmelCase__ ) __magic_name__ : str = self.default_image_processor __magic_name__ : Any = prepare_video() __magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : int = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
342
1
import numpy as np import qiskit def UpperCamelCase ( _A = 8, _A = None ): """simple docstring""" __magic_name__ : str = np.random.default_rng(seed=_A ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __magic_name__ : Union[str, Any] = 6 * key_len # Measurement basis for Alice's qubits. __magic_name__ : List[str] = rng.integers(2, size=_A ) # The set of states Alice will prepare. __magic_name__ : Dict = rng.integers(2, size=_A ) # Measurement basis for Bob's qubits. __magic_name__ : Optional[Any] = rng.integers(2, size=_A ) # Quantum Circuit to simulate BB84 __magic_name__ : int = qiskit.QuantumCircuit(_A, name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(_A ): if alice_state[index] == 1: bbaa_circ.x(_A ) if alice_basis[index] == 1: bbaa_circ.h(_A ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(_A ): if bob_basis[index] == 1: bbaa_circ.h(_A ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __magic_name__ : int = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __magic_name__ : Any = qiskit.execute(_A, _A, shots=1, seed_simulator=_A ) # Returns the result of measurement. __magic_name__ : List[Any] = job.result().get_counts(_A ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __magic_name__ : Optional[Any] = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( _A, _A, _A ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. __magic_name__ : Optional[int] = gen_key[:key_len] if len(_A ) >= key_len else gen_key.ljust(_A, """0""" ) return key if __name__ == "__main__": print(F"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
342
def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = [0] * len(_A ) __magic_name__ : List[str] = [] __magic_name__ : List[str] = [1] * len(_A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: __magic_name__ : Dict = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __magic_name__ : int = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_A ) print(max(_A ) ) # Adjacency list of Graph __magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
1
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Tuple = {} __magic_name__ : Optional[int] = tokenizer(example["""content"""], truncation=_A )["""input_ids"""] __magic_name__ : List[str] = len(example["""content"""] ) / len(output["""input_ids"""] ) return output __magic_name__: Optional[Any] = HfArgumentParser(PretokenizationArguments) __magic_name__: List[Any] = parser.parse_args() if args.num_workers is None: __magic_name__: str = multiprocessing.cpu_count() __magic_name__: Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_dir) __magic_name__: Any = time.time() __magic_name__: int = load_dataset(args.dataset_name, split="train") print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") __magic_name__: Any = time.time() __magic_name__: Dict = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") __magic_name__: List[str] = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
342
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: __magic_name__ : Tuple = """ylacombe/bark-small""" __magic_name__ : List[str] = tempfile.mkdtemp() __magic_name__ : Optional[Any] = """en_speaker_1""" __magic_name__ : Union[str, Any] = """This is a test string""" __magic_name__ : Optional[int] = """speaker_embeddings_path.json""" __magic_name__ : Any = """speaker_embeddings""" def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : str = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __magic_name__ : Union[str, Any] = 35 __magic_name__ : List[Any] = 2 __magic_name__ : Dict = 8 __magic_name__ : Tuple = { """semantic_prompt""": np.ones(lowerCAmelCase__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string ) __magic_name__ : List[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
342
1
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=[10, 20, 30, 40] , lowerCAmelCase__=[2, 2, 3, 2] , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=["stage2", "stage3", "stage4"] , lowerCAmelCase__=[2, 3, 4] , lowerCAmelCase__=None , ) -> Optional[int]: __magic_name__ : Dict = parent __magic_name__ : int = batch_size __magic_name__ : int = image_size __magic_name__ : str = num_channels __magic_name__ : Union[str, Any] = num_stages __magic_name__ : List[str] = hidden_sizes __magic_name__ : Tuple = depths __magic_name__ : Optional[int] = is_training __magic_name__ : Tuple = use_labels __magic_name__ : Dict = intermediate_size __magic_name__ : Optional[Any] = hidden_act __magic_name__ : Tuple = num_labels __magic_name__ : List[Any] = initializer_range __magic_name__ : Any = out_features __magic_name__ : str = out_indices __magic_name__ : List[str] = scope def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : List[Any] = None if self.use_labels: __magic_name__ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[int] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: __magic_name__ : Dict = ConvNextVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Any = model(lowerCAmelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : Optional[Any] = ConvNextVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[str] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: __magic_name__ : str = ConvNextVaBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __magic_name__ : Any = None __magic_name__ : Dict = ConvNextVaBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[str] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Any = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Any = config_and_inputs __magic_name__ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : str = config_and_inputs __magic_name__ : Dict = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Union[str, Any] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase__ : List[str] = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase__ : Optional[int] = False lowercase__ : List[str] = False lowercase__ : Tuple = False lowercase__ : Optional[int] = False lowercase__ : Tuple = False def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = ConvNextVaModelTester(self ) __magic_name__ : Any = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self ) -> List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> Dict: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def __magic_name__ ( self ) -> Optional[int]: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def __magic_name__ ( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def __magic_name__ ( self ) -> Any: pass def __magic_name__ ( self ) -> Optional[int]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __magic_name__ ,__magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() __magic_name__ : Any = True if model_class.__name__ in [ *get_values(lowerCAmelCase__ ), *get_values(lowerCAmelCase__ ), ]: continue __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() __magic_name__ : Optional[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __magic_name__ : Dict = model(**lowerCAmelCase__ ).loss loss.backward() def __magic_name__ ( self ) -> List[Any]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_with_labels() __magic_name__ : Optional[Any] = False __magic_name__ : Optional[Any] = True if ( model_class.__name__ in [*get_values(lowerCAmelCase__ ), *get_values(lowerCAmelCase__ )] or not model_class.supports_gradient_checkpointing ): continue __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.gradient_checkpointing_enable() model.train() __magic_name__ : str = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __magic_name__ : Dict = model(**lowerCAmelCase__ ).loss loss.backward() def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[str] = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : int = [*signature.parameters.keys()] __magic_name__ : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Optional[int] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Dict = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __magic_name__ : Tuple = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Any = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[int] = ConvNextVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(lowerCAmelCase__ ) __magic_name__ : List[str] = self.default_image_processor __magic_name__ : List[Any] = prepare_img() __magic_name__ : str = preprocessor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : List[Any] = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : str = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
342
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]: __magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} __magic_name__ : str = parent __magic_name__ : Any = batch_size __magic_name__ : Any = num_channels __magic_name__ : List[str] = image_size __magic_name__ : Tuple = min_resolution __magic_name__ : Union[str, Any] = max_resolution __magic_name__ : List[str] = do_resize __magic_name__ : Optional[Any] = size __magic_name__ : Optional[Any] = do_normalize __magic_name__ : Any = image_mean __magic_name__ : List[str] = image_std def __magic_name__ ( self ) -> List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = DPTImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Dict = DPTImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __magic_name__ ( self ) -> str: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Optional[Any]: # Initialize image_processing __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
342
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__: Any = logging.get_logger(__name__) __magic_name__: int = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class snake_case__ ( _lowerCAmelCase ): lowercase__ : Any = '''poolformer''' def __init__( self , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=16 , lowerCAmelCase__=3 , lowerCAmelCase__=4.0 , lowerCAmelCase__=[2, 2, 6, 2] , lowerCAmelCase__=[64, 1_28, 3_20, 5_12] , lowerCAmelCase__=[7, 3, 3, 3] , lowerCAmelCase__=[4, 2, 2, 2] , lowerCAmelCase__=[2, 1, 1, 1] , lowerCAmelCase__=4 , lowerCAmelCase__=0.0 , lowerCAmelCase__="gelu" , lowerCAmelCase__=True , lowerCAmelCase__=1e-5 , lowerCAmelCase__=0.0_2 , **lowerCAmelCase__ , ) -> Dict: __magic_name__ : Union[str, Any] = num_channels __magic_name__ : int = patch_size __magic_name__ : Any = stride __magic_name__ : Tuple = padding __magic_name__ : Dict = pool_size __magic_name__ : int = hidden_sizes __magic_name__ : Any = mlp_ratio __magic_name__ : Tuple = depths __magic_name__ : Optional[int] = patch_sizes __magic_name__ : Dict = strides __magic_name__ : Optional[int] = num_encoder_blocks __magic_name__ : Optional[int] = drop_path_rate __magic_name__ : Optional[Any] = hidden_act __magic_name__ : Any = use_layer_scale __magic_name__ : Any = layer_scale_init_value __magic_name__ : str = initializer_range super().__init__(**lowerCAmelCase__ ) class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = version.parse('''1.11''' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __magic_name__ ( self ) -> float: return 2e-3
342
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__: Tuple = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M''' lowercase__ : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowercase__ : List[str] = '''translator''' lowercase__ : Optional[Any] = AutoTokenizer lowercase__ : int = AutoModelForSeqaSeqLM lowercase__ : List[Any] = LANGUAGE_CODES lowercase__ : str = ['''text''', '''text''', '''text'''] lowercase__ : Any = ['''text'''] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) __magic_name__ : Tuple = self.lang_to_code[src_lang] __magic_name__ : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
342
1
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=0.0 , lowerCAmelCase__ = None , lowerCAmelCase__ = "geglu" , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = "layer_norm" , lowerCAmelCase__ = False , ) -> Dict: super().__init__() __magic_name__ : Optional[int] = only_cross_attention __magic_name__ : Dict = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" __magic_name__ : List[Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' F' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __magic_name__ : Tuple = AdaLayerNorm(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.use_ada_layer_norm_zero: __magic_name__ : Dict = AdaLayerNormZero(lowerCAmelCase__ , lowerCAmelCase__ ) else: __magic_name__ : List[str] = nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ ) __magic_name__ : str = Attention( query_dim=lowerCAmelCase__ , heads=lowerCAmelCase__ , dim_head=lowerCAmelCase__ , dropout=lowerCAmelCase__ , bias=lowerCAmelCase__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=lowerCAmelCase__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __magic_name__ : List[Any] = ( AdaLayerNorm(lowerCAmelCase__ , lowerCAmelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ ) ) __magic_name__ : int = Attention( query_dim=lowerCAmelCase__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=lowerCAmelCase__ , dim_head=lowerCAmelCase__ , dropout=lowerCAmelCase__ , bias=lowerCAmelCase__ , upcast_attention=lowerCAmelCase__ , ) # is self-attn if encoder_hidden_states is none else: __magic_name__ : List[Any] = None __magic_name__ : int = None # 3. Feed-forward __magic_name__ : Tuple = nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = FeedForward(lowerCAmelCase__ , dropout=lowerCAmelCase__ , activation_fn=lowerCAmelCase__ , final_dropout=lowerCAmelCase__ ) # let chunk size default to None __magic_name__ : Optional[int] = None __magic_name__ : str = 0 def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: # Sets chunk feed-forward __magic_name__ : List[str] = chunk_size __magic_name__ : Dict = dim def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> Tuple: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: __magic_name__ : int = self.norma(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.use_ada_layer_norm_zero: __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : str = self.norma( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hidden_dtype=hidden_states.dtype ) else: __magic_name__ : Any = self.norma(lowerCAmelCase__ ) __magic_name__ : Dict = cross_attention_kwargs if cross_attention_kwargs is not None else {} __magic_name__ : List[str] = self.attna( lowerCAmelCase__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) if self.use_ada_layer_norm_zero: __magic_name__ : Optional[Any] = gate_msa.unsqueeze(1 ) * attn_output __magic_name__ : Optional[Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __magic_name__ : Union[str, Any] = ( self.norma(lowerCAmelCase__ , lowerCAmelCase__ ) if self.use_ada_layer_norm else self.norma(lowerCAmelCase__ ) ) __magic_name__ : Union[str, Any] = self.attna( lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Optional[int] = attn_output + hidden_states # 3. Feed-forward __magic_name__ : List[str] = self.norma(lowerCAmelCase__ ) if self.use_ada_layer_norm_zero: __magic_name__ : Any = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) __magic_name__ : Any = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __magic_name__ : Tuple = torch.cat( [self.ff(lowerCAmelCase__ ) for hid_slice in norm_hidden_states.chunk(lowerCAmelCase__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __magic_name__ : Optional[int] = self.ff(lowerCAmelCase__ ) if self.use_ada_layer_norm_zero: __magic_name__ : Any = gate_mlp.unsqueeze(1 ) * ff_output __magic_name__ : Union[str, Any] = ff_output + hidden_states return hidden_states class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = 4 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = "geglu" , lowerCAmelCase__ = False , ) -> Union[str, Any]: super().__init__() __magic_name__ : int = int(dim * mult ) __magic_name__ : Any = dim_out if dim_out is not None else dim if activation_fn == "gelu": __magic_name__ : int = GELU(lowerCAmelCase__ , lowerCAmelCase__ ) if activation_fn == "gelu-approximate": __magic_name__ : int = GELU(lowerCAmelCase__ , lowerCAmelCase__ , approximate="""tanh""" ) elif activation_fn == "geglu": __magic_name__ : int = GEGLU(lowerCAmelCase__ , lowerCAmelCase__ ) elif activation_fn == "geglu-approximate": __magic_name__ : int = ApproximateGELU(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Dict = nn.ModuleList([] ) # project in self.net.append(lowerCAmelCase__ ) # project dropout self.net.append(nn.Dropout(lowerCAmelCase__ ) ) # project out self.net.append(nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: for module in self.net: __magic_name__ : List[Any] = module(lowerCAmelCase__ ) return hidden_states class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = "none" ) -> Any: super().__init__() __magic_name__ : int = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Any = approximate def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: if gate.device.type != "mps": return F.gelu(lowerCAmelCase__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: __magic_name__ : Dict = self.proj(lowerCAmelCase__ ) __magic_name__ : List[Any] = self.gelu(lowerCAmelCase__ ) return hidden_states class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: super().__init__() __magic_name__ : Dict = nn.Linear(lowerCAmelCase__ , dim_out * 2 ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: if gate.device.type != "mps": return F.gelu(lowerCAmelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: __magic_name__ ,__magic_name__ : Dict = self.proj(lowerCAmelCase__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(lowerCAmelCase__ ) class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: super().__init__() __magic_name__ : List[str] = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: __magic_name__ : Any = self.proj(lowerCAmelCase__ ) return x * torch.sigmoid(1.7_0_2 * x ) class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: super().__init__() __magic_name__ : Optional[int] = nn.Embedding(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Tuple = nn.SiLU() __magic_name__ : Optional[int] = nn.Linear(lowerCAmelCase__ , embedding_dim * 2 ) __magic_name__ : Tuple = nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : List[Any] = self.linear(self.silu(self.emb(lowerCAmelCase__ ) ) ) __magic_name__ ,__magic_name__ : List[Any] = torch.chunk(lowerCAmelCase__ , 2 ) __magic_name__ : str = self.norm(lowerCAmelCase__ ) * (1 + scale) + shift return x class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: super().__init__() __magic_name__ : int = CombinedTimestepLabelEmbeddings(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Any = nn.SiLU() __magic_name__ : Optional[int] = nn.Linear(lowerCAmelCase__ , 6 * embedding_dim , bias=lowerCAmelCase__ ) __magic_name__ : str = nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ , eps=1e-6 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Union[str, Any]: __magic_name__ : Any = self.linear(self.silu(self.emb(lowerCAmelCase__ , lowerCAmelCase__ , hidden_dtype=lowerCAmelCase__ ) ) ) __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : int = emb.chunk(6 , dim=1 ) __magic_name__ : Union[str, Any] = self.norm(lowerCAmelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = 1e-5 ) -> int: super().__init__() __magic_name__ : Optional[int] = num_groups __magic_name__ : Optional[Any] = eps if act_fn is None: __magic_name__ : Dict = None else: __magic_name__ : List[str] = get_activation(lowerCAmelCase__ ) __magic_name__ : int = nn.Linear(lowerCAmelCase__ , out_dim * 2 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: if self.act: __magic_name__ : Tuple = self.act(lowerCAmelCase__ ) __magic_name__ : Tuple = self.linear(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = emb[:, :, None, None] __magic_name__ ,__magic_name__ : Optional[Any] = emb.chunk(2 , dim=1 ) __magic_name__ : Tuple = F.group_norm(lowerCAmelCase__ , self.num_groups , eps=self.eps ) __magic_name__ : Tuple = x * (1 + scale) + shift return x
342
import math class snake_case__ : def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1 __magic_name__ : Tuple = n __magic_name__ : Union[str, Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # adjacency matrix for weight __magic_name__ : List[Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # dp[i][j] stores minimum distance from i to j def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Dict = w def __magic_name__ ( self ) -> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return self.dp[u][v] if __name__ == "__main__": __magic_name__: Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
342
1
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def UpperCamelCase ( _A, _A, _A=1e-12 ): """simple docstring""" __magic_name__ : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(_A, axis=1 ), a_min=_A ) ).T __magic_name__ : Optional[int] = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(_A, axis=1 ), a_min=_A ) ).T return jnp.matmul(_A, norm_emb_a.T ) class snake_case__ ( nn.Module ): lowercase__ : CLIPConfig lowercase__ : jnp.dtype = jnp.floataa def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Optional[int] = FlaxCLIPVisionModule(self.config.vision_config ) __magic_name__ : str = nn.Dense(self.config.projection_dim , use_bias=lowerCAmelCase__ , dtype=self.dtype ) __magic_name__ : Dict = self.param("""concept_embeds""" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __magic_name__ : Dict = self.param( """special_care_embeds""" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __magic_name__ : Union[str, Any] = self.param("""concept_embeds_weights""" , jax.nn.initializers.ones , (17,) ) __magic_name__ : str = self.param("""special_care_embeds_weights""" , jax.nn.initializers.ones , (3,) ) def __call__( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : Optional[Any] = self.vision_model(lowerCAmelCase__ )[1] __magic_name__ : Any = self.visual_projection(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = jax_cosine_distance(lowerCAmelCase__ , self.special_care_embeds ) __magic_name__ : Union[str, Any] = jax_cosine_distance(lowerCAmelCase__ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __magic_name__ : str = 0.0 __magic_name__ : int = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __magic_name__ : Any = jnp.round(lowerCAmelCase__ , 3 ) __magic_name__ : List[Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=lowerCAmelCase__ ) # Use a lower threshold if an image has any special care concept __magic_name__ : List[Any] = is_special_care * 0.0_1 __magic_name__ : Dict = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __magic_name__ : str = jnp.round(lowerCAmelCase__ , 3 ) __magic_name__ : List[str] = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = CLIPConfig lowercase__ : Tuple = '''clip_input''' lowercase__ : Tuple = FlaxStableDiffusionSafetyCheckerModule def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = jnp.floataa , lowerCAmelCase__ = True , **lowerCAmelCase__ , ) -> Tuple: if input_shape is None: __magic_name__ : str = (1, 2_24, 2_24, 3) __magic_name__ : str = self.module_class(config=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **lowerCAmelCase__ ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , input_shape=lowerCAmelCase__ , seed=lowerCAmelCase__ , dtype=lowerCAmelCase__ , _do_init=_do_init ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> FrozenDict: # init input tensor __magic_name__ : int = jax.random.normal(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ : Optional[Any] = jax.random.split(lowerCAmelCase__ ) __magic_name__ : Tuple = {"""params""": params_rng, """dropout""": dropout_rng} __magic_name__ : Any = self.module.init(lowerCAmelCase__ , lowerCAmelCase__ )["""params"""] return random_params def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , ) -> int: __magic_name__ : Union[str, Any] = jnp.transpose(lowerCAmelCase__ , (0, 2, 3, 1) ) return self.module.apply( {"""params""": params or self.params} , jnp.array(lowerCAmelCase__ , dtype=jnp.floataa ) , rngs={} , )
342
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__ : def __init__( self , lowerCAmelCase__ = None ) -> None: if components is None: __magic_name__ : Any = [] __magic_name__ : List[str] = list(lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : Dict = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : int = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... @overload def __mul__( self , lowerCAmelCase__ ) -> float: ... def __mul__( self , lowerCAmelCase__ ) -> float | Vector: if isinstance(lowerCAmelCase__ , (float, int) ): __magic_name__ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): __magic_name__ : Optional[Any] = len(self ) __magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __magic_name__ ( self ) -> Vector: return Vector(self.__components ) def __magic_name__ ( self , lowerCAmelCase__ ) -> float: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ : Optional[int] = value def __magic_name__ ( self ) -> float: if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __magic_name__ : Dict = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: __magic_name__ : Optional[Any] = self * other __magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase ( _A ): """simple docstring""" assert isinstance(_A, _A ) return Vector([0] * dimension ) def UpperCamelCase ( _A, _A ): """simple docstring""" assert isinstance(_A, _A ) and (isinstance(_A, _A )) __magic_name__ : Union[str, Any] = [0] * dimension __magic_name__ : Optional[int] = 1 return Vector(_A ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" assert ( isinstance(_A, _A ) and isinstance(_A, _A ) and (isinstance(_A, (int, float) )) ) return x * scalar + y def UpperCamelCase ( _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )] return Vector(_A ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Dict = matrix __magic_name__ : Tuple = w __magic_name__ : Union[str, Any] = h def __str__( self ) -> str: __magic_name__ : Dict = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Tuple = [] for i in range(self.__height ): __magic_name__ : Tuple = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Optional[Any] = [] for i in range(self.__height ): __magic_name__ : int = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Matrix: ... @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: __magic_name__ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ : Optional[int] = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar __magic_name__ : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def __magic_name__ ( self ) -> int: return self.__height def __magic_name__ ( self ) -> int: return self.__width def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): __magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __magic_name__ ( self ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )] return Matrix(_A, _A, _A ) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : list[list[float]] = [ [random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A ) ] return Matrix(_A, _A, _A )
342
1
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __magic_name__: Dict = logging.get_logger(__name__) class snake_case__ ( _lowerCAmelCase ): def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> None: warnings.warn( """The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use DeformableDetrImageProcessor instead.""" , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
342
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: int = "▁" __magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"} __magic_name__: List[str] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __magic_name__: Tuple = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off __magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = ['''input_ids''', '''attention_mask'''] lowercase__ : List[int] = [] lowercase__ : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) __magic_name__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__ : List[Any] = 1 __magic_name__ : Dict = len(self.sp_model ) __magic_name__ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } __magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} __magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __magic_name__ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn""" __magic_name__ : Any = self.lang_code_to_id[self._src_lang] __magic_name__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Any: __magic_name__ : List[Any] = self.__dict__.copy() __magic_name__ : int = None __magic_name__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ : Any = {} __magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __magic_name__ ( self ) -> str: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self ) -> str: return self._src_lang @src_lang.setter def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __magic_name__ : Optional[int] = [1] * len(self.prefix_tokens ) __magic_name__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : str = [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__ : Dict = src_lang __magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Tuple = tgt_lang_id return inputs def __magic_name__ ( self ) -> int: __magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip() return out_string def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , """wb""" ) as fi: __magic_name__ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding: __magic_name__ : List[str] = src_lang __magic_name__ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : str = [self.cur_lang_code] __magic_name__ : List[Any] = [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : Optional[int] = [self.cur_lang_code] __magic_name__ : Union[str, Any] = [self.eos_token_id]
342
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class snake_case__ ( _lowerCAmelCase ): lowercase__ : Optional[Any] = (UnCLIPScheduler,) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Any: __magic_name__ : Any = { """num_train_timesteps""": 10_00, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**lowerCAmelCase__ ) return config def __magic_name__ ( self ) -> Tuple: for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowerCAmelCase__ , prev_timestep=lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Tuple = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __magic_name__ : Tuple = scheduler_class(**lowerCAmelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0e-1_0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_5_4_9_6_2_5 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.9_9_9_4_9_8_7 ) ) < 1e-5 def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config(variance_type="""learned_range""" ) __magic_name__ : Any = scheduler_class(**lowerCAmelCase__ ) __magic_name__ : List[Any] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowerCAmelCase__ ) - -1_0.1_7_1_2_7_9_0 < 1e-5 assert scheduler._get_variance(4_87 , predicted_variance=lowerCAmelCase__ ) - -5.7_9_9_8_0_5_2 < 1e-5 assert scheduler._get_variance(9_99 , predicted_variance=lowerCAmelCase__ ) - -0.0_0_1_0_0_1_1 < 1e-5 def __magic_name__ ( self ) -> int: __magic_name__ : int = self.scheduler_classes[0] __magic_name__ : str = self.get_scheduler_config() __magic_name__ : Optional[Any] = scheduler_class(**lowerCAmelCase__ ) __magic_name__ : Tuple = scheduler.timesteps __magic_name__ : Tuple = self.dummy_model() __magic_name__ : Optional[int] = self.dummy_sample_deter __magic_name__ : Tuple = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase__ ): # 1. predict noise residual __magic_name__ : List[Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Any = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample __magic_name__ : Optional[Any] = pred_prev_sample __magic_name__ : Union[str, Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) __magic_name__ : List[str] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 2_5_2.2_6_8_2_4_9_5 ) < 1e-2 assert abs(result_mean.item() - 0.3_2_8_4_7_4_3 ) < 1e-3 def __magic_name__ ( self ) -> int: __magic_name__ : Any = self.scheduler_classes[0] __magic_name__ : int = self.get_scheduler_config() __magic_name__ : Optional[Any] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(25 ) __magic_name__ : str = scheduler.timesteps __magic_name__ : Any = self.dummy_model() __magic_name__ : List[Any] = self.dummy_sample_deter __magic_name__ : str = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase__ ): # 1. predict noise residual __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) if i + 1 == timesteps.shape[0]: __magic_name__ : Optional[int] = None else: __magic_name__ : Tuple = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __magic_name__ : Tuple = scheduler.step( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , prev_timestep=lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample __magic_name__ : List[Any] = pred_prev_sample __magic_name__ : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 2_5_8.2_0_4_4_9_8_3 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_6_2_0_3_8 ) < 1e-3 def __magic_name__ ( self ) -> Any: pass def __magic_name__ ( self ) -> int: pass
342
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Dict = MobileBertConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ : Tuple = MobileBertForPreTraining(_A ) # Load weights from tf checkpoint __magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _A ) if __name__ == "__main__": __magic_name__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__: Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
342
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __magic_name__: List[Any] = False class snake_case__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __magic_name__ : Optional[int] = """A painting of a squirrel eating a burger """ __magic_name__ : int = torch.manual_seed(0 ) __magic_name__ : Optional[int] = pipe( prompt=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase__ ) __magic_name__ : str = VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = generator.manual_seed(0 ) __magic_name__ : Any = pipe( prompt=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Union[str, Any] = VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __magic_name__ : Tuple = """A painting of a squirrel eating a burger """ __magic_name__ : List[Any] = torch.manual_seed(0 ) __magic_name__ : Optional[int] = pipe( prompt=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images __magic_name__ : int = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __magic_name__ : Union[str, Any] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
342
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = MgpstrTokenizer lowercase__ : int = False lowercase__ : Any = {} lowercase__ : Optional[int] = False def __magic_name__ ( self ) -> Optional[Any]: super().setUp() # fmt: off __magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = """tester""" __magic_name__ : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Dict = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) __magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) __magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __magic_name__ ( self ) -> Optional[Any]: pass
342
1
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __magic_name__: List[str] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class snake_case__ ( _lowerCAmelCase ): lowercase__ : bool = field(default=_lowerCAmelCase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowercase__ : bool = field( default=_lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowercase__ : Optional[int] = field( default=_lowerCAmelCase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowercase__ : Optional[int] = field( default=_lowerCAmelCase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowercase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=_lowerCAmelCase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[Any] = super().to_dict() for k, v in d.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Dict = v.to_dict() return d
342
import re def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(_A, _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
342
1
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _A, _A, _A, _A, _A ): """simple docstring""" __magic_name__ : str = TapasConfig.from_json_file(_A ) # set absolute/relative position embeddings parameter __magic_name__ : List[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __magic_name__ : List[Any] = TapasForQuestionAnswering(config=_A ) elif task == "WTQ": # run_task_main.py hparams __magic_name__ : Any = 4 __magic_name__ : Union[str, Any] = True # hparam_utils.py hparams __magic_name__ : List[str] = 0.664694 __magic_name__ : List[Any] = 0.207951 __magic_name__ : Tuple = 0.121194 __magic_name__ : List[str] = True __magic_name__ : List[str] = True __magic_name__ : Union[str, Any] = False __magic_name__ : Dict = 0.0352513 __magic_name__ : List[str] = TapasForQuestionAnswering(config=_A ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __magic_name__ : List[str] = 4 __magic_name__ : Dict = False # hparam_utils.py hparams __magic_name__ : List[str] = 36.4519 __magic_name__ : Dict = 0.903421 __magic_name__ : Tuple = 222.088 __magic_name__ : Dict = True __magic_name__ : Tuple = True __magic_name__ : Optional[Any] = True __magic_name__ : Union[str, Any] = 0.763141 __magic_name__ : Dict = TapasForQuestionAnswering(config=_A ) elif task == "TABFACT": __magic_name__ : List[Any] = TapasForSequenceClassification(config=_A ) elif task == "MLM": __magic_name__ : Dict = TapasForMaskedLM(config=_A ) elif task == "INTERMEDIATE_PRETRAINING": __magic_name__ : int = TapasModel(config=_A ) else: raise ValueError(f'Task {task} not supported.' ) print(f'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(_A, _A, _A ) # Save pytorch-model (weights and configuration) print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(_A ) # Save tokenizer files print(f'Save tokenizer files to {pytorch_dump_path}' ) __magic_name__ : List[str] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""", model_max_length=512 ) tokenizer.save_pretrained(_A ) print("""Used relative position embeddings:""", model.config.reset_position_index_per_cell ) if __name__ == "__main__": __magic_name__: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__: Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
342
import doctest from collections import deque import numpy as np class snake_case__ : def __init__( self ) -> None: __magic_name__ : Any = [2, 1, 2, -1] __magic_name__ : Tuple = [1, 2, 3, 4] def __magic_name__ ( self ) -> list[float]: __magic_name__ : Optional[Any] = len(self.first_signal ) __magic_name__ : Dict = len(self.second_signal ) __magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ ) # create a zero matrix of max_length x max_length __magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__ ): __magic_name__ : List[str] = deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase__ ) for j, item in enumerate(lowerCAmelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal __magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
342
1
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = ['''image_processor''', '''tokenizer'''] lowercase__ : str = '''BlipImageProcessor''' lowercase__ : Any = '''AutoTokenizer''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) # add QFormer tokenizer __magic_name__ : Any = qformer_tokenizer def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchFeature: if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) __magic_name__ : Dict = BatchFeature() if text is not None: __magic_name__ : int = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) encoding.update(lowerCAmelCase__ ) __magic_name__ : List[Any] = self.qformer_tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Optional[Any] = qformer_text_encoding.pop("""input_ids""" ) __magic_name__ : Dict = qformer_text_encoding.pop("""attention_mask""" ) if images is not None: __magic_name__ : Optional[int] = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) encoding.update(lowerCAmelCase__ ) return encoding def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __magic_name__ ( self ) -> Dict: __magic_name__ : int = self.tokenizer.model_input_names __magic_name__ : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def __magic_name__ ( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: if os.path.isfile(lowerCAmelCase__ ): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) __magic_name__ : List[Any] = os.path.join(lowerCAmelCase__ , """qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(lowerCAmelCase__ ) return super().save_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def __magic_name__ ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : str = AutoTokenizer.from_pretrained(lowerCAmelCase__ , subfolder="""qformer_tokenizer""" ) __magic_name__ : str = cls._get_arguments_from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) args.append(lowerCAmelCase__ ) return cls(*lowerCAmelCase__ )
342
from math import factorial def UpperCamelCase ( _A, _A, _A ): """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(_A, _A ) or not isinstance(_A, _A ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) __magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __magic_name__ : Any = float(factorial(_A ) ) coefficient /= factorial(_A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
342
1
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=4 , ) -> Optional[int]: __magic_name__ : Union[str, Any] = parent __magic_name__ : List[str] = batch_size __magic_name__ : List[str] = seq_length __magic_name__ : Optional[int] = is_training __magic_name__ : List[Any] = use_attention_mask __magic_name__ : Dict = use_token_type_ids __magic_name__ : List[Any] = use_labels __magic_name__ : List[Any] = vocab_size __magic_name__ : Any = hidden_size __magic_name__ : Optional[Any] = num_hidden_layers __magic_name__ : Optional[int] = num_attention_heads __magic_name__ : Union[str, Any] = intermediate_size __magic_name__ : Union[str, Any] = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : str = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Tuple = type_vocab_size __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Optional[Any] = initializer_range __magic_name__ : int = num_choices def __magic_name__ ( self ) -> Dict: __magic_name__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_attention_mask: __magic_name__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCAmelCase__ , ) return config, input_ids, attention_mask def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Tuple = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs __magic_name__ : Dict = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : List[Any] = FlaxDistilBertModelTester(self ) @slow def __magic_name__ ( self ) -> str: for model_class_name in self.all_model_classes: __magic_name__ : Union[str, Any] = model_class_name.from_pretrained("""distilbert-base-uncased""" ) __magic_name__ : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ ) @require_flax class snake_case__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Dict: __magic_name__ : List[str] = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __magic_name__ : List[str] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __magic_name__ : Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __magic_name__ : Optional[int] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] __magic_name__ : Any = (1, 11, 7_68) self.assertEqual(output.shape , lowerCAmelCase__ ) __magic_name__ : Any = np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
342
from __future__ import annotations def UpperCamelCase ( _A ): # This function is recursive """simple docstring""" __magic_name__ : str = len(_A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __magic_name__ : Dict = array[0] __magic_name__ : Optional[Any] = False __magic_name__ : Tuple = 1 __magic_name__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __magic_name__ : Union[str, Any] = True __magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]] __magic_name__ : Dict = longest_subsequence(_A ) if len(_A ) > len(_A ): __magic_name__ : Tuple = temp_array else: i += 1 __magic_name__ : Any = [element for element in array[1:] if element >= pivot] __magic_name__ : Dict = [pivot, *longest_subsequence(_A )] if len(_A ) > len(_A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
342
1
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 __magic_name__: List[Any] = 0b101_100_111_110_110_010_010_000_011_110_111_011_000_110_011_110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 __magic_name__: Tuple = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class snake_case__ : def __init__( self ) -> Optional[int]: __magic_name__ : Tuple = WATERMARK_BITS __magic_name__ : Tuple = WatermarkEncoder() self.encoder.set_watermark("""bits""" , self.watermark ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: # can't encode images that are smaller than 256 if images.shape[-1] < 2_56: return images __magic_name__ : Tuple = (2_55 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __magic_name__ : List[Any] = [self.encoder.encode(lowerCAmelCase__ , """dwtDct""" ) for image in images] __magic_name__ : Tuple = torch.from_numpy(np.array(lowerCAmelCase__ ) ).permute(0 , 3 , 1 , 2 ) __magic_name__ : Tuple = torch.clamp(2 * (images / 2_55 - 0.5) , min=-1.0 , max=1.0 ) return images
342
import argparse import os import re __magic_name__: Optional[Any] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings __magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def UpperCamelCase ( _A, _A = False ): """simple docstring""" with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : Any = f.read() __magic_name__ : List[Any] = content.split("""\n""" ) __magic_name__ : List[str] = [] __magic_name__ : Union[str, Any] = 0 while line_idx < len(_A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 __magic_name__ : List[Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __magic_name__ : List[str] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_A, """w""", encoding="""utf-8""" ) as f: f.write("""\n""".join(_A ) ) elif "\n".join(_A ) != content: return True def UpperCamelCase ( _A = False ): """simple docstring""" __magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )] __magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames] if not overwrite and any(_A ): __magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix' """ this.""" ) if __name__ == "__main__": __magic_name__: List[str] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __magic_name__: List[str] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
342
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __magic_name__: Any = logging.get_logger(__name__) __magic_name__: List[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __magic_name__: int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __magic_name__: str = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[str] = ( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) __magic_name__ : int = bs[:] __magic_name__ : str = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 __magic_name__ : Union[str, Any] = [chr(_A ) for n in cs] return dict(zip(_A, _A ) ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = set() __magic_name__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : int = char return pairs class snake_case__ ( _lowerCAmelCase ): lowercase__ : Tuple = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Any = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Tuple: __magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __magic_name__ : List[str] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __magic_name__ : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __magic_name__ : int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Any = json.load(lowerCAmelCase__ ) __magic_name__ : Optional[int] = {v: k for k, v in self.encoder.items()} __magic_name__ : Tuple = errors # how to handle errors in decoding __magic_name__ : int = bytes_to_unicode() __magic_name__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __magic_name__ : int = merges_handle.read().split("""\n""" )[1:-1] __magic_name__ : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : Dict = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Optional[int] = {} __magic_name__ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : Optional[Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __magic_name__ ( self ) -> int: return len(self.encoder ) def __magic_name__ ( self ) -> Union[str, Any]: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: if token in self.cache: return self.cache[token] __magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ ) __magic_name__ : Optional[int] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __magic_name__ : List[str] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ ,__magic_name__ : Optional[Any] = bigram __magic_name__ : int = [] __magic_name__ : Optional[int] = 0 while i < len(lowerCAmelCase__ ): try: __magic_name__ : Union[str, Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ ) __magic_name__ : Any = new_word if len(lowerCAmelCase__ ) == 1: break else: __magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ ) __magic_name__ : List[str] = """ """.join(lowerCAmelCase__ ) __magic_name__ : Dict = word return word def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : str = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __magic_name__ : Dict = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Optional[int] = """""".join(lowerCAmelCase__ ) __magic_name__ : List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : int = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __magic_name__ : Optional[Any] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : List[Any] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : int = [self.sep_token_id] __magic_name__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> str: __magic_name__ : Union[str, Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __magic_name__ : Any = """ """ + text return (text, kwargs) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Optional[Any]: return token_ids_a + [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ ) -> List[int]: __magic_name__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(lowerCAmelCase__ ) __magic_name__ : List[Any] = """ """.join(lowerCAmelCase__ ) __magic_name__ : Dict = self.encode(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > self.model_max_length: __magic_name__ : List[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
342
__magic_name__: str = [0, 2, 4, 6, 8] __magic_name__: Optional[int] = [1, 3, 5, 7, 9] def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __magic_name__ : List[Any] = 0 for digit in range(10 ): __magic_name__ : Optional[int] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, _A, _A ) return result __magic_name__ : str = 0 for digita in range(10 ): __magic_name__ : Optional[Any] = digita if (remainder + digita) % 2 == 0: __magic_name__ : Tuple = ODD_DIGITS else: __magic_name__ : str = EVEN_DIGITS for digita in other_parity_digits: __magic_name__ : Tuple = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, ) return result def UpperCamelCase ( _A = 9 ): """simple docstring""" __magic_name__ : List[str] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(_A, 0, [0] * length, _A ) return result if __name__ == "__main__": print(F"""{solution() = }""")
342
1
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __magic_name__: List[str] = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = GPTSwaTokenizer lowercase__ : Tuple = False lowercase__ : List[Any] = True lowercase__ : List[Any] = False def __magic_name__ ( self ) -> Optional[int]: super().setUp() # We have a SentencePiece fixture for testing __magic_name__ : Any = GPTSwaTokenizer(lowerCAmelCase__ , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: __magic_name__ : Optional[Any] = """This is a test""" __magic_name__ : Tuple = """This is a test""" return input_text, output_text def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : List[str] = """<s>""" __magic_name__ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(lowerCAmelCase__ ) , 20_00 ) def __magic_name__ ( self ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 20_00 ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : List[str] = GPTSwaTokenizer(lowerCAmelCase__ ) __magic_name__ : str = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [4_65, 2_87, 2_65, 6_31, 8_42] ) __magic_name__ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( lowerCAmelCase__ , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , ) # fmt: on __magic_name__ : Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] , ) __magic_name__ : Optional[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) # fmt: off self.assertListEqual( lowerCAmelCase__ , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : str = GPTSwaTokenizer(lowerCAmelCase__ ) __magic_name__ : List[str] = ["""This is a test""", """I was born in 92000, and this is falsé."""] __magic_name__ : Union[str, Any] = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertListEqual(tokenizer.encode_fast(lowerCAmelCase__ ) , lowerCAmelCase__ ) # Test that decode_fast returns the input text for text, token_ids in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(tokenizer.decode_fast(lowerCAmelCase__ ) , lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Any = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off __magic_name__ : Tuple = {"""input_ids""": [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=lowerCAmelCase__ , )
342
def UpperCamelCase ( _A ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) __magic_name__ : int = sorted(string.lower() ) return len(_A ) == len(set(_A ) ) if __name__ == "__main__": __magic_name__: Dict = input("Enter a string ").strip() __magic_name__: Union[str, Any] = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
342
1
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __magic_name__: int = open # noqa: we just need to have a builtin inside this module to test it properly
342
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
342
1
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Optional[Any]: super().__init__( lowerCAmelCase__ , split=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , streaming=lowerCAmelCase__ , num_proc=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Any = path_or_paths if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else {self.split: path_or_paths} __magic_name__ : int = Text( cache_dir=lowerCAmelCase__ , data_files=lowerCAmelCase__ , features=lowerCAmelCase__ , **lowerCAmelCase__ , ) def __magic_name__ ( self ) -> Union[str, Any]: # Build iterable dataset if self.streaming: __magic_name__ : Optional[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __magic_name__ : Tuple = None __magic_name__ : Any = None __magic_name__ : List[str] = None __magic_name__ : Tuple = None self.builder.download_and_prepare( download_config=lowerCAmelCase__ , download_mode=lowerCAmelCase__ , verification_mode=lowerCAmelCase__ , base_path=lowerCAmelCase__ , num_proc=self.num_proc , ) __magic_name__ : List[Any] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
342
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]: __magic_name__ : str = parent __magic_name__ : Dict = do_resize __magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88} __magic_name__ : Union[str, Any] = size_divisor __magic_name__ : Union[str, Any] = do_rescale __magic_name__ : Dict = rescale_factor __magic_name__ : Union[str, Any] = do_normalize __magic_name__ : List[str] = do_center_crop __magic_name__ : Tuple = image_mean __magic_name__ : Tuple = image_std __magic_name__ : Tuple = do_pad __magic_name__ : int = batch_size __magic_name__ : List[Any] = num_channels __magic_name__ : int = min_resolution __magic_name__ : str = max_resolution def __magic_name__ ( self ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int: if not batched: __magic_name__ : Dict = self.size["""shortest_edge"""] __magic_name__ : List[str] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): __magic_name__ ,__magic_name__ : List[Any] = image.size else: __magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2] __magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ ) if h < w: __magic_name__ ,__magic_name__ : str = size, scale * w else: __magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size __magic_name__ : Tuple = int((13_33 / 8_00) * size ) if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size: __magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = newh * scale __magic_name__ : Any = neww * scale __magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 ) __magic_name__ ,__magic_name__ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __magic_name__ : Union[str, Any] = [] for image in image_inputs: __magic_name__ ,__magic_name__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] __magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = BridgeTowerImageProcessingTester(self ) @property def __magic_name__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Any: __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) ) def __magic_name__ ( self ) -> Optional[int]: pass def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> str: # Initialize image processor __magic_name__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
342
1
from ...configuration_utils import PretrainedConfig __magic_name__: Dict = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class snake_case__ ( _lowerCAmelCase ): lowercase__ : int = '''tapas''' def __init__( self , lowerCAmelCase__=3_05_22 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10_24 , lowerCAmelCase__=[3, 2_56, 2_56, 2, 2_56, 2_56, 10] , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-1_2 , lowerCAmelCase__=0 , lowerCAmelCase__=1_0.0 , lowerCAmelCase__=0 , lowerCAmelCase__=1.0 , lowerCAmelCase__=None , lowerCAmelCase__=1.0 , lowerCAmelCase__=False , lowerCAmelCase__=None , lowerCAmelCase__=1.0 , lowerCAmelCase__=1.0 , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__="ratio" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=64 , lowerCAmelCase__=32 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Dict: super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __magic_name__ : List[Any] = vocab_size __magic_name__ : Tuple = hidden_size __magic_name__ : Dict = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : List[Any] = hidden_act __magic_name__ : Optional[Any] = intermediate_size __magic_name__ : Any = hidden_dropout_prob __magic_name__ : List[Any] = attention_probs_dropout_prob __magic_name__ : Any = max_position_embeddings __magic_name__ : Optional[int] = type_vocab_sizes __magic_name__ : Optional[Any] = initializer_range __magic_name__ : Dict = layer_norm_eps # Fine-tuning task hyperparameters __magic_name__ : List[Any] = positive_label_weight __magic_name__ : List[Any] = num_aggregation_labels __magic_name__ : List[Any] = aggregation_loss_weight __magic_name__ : Tuple = use_answer_as_supervision __magic_name__ : Optional[int] = answer_loss_importance __magic_name__ : str = use_normalized_answer_loss __magic_name__ : int = huber_loss_delta __magic_name__ : Dict = temperature __magic_name__ : List[str] = aggregation_temperature __magic_name__ : List[str] = use_gumbel_for_cells __magic_name__ : Any = use_gumbel_for_aggregation __magic_name__ : int = average_approximation_function __magic_name__ : Tuple = cell_selection_preference __magic_name__ : List[str] = answer_loss_cutoff __magic_name__ : Any = max_num_rows __magic_name__ : str = max_num_columns __magic_name__ : Union[str, Any] = average_logits_per_cell __magic_name__ : Optional[Any] = select_one_column __magic_name__ : Union[str, Any] = allow_empty_column_selection __magic_name__ : Union[str, Any] = init_cell_selection_weights_to_zero __magic_name__ : Tuple = reset_position_index_per_cell __magic_name__ : str = disable_per_token_loss # Aggregation hyperparameters __magic_name__ : Optional[int] = aggregation_labels __magic_name__ : Dict = no_aggregation_label_index if isinstance(self.aggregation_labels , lowerCAmelCase__ ): __magic_name__ : Dict = {int(lowerCAmelCase__ ): v for k, v in aggregation_labels.items()}
342
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__: Tuple = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Union[str, Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __magic_name__: Optional[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
342
1
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __magic_name__: Tuple = logging.get_logger(__name__) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" def constraint_to_multiple_of(_A, _A, _A=0, _A=None ): __magic_name__ : Tuple = round(val / multiple ) * multiple if max_val is not None and x > max_val: __magic_name__ : List[Any] = math.floor(val / multiple ) * multiple if x < min_val: __magic_name__ : Any = math.ceil(val / multiple ) * multiple return x __magic_name__ : int = (output_size, output_size) if isinstance(_A, _A ) else output_size __magic_name__ ,__magic_name__ : Tuple = get_image_size(_A ) __magic_name__ ,__magic_name__ : Union[str, Any] = output_size # determine new height and width __magic_name__ : int = output_height / input_height __magic_name__ : Tuple = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width __magic_name__ : List[str] = scale_width else: # fit height __magic_name__ : Union[str, Any] = scale_height __magic_name__ : Optional[int] = constraint_to_multiple_of(scale_height * input_height, multiple=_A ) __magic_name__ : int = constraint_to_multiple_of(scale_width * input_width, multiple=_A ) return (new_height, new_width) class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = ['''pixel_values'''] def __init__( self , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = PILImageResampling.BILINEAR , lowerCAmelCase__ = False , lowerCAmelCase__ = 1 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> None: super().__init__(**lowerCAmelCase__ ) __magic_name__ : int = size if size is not None else {"""height""": 3_84, """width""": 3_84} __magic_name__ : str = get_size_dict(lowerCAmelCase__ ) __magic_name__ : Optional[int] = do_resize __magic_name__ : Optional[int] = size __magic_name__ : int = keep_aspect_ratio __magic_name__ : Any = ensure_multiple_of __magic_name__ : List[str] = resample __magic_name__ : Union[str, Any] = do_rescale __magic_name__ : List[str] = rescale_factor __magic_name__ : Union[str, Any] = do_normalize __magic_name__ : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = 1 , lowerCAmelCase__ = PILImageResampling.BICUBIC , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> np.ndarray: __magic_name__ : Any = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) __magic_name__ : int = get_resize_output_image_size( lowerCAmelCase__ , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=lowerCAmelCase__ , multiple=lowerCAmelCase__ , ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Any: return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> np.ndarray: return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = ChannelDimension.FIRST , **lowerCAmelCase__ , ) -> PIL.Image.Image: __magic_name__ : Any = do_resize if do_resize is not None else self.do_resize __magic_name__ : Dict = size if size is not None else self.size __magic_name__ : str = get_size_dict(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio __magic_name__ : Union[str, Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of __magic_name__ : Tuple = resample if resample is not None else self.resample __magic_name__ : str = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : List[str] = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : Dict = image_mean if image_mean is not None else self.image_mean __magic_name__ : Any = image_std if image_std is not None else self.image_std __magic_name__ : Optional[Any] = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __magic_name__ : str = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: __magic_name__ : Dict = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_rescale: __magic_name__ : Any = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: __magic_name__ : str = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] __magic_name__ : Union[str, Any] = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] __magic_name__ : Tuple = {"""pixel_values""": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> str: __magic_name__ : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(lowerCAmelCase__ ): __magic_name__ : Optional[Any] = target_sizes.numpy() __magic_name__ : List[str] = [] for idx in range(len(lowerCAmelCase__ ) ): __magic_name__ : Optional[int] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=lowerCAmelCase__ ) __magic_name__ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase__ ) else: __magic_name__ : Tuple = logits.argmax(dim=1 ) __magic_name__ : Union[str, Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
342
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__: Dict = logging.get_logger(__name__) __magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __magic_name__: Optional[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __magic_name__: List[Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Any = ( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) __magic_name__ : Any = bs[:] __magic_name__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 __magic_name__ : List[str] = [chr(_A ) for n in cs] return dict(zip(_A, _A ) ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = set() __magic_name__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[Any] = char return pairs class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict: __magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ ) __magic_name__ : Any = {v: k for k, v in self.encoder.items()} __magic_name__ : Tuple = errors # how to handle errors in decoding __magic_name__ : Tuple = bytes_to_unicode() __magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1] __magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : str = {} __magic_name__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __magic_name__ ( self ) -> Optional[Any]: return len(self.encoder ) def __magic_name__ ( self ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if token in self.cache: return self.cache[token] __magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ ,__magic_name__ : List[str] = bigram __magic_name__ : Any = [] __magic_name__ : Any = 0 while i < len(lowerCAmelCase__ ): try: __magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Optional[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : str = tuple(lowerCAmelCase__ ) __magic_name__ : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __magic_name__ : List[str] = get_pairs(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ ) __magic_name__ : str = word return word def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : str = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __magic_name__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Tuple = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __magic_name__ : Optional[Any] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : Optional[int] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] __magic_name__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : Dict = [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __magic_name__ : List[Any] = """ """ + text return (text, kwargs)
342
1
from PIL import Image def UpperCamelCase ( _A, _A ): """simple docstring""" def brightness(_A ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(_A ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 __magic_name__: str = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
342
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str: __magic_name__ : Optional[int] = parent __magic_name__ : Any = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[int] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : str = embed_dim __magic_name__ : int = hidden_sizes __magic_name__ : Union[str, Any] = depths __magic_name__ : List[str] = num_heads __magic_name__ : str = window_size __magic_name__ : Optional[Any] = mlp_ratio __magic_name__ : Dict = qkv_bias __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = drop_path_rate __magic_name__ : Optional[Any] = hidden_act __magic_name__ : int = use_absolute_embeddings __magic_name__ : Dict = patch_norm __magic_name__ : Tuple = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[int] = is_training __magic_name__ : Optional[Any] = scope __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = encoder_stride __magic_name__ : List[Any] = out_features __magic_name__ : Union[str, Any] = out_indices def __magic_name__ ( self ) -> str: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Dict = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Tuple = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __magic_name__ : Optional[Any] = None __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : str = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : int = self.type_sequence_label_size __magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> int: __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs __magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ : Any = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ : Dict = False lowercase__ : Dict = False lowercase__ : int = False lowercase__ : Tuple = False lowercase__ : Optional[Any] = False def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = FocalNetModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> List[str]: return def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __magic_name__ ( self ) -> List[str]: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self ) -> List[Any]: __magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : str = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # FocalNet has a different seq_length __magic_name__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ : str = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape __magic_name__ : Union[str, Any] = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __magic_name__ : List[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = 3 __magic_name__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __magic_name__ : Optional[int] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @slow def __magic_name__ ( self ) -> Union[str, Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: __magic_name__ : Any = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.default_image_processor __magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : List[Any] = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else () lowercase__ : Optional[int] = FocalNetConfig lowercase__ : Dict = False def __magic_name__ ( self ) -> int: __magic_name__ : Dict = FocalNetModelTester(self )
342
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __magic_name__: Optional[int] = datasets.utils.logging.get_logger(__name__) __magic_name__: List[Any] = ["names", "prefix"] __magic_name__: int = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] __magic_name__: str = ["encoding_errors", "on_bad_lines"] __magic_name__: Union[str, Any] = ["date_format"] @dataclass class snake_case__ ( datasets.BuilderConfig ): lowercase__ : str = "," lowercase__ : Optional[str] = None lowercase__ : Optional[Union[int, List[int], str]] = "infer" lowercase__ : Optional[List[str]] = None lowercase__ : Optional[List[str]] = None lowercase__ : Optional[Union[int, str, List[int], List[str]]] = None lowercase__ : Optional[Union[List[int], List[str]]] = None lowercase__ : Optional[str] = None lowercase__ : bool = True lowercase__ : Optional[Literal["c", "python", "pyarrow"]] = None lowercase__ : Dict[Union[int, str], Callable[[Any], Any]] = None lowercase__ : Optional[list] = None lowercase__ : Optional[list] = None lowercase__ : bool = False lowercase__ : Optional[Union[int, List[int]]] = None lowercase__ : Optional[int] = None lowercase__ : Optional[Union[str, List[str]]] = None lowercase__ : bool = True lowercase__ : bool = True lowercase__ : bool = False lowercase__ : bool = True lowercase__ : Optional[str] = None lowercase__ : str = "." lowercase__ : Optional[str] = None lowercase__ : str = '"' lowercase__ : int = 0 lowercase__ : Optional[str] = None lowercase__ : Optional[str] = None lowercase__ : Optional[str] = None lowercase__ : Optional[str] = None lowercase__ : bool = True lowercase__ : bool = True lowercase__ : int = 0 lowercase__ : bool = True lowercase__ : bool = False lowercase__ : Optional[str] = None lowercase__ : int = 10000 lowercase__ : Optional[datasets.Features] = None lowercase__ : Optional[str] = "strict" lowercase__ : Literal["error", "warn", "skip"] = "error" lowercase__ : Optional[str] = None def __magic_name__ ( self ) -> Optional[Any]: if self.delimiter is not None: __magic_name__ : Optional[int] = self.delimiter if self.column_names is not None: __magic_name__ : List[Any] = self.column_names @property def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case__ ( datasets.ArrowBasedBuilder ): lowercase__ : List[Any] = CsvConfig def __magic_name__ ( self ) -> Optional[Any]: return datasets.DatasetInfo(features=self.config.features ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) __magic_name__ : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): __magic_name__ : Tuple = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Optional[int] = [files] __magic_name__ : Dict = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __magic_name__ : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Tuple = [files] __magic_name__ : Union[str, Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"""files""": files} ) ) return splits def __magic_name__ ( self , lowerCAmelCase__ ) -> pa.Table: if self.config.features is not None: __magic_name__ : Optional[Any] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast __magic_name__ : int = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __magic_name__ : List[Any] = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[str] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __magic_name__ : Union[str, Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): __magic_name__ : Dict = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): __magic_name__ : str = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}' ) raise
342
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]: __magic_name__ : int = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = image_size __magic_name__ : str = num_channels __magic_name__ : Dict = patch_size __magic_name__ : Tuple = num_frames __magic_name__ : List[Any] = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : Dict = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Tuple = attention_type __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = scope __magic_name__ : Tuple = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __magic_name__ : str = (image_size // patch_size) ** 2 __magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : str = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> str: __magic_name__ : Dict = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __magic_name__ : Optional[Any] = self.num_labels return config def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[Any] = model(lowerCAmelCase__ ) # verify the logits shape __magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs __magic_name__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ : Union[str, Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : Any = False def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[Any] = TimesformerModelTester(self ) __magic_name__ : List[str] = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]: __magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Optional[int] = [*signature.parameters.keys()] __magic_name__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Optional[int]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: if not self.has_attentions: pass else: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True for model_class in self.all_model_classes: __magic_name__ : Tuple = self.model_tester.seq_length __magic_name__ : int = self.model_tester.num_frames __magic_name__ : Any = True __magic_name__ : Tuple = False __magic_name__ : Optional[int] = True __magic_name__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ : Optional[Any] = True __magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : int = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __magic_name__ : Union[str, Any] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : Optional[Any] = True __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) __magic_name__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" ) __magic_name__ : List[str] = np.load(_A ) return list(_A ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowerCAmelCase__ ) __magic_name__ : str = self.default_image_processor __magic_name__ : Any = prepare_video() __magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : int = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
342
1
from math import factorial def UpperCamelCase ( _A, _A, _A ): """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(_A, _A ) or not isinstance(_A, _A ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) __magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __magic_name__ : Any = float(factorial(_A ) ) coefficient /= factorial(_A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
342
def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = [0] * len(_A ) __magic_name__ : List[str] = [] __magic_name__ : List[str] = [1] * len(_A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: __magic_name__ : Dict = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __magic_name__ : int = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_A ) print(max(_A ) ) # Adjacency list of Graph __magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
1
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__: Tuple = logging.get_logger(__name__) __magic_name__: Any = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } __magic_name__: Optional[int] = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } __magic_name__: str = "</w>" __magic_name__: Tuple = "@@ " def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = set() __magic_name__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[str] = char return pairs # Speech2Text2 has no max input length __magic_name__: Dict = {"facebook/s2t-wav2vec2-large-en-de": 1_024} class snake_case__ ( _lowerCAmelCase ): lowercase__ : Dict = VOCAB_FILES_NAMES lowercase__ : str = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__=False , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Union[str, Any]: super().__init__( unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Optional[int] = do_lower_case with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Tuple = json.load(lowerCAmelCase__ ) __magic_name__ : List[Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F'No merges files provided. {self.__class__.__name__} can only be used for decoding.' ) __magic_name__ : Any = None __magic_name__ : List[str] = None else: with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __magic_name__ : int = merges_handle.read().split("""\n""" )[:-1] __magic_name__ : List[Any] = [tuple(merge.split()[:2] ) for merge in merges] __magic_name__ : Dict = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Optional[Any] = {} @property def __magic_name__ ( self ) -> int: return len(self.decoder ) def __magic_name__ ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : Optional[Any] = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] __magic_name__ : Any = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __magic_name__ : List[str] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ ,__magic_name__ : str = bigram __magic_name__ : List[str] = [] __magic_name__ : Tuple = 0 while i < len(lowerCAmelCase__ ): try: __magic_name__ : List[str] = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Optional[int] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : str = tuple(lowerCAmelCase__ ) __magic_name__ : Tuple = new_word if len(lowerCAmelCase__ ) == 1: break else: __magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ ) __magic_name__ : Any = """ """.join(lowerCAmelCase__ ) if word == "\n " + BPE_TOKEN_MERGES: __magic_name__ : Optional[int] = """\n""" + BPE_TOKEN_MERGES if word.endswith(lowerCAmelCase__ ): __magic_name__ : Dict = word.replace(lowerCAmelCase__ , """""" ) __magic_name__ : Any = word.replace(""" """ , lowerCAmelCase__ ) __magic_name__ : List[Any] = word return word def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: if self.bpe_ranks is None: raise ValueError( """This tokenizer was instantiated without a `merges.txt` file, so""" """ that it can only be used for decoding, not for encoding.""" """Make sure to provide `merges.txt` file at instantiation to enable """ """encoding.""" ) if self.do_lower_case: __magic_name__ : List[str] = text.lower() __magic_name__ : Optional[int] = text.split() __magic_name__ : Dict = [] for token in text: if token: split_tokens.extend(list(self.bpe(lowerCAmelCase__ ).split(""" """ ) ) ) return split_tokens def __magic_name__ ( self , lowerCAmelCase__ ) -> int: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: __magic_name__ : int = self.decoder.get(lowerCAmelCase__ , self.unk_token ) return result def __magic_name__ ( self , lowerCAmelCase__ ) -> str: __magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ ) # make sure @@ tokens are concatenated __magic_name__ : Tuple = """""".join(string.split(lowerCAmelCase__ ) ) return string def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : Any = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __magic_name__ : List[str] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : Dict = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return (vocab_file, merges_file)
342
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: __magic_name__ : Tuple = """ylacombe/bark-small""" __magic_name__ : List[str] = tempfile.mkdtemp() __magic_name__ : Optional[Any] = """en_speaker_1""" __magic_name__ : Union[str, Any] = """This is a test string""" __magic_name__ : Optional[int] = """speaker_embeddings_path.json""" __magic_name__ : Any = """speaker_embeddings""" def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : str = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __magic_name__ : Union[str, Any] = 35 __magic_name__ : List[Any] = 2 __magic_name__ : Dict = 8 __magic_name__ : Tuple = { """semantic_prompt""": np.ones(lowerCAmelCase__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string ) __magic_name__ : List[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
342
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __magic_name__: str = { "configuration_maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig"], "configuration_maskformer_swin": ["MaskFormerSwinConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Union[str, Any] = ["MaskFormerFeatureExtractor"] __magic_name__: Tuple = ["MaskFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: str = [ "MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "MaskFormerForInstanceSegmentation", "MaskFormerModel", "MaskFormerPreTrainedModel", ] __magic_name__: List[str] = [ "MaskFormerSwinBackbone", "MaskFormerSwinModel", "MaskFormerSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys __magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
342
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]: __magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} __magic_name__ : str = parent __magic_name__ : Any = batch_size __magic_name__ : Any = num_channels __magic_name__ : List[str] = image_size __magic_name__ : Tuple = min_resolution __magic_name__ : Union[str, Any] = max_resolution __magic_name__ : List[str] = do_resize __magic_name__ : Optional[Any] = size __magic_name__ : Optional[Any] = do_normalize __magic_name__ : Any = image_mean __magic_name__ : List[str] = image_std def __magic_name__ ( self ) -> List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = DPTImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Dict = DPTImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __magic_name__ ( self ) -> str: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Optional[Any]: # Initialize image_processing __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
342
1
import logging import os from .state import PartialState class snake_case__ ( logging.LoggerAdapter ): @staticmethod def __magic_name__ ( lowerCAmelCase__ ) -> Dict: __magic_name__ : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: if PartialState._shared_state == {}: raise RuntimeError( """You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" ) __magic_name__ : Tuple = kwargs.pop("""main_process_only""" , lowerCAmelCase__ ) __magic_name__ : str = kwargs.pop("""in_order""" , lowerCAmelCase__ ) if self.isEnabledFor(lowerCAmelCase__ ): if self._should_log(lowerCAmelCase__ ): __magic_name__ ,__magic_name__ : Union[str, Any] = self.process(lowerCAmelCase__ , lowerCAmelCase__ ) self.logger.log(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) elif in_order: __magic_name__ : Optional[Any] = PartialState() for i in range(state.num_processes ): if i == state.process_index: __magic_name__ ,__magic_name__ : Any = self.process(lowerCAmelCase__ , lowerCAmelCase__ ) self.logger.log(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) state.wait_for_everyone() def UpperCamelCase ( _A, _A = None ): """simple docstring""" if log_level is None: __magic_name__ : int = os.environ.get("""ACCELERATE_LOG_LEVEL""", _A ) __magic_name__ : int = logging.getLogger(_A ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_A, {} )
342
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__: Tuple = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M''' lowercase__ : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowercase__ : List[str] = '''translator''' lowercase__ : Optional[Any] = AutoTokenizer lowercase__ : int = AutoModelForSeqaSeqLM lowercase__ : List[Any] = LANGUAGE_CODES lowercase__ : str = ['''text''', '''text''', '''text'''] lowercase__ : Any = ['''text'''] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) __magic_name__ : Tuple = self.lang_to_code[src_lang] __magic_name__ : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
342
1
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__ : def __init__( self , lowerCAmelCase__ = None ) -> None: if components is None: __magic_name__ : Any = [] __magic_name__ : List[str] = list(lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : Dict = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : int = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... @overload def __mul__( self , lowerCAmelCase__ ) -> float: ... def __mul__( self , lowerCAmelCase__ ) -> float | Vector: if isinstance(lowerCAmelCase__ , (float, int) ): __magic_name__ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): __magic_name__ : Optional[Any] = len(self ) __magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __magic_name__ ( self ) -> Vector: return Vector(self.__components ) def __magic_name__ ( self , lowerCAmelCase__ ) -> float: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ : Optional[int] = value def __magic_name__ ( self ) -> float: if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __magic_name__ : Dict = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: __magic_name__ : Optional[Any] = self * other __magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase ( _A ): """simple docstring""" assert isinstance(_A, _A ) return Vector([0] * dimension ) def UpperCamelCase ( _A, _A ): """simple docstring""" assert isinstance(_A, _A ) and (isinstance(_A, _A )) __magic_name__ : Union[str, Any] = [0] * dimension __magic_name__ : Optional[int] = 1 return Vector(_A ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" assert ( isinstance(_A, _A ) and isinstance(_A, _A ) and (isinstance(_A, (int, float) )) ) return x * scalar + y def UpperCamelCase ( _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )] return Vector(_A ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Dict = matrix __magic_name__ : Tuple = w __magic_name__ : Union[str, Any] = h def __str__( self ) -> str: __magic_name__ : Dict = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Tuple = [] for i in range(self.__height ): __magic_name__ : Tuple = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Optional[Any] = [] for i in range(self.__height ): __magic_name__ : int = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Matrix: ... @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: __magic_name__ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ : Optional[int] = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar __magic_name__ : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def __magic_name__ ( self ) -> int: return self.__height def __magic_name__ ( self ) -> int: return self.__width def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): __magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __magic_name__ ( self ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )] return Matrix(_A, _A, _A ) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : list[list[float]] = [ [random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A ) ] return Matrix(_A, _A, _A )
342
import math class snake_case__ : def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1 __magic_name__ : Tuple = n __magic_name__ : Union[str, Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # adjacency matrix for weight __magic_name__ : List[Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # dp[i][j] stores minimum distance from i to j def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Dict = w def __magic_name__ ( self ) -> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return self.dp[u][v] if __name__ == "__main__": __magic_name__: Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
342
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__: Tuple = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M''' lowercase__ : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowercase__ : List[str] = '''translator''' lowercase__ : Optional[Any] = AutoTokenizer lowercase__ : int = AutoModelForSeqaSeqLM lowercase__ : List[Any] = LANGUAGE_CODES lowercase__ : str = ['''text''', '''text''', '''text'''] lowercase__ : Any = ['''text'''] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) __magic_name__ : Tuple = self.lang_to_code[src_lang] __magic_name__ : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
342
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__ : def __init__( self , lowerCAmelCase__ = None ) -> None: if components is None: __magic_name__ : Any = [] __magic_name__ : List[str] = list(lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : Dict = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : int = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... @overload def __mul__( self , lowerCAmelCase__ ) -> float: ... def __mul__( self , lowerCAmelCase__ ) -> float | Vector: if isinstance(lowerCAmelCase__ , (float, int) ): __magic_name__ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): __magic_name__ : Optional[Any] = len(self ) __magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __magic_name__ ( self ) -> Vector: return Vector(self.__components ) def __magic_name__ ( self , lowerCAmelCase__ ) -> float: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ : Optional[int] = value def __magic_name__ ( self ) -> float: if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __magic_name__ : Dict = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: __magic_name__ : Optional[Any] = self * other __magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase ( _A ): """simple docstring""" assert isinstance(_A, _A ) return Vector([0] * dimension ) def UpperCamelCase ( _A, _A ): """simple docstring""" assert isinstance(_A, _A ) and (isinstance(_A, _A )) __magic_name__ : Union[str, Any] = [0] * dimension __magic_name__ : Optional[int] = 1 return Vector(_A ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" assert ( isinstance(_A, _A ) and isinstance(_A, _A ) and (isinstance(_A, (int, float) )) ) return x * scalar + y def UpperCamelCase ( _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )] return Vector(_A ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Dict = matrix __magic_name__ : Tuple = w __magic_name__ : Union[str, Any] = h def __str__( self ) -> str: __magic_name__ : Dict = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Tuple = [] for i in range(self.__height ): __magic_name__ : Tuple = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Optional[Any] = [] for i in range(self.__height ): __magic_name__ : int = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Matrix: ... @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: __magic_name__ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ : Optional[int] = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar __magic_name__ : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def __magic_name__ ( self ) -> int: return self.__height def __magic_name__ ( self ) -> int: return self.__width def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): __magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __magic_name__ ( self ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )] return Matrix(_A, _A, _A ) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : list[list[float]] = [ [random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A ) ] return Matrix(_A, _A, _A )
342
1
from datetime import datetime import matplotlib.pyplot as plt import torch def UpperCamelCase ( _A ): """simple docstring""" for param in module.parameters(): __magic_name__ : List[Any] = False def UpperCamelCase ( ): """simple docstring""" __magic_name__ : str = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __magic_name__ : Optional[int] = """mps""" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[str] = plt.imshow(_A ) fig.axes.get_xaxis().set_visible(_A ) fig.axes.get_yaxis().set_visible(_A ) plt.show() def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Dict = datetime.now() __magic_name__ : Optional[int] = current_time.strftime("""%H:%M:%S""" ) return timestamp
342
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: int = "▁" __magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"} __magic_name__: List[str] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __magic_name__: Tuple = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off __magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = ['''input_ids''', '''attention_mask'''] lowercase__ : List[int] = [] lowercase__ : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) __magic_name__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__ : List[Any] = 1 __magic_name__ : Dict = len(self.sp_model ) __magic_name__ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } __magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} __magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __magic_name__ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn""" __magic_name__ : Any = self.lang_code_to_id[self._src_lang] __magic_name__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Any: __magic_name__ : List[Any] = self.__dict__.copy() __magic_name__ : int = None __magic_name__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ : Any = {} __magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __magic_name__ ( self ) -> str: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self ) -> str: return self._src_lang @src_lang.setter def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __magic_name__ : Optional[int] = [1] * len(self.prefix_tokens ) __magic_name__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : str = [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__ : Dict = src_lang __magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Tuple = tgt_lang_id return inputs def __magic_name__ ( self ) -> int: __magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip() return out_string def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , """wb""" ) as fi: __magic_name__ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding: __magic_name__ : List[str] = src_lang __magic_name__ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : str = [self.cur_lang_code] __magic_name__ : List[Any] = [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : Optional[int] = [self.cur_lang_code] __magic_name__ : Union[str, Any] = [self.eos_token_id]
342
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __magic_name__: Tuple = logging.get_logger(__name__) __magic_name__: Tuple = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} __magic_name__: List[Any] = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } __magic_name__: str = { "abeja/gpt-neox-japanese-2.7b": 2_048, } def UpperCamelCase ( _A, _A ): """simple docstring""" with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : List[str] = json.loads(f.read() ) __magic_name__ : Optional[Any] = collections.OrderedDict() __magic_name__ : List[str] = collections.OrderedDict() __magic_name__ : int = collections.OrderedDict() with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : Tuple = f.readlines() __magic_name__ : List[Any] = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token] for idx, b in enumerate(_A ): __magic_name__ : Union[str, Any] = b __magic_name__ : str = idx for wd in b: __magic_name__ : List[str] = idx return vocab, raw_vocab, ids_to_tokens, emoji class snake_case__ ( _lowerCAmelCase ): lowercase__ : Tuple = VOCAB_FILES_NAMES lowercase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__="<|startoftext|>" , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Any: super().__init__( unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , do_clean_text=lowerCAmelCase__ , **lowerCAmelCase__ , ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' """ model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' """ pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) __magic_name__ : Tuple = do_clean_text __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = load_vocab_and_emoji(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[str] = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def __magic_name__ ( self ) -> List[Any]: # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def __magic_name__ ( self ) -> int: return dict(self.raw_vocab , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: return self.subword_tokenizer.tokenize(lowerCAmelCase__ , clean=self.do_clean_text ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: return self.vocab.get(lowerCAmelCase__ , self.vocab.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> List[Any]: return self.subword_tokenizer.convert_id_to_token(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[str] = """""".join(lowerCAmelCase__ ).strip() return out_string def __magic_name__ ( self , lowerCAmelCase__ ) -> List[int]: __magic_name__ : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] ) if len(lowerCAmelCase__ ) > self.model_max_length: __magic_name__ : Union[str, Any] = input_ids[-self.model_max_length :] return input_ids def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: __magic_name__ : List[str] = 0 if os.path.isdir(lowerCAmelCase__ ): __magic_name__ : Optional[int] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] ) else: __magic_name__ : Tuple = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : int = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' """ Please check that the vocabulary is not corrupted!""" ) __magic_name__ : int = token_index writer.write(""",""".join(lowerCAmelCase__ ) + """\n""" ) index += 1 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: json.dump(self.emoji , lowerCAmelCase__ ) return vocab_file, emoji_file class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : Tuple = vocab # same as swe __magic_name__ : Union[str, Any] = ids_to_tokens # same as bpe __magic_name__ : Optional[Any] = emoji __magic_name__ : Optional[Any] = np.max([len(lowerCAmelCase__ ) for w in self.vocab.keys()] ) __magic_name__ : str = re.compile(R"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" ) __magic_name__ : int = re.compile(R"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" ) __magic_name__ : Dict = re.compile(R"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" ) __magic_name__ : List[Any] = re.compile( R"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) __magic_name__ : List[Any] = re.compile( R"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) __magic_name__ : Optional[Any] = re.compile( R"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" ) __magic_name__ : Union[str, Any] = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿""" __magic_name__ : int = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟""" __magic_name__ : Optional[Any] = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} ) def __len__( self ) -> Optional[Any]: return len(self.ids_to_tokens ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : List[Any] = self.content_repattera.sub("""<URL>""" , lowerCAmelCase__ ) __magic_name__ : Dict = self.content_repattera.sub("""<EMAIL>""" , lowerCAmelCase__ ) __magic_name__ : str = self.content_repattera.sub("""<TEL>""" , lowerCAmelCase__ ) __magic_name__ : Optional[int] = self.content_repattera.sub("""<DATE>""" , lowerCAmelCase__ ) __magic_name__ : int = self.content_repattera.sub("""<DATE>""" , lowerCAmelCase__ ) __magic_name__ : Any = self.content_repattera.sub("""<PRICE>""" , lowerCAmelCase__ ) __magic_name__ : List[str] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: __magic_name__ : Dict = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" ) return content def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Union[str, Any]: __magic_name__ : Dict = text.replace(""" """ , """<SP>""" ) __magic_name__ : List[Any] = text.replace(""" """ , """<SP>""" ) __magic_name__ : str = text.replace("""\r\n""" , """<BR>""" ) __magic_name__ : Dict = text.replace("""\n""" , """<BR>""" ) __magic_name__ : List[str] = text.replace("""\r""" , """<BR>""" ) __magic_name__ : Tuple = text.replace("""\t""" , """<TAB>""" ) __magic_name__ : Any = text.replace("""—""" , """ー""" ) __magic_name__ : int = text.replace("""−""" , """ー""" ) for k, v in self.emoji["emoji"].items(): if k in text: __magic_name__ : int = text.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if clean: __magic_name__ : Optional[Any] = self.clean_text(lowerCAmelCase__ ) def check_simbol(lowerCAmelCase__ ): __magic_name__ : int = x.encode() if len(lowerCAmelCase__ ) == 1 and len(lowerCAmelCase__ ) == 2: __magic_name__ : Any = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc2_a1 and c <= 0Xc2_bf) or (c >= 0Xc7_80 and c <= 0Xc7_83) or (c >= 0Xca_b9 and c <= 0Xcb_bf) or (c >= 0Xcc_80 and c <= 0Xcd_a2) ): return True return False def checkuae(lowerCAmelCase__ ): __magic_name__ : Optional[int] = x.encode() if len(lowerCAmelCase__ ) == 1 and len(lowerCAmelCase__ ) == 3: __magic_name__ : Tuple = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe2_80_80 and c <= 0Xe2_b0_7f: return True return False __magic_name__ : Union[str, Any] = 0 __magic_name__ : Any = [] while pos < len(lowerCAmelCase__ ): __magic_name__ : int = min(len(lowerCAmelCase__ ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3 __magic_name__ : List[str] = [] # (token_id, token, pos) for e in range(lowerCAmelCase__ , lowerCAmelCase__ , -1 ): __magic_name__ : Union[str, Any] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowerCAmelCase__ ) > 2: __magic_name__ : List[str] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(lowerCAmelCase__ ) > 0: # the smallest token_id is adopted __magic_name__ ,__magic_name__ ,__magic_name__ : int = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[0] )[0] result.append(lowerCAmelCase__ ) __magic_name__ : List[Any] = e else: __magic_name__ : str = pos + 1 __magic_name__ : Optional[int] = text[pos:end] if check_simbol(lowerCAmelCase__ ): result.append("""<KIGOU>""" ) elif checkuae(lowerCAmelCase__ ): result.append("""<U2000U2BFF>""" ) else: for i in wd.encode("""utf-8""" ): result.append("""<|byte%d|>""" % i ) __magic_name__ : str = end return result def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__="\n" ) -> str: __magic_name__ : List[Any] = [] __magic_name__ : List[str] = [] __magic_name__ : Any = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(lowerCAmelCase__ ) > 0: words.append(bytearray(lowerCAmelCase__ ).decode("""utf-8""" , errors="""replace""" ) ) __magic_name__ : List[str] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["""emoji_inv"""][word] ) elif word == "<SP>": words.append(""" """ ) elif word == "<BR>": words.append(lowerCAmelCase__ ) elif word == "<TAB>": words.append("""\t""" ) elif word == "<BLOCK>": words.append("""▀""" ) elif word == "<KIGOU>": words.append("""ǀ""" ) elif word == "<U2000U2BFF>": words.append("""‖""" ) else: words.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: words.append(bytearray(lowerCAmelCase__ ).decode("""utf-8""" , errors="""replace""" ) ) __magic_name__ : List[str] = """""".join(lowerCAmelCase__ ) return text
342
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Dict = MobileBertConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ : Tuple = MobileBertForPreTraining(_A ) # Load weights from tf checkpoint __magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _A ) if __name__ == "__main__": __magic_name__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__: Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
342
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __magic_name__: Any = logging.get_logger(__name__) __magic_name__: Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } __magic_name__: Optional[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Any = {} with open(_A, """r""" ) as file: for line_number, line in enumerate(_A ): __magic_name__ : Optional[int] = line.strip() if line: __magic_name__ : Optional[Any] = line.split() __magic_name__ : str = line_number __magic_name__ : Optional[Any] = words[0] __magic_name__ : int = value return result def UpperCamelCase ( _A, _A, _A, _A, _A ): """simple docstring""" for attribute in key.split(""".""" ): __magic_name__ : int = getattr(_A, _A ) __magic_name__ : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_A ): __magic_name__ : Tuple = PARAM_MAPPING[full_name.split(""".""" )[-1]] __magic_name__ : List[Any] = """param""" if weight_type is not None and weight_type != "param": __magic_name__ : Tuple = getattr(_A, _A ).shape elif weight_type is not None and weight_type == "param": __magic_name__ : List[Any] = hf_pointer for attribute in hf_param_name.split(""".""" ): __magic_name__ : List[str] = getattr(_A, _A ) __magic_name__ : List[Any] = shape_pointer.shape # let's reduce dimension __magic_name__ : int = value[0] else: __magic_name__ : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __magic_name__ : int = value elif weight_type == "weight_g": __magic_name__ : Dict = value elif weight_type == "weight_v": __magic_name__ : Tuple = value elif weight_type == "bias": __magic_name__ : Union[str, Any] = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __magic_name__ : str = getattr(_A, _A ) __magic_name__ : Any = value else: __magic_name__ : str = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def UpperCamelCase ( _A, _A, _A, _A, _A ): """simple docstring""" __magic_name__ : Tuple = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_A ): __magic_name__ : Dict = PARAM_MAPPING[full_name.split(""".""" )[-1]] __magic_name__ : str = """param""" if weight_type is not None and weight_type != "param": __magic_name__ : Dict = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __magic_name__ : Dict = """.""".join([key, hf_param_name] ) else: __magic_name__ : Optional[Any] = key __magic_name__ : str = value if """lm_head""" in full_key else value[0] __magic_name__: Tuple = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def UpperCamelCase ( _A, _A, _A=None, _A=None ): """simple docstring""" __magic_name__ : str = False for key, mapped_key in MAPPING.items(): __magic_name__ : Optional[int] = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __magic_name__ : Optional[int] = True if "*" in mapped_key: __magic_name__ : Any = name.split(_A )[0].split(""".""" )[-2] __magic_name__ : Optional[int] = mapped_key.replace("""*""", _A ) if "weight_g" in name: __magic_name__ : Any = """weight_g""" elif "weight_v" in name: __magic_name__ : Optional[int] = """weight_v""" elif "bias" in name: __magic_name__ : Optional[int] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __magic_name__ : int = """weight""" else: __magic_name__ : Union[str, Any] = None if hf_dict is not None: rename_dict(_A, _A, _A, _A, _A ) else: set_recursively(_A, _A, _A, _A, _A ) return is_used return is_used def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Union[str, Any] = [] __magic_name__ : List[str] = fairseq_model.state_dict() __magic_name__ : Dict = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __magic_name__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _A, _A, _A, _A, hf_model.config.feat_extract_norm == """group""", ) __magic_name__ : List[Any] = True else: __magic_name__ : Union[str, Any] = load_wavaveca_layer(_A, _A, _A ) if not is_used: unused_weights.append(_A ) logger.warning(f'Unused weights: {unused_weights}' ) def UpperCamelCase ( _A, _A, _A, _A, _A ): """simple docstring""" __magic_name__ : List[Any] = full_name.split("""conv_layers.""" )[-1] __magic_name__ : Optional[Any] = name.split(""".""" ) __magic_name__ : Tuple = int(items[0] ) __magic_name__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __magic_name__ : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __magic_name__ : str = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) __magic_name__ : str = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) __magic_name__ : List[str] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_A ) @torch.no_grad() def UpperCamelCase ( _A, _A, _A=None, _A=None, _A=True, _A=False ): """simple docstring""" if config_path is not None: __magic_name__ : Optional[Any] = WavaVecaConfig.from_pretrained(_A ) else: __magic_name__ : Tuple = WavaVecaConfig() if is_seq_class: __magic_name__ : int = read_txt_into_dict(_A ) __magic_name__ : List[Any] = idalabel __magic_name__ : str = WavaVecaForSequenceClassification(_A ) __magic_name__ : Tuple = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=_A, return_attention_mask=_A, ) feature_extractor.save_pretrained(_A ) elif is_finetuned: if dict_path: __magic_name__ : Tuple = Dictionary.load(_A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __magic_name__ : int = target_dict.pad_index __magic_name__ : Dict = target_dict.bos_index __magic_name__ : Tuple = target_dict.eos_index __magic_name__ : Any = len(target_dict.symbols ) __magic_name__ : List[Any] = os.path.join(_A, """vocab.json""" ) if not os.path.isdir(_A ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_A ) ) return os.makedirs(_A, exist_ok=_A ) __magic_name__ : int = target_dict.indices # fairseq has the <pad> and <s> switched __magic_name__ : Optional[int] = 0 __magic_name__ : Union[str, Any] = 1 with open(_A, """w""", encoding="""utf-8""" ) as vocab_handle: json.dump(_A, _A ) __magic_name__ : int = WavaVecaCTCTokenizer( _A, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="""|""", do_lower_case=_A, ) __magic_name__ : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __magic_name__ : Dict = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=_A, return_attention_mask=_A, ) __magic_name__ : List[str] = WavaVecaProcessor(feature_extractor=_A, tokenizer=_A ) processor.save_pretrained(_A ) __magic_name__ : Dict = WavaVecaForCTC(_A ) else: __magic_name__ : Dict = WavaVecaForPreTraining(_A ) if is_finetuned or is_seq_class: __magic_name__ ,__magic_name__ ,__magic_name__ : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __magic_name__ : Union[str, Any] = argparse.Namespace(task="""audio_pretraining""" ) __magic_name__ : int = fairseq.tasks.setup_task(_A ) __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=_A ) __magic_name__ : List[Any] = model[0].eval() recursively_load_weights(_A, _A, not is_finetuned ) hf_wavavec.save_pretrained(_A ) if __name__ == "__main__": __magic_name__: List[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) __magic_name__: List[str] = parser.parse_args() __magic_name__: Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
342
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = MgpstrTokenizer lowercase__ : int = False lowercase__ : Any = {} lowercase__ : Optional[int] = False def __magic_name__ ( self ) -> Optional[Any]: super().setUp() # fmt: off __magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = """tester""" __magic_name__ : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Dict = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) __magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) __magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __magic_name__ ( self ) -> Optional[Any]: pass
342
1
from ..utils import DummyObject, requires_backends class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : Any = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : Tuple = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : Union[str, Any] = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : Optional[Any] = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : Dict = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : List[Any] = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : Dict = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : str = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : int = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : Union[str, Any] = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : int = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : Union[str, Any] = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : str = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : Optional[int] = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : Optional[Any] = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : Optional[Any] = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : List[str] = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : int = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : Tuple = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : str = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : List[Any] = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : Union[str, Any] = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : int = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : List[str] = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : Tuple = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : int = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : Optional[int] = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : Any = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : List[str] = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : Tuple = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: requires_backends(self , ["""sentencepiece"""] ) class snake_case__ ( metaclass=_lowerCAmelCase ): lowercase__ : int = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: requires_backends(self , ["""sentencepiece"""] )
342
import re def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(_A, _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
342
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: Dict = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class snake_case__ ( _lowerCAmelCase ): lowercase__ : Optional[int] = '''ctrl''' lowercase__ : Tuple = ['''past_key_values'''] lowercase__ : List[str] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowerCAmelCase__=24_65_34 , lowerCAmelCase__=2_56 , lowerCAmelCase__=12_80 , lowerCAmelCase__=81_92 , lowerCAmelCase__=48 , lowerCAmelCase__=16 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1e-6 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> int: __magic_name__ : Union[str, Any] = vocab_size __magic_name__ : Optional[int] = n_positions __magic_name__ : int = n_embd __magic_name__ : Optional[int] = n_layer __magic_name__ : List[Any] = n_head __magic_name__ : str = dff __magic_name__ : Tuple = resid_pdrop __magic_name__ : Any = embd_pdrop __magic_name__ : Tuple = layer_norm_epsilon __magic_name__ : Optional[Any] = initializer_range __magic_name__ : List[Any] = use_cache super().__init__(**lowerCAmelCase__ )
342
import doctest from collections import deque import numpy as np class snake_case__ : def __init__( self ) -> None: __magic_name__ : Any = [2, 1, 2, -1] __magic_name__ : Tuple = [1, 2, 3, 4] def __magic_name__ ( self ) -> list[float]: __magic_name__ : Optional[Any] = len(self.first_signal ) __magic_name__ : Dict = len(self.second_signal ) __magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ ) # create a zero matrix of max_length x max_length __magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__ ): __magic_name__ : List[str] = deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase__ ) for j, item in enumerate(lowerCAmelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal __magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
342
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]: __magic_name__ : int = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = image_size __magic_name__ : str = num_channels __magic_name__ : Dict = patch_size __magic_name__ : Tuple = num_frames __magic_name__ : List[Any] = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : Dict = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Tuple = attention_type __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = scope __magic_name__ : Tuple = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __magic_name__ : str = (image_size // patch_size) ** 2 __magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : str = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> str: __magic_name__ : Dict = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __magic_name__ : Optional[Any] = self.num_labels return config def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[Any] = model(lowerCAmelCase__ ) # verify the logits shape __magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs __magic_name__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ : Union[str, Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : Any = False def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[Any] = TimesformerModelTester(self ) __magic_name__ : List[str] = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]: __magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Optional[int] = [*signature.parameters.keys()] __magic_name__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Optional[int]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: if not self.has_attentions: pass else: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True for model_class in self.all_model_classes: __magic_name__ : Tuple = self.model_tester.seq_length __magic_name__ : int = self.model_tester.num_frames __magic_name__ : Any = True __magic_name__ : Tuple = False __magic_name__ : Optional[int] = True __magic_name__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ : Optional[Any] = True __magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : int = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __magic_name__ : Union[str, Any] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : Optional[Any] = True __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) __magic_name__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" ) __magic_name__ : List[str] = np.load(_A ) return list(_A ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowerCAmelCase__ ) __magic_name__ : str = self.default_image_processor __magic_name__ : Any = prepare_video() __magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : int = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
342
from math import factorial def UpperCamelCase ( _A, _A, _A ): """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(_A, _A ) or not isinstance(_A, _A ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) __magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __magic_name__ : Any = float(factorial(_A ) ) coefficient /= factorial(_A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
342
1
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case__ ( _lowerCAmelCase ): lowercase__ : Any = '''new-model''' if is_tf_available(): class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = NewModelConfig @require_tf class snake_case__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = """bert-base-cased""" __magic_name__ : str = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : str = TFAutoModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> int: __magic_name__ : List[Any] = """bert-base-cased""" __magic_name__ : Optional[Any] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = TFAutoModelForPreTraining.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Any: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[Any] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase__ ) __magic_name__ ,__magic_name__ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase__ , output_loading_info=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> int: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Dict = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> List[str]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : str = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Optional[int] = TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase__ ) __magic_name__ ,__magic_name__ : Any = TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase__ , output_loading_info=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Optional[Any]: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ ) __magic_name__ ,__magic_name__ : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ , output_loading_info=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Tuple: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __magic_name__ : int = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[str] = TFAutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Tuple: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __magic_name__ : Dict = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : str = TFAutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow @require_tensorflow_probability def __magic_name__ ( self ) -> List[str]: for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __magic_name__ : List[Any] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained(lowerCAmelCase__ ) __magic_name__ ,__magic_name__ : Any = TFAutoModelForTableQuestionAnswering.from_pretrained( lowerCAmelCase__ , output_loading_info=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : str = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase__ ) , 1_44_10 ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : List[str] = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase__ ) , 1_44_10 ) def __magic_name__ ( self ) -> List[Any]: # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel __magic_name__ : Dict = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : str = copy.deepcopy(model.config ) __magic_name__ : str = ["""FunnelBaseModel"""] __magic_name__ : Dict = TFAutoModel.from_config(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCAmelCase__ ) __magic_name__ : Optional[int] = TFAutoModel.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: try: AutoConfig.register("""new-model""" , lowerCAmelCase__ ) __magic_name__ : Tuple = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(lowerCAmelCase__ ): auto_class.register(lowerCAmelCase__ , lowerCAmelCase__ ) auto_class.register(lowerCAmelCase__ , lowerCAmelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase__ ): auto_class.register(lowerCAmelCase__ , lowerCAmelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API __magic_name__ : str = BertModelTester(self ).get_config() __magic_name__ : Tuple = NewModelConfig(**tiny_config.to_dict() ) __magic_name__ : Tuple = auto_class.from_config(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCAmelCase__ ) __magic_name__ : List[str] = auto_class.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __magic_name__ ( self ) -> Optional[int]: with self.assertRaisesRegex( lowerCAmelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): __magic_name__ : List[str] = TFAutoModel.from_pretrained("""bert-base""" ) def __magic_name__ ( self ) -> Tuple: with self.assertRaisesRegex( lowerCAmelCase__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __magic_name__ : Optional[int] = TFAutoModel.from_pretrained(lowerCAmelCase__ , revision="""aaaaaa""" ) def __magic_name__ ( self ) -> Union[str, Any]: with self.assertRaisesRegex( lowerCAmelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ): __magic_name__ : Tuple = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def __magic_name__ ( self ) -> Tuple: with self.assertRaisesRegex(lowerCAmelCase__ , """Use `from_pt=True` to load this model""" ): __magic_name__ : str = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" ) def __magic_name__ ( self ) -> List[Any]: # Make sure we have cached the model. __magic_name__ : Optional[int] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: __magic_name__ : Tuple = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __magic_name__ : List[str] = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) with RequestCounter() as counter: __magic_name__ : Tuple = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
342
from __future__ import annotations def UpperCamelCase ( _A ): # This function is recursive """simple docstring""" __magic_name__ : str = len(_A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __magic_name__ : Dict = array[0] __magic_name__ : Optional[Any] = False __magic_name__ : Tuple = 1 __magic_name__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __magic_name__ : Union[str, Any] = True __magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]] __magic_name__ : Dict = longest_subsequence(_A ) if len(_A ) > len(_A ): __magic_name__ : Tuple = temp_array else: i += 1 __magic_name__ : Any = [element for element in array[1:] if element >= pivot] __magic_name__ : Dict = [pivot, *longest_subsequence(_A )] if len(_A ) > len(_A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
342
1
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__=0.0_1 , lowerCAmelCase__=10_00 ) -> Tuple: __magic_name__ : List[str] = p_stop __magic_name__ : str = max_length def __iter__( self ) -> List[Any]: __magic_name__ : Optional[Any] = 0 __magic_name__ : Any = False while not stop and count < self.max_length: yield count count += 1 __magic_name__ : List[str] = random.random() < self.p_stop class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=True ) -> Tuple: __magic_name__ : Optional[int] = [ BatchSamplerShard(lowerCAmelCase__ , 2 , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) for i in range(2 ) ] __magic_name__ : List[Any] = [list(lowerCAmelCase__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowerCAmelCase__ ) for shard in batch_sampler_shards] , [len(lowerCAmelCase__ ) for e in expected] ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: # Check the shards when the dataset is a round multiple of total batch size. __magic_name__ : Optional[int] = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Dict = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __magic_name__ : Dict = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) __magic_name__ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) __magic_name__ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __magic_name__ : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) __magic_name__ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Optional[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) __magic_name__ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __magic_name__ : Tuple = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) __magic_name__ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) __magic_name__ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) # Check the shards when the dataset is very small. __magic_name__ : Tuple = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) __magic_name__ : Tuple = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : int = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) __magic_name__ : Tuple = [[], []] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. __magic_name__ : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) __magic_name__ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. __magic_name__ : int = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) __magic_name__ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) __magic_name__ : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) __magic_name__ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __magic_name__ : Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) __magic_name__ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) __magic_name__ : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) # Check the shards when the dataset is very small. __magic_name__ : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) __magic_name__ : Any = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) __magic_name__ : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) __magic_name__ : Tuple = [[], []] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __magic_name__ : Dict = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) __magic_name__ : Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __magic_name__ : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) __magic_name__ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) __magic_name__ : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) __magic_name__ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __magic_name__ : Optional[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) __magic_name__ : str = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) __magic_name__ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __magic_name__ : Tuple = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) __magic_name__ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) __magic_name__ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is very small. __magic_name__ : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) __magic_name__ : Tuple = [[], []] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. __magic_name__ : Union[str, Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) __magic_name__ : str = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. __magic_name__ : Tuple = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) __magic_name__ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) __magic_name__ : str = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) __magic_name__ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __magic_name__ : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) __magic_name__ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) __magic_name__ : Optional[int] = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) __magic_name__ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is very small. __magic_name__ : Union[str, Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) __magic_name__ : int = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) __magic_name__ : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = [[], []] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[Any] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __magic_name__ : Dict = [BatchSamplerShard(lowerCAmelCase__ , 2 , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=2 , lowerCAmelCase__=False ) -> Any: random.seed(lowerCAmelCase__ ) __magic_name__ : Optional[int] = list(lowerCAmelCase__ ) __magic_name__ : List[Any] = [ IterableDatasetShard( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , drop_last=lowerCAmelCase__ , num_processes=lowerCAmelCase__ , process_index=lowerCAmelCase__ , split_batches=lowerCAmelCase__ , ) for i in range(lowerCAmelCase__ ) ] __magic_name__ : List[str] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowerCAmelCase__ ) iterable_dataset_lists.append(list(lowerCAmelCase__ ) ) __magic_name__ : Any = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __magic_name__ : int = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) self.assertTrue(len(lowerCAmelCase__ ) % shard_batch_size == 0 ) __magic_name__ : str = [] for idx in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowerCAmelCase__ ) < len(lowerCAmelCase__ ): reference += reference self.assertListEqual(lowerCAmelCase__ , reference[: len(lowerCAmelCase__ )] ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Tuple = 42 __magic_name__ : Optional[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) # Edge case with a very small dataset __magic_name__ : Dict = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = BatchSampler(range(16 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = SkipBatchSampler(lowerCAmelCase__ , 2 ) self.assertListEqual(list(lowerCAmelCase__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __magic_name__ ( self ) -> str: __magic_name__ : List[Any] = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Union[str, Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) __magic_name__ : Optional[int] = skip_first_batches(lowerCAmelCase__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : List[Any] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(lowerCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __magic_name__ ( self ) -> Dict: Accelerator() __magic_name__ : List[str] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(lowerCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
342
import argparse import os import re __magic_name__: Optional[Any] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings __magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def UpperCamelCase ( _A, _A = False ): """simple docstring""" with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : Any = f.read() __magic_name__ : List[Any] = content.split("""\n""" ) __magic_name__ : List[str] = [] __magic_name__ : Union[str, Any] = 0 while line_idx < len(_A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 __magic_name__ : List[Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __magic_name__ : List[str] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_A, """w""", encoding="""utf-8""" ) as f: f.write("""\n""".join(_A ) ) elif "\n".join(_A ) != content: return True def UpperCamelCase ( _A = False ): """simple docstring""" __magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )] __magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames] if not overwrite and any(_A ): __magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix' """ this.""" ) if __name__ == "__main__": __magic_name__: List[str] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __magic_name__: List[str] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
342
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self , lowerCAmelCase__ = 1_28 , lowerCAmelCase__ = 2_56 , lowerCAmelCase__ = 2_0_0_0.0 , lowerCAmelCase__ = 7_68 , lowerCAmelCase__ = 12 , lowerCAmelCase__ = 12 , lowerCAmelCase__ = 64 , lowerCAmelCase__ = 20_48 , lowerCAmelCase__ = 0.1 , ) -> str: super().__init__() __magic_name__ : Optional[Any] = nn.Sequential( nn.Linear(lowerCAmelCase__ , d_model * 4 , bias=lowerCAmelCase__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowerCAmelCase__ ) , nn.SiLU() , ) __magic_name__ : Tuple = nn.Embedding(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : int = False __magic_name__ : Dict = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = nn.Dropout(p=lowerCAmelCase__ ) __magic_name__ : Tuple = nn.ModuleList() for lyr_num in range(lowerCAmelCase__ ): # FiLM conditional T5 decoder __magic_name__ : Tuple = DecoderLayer(d_model=lowerCAmelCase__ , d_kv=lowerCAmelCase__ , num_heads=lowerCAmelCase__ , d_ff=lowerCAmelCase__ , dropout_rate=lowerCAmelCase__ ) self.decoders.append(lowerCAmelCase__ ) __magic_name__ : Any = TaLayerNorm(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = nn.Dropout(p=lowerCAmelCase__ ) __magic_name__ : Dict = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Optional[int] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ ,__magic_name__ ,__magic_name__ : List[str] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __magic_name__ : Dict = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) __magic_name__ : Optional[Any] = self.conditioning_emb(lowerCAmelCase__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __magic_name__ : Tuple = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __magic_name__ : Tuple = torch.broadcast_to( torch.arange(lowerCAmelCase__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) __magic_name__ : Optional[Any] = self.position_encoding(lowerCAmelCase__ ) __magic_name__ : List[Any] = self.continuous_inputs_projection(lowerCAmelCase__ ) inputs += position_encodings __magic_name__ : Optional[int] = self.dropout(lowerCAmelCase__ ) # decoder: No padding present. __magic_name__ : Tuple = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. __magic_name__ : Optional[Any] = [(x, self.encoder_decoder_mask(lowerCAmelCase__ , lowerCAmelCase__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings __magic_name__ : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) __magic_name__ : str = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: __magic_name__ : Dict = lyr( lowerCAmelCase__ , conditioning_emb=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , )[0] __magic_name__ : Union[str, Any] = self.decoder_norm(lowerCAmelCase__ ) __magic_name__ : Any = self.post_dropout(lowerCAmelCase__ ) __magic_name__ : List[str] = self.spec_out(lowerCAmelCase__ ) return spec_out class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1e-6 ) -> Any: super().__init__() __magic_name__ : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowerCAmelCase__ , d_kv=lowerCAmelCase__ , num_heads=lowerCAmelCase__ , dropout_rate=lowerCAmelCase__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowerCAmelCase__ , d_kv=lowerCAmelCase__ , num_heads=lowerCAmelCase__ , dropout_rate=lowerCAmelCase__ , layer_norm_epsilon=lowerCAmelCase__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowerCAmelCase__ , d_ff=lowerCAmelCase__ , dropout_rate=lowerCAmelCase__ , layer_norm_epsilon=lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ) -> int: __magic_name__ : Union[str, Any] = self.layer[0]( lowerCAmelCase__ , conditioning_emb=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , ) if encoder_hidden_states is not None: __magic_name__ : int = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) __magic_name__ : Dict = self.layer[1]( lowerCAmelCase__ , key_value_states=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , ) # Apply Film Conditional Feed Forward layer __magic_name__ : Any = self.layer[-1](lowerCAmelCase__ , lowerCAmelCase__ ) return (hidden_states,) class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: super().__init__() __magic_name__ : List[str] = TaLayerNorm(lowerCAmelCase__ ) __magic_name__ : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase__ ) __magic_name__ : List[Any] = Attention(query_dim=lowerCAmelCase__ , heads=lowerCAmelCase__ , dim_head=lowerCAmelCase__ , out_bias=lowerCAmelCase__ , scale_qk=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = nn.Dropout(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , ) -> Any: # pre_self_attention_layer_norm __magic_name__ : Optional[Any] = self.layer_norm(lowerCAmelCase__ ) if conditioning_emb is not None: __magic_name__ : Optional[Any] = self.FiLMLayer(lowerCAmelCase__ , lowerCAmelCase__ ) # Self-attention block __magic_name__ : int = self.attention(lowerCAmelCase__ ) __magic_name__ : int = hidden_states + self.dropout(lowerCAmelCase__ ) return hidden_states class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: super().__init__() __magic_name__ : Dict = Attention(query_dim=lowerCAmelCase__ , heads=lowerCAmelCase__ , dim_head=lowerCAmelCase__ , out_bias=lowerCAmelCase__ , scale_qk=lowerCAmelCase__ ) __magic_name__ : Optional[int] = TaLayerNorm(lowerCAmelCase__ , eps=lowerCAmelCase__ ) __magic_name__ : List[str] = nn.Dropout(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , ) -> Tuple: __magic_name__ : Optional[int] = self.layer_norm(lowerCAmelCase__ ) __magic_name__ : Tuple = self.attention( lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , attention_mask=attention_mask.squeeze(1 ) , ) __magic_name__ : Tuple = hidden_states + self.dropout(lowerCAmelCase__ ) return layer_output class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: super().__init__() __magic_name__ : int = TaDenseGatedActDense(d_model=lowerCAmelCase__ , d_ff=lowerCAmelCase__ , dropout_rate=lowerCAmelCase__ ) __magic_name__ : str = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase__ ) __magic_name__ : List[str] = TaLayerNorm(lowerCAmelCase__ , eps=lowerCAmelCase__ ) __magic_name__ : str = nn.Dropout(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Optional[Any]: __magic_name__ : int = self.layer_norm(lowerCAmelCase__ ) if conditioning_emb is not None: __magic_name__ : Union[str, Any] = self.film(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Any = self.DenseReluDense(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = hidden_states + self.dropout(lowerCAmelCase__ ) return hidden_states class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: super().__init__() __magic_name__ : Union[str, Any] = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) __magic_name__ : Optional[int] = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) __magic_name__ : List[str] = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) __magic_name__ : str = nn.Dropout(lowerCAmelCase__ ) __magic_name__ : Tuple = NewGELUActivation() def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Tuple = self.act(self.wi_a(lowerCAmelCase__ ) ) __magic_name__ : List[Any] = self.wi_a(lowerCAmelCase__ ) __magic_name__ : str = hidden_gelu * hidden_linear __magic_name__ : Dict = self.dropout(lowerCAmelCase__ ) __magic_name__ : List[Any] = self.wo(lowerCAmelCase__ ) return hidden_states class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1e-6 ) -> List[Any]: super().__init__() __magic_name__ : Any = nn.Parameter(torch.ones(lowerCAmelCase__ ) ) __magic_name__ : Dict = eps def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 __magic_name__ : List[str] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __magic_name__ : str = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class snake_case__ ( nn.Module ): def __magic_name__ ( self , lowerCAmelCase__ ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(lowerCAmelCase__ , 3.0 )) )) class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: super().__init__() __magic_name__ : Any = nn.Linear(lowerCAmelCase__ , out_features * 2 , bias=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: __magic_name__ : Any = self.scale_bias(lowerCAmelCase__ ) __magic_name__ ,__magic_name__ : str = torch.chunk(lowerCAmelCase__ , 2 , -1 ) __magic_name__ : int = x * (1 + scale) + shift return x
342
__magic_name__: str = [0, 2, 4, 6, 8] __magic_name__: Optional[int] = [1, 3, 5, 7, 9] def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __magic_name__ : List[Any] = 0 for digit in range(10 ): __magic_name__ : Optional[int] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, _A, _A ) return result __magic_name__ : str = 0 for digita in range(10 ): __magic_name__ : Optional[Any] = digita if (remainder + digita) % 2 == 0: __magic_name__ : Tuple = ODD_DIGITS else: __magic_name__ : str = EVEN_DIGITS for digita in other_parity_digits: __magic_name__ : Tuple = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, ) return result def UpperCamelCase ( _A = 9 ): """simple docstring""" __magic_name__ : List[str] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(_A, 0, [0] * length, _A ) return result if __name__ == "__main__": print(F"""{solution() = }""")
342
1
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger __magic_name__: Any = get_logger(__name__) __magic_name__: Union[str, Any] = r"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class snake_case__ : @add_start_docstrings(lowerCAmelCase__ ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> jnp.ndarray: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class snake_case__ : @add_start_docstrings(lowerCAmelCase__ ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> jnp.ndarray: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class snake_case__ ( _lowerCAmelCase ): @add_start_docstrings(lowerCAmelCase__ ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> jnp.ndarray: for processor in self: __magic_name__ : str = inspect.signature(processor.__call__ ).parameters if len(lowerCAmelCase__ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'Make sure that all the required parameters: {list(function_args.keys() )} for ' F'{processor.__class__} are passed to the logits processor.' ) __magic_name__ : Optional[int] = processor(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) else: __magic_name__ : str = processor(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return scores class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ ) -> List[str]: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not (temperature > 0): raise ValueError(F'`temperature` has to be a strictly positive float, but is {temperature}' ) __magic_name__ : List[Any] = temperature def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> jnp.ndarray: __magic_name__ : Dict = scores / self.temperature return scores class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = -float("""Inf""" ) , lowerCAmelCase__ = 1 ) -> Dict: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or (min_tokens_to_keep < 1): raise ValueError(F'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) __magic_name__ : Dict = top_p __magic_name__ : int = filter_value __magic_name__ : Tuple = min_tokens_to_keep def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> jnp.ndarray: __magic_name__ ,__magic_name__ : Optional[Any] = lax.top_k(lowerCAmelCase__ , scores.shape[-1] ) __magic_name__ : str = jnp.full_like(lowerCAmelCase__ , self.filter_value ) __magic_name__ : List[Any] = jax.nn.softmax(lowerCAmelCase__ , axis=-1 ).cumsum(axis=-1 ) __magic_name__ : Union[str, Any] = cumulative_probs < self.top_p # include the token that is higher than top_p as well __magic_name__ : Optional[int] = jnp.roll(lowerCAmelCase__ , 1 ) score_mask |= score_mask.at[:, 0].set(lowerCAmelCase__ ) # min tokens to keep __magic_name__ : List[str] = score_mask.at[:, : self.min_tokens_to_keep].set(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = jnp.where(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Optional[Any] = jax.lax.sort_key_val(lowerCAmelCase__ , lowerCAmelCase__ )[-1] return next_scores class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = -float("""Inf""" ) , lowerCAmelCase__ = 1 ) -> Dict: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or top_k <= 0: raise ValueError(F'`top_k` has to be a strictly positive integer, but is {top_k}' ) __magic_name__ : List[Any] = max(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : int = filter_value def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> jnp.ndarray: __magic_name__ ,__magic_name__ : Optional[int] = scores.shape __magic_name__ : Any = jnp.full(batch_size * vocab_size , self.filter_value ) __magic_name__ : Union[str, Any] = min(self.top_k , scores.shape[-1] ) # Safety check __magic_name__ ,__magic_name__ : Union[str, Any] = lax.top_k(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : int = jnp.broadcast_to((jnp.arange(lowerCAmelCase__ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() __magic_name__ : Any = topk_scores.flatten() __magic_name__ : Dict = topk_indices.flatten() + shift __magic_name__ : Union[str, Any] = next_scores_flat.at[topk_indices_flat].set(lowerCAmelCase__ ) __magic_name__ : Tuple = next_scores_flat.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) return next_scores class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : List[Any] = bos_token_id def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> jnp.ndarray: __magic_name__ : List[str] = jnp.full(scores.shape , -float("""inf""" ) ) __magic_name__ : Optional[Any] = 1 - jnp.bool_(cur_len - 1 ) __magic_name__ : List[Any] = jnp.where(lowerCAmelCase__ , new_scores.at[:, self.bos_token_id].set(0 ) , lowerCAmelCase__ ) return scores class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Optional[Any] = max_length __magic_name__ : Optional[Any] = eos_token_id def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> jnp.ndarray: __magic_name__ : Tuple = jnp.full(scores.shape , -float("""inf""" ) ) __magic_name__ : Optional[int] = 1 - jnp.bool_(cur_len - self.max_length + 1 ) __magic_name__ : Dict = jnp.where(lowerCAmelCase__ , new_scores.at[:, self.eos_token_id].set(0 ) , lowerCAmelCase__ ) return scores class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or min_length < 0: raise ValueError(F'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or eos_token_id < 0: raise ValueError(F'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) __magic_name__ : Union[str, Any] = min_length __magic_name__ : int = eos_token_id def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied __magic_name__ : Dict = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) __magic_name__ : List[str] = jnp.where(lowerCAmelCase__ , scores.at[:, self.eos_token_id].set(-float("""inf""" ) ) , lowerCAmelCase__ ) return scores class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: __magic_name__ : Dict = list(lowerCAmelCase__ ) __magic_name__ : Tuple = begin_index def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = 1 - jnp.bool_(cur_len - self.begin_index ) __magic_name__ : Optional[Any] = jnp.where(lowerCAmelCase__ , scores.at[:, self.begin_suppress_tokens].set(-float("""inf""" ) ) , lowerCAmelCase__ ) return scores class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ ) -> str: __magic_name__ : List[str] = list(lowerCAmelCase__ ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> jnp.ndarray: __magic_name__ : Optional[Any] = scores.at[..., self.suppress_tokens].set(-float("""inf""" ) ) return scores class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ ) -> List[Any]: __magic_name__ : List[Any] = dict(lowerCAmelCase__ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __magic_name__ : Dict = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: __magic_name__ : Optional[int] = force_token_array.at[index].set(lowerCAmelCase__ ) __magic_name__ : Tuple = jnp.intaa(lowerCAmelCase__ ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> jnp.ndarray: def _force_token(lowerCAmelCase__ ): __magic_name__ : str = scores.shape[0] __magic_name__ : List[Any] = self.force_token_array[generation_idx] __magic_name__ : Union[str, Any] = jnp.ones_like(lowerCAmelCase__ , dtype=scores.dtype ) * -float("""inf""" ) __magic_name__ : Optional[int] = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) __magic_name__ : Optional[int] = lax.dynamic_update_slice(lowerCAmelCase__ , lowerCAmelCase__ , (0, current_token) ) return new_scores __magic_name__ : List[Any] = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(lowerCAmelCase__ ) , lambda: scores , ) , ) return scores class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: __magic_name__ : Tuple = generate_config.eos_token_id __magic_name__ : Tuple = generate_config.no_timestamps_token_id __magic_name__ : Dict = generate_config.no_timestamps_token_id + 1 __magic_name__ : Tuple = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowerCAmelCase__ , """max_initial_timestamp_index""" ): __magic_name__ : Optional[Any] = generate_config.max_initial_timestamp_index else: __magic_name__ : List[str] = model_config.vocab_size if self.max_initial_timestamp_index is None: __magic_name__ : Optional[int] = model_config.vocab_size def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: # suppress <|notimestamps|> which is handled by without_timestamps __magic_name__ : Optional[Any] = scores.at[:, self.no_timestamps_token_id].set(-float("""inf""" ) ) def handle_pairs(lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : List[Any] = jnp.where((cur_len - self.begin_index) >= 1 , lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : int = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , lowerCAmelCase__ , ) __magic_name__ : Optional[Any] = jnp.where((cur_len - self.begin_index) < 2 , lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : str = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , lowerCAmelCase__ , lowerCAmelCase__ , ) return jnp.where( lowerCAmelCase__ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("""inf""" ) ) , scores_k.at[: self.eos_token_id].set(-float("""inf""" ) ) , ) , lowerCAmelCase__ , ) __magic_name__ : Tuple = jax.vmap(lowerCAmelCase__ )(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Any = jnp.where(cur_len == self.begin_index , lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Tuple = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , lowerCAmelCase__ , ) __magic_name__ : Optional[Any] = self.timestamp_begin + self.max_initial_timestamp_index __magic_name__ : int = jnp.where( lowerCAmelCase__ , scores.at[:, last_allowed + 1 :].set(-float("""inf""" ) ) , lowerCAmelCase__ , ) # if sum of probability over timestamps is above any other token, sample timestamp __magic_name__ : Dict = jax.nn.log_softmax(lowerCAmelCase__ , axis=-1 ) def handle_cumulative_probs(lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : List[Any] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) __magic_name__ : Tuple = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("""inf""" ) ) , lowerCAmelCase__ , ) __magic_name__ : Dict = jax.vmap(lowerCAmelCase__ )(lowerCAmelCase__ , lowerCAmelCase__ ) return scores
342
def UpperCamelCase ( _A ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) __magic_name__ : int = sorted(string.lower() ) return len(_A ) == len(set(_A ) ) if __name__ == "__main__": __magic_name__: Dict = input("Enter a string ").strip() __magic_name__: Union[str, Any] = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
342
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__: List[Any] = logging.get_logger(__name__) __magic_name__: Any = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class snake_case__ ( _lowerCAmelCase ): lowercase__ : Any = '''trocr''' lowercase__ : Union[str, Any] = ['''past_key_values'''] lowercase__ : Optional[Any] = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , lowerCAmelCase__=5_02_65 , lowerCAmelCase__=10_24 , lowerCAmelCase__=12 , lowerCAmelCase__=16 , lowerCAmelCase__=40_96 , lowerCAmelCase__="gelu" , lowerCAmelCase__=5_12 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , **lowerCAmelCase__ , ) -> Any: __magic_name__ : List[str] = vocab_size __magic_name__ : Union[str, Any] = d_model __magic_name__ : Optional[Any] = decoder_layers __magic_name__ : List[str] = decoder_attention_heads __magic_name__ : int = decoder_ffn_dim __magic_name__ : List[str] = activation_function __magic_name__ : int = max_position_embeddings __magic_name__ : int = dropout __magic_name__ : Any = attention_dropout __magic_name__ : Tuple = activation_dropout __magic_name__ : List[Any] = init_std __magic_name__ : str = decoder_layerdrop __magic_name__ : Optional[int] = use_cache __magic_name__ : str = scale_embedding __magic_name__ : Tuple = use_learned_position_embeddings __magic_name__ : List[Any] = layernorm_embedding super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
342
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
342
1
def UpperCamelCase ( _A ): """simple docstring""" if not isinstance(_A, _A ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
342
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]: __magic_name__ : str = parent __magic_name__ : Dict = do_resize __magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88} __magic_name__ : Union[str, Any] = size_divisor __magic_name__ : Union[str, Any] = do_rescale __magic_name__ : Dict = rescale_factor __magic_name__ : Union[str, Any] = do_normalize __magic_name__ : List[str] = do_center_crop __magic_name__ : Tuple = image_mean __magic_name__ : Tuple = image_std __magic_name__ : Tuple = do_pad __magic_name__ : int = batch_size __magic_name__ : List[Any] = num_channels __magic_name__ : int = min_resolution __magic_name__ : str = max_resolution def __magic_name__ ( self ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int: if not batched: __magic_name__ : Dict = self.size["""shortest_edge"""] __magic_name__ : List[str] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): __magic_name__ ,__magic_name__ : List[Any] = image.size else: __magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2] __magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ ) if h < w: __magic_name__ ,__magic_name__ : str = size, scale * w else: __magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size __magic_name__ : Tuple = int((13_33 / 8_00) * size ) if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size: __magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = newh * scale __magic_name__ : Any = neww * scale __magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 ) __magic_name__ ,__magic_name__ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __magic_name__ : Union[str, Any] = [] for image in image_inputs: __magic_name__ ,__magic_name__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] __magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = BridgeTowerImageProcessingTester(self ) @property def __magic_name__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Any: __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) ) def __magic_name__ ( self ) -> Optional[int]: pass def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> str: # Initialize image processor __magic_name__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
342
1
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __magic_name__: Optional[int] = logging.get_logger(__name__) def UpperCamelCase ( _A, _A, _A, _A=False ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: __magic_name__ : List[str] = os.path.abspath(_A ) logger.info(f'Loading PyTorch weights from {pt_path}' ) __magic_name__ : str = torch.load(_A, map_location="""cpu""" ) logger.info(f'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) __magic_name__ : Optional[int] = convert_pytorch_state_dict_to_flax(_A, _A ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files __magic_name__ : Union[str, Any] = convert_pytorch_sharded_state_dict_to_flax(_A, _A ) return flax_state_dict def UpperCamelCase ( _A, _A, _A, _A, ): """simple docstring""" def is_key_or_prefix_key_in_dict(_A ) -> bool: return len(set(_A ) & {key, (model_prefix,) + key} ) > 0 # layer norm __magic_name__ : Union[str, Any] = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_A ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean __magic_name__ : List[Any] = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_A ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var __magic_name__ : Tuple = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_A ): return renamed_pt_tuple_key, pt_tensor # embedding __magic_name__ : Tuple = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_A ): return renamed_pt_tuple_key, pt_tensor # conv layer __magic_name__ : List[Any] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_A ): __magic_name__ : Union[str, Any] = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __magic_name__ : Dict = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_A ): __magic_name__ : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __magic_name__ : str = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __magic_name__ : Dict = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 __magic_name__ : Optional[Any] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): __magic_name__ : Dict = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): __magic_name__ : Optional[Any] = pt_tuple_key[-2] + """_v""" if name is not None: __magic_name__ : Optional[int] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} __magic_name__ : List[str] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: __magic_name__ : str = flax_model.params["""params"""] else: __magic_name__ : List[Any] = flax_model.params __magic_name__ : Dict = flatten_dict(_A ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __magic_name__ : Union[str, Any] = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(_A ) __magic_name__ : Optional[Any] = {} __magic_name__ : str = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) __magic_name__ : List[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __magic_name__ : int = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary __magic_name__ : Optional[int] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __magic_name__ : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters __magic_name__ ,__magic_name__ : List[str] = rename_key_and_reshape_tensor( _A, _A, _A, _A ) # add model prefix if necessary __magic_name__ : Dict = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __magic_name__ : List[str] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: __magic_name__ : str = jnp.asarray(_A ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_A, _A ) continue # also add unexpected weight so that warning is thrown __magic_name__ : Optional[Any] = jnp.asarray(_A ) else: # also add unexpected weight so that warning is thrown __magic_name__ : Tuple = jnp.asarray(_A ) return unflatten_dict(_A ) def UpperCamelCase ( _A, _A ): """simple docstring""" import torch # Load the index __magic_name__ : Union[str, Any] = {} for shard_file in shard_filenames: # load using msgpack utils __magic_name__ : Optional[int] = torch.load(_A ) __magic_name__ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} __magic_name__ : int = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __magic_name__ : List[str] = flax_model.params["""params"""] __magic_name__ : Optional[Any] = flatten_dict(_A ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: __magic_name__ : List[str] = flax_model.params __magic_name__ : Optional[Any] = flatten_dict(_A ) __magic_name__ : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) __magic_name__ : Optional[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __magic_name__ : int = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary __magic_name__ : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __magic_name__ : Optional[Any] = pt_tuple_key[1:] # Correctly rename weight parameters __magic_name__ ,__magic_name__ : str = rename_key_and_reshape_tensor( _A, _A, _A, _A ) # add model prefix if necessary __magic_name__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __magic_name__ : str = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: __magic_name__ : Optional[int] = jnp.asarray(_A ) continue if "var" in flax_key[-1]: __magic_name__ : str = jnp.asarray(_A ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_A, _A ) continue # also add unexpected weight so that warning is thrown __magic_name__ : int = jnp.asarray(_A ) else: # also add unexpected weight so that warning is thrown __magic_name__ : List[str] = jnp.asarray(_A ) return unflatten_dict(_A ) def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Dict = os.path.abspath(_A ) logger.info(f'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class __magic_name__ : Union[str, Any] = getattr(_A, """Flax""" + model.__class__.__name__ ) # load flax weight dict with open(_A, """rb""" ) as state_f: try: __magic_name__ : List[Any] = from_bytes(_A, state_f.read() ) except UnpicklingError: raise EnvironmentError(f'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_A, _A ) def UpperCamelCase ( _A, _A ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights __magic_name__ : Optional[Any] = flatten_dict(jax.tree_util.tree_map(lambda _A : x.dtype == jnp.bfloataa, _A ) ).values() if any(_A ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) __magic_name__ : Optional[Any] = jax.tree_util.tree_map( lambda _A : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params, _A ) __magic_name__ : List[Any] = flatten_dict(_A ) __magic_name__ : Tuple = pt_model.state_dict() __magic_name__ : Any = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) __magic_name__ : Union[str, Any] = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys __magic_name__ : int = [] __magic_name__ : List[str] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __magic_name__ : int = flax_key_tuple[0] == pt_model.base_model_prefix __magic_name__ : Optional[Any] = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: __magic_name__ : Dict = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: __magic_name__ : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_A ) not in pt_model_dict: # conv layer __magic_name__ : Union[str, Any] = flax_key_tuple[:-1] + ("""weight""",) __magic_name__ : List[Any] = jnp.transpose(_A, (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_A ) not in pt_model_dict: # linear layer __magic_name__ : str = flax_key_tuple[:-1] + ("""weight""",) __magic_name__ : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __magic_name__ : Any = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: __magic_name__ : List[Any] = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: __magic_name__ : Optional[int] = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: __magic_name__ : List[str] = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: __magic_name__ : List[Any] = """.""".join(_A ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. __magic_name__ : Optional[int] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: __magic_name__ : str = key.split(""".""" ) __magic_name__ : List[Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: __magic_name__ : Dict = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: __magic_name__ : List[str] = key_components[-2] + """_v""" if name is not None: __magic_name__ : Dict = key_components[:-3] + [name] __magic_name__ : List[str] = """.""".join(_A ) __magic_name__ : List[Any] = key if flax_key in special_pt_names: __magic_name__ : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict __magic_name__ : int = np.asarray(_A ) if not isinstance(_A, np.ndarray ) else flax_tensor __magic_name__ : Optional[Any] = torch.from_numpy(_A ) # remove from missing keys missing_keys.remove(_A ) else: # weight is not expected by PyTorch model unexpected_keys.append(_A ) pt_model.load_state_dict(_A ) # re-transform missing_keys to list __magic_name__ : int = list(_A ) if len(_A ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(f'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_A ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' """ use it for predictions and inference.""" ) else: logger.warning( f'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' """If your task is similar to the task the model of the checkpoint was trained on, """ f'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
342
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__: Tuple = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Union[str, Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __magic_name__: Optional[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
342
1
from math import isqrt def UpperCamelCase ( _A ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2, isqrt(_A ) + 1 ) ) def UpperCamelCase ( _A = 10**6 ): """simple docstring""" __magic_name__ : List[str] = 0 __magic_name__ : Any = 1 __magic_name__ : Optional[int] = 7 while prime_candidate < max_prime: primes_count += is_prime(_A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"""{solution() = }""")
342
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__: Dict = logging.get_logger(__name__) __magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __magic_name__: Optional[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __magic_name__: List[Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Any = ( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) __magic_name__ : Any = bs[:] __magic_name__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 __magic_name__ : List[str] = [chr(_A ) for n in cs] return dict(zip(_A, _A ) ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = set() __magic_name__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[Any] = char return pairs class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict: __magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ ) __magic_name__ : Any = {v: k for k, v in self.encoder.items()} __magic_name__ : Tuple = errors # how to handle errors in decoding __magic_name__ : Tuple = bytes_to_unicode() __magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1] __magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : str = {} __magic_name__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __magic_name__ ( self ) -> Optional[Any]: return len(self.encoder ) def __magic_name__ ( self ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if token in self.cache: return self.cache[token] __magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ ,__magic_name__ : List[str] = bigram __magic_name__ : Any = [] __magic_name__ : Any = 0 while i < len(lowerCAmelCase__ ): try: __magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Optional[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : str = tuple(lowerCAmelCase__ ) __magic_name__ : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __magic_name__ : List[str] = get_pairs(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ ) __magic_name__ : str = word return word def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : str = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __magic_name__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Tuple = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __magic_name__ : Optional[Any] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : Optional[int] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] __magic_name__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : Dict = [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __magic_name__ : List[Any] = """ """ + text return (text, kwargs)
342
1
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , ) -> int: super().__init__() self.register_modules(transformer=lowerCAmelCase__ , vae=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) # create a imagenet -> id dictionary for easier use __magic_name__ : Dict = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(""",""" ): __magic_name__ : List[Any] = int(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = dict(sorted(self.labels.items() ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> List[int]: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Optional[Any] = list(lowerCAmelCase__ ) for l in label: if l not in self.labels: raise ValueError( F'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = 4.0 , lowerCAmelCase__ = None , lowerCAmelCase__ = 50 , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ) -> Union[ImagePipelineOutput, Tuple]: __magic_name__ : Optional[int] = len(lowerCAmelCase__ ) __magic_name__ : Any = self.transformer.config.sample_size __magic_name__ : List[str] = self.transformer.config.in_channels __magic_name__ : Tuple = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowerCAmelCase__ , device=self.device , dtype=self.transformer.dtype , ) __magic_name__ : str = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __magic_name__ : List[str] = torch.tensor(lowerCAmelCase__ , device=self.device ).reshape(-1 ) __magic_name__ : List[str] = torch.tensor([10_00] * batch_size , device=self.device ) __magic_name__ : Any = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __magic_name__ : Dict = latent_model_input[: len(lowerCAmelCase__ ) // 2] __magic_name__ : Union[str, Any] = torch.cat([half, half] , dim=0 ) __magic_name__ : Dict = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = t if not torch.is_tensor(lowerCAmelCase__ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __magic_name__ : Optional[int] = latent_model_input.device.type == """mps""" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Tuple = torch.floataa if is_mps else torch.floataa else: __magic_name__ : Optional[Any] = torch.intaa if is_mps else torch.intaa __magic_name__ : List[str] = torch.tensor([timesteps] , dtype=lowerCAmelCase__ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __magic_name__ : int = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __magic_name__ : int = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __magic_name__ : Any = self.transformer( lowerCAmelCase__ , timestep=lowerCAmelCase__ , class_labels=lowerCAmelCase__ ).sample # perform guidance if guidance_scale > 1: __magic_name__ ,__magic_name__ : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __magic_name__ ,__magic_name__ : Dict = torch.split(lowerCAmelCase__ , len(lowerCAmelCase__ ) // 2 , dim=0 ) __magic_name__ : List[Any] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __magic_name__ : Optional[Any] = torch.cat([half_eps, half_eps] , dim=0 ) __magic_name__ : List[str] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __magic_name__ ,__magic_name__ : Any = torch.split(lowerCAmelCase__ , lowerCAmelCase__ , dim=1 ) else: __magic_name__ : Tuple = noise_pred # compute previous image: x_t -> x_t-1 __magic_name__ : str = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample if guidance_scale > 1: __magic_name__ ,__magic_name__ : Any = latent_model_input.chunk(2 , dim=0 ) else: __magic_name__ : Optional[Any] = latent_model_input __magic_name__ : Optional[Any] = 1 / self.vae.config.scaling_factor * latents __magic_name__ : Union[str, Any] = self.vae.decode(lowerCAmelCase__ ).sample __magic_name__ : List[Any] = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __magic_name__ : int = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __magic_name__ : Dict = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCAmelCase__ )
342
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str: __magic_name__ : Optional[int] = parent __magic_name__ : Any = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[int] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : str = embed_dim __magic_name__ : int = hidden_sizes __magic_name__ : Union[str, Any] = depths __magic_name__ : List[str] = num_heads __magic_name__ : str = window_size __magic_name__ : Optional[Any] = mlp_ratio __magic_name__ : Dict = qkv_bias __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = drop_path_rate __magic_name__ : Optional[Any] = hidden_act __magic_name__ : int = use_absolute_embeddings __magic_name__ : Dict = patch_norm __magic_name__ : Tuple = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[int] = is_training __magic_name__ : Optional[Any] = scope __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = encoder_stride __magic_name__ : List[Any] = out_features __magic_name__ : Union[str, Any] = out_indices def __magic_name__ ( self ) -> str: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Dict = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Tuple = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __magic_name__ : Optional[Any] = None __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : str = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : int = self.type_sequence_label_size __magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> int: __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs __magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ : Any = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ : Dict = False lowercase__ : Dict = False lowercase__ : int = False lowercase__ : Tuple = False lowercase__ : Optional[Any] = False def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = FocalNetModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> List[str]: return def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __magic_name__ ( self ) -> List[str]: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self ) -> List[Any]: __magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : str = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # FocalNet has a different seq_length __magic_name__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ : str = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape __magic_name__ : Union[str, Any] = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __magic_name__ : List[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = 3 __magic_name__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __magic_name__ : Optional[int] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @slow def __magic_name__ ( self ) -> Union[str, Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: __magic_name__ : Any = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.default_image_processor __magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : List[Any] = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else () lowercase__ : Optional[int] = FocalNetConfig lowercase__ : Dict = False def __magic_name__ ( self ) -> int: __magic_name__ : Dict = FocalNetModelTester(self )
342
1
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = CodeGenTokenizer lowercase__ : int = CodeGenTokenizerFast lowercase__ : List[Any] = True lowercase__ : Optional[Any] = {'''add_prefix_space''': True} lowercase__ : Dict = False def __magic_name__ ( self ) -> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __magic_name__ : Optional[int] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] __magic_name__ : Optional[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __magic_name__ : Union[str, Any] = {"""unk_token""": """<unk>"""} __magic_name__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase__ ) ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[str]: kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: __magic_name__ : Tuple = """lower newer""" __magic_name__ : Optional[int] = """lower newer""" return input_text, output_text def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Union[str, Any] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __magic_name__ : List[str] = """lower newer""" __magic_name__ : Any = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Tuple = tokens + [tokenizer.unk_token] __magic_name__ : Tuple = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: if not self.test_rust_tokenizer: return __magic_name__ : Tuple = self.get_tokenizer() __magic_name__ : Union[str, Any] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) __magic_name__ : Dict = """lower newer""" # Testing tokenization __magic_name__ : Tuple = tokenizer.tokenize(lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) __magic_name__ : int = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Testing conversion to ids without special tokens __magic_name__ : Optional[int] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Testing conversion to ids with special tokens __magic_name__ : List[Any] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.encode(lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) __magic_name__ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Testing the unknown token __magic_name__ : Dict = tokens + [rust_tokenizer.unk_token] __magic_name__ : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __magic_name__ ( self , lowerCAmelCase__=15 ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __magic_name__ : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) # Simple input __magic_name__ : List[Any] = """This is a simple input""" __magic_name__ : Any = ["""This is a simple input 1""", """This is a simple input 2"""] __magic_name__ : Union[str, Any] = ("""This is a simple input""", """This is a pair""") __magic_name__ : Optional[Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) # Simple input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) # Simple input self.assertRaises( lowerCAmelCase__ , tokenizer_r.batch_encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" , ) # Pair input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) # Pair input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) # Pair input self.assertRaises( lowerCAmelCase__ , tokenizer_r.batch_encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" , ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input __magic_name__ : List[str] = """This is a simple input""" __magic_name__ : List[str] = ["""This is a simple input looooooooong""", """This is a simple input"""] __magic_name__ : List[Any] = ("""This is a simple input""", """This is a pair""") __magic_name__ : Dict = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] __magic_name__ : Tuple = tokenizer.pad_token_id __magic_name__ : List[Any] = tokenizer(lowerCAmelCase__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) __magic_name__ : int = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , truncate=lowerCAmelCase__ , return_tensors="""np""" ) __magic_name__ : Tuple = tokenizer(*lowerCAmelCase__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) __magic_name__ : Tuple = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , truncate=lowerCAmelCase__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Dict = """$$$""" __magic_name__ : List[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=lowerCAmelCase__ , add_bos_token=lowerCAmelCase__ ) __magic_name__ : Optional[int] = """This is a simple input""" __magic_name__ : List[str] = ["""This is a simple input 1""", """This is a simple input 2"""] __magic_name__ : str = tokenizer.bos_token_id __magic_name__ : Tuple = tokenizer(lowerCAmelCase__ ) __magic_name__ : int = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] , lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __magic_name__ : Dict = tokenizer.decode(out_s.input_ids ) __magic_name__ : Dict = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Union[str, Any] = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) __magic_name__ : Optional[Any] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" __magic_name__ : Dict = """\nif len_a > len_b: result = a\nelse: result = b""" __magic_name__ : Any = tokenizer.encode(lowerCAmelCase__ ) __magic_name__ : Tuple = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] __magic_name__ : List[Any] = tokenizer.decode(lowerCAmelCase__ , truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: pass
342
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]: __magic_name__ : int = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = image_size __magic_name__ : str = num_channels __magic_name__ : Dict = patch_size __magic_name__ : Tuple = num_frames __magic_name__ : List[Any] = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : Dict = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Tuple = attention_type __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = scope __magic_name__ : Tuple = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __magic_name__ : str = (image_size // patch_size) ** 2 __magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : str = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> str: __magic_name__ : Dict = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __magic_name__ : Optional[Any] = self.num_labels return config def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[Any] = model(lowerCAmelCase__ ) # verify the logits shape __magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs __magic_name__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ : Union[str, Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : Any = False def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[Any] = TimesformerModelTester(self ) __magic_name__ : List[str] = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]: __magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Optional[int] = [*signature.parameters.keys()] __magic_name__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Optional[int]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: if not self.has_attentions: pass else: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True for model_class in self.all_model_classes: __magic_name__ : Tuple = self.model_tester.seq_length __magic_name__ : int = self.model_tester.num_frames __magic_name__ : Any = True __magic_name__ : Tuple = False __magic_name__ : Optional[int] = True __magic_name__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ : Optional[Any] = True __magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : int = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __magic_name__ : Union[str, Any] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : Optional[Any] = True __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) __magic_name__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" ) __magic_name__ : List[str] = np.load(_A ) return list(_A ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowerCAmelCase__ ) __magic_name__ : str = self.default_image_processor __magic_name__ : Any = prepare_video() __magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : int = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
342
1
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType __magic_name__: str = get_logger(__name__) def UpperCamelCase ( _A, _A, _A, _A, _A=0 ): """simple docstring""" os.makedirs(_A, exist_ok=_A ) with FSDP.state_dict_type( _A, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): __magic_name__ : Tuple = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __magic_name__ : Dict = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __magic_name__ : Tuple = os.path.join(_A, _A ) if accelerator.process_index == 0: logger.info(f'Saving model to {output_model_file}' ) torch.save(_A, _A ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __magic_name__ : Union[str, Any] = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __magic_name__ : List[str] = os.path.join(_A, _A ) logger.info(f'Saving model to {output_model_file}' ) torch.save(_A, _A ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __magic_name__ : Tuple = os.path.join(_A, f'{MODEL_NAME}_{model_index}' ) os.makedirs(_A, exist_ok=_A ) logger.info(f'Saving model to {ckpt_dir}' ) __magic_name__ : int = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=_A, storage_writer=dist_cp.FileSystemWriter(_A ), planner=DefaultSavePlanner(), ) logger.info(f'Model saved to {ckpt_dir}' ) def UpperCamelCase ( _A, _A, _A, _A, _A=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( _A, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_A ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return __magic_name__ : str = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __magic_name__ : Optional[Any] = os.path.join(_A, _A ) logger.info(f'Loading model from {input_model_file}' ) __magic_name__ : Optional[int] = torch.load(_A ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __magic_name__ : str = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __magic_name__ : Optional[Any] = os.path.join(_A, _A ) logger.info(f'Loading model from {input_model_file}' ) __magic_name__ : str = torch.load(_A ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __magic_name__ : str = ( os.path.join(_A, f'{MODEL_NAME}_{model_index}' ) if f'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(f'Loading model from {ckpt_dir}' ) __magic_name__ : Tuple = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=_A, storage_reader=dist_cp.FileSystemReader(_A ), planner=DefaultLoadPlanner(), ) __magic_name__ : List[str] = state_dict["""model"""] logger.info(f'Model loaded from {ckpt_dir}' ) model.load_state_dict(_A ) def UpperCamelCase ( _A, _A, _A, _A, _A, _A=0 ): """simple docstring""" os.makedirs(_A, exist_ok=_A ) with FSDP.state_dict_type( _A, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): __magic_name__ : Any = FSDP.optim_state_dict(_A, _A ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __magic_name__ : List[str] = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __magic_name__ : int = os.path.join(_A, _A ) logger.info(f'Saving Optimizer state to {output_optimizer_file}' ) torch.save(_A, _A ) logger.info(f'Optimizer state saved in {output_optimizer_file}' ) else: __magic_name__ : Optional[int] = os.path.join(_A, f'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(_A, exist_ok=_A ) logger.info(f'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state}, storage_writer=dist_cp.FileSystemWriter(_A ), planner=DefaultSavePlanner(), ) logger.info(f'Optimizer state saved in {ckpt_dir}' ) def UpperCamelCase ( _A, _A, _A, _A, _A, _A=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( _A, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __magic_name__ : List[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __magic_name__ : List[Any] = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __magic_name__ : List[str] = os.path.join(_A, _A ) logger.info(f'Loading Optimizer state from {input_optimizer_file}' ) __magic_name__ : List[Any] = torch.load(_A ) logger.info(f'Optimizer state loaded from {input_optimizer_file}' ) else: __magic_name__ : List[str] = ( os.path.join(_A, f'{OPTIMIZER_NAME}_{optimizer_index}' ) if f'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(f'Loading Optimizer from {ckpt_dir}' ) __magic_name__ : List[str] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict(), optimizer_key="""optimizer""", storage_reader=dist_cp.FileSystemReader(_A ), ) __magic_name__ : Optional[Any] = optim_state["""optimizer"""] logger.info(f'Optimizer loaded from {ckpt_dir}' ) __magic_name__ : List[str] = FSDP.optim_state_dict_to_load(_A, _A, _A ) optimizer.load_state_dict(_A )
342
def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = [0] * len(_A ) __magic_name__ : List[str] = [] __magic_name__ : List[str] = [1] * len(_A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: __magic_name__ : Dict = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __magic_name__ : int = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_A ) print(max(_A ) ) # Adjacency list of Graph __magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
1
def UpperCamelCase ( _A ): """simple docstring""" if num <= 0: raise ValueError("""Input must be a positive integer""" ) __magic_name__ : int = [True] * (num + 1) __magic_name__ : Optional[int] = 2 while p * p <= num: if primes[p]: for i in range(p * p, num + 1, _A ): __magic_name__ : List[str] = False p += 1 return [prime for prime in range(2, num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __magic_name__: Union[str, Any] = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
342
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: __magic_name__ : Tuple = """ylacombe/bark-small""" __magic_name__ : List[str] = tempfile.mkdtemp() __magic_name__ : Optional[Any] = """en_speaker_1""" __magic_name__ : Union[str, Any] = """This is a test string""" __magic_name__ : Optional[int] = """speaker_embeddings_path.json""" __magic_name__ : Any = """speaker_embeddings""" def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : str = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __magic_name__ : Union[str, Any] = 35 __magic_name__ : List[Any] = 2 __magic_name__ : Dict = 8 __magic_name__ : Tuple = { """semantic_prompt""": np.ones(lowerCAmelCase__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string ) __magic_name__ : List[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
342
1
import random def UpperCamelCase ( _A, _A, _A = False ): """simple docstring""" __magic_name__ : dict = {i: [] for i in range(_A )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_A ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_A ): for j in range(i + 1, _A ): if random.random() < probability: graph[i].append(_A ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_A ) return graph def UpperCamelCase ( _A ): """simple docstring""" return { i: [j for j in range(_A ) if i != j] for i in range(_A ) } if __name__ == "__main__": import doctest doctest.testmod()
342
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]: __magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} __magic_name__ : str = parent __magic_name__ : Any = batch_size __magic_name__ : Any = num_channels __magic_name__ : List[str] = image_size __magic_name__ : Tuple = min_resolution __magic_name__ : Union[str, Any] = max_resolution __magic_name__ : List[str] = do_resize __magic_name__ : Optional[Any] = size __magic_name__ : Optional[Any] = do_normalize __magic_name__ : Any = image_mean __magic_name__ : List[str] = image_std def __magic_name__ ( self ) -> List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = DPTImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Dict = DPTImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __magic_name__ ( self ) -> str: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Optional[Any]: # Initialize image_processing __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
342
1
from __future__ import annotations import math def UpperCamelCase ( _A ): """simple docstring""" if num <= 0: __magic_name__ : Any = f'{num}: Invalid input, please enter a positive integer.' raise ValueError(_A ) __magic_name__ : Dict = [True] * (num + 1) __magic_name__ : List[str] = [] __magic_name__ : Any = 2 __magic_name__ : str = int(math.sqrt(_A ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_A ) # Set multiples of start be False for i in range(start * start, num + 1, _A ): if sieve[i] is True: __magic_name__ : Optional[int] = False start += 1 for j in range(end + 1, num + 1 ): if sieve[j] is True: prime.append(_A ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
342
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__: Tuple = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M''' lowercase__ : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowercase__ : List[str] = '''translator''' lowercase__ : Optional[Any] = AutoTokenizer lowercase__ : int = AutoModelForSeqaSeqLM lowercase__ : List[Any] = LANGUAGE_CODES lowercase__ : str = ['''text''', '''text''', '''text'''] lowercase__ : Any = ['''text'''] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) __magic_name__ : Tuple = self.lang_to_code[src_lang] __magic_name__ : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
342
1
import re def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(_A, _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
342
import math class snake_case__ : def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1 __magic_name__ : Tuple = n __magic_name__ : Union[str, Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # adjacency matrix for weight __magic_name__ : List[Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # dp[i][j] stores minimum distance from i to j def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Dict = w def __magic_name__ ( self ) -> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return self.dp[u][v] if __name__ == "__main__": __magic_name__: Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
342
1
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = CanineTokenizer lowercase__ : Any = False def __magic_name__ ( self ) -> int: super().setUp() __magic_name__ : Optional[Any] = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __magic_name__ ( self ) -> Any: return CanineTokenizer.from_pretrained("""google/canine-s""" ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> CanineTokenizer: __magic_name__ : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) __magic_name__ : int = 10_24 return tokenizer @require_torch def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : List[Any] = self.canine_tokenizer __magic_name__ : Optional[int] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __magic_name__ : List[str] = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __magic_name__ : List[Any] = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Tuple = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Optional[int] = self.canine_tokenizer __magic_name__ : Optional[int] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __magic_name__ : Tuple = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , lowerCAmelCase__ ) self.assertIn("""attention_mask""" , lowerCAmelCase__ ) self.assertIn("""token_type_ids""" , lowerCAmelCase__ ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = self.canine_tokenizer __magic_name__ : Dict = [ """What's the weater?""", """It's about 25 degrees.""", ] __magic_name__ : Union[str, Any] = tokenizer( text_target=lowerCAmelCase__ , max_length=32 , padding="""max_length""" , truncation=lowerCAmelCase__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def __magic_name__ ( self ) -> int: # safety check on max_len default value so we are sure the test works __magic_name__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __magic_name__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : Optional[Any] = tempfile.mkdtemp() __magic_name__ : Union[str, Any] = """ He is very happy, UNwant\u00E9d,running""" __magic_name__ : Any = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) __magic_name__ : str = tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) __magic_name__ : int = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) shutil.rmtree(lowerCAmelCase__ ) __magic_name__ : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : Optional[Any] = tempfile.mkdtemp() __magic_name__ : Dict = """ He is very happy, UNwant\u00E9d,running""" __magic_name__ : Dict = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __magic_name__ : int = chr(0Xe0_07 ) additional_special_tokens.append(lowerCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __magic_name__ : Tuple = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) __magic_name__ : Any = tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) __magic_name__ : Dict = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIn(lowerCAmelCase__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __magic_name__ : Any = tokenizer.__class__.from_pretrained(lowerCAmelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCAmelCase__ ) def __magic_name__ ( self ) -> int: __magic_name__ : Optional[int] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ ,__magic_name__ : str = self.get_clean_sequence(lowerCAmelCase__ ) # a special token for Canine can be defined as follows: __magic_name__ : Tuple = 0Xe0_05 __magic_name__ : List[str] = chr(lowerCAmelCase__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) __magic_name__ : Optional[int] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=lowerCAmelCase__ ) __magic_name__ : int = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) __magic_name__ : Optional[int] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) __magic_name__ : List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , input_encoded + special_token_id ) __magic_name__ : Dict = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Tuple = chr(0Xe0_05 ) __magic_name__ : int = chr(0Xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=lowerCAmelCase__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __magic_name__ : Optional[int] = tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ : str = tokenizer.tokenize(lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) self.assertEqual(token_a[0] , lowerCAmelCase__ ) self.assertEqual(token_a[0] , lowerCAmelCase__ ) @require_tokenizers def __magic_name__ ( self ) -> int: __magic_name__ : Optional[int] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: __magic_name__ : Any = 0Xe0_06 __magic_name__ : Tuple = chr(lowerCAmelCase__ ) __magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(lowerCAmelCase__ ) tokenizer.from_pretrained(lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __magic_name__ : int = json.load(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ ) # a special token for Canine can be defined as follows: __magic_name__ : Dict = 0Xe0_06 __magic_name__ : Dict = chr(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = [new_token_a] __magic_name__ : str = [new_token_a] with open(os.path.join(lowerCAmelCase__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ : int = tokenizer_class.from_pretrained(lowerCAmelCase__ , extra_ids=0 ) self.assertIn(lowerCAmelCase__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __magic_name__ : str = 0Xe0_07 __magic_name__ : Any = chr(lowerCAmelCase__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ : Optional[int] = [AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ )] __magic_name__ : List[Any] = tokenizer_class.from_pretrained( lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , extra_ids=0 ) self.assertIn(lowerCAmelCase__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : List[Any] = """hello world""" if self.space_between_special_tokens: __magic_name__ : str = """[CLS] hello world [SEP]""" else: __magic_name__ : str = input __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) __magic_name__ : Dict = tokenizer.decode(lowerCAmelCase__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(lowerCAmelCase__ , [output, output.lower()] ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Tuple = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __magic_name__ : List[Any] = """a""" __magic_name__ : List[str] = ord(lowerCAmelCase__ ) for attr in attributes_list: setattr(lowerCAmelCase__ , attr + """_id""" , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + """_id""" ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , attr + """_id""" , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + """_id""" ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , """additional_special_tokens_ids""" ) , [] ) __magic_name__ : Dict = 0Xe0_06 __magic_name__ : List[Any] = chr(lowerCAmelCase__ ) setattr(lowerCAmelCase__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(lowerCAmelCase__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(lowerCAmelCase__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def __magic_name__ ( self ) -> List[str]: pass def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> List[str]: pass def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self ) -> int: pass def __magic_name__ ( self ) -> Optional[Any]: pass def __magic_name__ ( self ) -> Dict: pass def __magic_name__ ( self ) -> Union[str, Any]: pass
342
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__ : def __init__( self , lowerCAmelCase__ = None ) -> None: if components is None: __magic_name__ : Any = [] __magic_name__ : List[str] = list(lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : Dict = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : int = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... @overload def __mul__( self , lowerCAmelCase__ ) -> float: ... def __mul__( self , lowerCAmelCase__ ) -> float | Vector: if isinstance(lowerCAmelCase__ , (float, int) ): __magic_name__ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): __magic_name__ : Optional[Any] = len(self ) __magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __magic_name__ ( self ) -> Vector: return Vector(self.__components ) def __magic_name__ ( self , lowerCAmelCase__ ) -> float: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ : Optional[int] = value def __magic_name__ ( self ) -> float: if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __magic_name__ : Dict = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: __magic_name__ : Optional[Any] = self * other __magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase ( _A ): """simple docstring""" assert isinstance(_A, _A ) return Vector([0] * dimension ) def UpperCamelCase ( _A, _A ): """simple docstring""" assert isinstance(_A, _A ) and (isinstance(_A, _A )) __magic_name__ : Union[str, Any] = [0] * dimension __magic_name__ : Optional[int] = 1 return Vector(_A ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" assert ( isinstance(_A, _A ) and isinstance(_A, _A ) and (isinstance(_A, (int, float) )) ) return x * scalar + y def UpperCamelCase ( _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )] return Vector(_A ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Dict = matrix __magic_name__ : Tuple = w __magic_name__ : Union[str, Any] = h def __str__( self ) -> str: __magic_name__ : Dict = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Tuple = [] for i in range(self.__height ): __magic_name__ : Tuple = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Optional[Any] = [] for i in range(self.__height ): __magic_name__ : int = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Matrix: ... @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: __magic_name__ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ : Optional[int] = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar __magic_name__ : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def __magic_name__ ( self ) -> int: return self.__height def __magic_name__ ( self ) -> int: return self.__width def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): __magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __magic_name__ ( self ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )] return Matrix(_A, _A, _A ) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : list[list[float]] = [ [random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A ) ] return Matrix(_A, _A, _A )
342
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __magic_name__: List[str] = logging.get_logger(__name__) @dataclass class snake_case__ ( _lowerCAmelCase ): lowercase__ : Optional[Any] = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **lowerCAmelCase__ ) -> Optional[int]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __magic_name__ : Optional[Any] = deprecated_arg[3:] __magic_name__ : Union[str, Any] = not kwargs.pop(lowerCAmelCase__ ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no-{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) __magic_name__ : Optional[int] = kwargs.pop("""tpu_name""" , self.tpu_name ) __magic_name__ : Dict = kwargs.pop("""device_idx""" , self.device_idx ) __magic_name__ : List[str] = kwargs.pop("""eager_mode""" , self.eager_mode ) __magic_name__ : int = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**lowerCAmelCase__ ) lowercase__ : str = field( default=_lowerCAmelCase , metadata={'''help''': '''Name of TPU'''} , ) lowercase__ : int = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) lowercase__ : bool = field(default=_lowerCAmelCase , metadata={'''help''': '''Benchmark models in eager model.'''} ) lowercase__ : bool = field( default=_lowerCAmelCase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def __magic_name__ ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ["""tf"""] ) __magic_name__ : Optional[Any] = None if self.tpu: try: if self.tpu_name: __magic_name__ : int = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: __magic_name__ : int = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __magic_name__ : Any = None return tpu @cached_property def __magic_name__ ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) __magic_name__ : str = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) __magic_name__ : Any = tf.distribute.OneDeviceStrategy(device=F'/gpu:{self.device_idx}' ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU __magic_name__ : Optional[int] = tf.distribute.OneDeviceStrategy(device=F'/cpu:{self.device_idx}' ) return strategy @property def __magic_name__ ( self ) -> bool: requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def __magic_name__ ( self ) -> "tf.distribute.Strategy": requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def __magic_name__ ( self ) -> Optional[Any]: requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def __magic_name__ ( self ) -> int: requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __magic_name__ ( self ) -> bool: return self.n_gpu > 0
342
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: int = "▁" __magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"} __magic_name__: List[str] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __magic_name__: Tuple = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off __magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = ['''input_ids''', '''attention_mask'''] lowercase__ : List[int] = [] lowercase__ : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) __magic_name__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__ : List[Any] = 1 __magic_name__ : Dict = len(self.sp_model ) __magic_name__ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } __magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} __magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __magic_name__ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn""" __magic_name__ : Any = self.lang_code_to_id[self._src_lang] __magic_name__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Any: __magic_name__ : List[Any] = self.__dict__.copy() __magic_name__ : int = None __magic_name__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ : Any = {} __magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __magic_name__ ( self ) -> str: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self ) -> str: return self._src_lang @src_lang.setter def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __magic_name__ : Optional[int] = [1] * len(self.prefix_tokens ) __magic_name__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : str = [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__ : Dict = src_lang __magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Tuple = tgt_lang_id return inputs def __magic_name__ ( self ) -> int: __magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip() return out_string def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , """wb""" ) as fi: __magic_name__ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding: __magic_name__ : List[str] = src_lang __magic_name__ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : str = [self.cur_lang_code] __magic_name__ : List[Any] = [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : Optional[int] = [self.cur_lang_code] __magic_name__ : Union[str, Any] = [self.eos_token_id]
342
1
def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = [1] __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = 0, 0, 0 __magic_name__ : List[Any] = ugly_nums[ia] * 2 __magic_name__ : Dict = ugly_nums[ia] * 3 __magic_name__ : str = ugly_nums[ia] * 5 for _ in range(1, _A ): __magic_name__ : int = min(_A, _A, _A ) ugly_nums.append(_A ) if next_num == next_a: ia += 1 __magic_name__ : str = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __magic_name__ : int = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __magic_name__ : Optional[Any] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"""{ugly_numbers(200) = }""")
342
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Dict = MobileBertConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ : Tuple = MobileBertForPreTraining(_A ) # Load weights from tf checkpoint __magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _A ) if __name__ == "__main__": __magic_name__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__: Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
342
1
from __future__ import annotations import math __magic_name__: str = "2020.9.26" __magic_name__: Any = "xcodz-dot, cclaus, dhruvmanila" def UpperCamelCase ( _A, _A, _A, _A, _A ): """simple docstring""" if not all(isinstance(_A, (float, int) ) for val in locals().values() ): __magic_name__ : str = f'Input values must either be float or int: {list(locals().values() )}' raise TypeError(_A ) __magic_name__ : List[Any] = ((x * distance) / (z + distance)) * scale __magic_name__ : Optional[Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def UpperCamelCase ( _A, _A, _A, _A, _A ): """simple docstring""" if not isinstance(_A, _A ): raise TypeError("""Axis must be a str""" ) __magic_name__ : Any = locals() del input_variables["axis"] if not all(isinstance(_A, (float, int) ) for val in input_variables.values() ): __magic_name__ : Any = ( """Input values except axis must either be float or int: """ f'{list(input_variables.values() )}' ) raise TypeError(_A ) __magic_name__ : Union[str, Any] = (angle % 360) / 450 * 180 / math.pi if axis == "z": __magic_name__ : Any = x * math.cos(_A ) - y * math.sin(_A ) __magic_name__ : Tuple = y * math.cos(_A ) + x * math.sin(_A ) __magic_name__ : Optional[Any] = z elif axis == "x": __magic_name__ : Union[str, Any] = y * math.cos(_A ) - z * math.sin(_A ) __magic_name__ : Optional[Any] = z * math.cos(_A ) + y * math.sin(_A ) __magic_name__ : List[str] = x elif axis == "y": __magic_name__ : Tuple = x * math.cos(_A ) - z * math.sin(_A ) __magic_name__ : List[Any] = z * math.cos(_A ) + x * math.sin(_A ) __magic_name__ : Optional[int] = y else: raise ValueError("""not a valid axis, choose one of 'x', 'y', 'z'""" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }""")
342
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = MgpstrTokenizer lowercase__ : int = False lowercase__ : Any = {} lowercase__ : Optional[int] = False def __magic_name__ ( self ) -> Optional[Any]: super().setUp() # fmt: off __magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = """tester""" __magic_name__ : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Dict = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) __magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) __magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __magic_name__ ( self ) -> Optional[Any]: pass
342
1
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() __magic_name__: str = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __magic_name__: Union[str, Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Optional[Any] = state_dict.pop(_A ) __magic_name__ : str = val def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Tuple = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __magic_name__ : int = key.replace("""backbone.0.body""", """backbone.conv_encoder.model""" ) __magic_name__ : Tuple = value else: __magic_name__ : Dict = value return new_state_dict def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = """""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __magic_name__ : str = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) __magic_name__ : Union[str, Any] = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : Optional[int] = in_proj_weight[:256, :] __magic_name__ : Optional[Any] = in_proj_bias[:256] __magic_name__ : Union[str, Any] = in_proj_weight[256:512, :] __magic_name__ : List[str] = in_proj_bias[256:512] __magic_name__ : List[Any] = in_proj_weight[-256:, :] __magic_name__ : Tuple = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __magic_name__ : Union[str, Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) __magic_name__ : List[str] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : List[Any] = in_proj_weight[:256, :] __magic_name__ : List[Any] = in_proj_bias[:256] __magic_name__ : List[str] = in_proj_weight[256:512, :] __magic_name__ : List[str] = in_proj_bias[256:512] __magic_name__ : Dict = in_proj_weight[-256:, :] __magic_name__ : int = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __magic_name__ : Tuple = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) __magic_name__ : int = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict __magic_name__ : str = in_proj_weight_cross_attn[:256, :] __magic_name__ : int = in_proj_bias_cross_attn[:256] __magic_name__ : List[str] = in_proj_weight_cross_attn[256:512, :] __magic_name__ : List[str] = in_proj_bias_cross_attn[256:512] __magic_name__ : int = in_proj_weight_cross_attn[-256:, :] __magic_name__ : Optional[Any] = in_proj_bias_cross_attn[-256:] def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ ,__magic_name__ : Optional[int] = image.size __magic_name__ : int = max(_A, _A ) __magic_name__ : Union[str, Any] = 800 if """detection""" in checkpoint_url else 1000 __magic_name__ : str = target_max_size / current_max_size __magic_name__ : Optional[Any] = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = F.to_tensor(_A ) __magic_name__ : str = F.normalize(_A, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def UpperCamelCase ( _A, _A, _A ): """simple docstring""" logger.info("""Converting model...""" ) # load original state dict __magic_name__ : int = torch.hub.load_state_dict_from_url(_A, map_location="""cpu""" ) # rename keys for src, dest in rename_keys: rename_key(_A, _A, _A ) __magic_name__ : List[str] = rename_backbone_keys(_A ) # query, key and value matrices need special treatment read_in_q_k_v(_A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __magic_name__ : Union[str, Any] = """model.""" for key in state_dict.copy().keys(): if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): __magic_name__ : int = state_dict.pop(_A ) __magic_name__ : int = val # create HuggingFace model and load state dict __magic_name__ : Optional[Any] = TableTransformerConfig( backbone="""resnet18""", mask_loss_coefficient=1, dice_loss_coefficient=1, ce_loss_coefficient=1, bbox_loss_coefficient=5, giou_loss_coefficient=2, eos_coefficient=0.4, class_cost=1, bbox_cost=5, giou_cost=2, ) if "detection" in checkpoint_url: __magic_name__ : Optional[int] = 15 __magic_name__ : Tuple = 2 __magic_name__ : str = {0: """table""", 1: """table rotated"""} __magic_name__ : int = idalabel __magic_name__ : Tuple = {v: k for k, v in idalabel.items()} else: __magic_name__ : int = 125 __magic_name__ : List[str] = 6 __magic_name__ : str = { 0: """table""", 1: """table column""", 2: """table row""", 3: """table column header""", 4: """table projected row header""", 5: """table spanning cell""", } __magic_name__ : str = idalabel __magic_name__ : Optional[Any] = {v: k for k, v in idalabel.items()} __magic_name__ : int = DetrImageProcessor( format="""coco_detection""", max_size=800 if """detection""" in checkpoint_url else 1000 ) __magic_name__ : str = TableTransformerForObjectDetection(_A ) model.load_state_dict(_A ) model.eval() # verify our conversion __magic_name__ : Dict = """example_pdf.png""" if """detection""" in checkpoint_url else """example_table.png""" __magic_name__ : Optional[Any] = hf_hub_download(repo_id="""nielsr/example-pdf""", repo_type="""dataset""", filename=_A ) __magic_name__ : int = Image.open(_A ).convert("""RGB""" ) __magic_name__ : Any = normalize(resize(_A, _A ) ).unsqueeze(0 ) __magic_name__ : Optional[int] = model(_A ) if "detection" in checkpoint_url: __magic_name__ : Tuple = (1, 15, 3) __magic_name__ : Tuple = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) __magic_name__ : List[Any] = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: __magic_name__ : Any = (1, 125, 7) __magic_name__ : List[Any] = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) __magic_name__ : Optional[int] = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3], _A, atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3], _A, atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) if push_to_hub: # Push model to HF hub logger.info("""Pushing model to the hub...""" ) __magic_name__ : Optional[Any] = ( """microsoft/table-transformer-detection""" if """detection""" in checkpoint_url else """microsoft/table-transformer-structure-recognition""" ) model.push_to_hub(_A ) image_processor.push_to_hub(_A ) if __name__ == "__main__": __magic_name__: int = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __magic_name__: Tuple = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
342
import re def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(_A, _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
342
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: int = "▁" __magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"} __magic_name__: List[str] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __magic_name__: Tuple = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off __magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = ['''input_ids''', '''attention_mask'''] lowercase__ : List[int] = [] lowercase__ : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) __magic_name__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__ : List[Any] = 1 __magic_name__ : Dict = len(self.sp_model ) __magic_name__ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } __magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} __magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __magic_name__ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn""" __magic_name__ : Any = self.lang_code_to_id[self._src_lang] __magic_name__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Any: __magic_name__ : List[Any] = self.__dict__.copy() __magic_name__ : int = None __magic_name__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ : Any = {} __magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __magic_name__ ( self ) -> str: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self ) -> str: return self._src_lang @src_lang.setter def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __magic_name__ : Optional[int] = [1] * len(self.prefix_tokens ) __magic_name__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : str = [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__ : Dict = src_lang __magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Tuple = tgt_lang_id return inputs def __magic_name__ ( self ) -> int: __magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip() return out_string def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , """wb""" ) as fi: __magic_name__ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding: __magic_name__ : List[str] = src_lang __magic_name__ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : str = [self.cur_lang_code] __magic_name__ : List[Any] = [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : Optional[int] = [self.cur_lang_code] __magic_name__ : Union[str, Any] = [self.eos_token_id]
342
import doctest from collections import deque import numpy as np class snake_case__ : def __init__( self ) -> None: __magic_name__ : Any = [2, 1, 2, -1] __magic_name__ : Tuple = [1, 2, 3, 4] def __magic_name__ ( self ) -> list[float]: __magic_name__ : Optional[Any] = len(self.first_signal ) __magic_name__ : Dict = len(self.second_signal ) __magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ ) # create a zero matrix of max_length x max_length __magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__ ): __magic_name__ : List[str] = deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase__ ) for j, item in enumerate(lowerCAmelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal __magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
342
1
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Tuple = SwinConfig() __magic_name__ : Any = swin_name.split("""_""" ) __magic_name__ : List[Any] = name_split[1] __magic_name__ : Union[str, Any] = int(name_split[4] ) __magic_name__ : List[Any] = int(name_split[3][-1] ) if model_size == "tiny": __magic_name__ : int = 96 __magic_name__ : Any = (2, 2, 6, 2) __magic_name__ : Optional[int] = (3, 6, 12, 24) elif model_size == "small": __magic_name__ : List[str] = 96 __magic_name__ : List[Any] = (2, 2, 18, 2) __magic_name__ : Tuple = (3, 6, 12, 24) elif model_size == "base": __magic_name__ : List[str] = 128 __magic_name__ : Optional[int] = (2, 2, 18, 2) __magic_name__ : Union[str, Any] = (4, 8, 16, 32) else: __magic_name__ : Optional[Any] = 192 __magic_name__ : List[Any] = (2, 2, 18, 2) __magic_name__ : Optional[Any] = (6, 12, 24, 48) if "in22k" in swin_name: __magic_name__ : List[str] = 21841 else: __magic_name__ : Dict = 1000 __magic_name__ : Union[str, Any] = """huggingface/label-files""" __magic_name__ : Optional[int] = """imagenet-1k-id2label.json""" __magic_name__ : str = json.load(open(hf_hub_download(_A, _A, repo_type="""dataset""" ), """r""" ) ) __magic_name__ : List[str] = {int(_A ): v for k, v in idalabel.items()} __magic_name__ : Union[str, Any] = idalabel __magic_name__ : Any = {v: k for k, v in idalabel.items()} __magic_name__ : int = img_size __magic_name__ : int = num_classes __magic_name__ : str = embed_dim __magic_name__ : List[Any] = depths __magic_name__ : List[Any] = num_heads __magic_name__ : List[str] = window_size return config def UpperCamelCase ( _A ): """simple docstring""" if "patch_embed.proj" in name: __magic_name__ : str = name.replace("""patch_embed.proj""", """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __magic_name__ : Optional[Any] = name.replace("""patch_embed.norm""", """embeddings.norm""" ) if "layers" in name: __magic_name__ : Any = """encoder.""" + name if "attn.proj" in name: __magic_name__ : str = name.replace("""attn.proj""", """attention.output.dense""" ) if "attn" in name: __magic_name__ : str = name.replace("""attn""", """attention.self""" ) if "norm1" in name: __magic_name__ : Optional[int] = name.replace("""norm1""", """layernorm_before""" ) if "norm2" in name: __magic_name__ : Tuple = name.replace("""norm2""", """layernorm_after""" ) if "mlp.fc1" in name: __magic_name__ : str = name.replace("""mlp.fc1""", """intermediate.dense""" ) if "mlp.fc2" in name: __magic_name__ : List[str] = name.replace("""mlp.fc2""", """output.dense""" ) if name == "norm.weight": __magic_name__ : List[Any] = """layernorm.weight""" if name == "norm.bias": __magic_name__ : Any = """layernorm.bias""" if "head" in name: __magic_name__ : Any = name.replace("""head""", """classifier""" ) else: __magic_name__ : List[str] = """swin.""" + name return name def UpperCamelCase ( _A, _A ): """simple docstring""" for key in orig_state_dict.copy().keys(): __magic_name__ : Dict = orig_state_dict.pop(_A ) if "mask" in key: continue elif "qkv" in key: __magic_name__ : int = key.split(""".""" ) __magic_name__ : Dict = int(key_split[1] ) __magic_name__ : Tuple = int(key_split[3] ) __magic_name__ : Dict = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __magic_name__ : Dict = val[:dim, :] __magic_name__ : Union[str, Any] = val[ dim : dim * 2, : ] __magic_name__ : Tuple = val[-dim:, :] else: __magic_name__ : List[Any] = val[ :dim ] __magic_name__ : Optional[Any] = val[ dim : dim * 2 ] __magic_name__ : Union[str, Any] = val[ -dim: ] else: __magic_name__ : Any = val return orig_state_dict def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : str = timm.create_model(_A, pretrained=_A ) timm_model.eval() __magic_name__ : Optional[Any] = get_swin_config(_A ) __magic_name__ : Dict = SwinForImageClassification(_A ) model.eval() __magic_name__ : int = convert_state_dict(timm_model.state_dict(), _A ) model.load_state_dict(_A ) __magic_name__ : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __magic_name__ : str = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""", """-""" ) ) ) __magic_name__ : List[Any] = Image.open(requests.get(_A, stream=_A ).raw ) __magic_name__ : Dict = image_processor(images=_A, return_tensors="""pt""" ) __magic_name__ : Optional[int] = timm_model(inputs["""pixel_values"""] ) __magic_name__ : Optional[Any] = model(**_A ).logits assert torch.allclose(_A, _A, atol=1e-3 ) print(f'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_A ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_A ) if __name__ == "__main__": __magic_name__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __magic_name__: Union[str, Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
342
from math import factorial def UpperCamelCase ( _A, _A, _A ): """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(_A, _A ) or not isinstance(_A, _A ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) __magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __magic_name__ : Any = float(factorial(_A ) ) coefficient /= factorial(_A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
342
1
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __magic_name__: str = logging.get_logger(__name__) # General docstring __magic_name__: Dict = "MobileNetV1Config" # Base docstring __magic_name__: Union[str, Any] = "google/mobilenet_v1_1.0_224" __magic_name__: List[str] = [1, 1_024, 7, 7] # Image classification docstring __magic_name__: List[Any] = "google/mobilenet_v1_1.0_224" __magic_name__: Any = "tabby, tabby cat" __magic_name__: Any = [ "google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCamelCase ( _A, _A, _A=None ): """simple docstring""" __magic_name__ : Union[str, Any] = {} if isinstance(_A, _A ): __magic_name__ : Optional[Any] = model.mobilenet_va else: __magic_name__ : List[str] = model __magic_name__ : Union[str, Any] = """MobilenetV1/Conv2d_0/""" __magic_name__ : Tuple = backbone.conv_stem.convolution.weight __magic_name__ : Optional[Any] = backbone.conv_stem.normalization.bias __magic_name__ : Any = backbone.conv_stem.normalization.weight __magic_name__ : Union[str, Any] = backbone.conv_stem.normalization.running_mean __magic_name__ : str = backbone.conv_stem.normalization.running_var for i in range(13 ): __magic_name__ : Union[str, Any] = i + 1 __magic_name__ : Any = i * 2 __magic_name__ : Any = backbone.layer[pt_index] __magic_name__ : Tuple = f'MobilenetV1/Conv2d_{tf_index}_depthwise/' __magic_name__ : Union[str, Any] = pointer.convolution.weight __magic_name__ : List[Any] = pointer.normalization.bias __magic_name__ : Optional[Any] = pointer.normalization.weight __magic_name__ : Union[str, Any] = pointer.normalization.running_mean __magic_name__ : str = pointer.normalization.running_var __magic_name__ : Optional[int] = backbone.layer[pt_index + 1] __magic_name__ : Tuple = f'MobilenetV1/Conv2d_{tf_index}_pointwise/' __magic_name__ : List[Any] = pointer.convolution.weight __magic_name__ : int = pointer.normalization.bias __magic_name__ : List[str] = pointer.normalization.weight __magic_name__ : Union[str, Any] = pointer.normalization.running_mean __magic_name__ : Tuple = pointer.normalization.running_var if isinstance(_A, _A ): __magic_name__ : str = """MobilenetV1/Logits/Conv2d_1c_1x1/""" __magic_name__ : Optional[int] = model.classifier.weight __magic_name__ : List[Any] = model.classifier.bias return tf_to_pt_map def UpperCamelCase ( _A, _A, _A ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model __magic_name__ : Dict = tf.train.list_variables(_A ) __magic_name__ : Dict = {} for name, shape in init_vars: logger.info(f'Loading TF weight {name} with shape {shape}' ) __magic_name__ : List[str] = tf.train.load_variable(_A, _A ) __magic_name__ : str = array # Build TF to PyTorch weights loading map __magic_name__ : Optional[Any] = _build_tf_to_pytorch_map(_A, _A, _A ) for name, pointer in tf_to_pt_map.items(): logger.info(f'Importing {name}' ) if name not in tf_weights: logger.info(f'{name} not in tf pre-trained weights, skipping' ) continue __magic_name__ : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) __magic_name__ : Optional[int] = np.transpose(_A, (2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer __magic_name__ : List[str] = array.squeeze().transpose() else: __magic_name__ : Tuple = np.transpose(_A, (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(f'Initialize PyTorch weight {name} {array.shape}' ) __magic_name__ : Tuple = torch.from_numpy(_A ) tf_weights.pop(_A, _A ) tf_weights.pop(name + """/RMSProp""", _A ) tf_weights.pop(name + """/RMSProp_1""", _A ) tf_weights.pop(name + """/ExponentialMovingAverage""", _A ) logger.info(f'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ ,__magic_name__ : Tuple = features.shape[-2:] __magic_name__ ,__magic_name__ : List[Any] = conv_layer.stride __magic_name__ ,__magic_name__ : Union[str, Any] = conv_layer.kernel_size if in_height % stride_height == 0: __magic_name__ : Tuple = max(kernel_height - stride_height, 0 ) else: __magic_name__ : Any = max(kernel_height - (in_height % stride_height), 0 ) if in_width % stride_width == 0: __magic_name__ : Optional[int] = max(kernel_width - stride_width, 0 ) else: __magic_name__ : str = max(kernel_width - (in_width % stride_width), 0 ) __magic_name__ : List[Any] = pad_along_width // 2 __magic_name__ : Dict = pad_along_width - pad_left __magic_name__ : int = pad_along_height // 2 __magic_name__ : List[Any] = pad_along_height - pad_top __magic_name__ : Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_A, _A, """constant""", 0.0 ) class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = True , ) -> None: super().__init__() __magic_name__ : List[Any] = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) __magic_name__ : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) __magic_name__ : List[str] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="""zeros""" , ) if use_normalization: __magic_name__ : Optional[Any] = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: __magic_name__ : Union[str, Any] = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Tuple = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__ ): __magic_name__ : Dict = ACTaFN[config.hidden_act] else: __magic_name__ : List[Any] = config.hidden_act else: __magic_name__ : Optional[int] = None def __magic_name__ ( self , lowerCAmelCase__ ) -> torch.Tensor: if self.config.tf_padding: __magic_name__ : str = apply_tf_padding(lowerCAmelCase__ , self.convolution ) __magic_name__ : Union[str, Any] = self.convolution(lowerCAmelCase__ ) if self.normalization is not None: __magic_name__ : Any = self.normalization(lowerCAmelCase__ ) if self.activation is not None: __magic_name__ : Optional[Any] = self.activation(lowerCAmelCase__ ) return features class snake_case__ ( _lowerCAmelCase ): lowercase__ : Tuple = MobileNetVaConfig lowercase__ : List[Any] = load_tf_weights_in_mobilenet_va lowercase__ : Union[str, Any] = '''mobilenet_v1''' lowercase__ : Dict = '''pixel_values''' lowercase__ : Dict = False def __magic_name__ ( self , lowerCAmelCase__ ) -> None: if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __magic_name__: List[Any] = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __magic_name__: Tuple = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , _lowerCAmelCase , ) class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True ) -> Optional[Any]: super().__init__(lowerCAmelCase__ ) __magic_name__ : List[Any] = config __magic_name__ : Dict = 32 __magic_name__ : List[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) __magic_name__ : Optional[Any] = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) __magic_name__ : Dict = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __magic_name__ : Union[str, Any] = nn.ModuleList() for i in range(13 ): __magic_name__ : List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 __magic_name__ : Any = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , ) ) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , ) ) __magic_name__ : Union[str, Any] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __magic_name__ ( self , lowerCAmelCase__ ) -> str: raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __magic_name__ ( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: __magic_name__ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __magic_name__ : int = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) __magic_name__ : List[Any] = self.conv_stem(lowerCAmelCase__ ) __magic_name__ : int = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): __magic_name__ : Optional[Any] = layer_module(lowerCAmelCase__ ) if output_hidden_states: __magic_name__ : List[Any] = all_hidden_states + (hidden_states,) __magic_name__ : Tuple = hidden_states if self.pooler is not None: __magic_name__ : Tuple = torch.flatten(self.pooler(lowerCAmelCase__ ) , start_dim=1 ) else: __magic_name__ : Dict = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , _lowerCAmelCase , ) class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ ) -> None: super().__init__(lowerCAmelCase__ ) __magic_name__ : Dict = config.num_labels __magic_name__ : Optional[Any] = MobileNetVaModel(lowerCAmelCase__ ) __magic_name__ : List[Any] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __magic_name__ : Optional[Any] = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__ ) __magic_name__ : int = nn.Linear(lowerCAmelCase__ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __magic_name__ ( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: __magic_name__ : List[str] = return_dict if return_dict is not None else self.config.use_return_dict __magic_name__ : List[str] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) __magic_name__ : Dict = outputs.pooler_output if return_dict else outputs[1] __magic_name__ : str = self.classifier(self.dropout(lowerCAmelCase__ ) ) __magic_name__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __magic_name__ : int = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __magic_name__ : Optional[int] = """single_label_classification""" else: __magic_name__ : Dict = """multi_label_classification""" if self.config.problem_type == "regression": __magic_name__ : Optional[Any] = MSELoss() if self.num_labels == 1: __magic_name__ : Optional[int] = loss_fct(logits.squeeze() , labels.squeeze() ) else: __magic_name__ : Optional[Any] = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config.problem_type == "single_label_classification": __magic_name__ : Optional[int] = CrossEntropyLoss() __magic_name__ : Optional[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __magic_name__ : Optional[Any] = BCEWithLogitsLoss() __magic_name__ : Any = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) if not return_dict: __magic_name__ : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
342
from __future__ import annotations def UpperCamelCase ( _A ): # This function is recursive """simple docstring""" __magic_name__ : str = len(_A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __magic_name__ : Dict = array[0] __magic_name__ : Optional[Any] = False __magic_name__ : Tuple = 1 __magic_name__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __magic_name__ : Union[str, Any] = True __magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]] __magic_name__ : Dict = longest_subsequence(_A ) if len(_A ) > len(_A ): __magic_name__ : Tuple = temp_array else: i += 1 __magic_name__ : Any = [element for element in array[1:] if element >= pivot] __magic_name__ : Dict = [pivot, *longest_subsequence(_A )] if len(_A ) > len(_A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
342
1
from string import ascii_lowercase, ascii_uppercase def UpperCamelCase ( _A ): """simple docstring""" if not sentence: return "" __magic_name__ : int = dict(zip(_A, _A ) ) return lower_to_upper.get(sentence[0], sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
342
import argparse import os import re __magic_name__: Optional[Any] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings __magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def UpperCamelCase ( _A, _A = False ): """simple docstring""" with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : Any = f.read() __magic_name__ : List[Any] = content.split("""\n""" ) __magic_name__ : List[str] = [] __magic_name__ : Union[str, Any] = 0 while line_idx < len(_A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 __magic_name__ : List[Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __magic_name__ : List[str] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_A, """w""", encoding="""utf-8""" ) as f: f.write("""\n""".join(_A ) ) elif "\n".join(_A ) != content: return True def UpperCamelCase ( _A = False ): """simple docstring""" __magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )] __magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames] if not overwrite and any(_A ): __magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix' """ this.""" ) if __name__ == "__main__": __magic_name__: List[str] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __magic_name__: List[str] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
342
1
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Tuple = AlbertConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ : Union[str, Any] = AlbertForPreTraining(_A ) # Load weights from tf checkpoint load_tf_weights_in_albert(_A, _A, _A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _A ) if __name__ == "__main__": __magic_name__: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__: Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
342
__magic_name__: str = [0, 2, 4, 6, 8] __magic_name__: Optional[int] = [1, 3, 5, 7, 9] def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __magic_name__ : List[Any] = 0 for digit in range(10 ): __magic_name__ : Optional[int] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, _A, _A ) return result __magic_name__ : str = 0 for digita in range(10 ): __magic_name__ : Optional[Any] = digita if (remainder + digita) % 2 == 0: __magic_name__ : Tuple = ODD_DIGITS else: __magic_name__ : str = EVEN_DIGITS for digita in other_parity_digits: __magic_name__ : Tuple = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, ) return result def UpperCamelCase ( _A = 9 ): """simple docstring""" __magic_name__ : List[str] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(_A, 0, [0] * length, _A ) return result if __name__ == "__main__": print(F"""{solution() = }""")
342
1
from __future__ import annotations from random import choice def UpperCamelCase ( _A ): """simple docstring""" return choice(_A ) def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : int = random_pivot(_A ) # partition based on pivot # linear time __magic_name__ : List[str] = [e for e in lst if e < pivot] __magic_name__ : str = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_A ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_A ) < k - 1: return kth_number(_A, k - len(_A ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_A, _A ) if __name__ == "__main__": import doctest doctest.testmod()
342
def UpperCamelCase ( _A ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) __magic_name__ : int = sorted(string.lower() ) return len(_A ) == len(set(_A ) ) if __name__ == "__main__": __magic_name__: Dict = input("Enter a string ").strip() __magic_name__: Union[str, Any] = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
342
1
def UpperCamelCase ( _A ): """simple docstring""" if not isinstance(_A, _A ): __magic_name__ : Any = f'Input value of [number={number}] must be an integer' raise TypeError(_A ) if number < 0: return False __magic_name__ : Any = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
342
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
342
1
import os def UpperCamelCase ( ): """simple docstring""" with open(os.path.dirname(_A ) + """/p022_names.txt""" ) as file: __magic_name__ : Optional[int] = str(file.readlines()[0] ) __magic_name__ : Optional[Any] = names.replace("""\"""", """""" ).split(""",""" ) names.sort() __magic_name__ : Optional[Any] = 0 __magic_name__ : Optional[Any] = 0 for i, name in enumerate(_A ): for letter in name: name_score += ord(_A ) - 64 total_score += (i + 1) * name_score __magic_name__ : Union[str, Any] = 0 return total_score if __name__ == "__main__": print(solution())
342
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]: __magic_name__ : str = parent __magic_name__ : Dict = do_resize __magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88} __magic_name__ : Union[str, Any] = size_divisor __magic_name__ : Union[str, Any] = do_rescale __magic_name__ : Dict = rescale_factor __magic_name__ : Union[str, Any] = do_normalize __magic_name__ : List[str] = do_center_crop __magic_name__ : Tuple = image_mean __magic_name__ : Tuple = image_std __magic_name__ : Tuple = do_pad __magic_name__ : int = batch_size __magic_name__ : List[Any] = num_channels __magic_name__ : int = min_resolution __magic_name__ : str = max_resolution def __magic_name__ ( self ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int: if not batched: __magic_name__ : Dict = self.size["""shortest_edge"""] __magic_name__ : List[str] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): __magic_name__ ,__magic_name__ : List[Any] = image.size else: __magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2] __magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ ) if h < w: __magic_name__ ,__magic_name__ : str = size, scale * w else: __magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size __magic_name__ : Tuple = int((13_33 / 8_00) * size ) if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size: __magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = newh * scale __magic_name__ : Any = neww * scale __magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 ) __magic_name__ ,__magic_name__ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __magic_name__ : Union[str, Any] = [] for image in image_inputs: __magic_name__ ,__magic_name__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] __magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = BridgeTowerImageProcessingTester(self ) @property def __magic_name__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Any: __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) ) def __magic_name__ ( self ) -> Optional[int]: pass def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> str: # Initialize image processor __magic_name__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
342
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__: Optional[Any] = logging.get_logger(__name__) __magic_name__: List[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = '''data2vec-vision''' def __init__( self , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-1_2 , lowerCAmelCase__=2_24 , lowerCAmelCase__=16 , lowerCAmelCase__=3 , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=True , lowerCAmelCase__=[3, 5, 7, 11] , lowerCAmelCase__=[1, 2, 3, 6] , lowerCAmelCase__=True , lowerCAmelCase__=0.4 , lowerCAmelCase__=2_56 , lowerCAmelCase__=1 , lowerCAmelCase__=False , lowerCAmelCase__=2_55 , **lowerCAmelCase__ , ) -> int: super().__init__(**lowerCAmelCase__ ) __magic_name__ : Dict = hidden_size __magic_name__ : str = num_hidden_layers __magic_name__ : Union[str, Any] = num_attention_heads __magic_name__ : List[str] = intermediate_size __magic_name__ : Tuple = hidden_act __magic_name__ : int = hidden_dropout_prob __magic_name__ : Tuple = attention_probs_dropout_prob __magic_name__ : Dict = initializer_range __magic_name__ : str = layer_norm_eps __magic_name__ : Any = image_size __magic_name__ : Optional[int] = patch_size __magic_name__ : Optional[Any] = num_channels __magic_name__ : Any = use_mask_token __magic_name__ : Optional[Any] = use_absolute_position_embeddings __magic_name__ : Optional[Any] = use_relative_position_bias __magic_name__ : List[Any] = use_shared_relative_position_bias __magic_name__ : Dict = layer_scale_init_value __magic_name__ : List[Any] = drop_path_rate __magic_name__ : Optional[Any] = use_mean_pooling # decode head attributes (semantic segmentation) __magic_name__ : List[str] = out_indices __magic_name__ : int = pool_scales # auxiliary head attributes (semantic segmentation) __magic_name__ : str = use_auxiliary_head __magic_name__ : List[Any] = auxiliary_loss_weight __magic_name__ : Union[str, Any] = auxiliary_channels __magic_name__ : Optional[Any] = auxiliary_num_convs __magic_name__ : Union[str, Any] = auxiliary_concat_input __magic_name__ : Optional[Any] = semantic_loss_ignore_index class snake_case__ ( _lowerCAmelCase ): lowercase__ : Optional[Any] = version.parse('''1.11''' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __magic_name__ ( self ) -> float: return 1e-4
342
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__: Tuple = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Union[str, Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __magic_name__: Optional[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
342
1
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __magic_name__: Optional[int] = logging.get_logger(__name__) # General docstring __magic_name__: Optional[Any] = "PoolFormerConfig" # Base docstring __magic_name__: Optional[int] = "sail/poolformer_s12" __magic_name__: str = [1, 512, 7, 7] # Image classification docstring __magic_name__: List[Any] = "sail/poolformer_s12" __magic_name__: Union[str, Any] = "tabby, tabby cat" __magic_name__: str = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def UpperCamelCase ( _A, _A = 0.0, _A = False ): """simple docstring""" if drop_prob == 0.0 or not training: return input __magic_name__ : Optional[int] = 1 - drop_prob __magic_name__ : List[Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets __magic_name__ : List[Any] = keep_prob + torch.rand(_A, dtype=input.dtype, device=input.device ) random_tensor.floor_() # binarize __magic_name__ : Tuple = input.div(_A ) * random_tensor return output class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ = None ) -> None: super().__init__() __magic_name__ : List[Any] = drop_prob def __magic_name__ ( self , lowerCAmelCase__ ) -> torch.Tensor: return drop_path(lowerCAmelCase__ , self.drop_prob , self.training ) def __magic_name__ ( self ) -> str: return "p={}".format(self.drop_prob ) class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Dict: super().__init__() __magic_name__ : str = patch_size if isinstance(lowerCAmelCase__ , collections.abc.Iterable ) else (patch_size, patch_size) __magic_name__ : List[str] = stride if isinstance(lowerCAmelCase__ , collections.abc.Iterable ) else (stride, stride) __magic_name__ : Tuple = padding if isinstance(lowerCAmelCase__ , collections.abc.Iterable ) else (padding, padding) __magic_name__ : int = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ ) __magic_name__ : int = norm_layer(lowerCAmelCase__ ) if norm_layer else nn.Identity() def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : List[str] = self.projection(lowerCAmelCase__ ) __magic_name__ : List[str] = self.norm(lowerCAmelCase__ ) return embeddings class snake_case__ ( nn.GroupNorm ): def __init__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: super().__init__(1 , lowerCAmelCase__ , **lowerCAmelCase__ ) class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ ) -> List[str]: super().__init__() __magic_name__ : List[Any] = nn.AvgPoolad(lowerCAmelCase__ , stride=1 , padding=pool_size // 2 , count_include_pad=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: return self.pool(lowerCAmelCase__ ) - hidden_states class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: super().__init__() __magic_name__ : Optional[Any] = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) __magic_name__ : Any = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) __magic_name__ : Union[str, Any] = PoolFormerDropPath(lowerCAmelCase__ ) if isinstance(config.hidden_act , lowerCAmelCase__ ): __magic_name__ : str = ACTaFN[config.hidden_act] else: __magic_name__ : Tuple = config.hidden_act def __magic_name__ ( self , lowerCAmelCase__ ) -> int: __magic_name__ : Optional[Any] = self.conva(lowerCAmelCase__ ) __magic_name__ : Tuple = self.act_fn(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.drop(lowerCAmelCase__ ) __magic_name__ : Dict = self.conva(lowerCAmelCase__ ) __magic_name__ : int = self.drop(lowerCAmelCase__ ) return hidden_states class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: super().__init__() __magic_name__ : Optional[Any] = PoolFormerPooling(lowerCAmelCase__ ) __magic_name__ : Any = PoolFormerOutput(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Optional[int] = PoolFormerGroupNorm(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = PoolFormerGroupNorm(lowerCAmelCase__ ) # Useful for training neural nets __magic_name__ : Dict = PoolFormerDropPath(lowerCAmelCase__ ) if drop_path > 0.0 else nn.Identity() __magic_name__ : List[Any] = config.use_layer_scale if config.use_layer_scale: __magic_name__ : str = nn.Parameter( config.layer_scale_init_value * torch.ones((lowerCAmelCase__) ) , requires_grad=lowerCAmelCase__ ) __magic_name__ : Dict = nn.Parameter( config.layer_scale_init_value * torch.ones((lowerCAmelCase__) ) , requires_grad=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> int: if self.use_layer_scale: __magic_name__ : Optional[Any] = self.pooling(self.before_norm(lowerCAmelCase__ ) ) __magic_name__ : Optional[int] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection __magic_name__ : List[Any] = hidden_states + self.drop_path(lowerCAmelCase__ ) __magic_name__ : Any = () __magic_name__ : Optional[int] = self.output(self.after_norm(lowerCAmelCase__ ) ) __magic_name__ : Tuple = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection __magic_name__ : Dict = hidden_states + self.drop_path(lowerCAmelCase__ ) __magic_name__ : str = (output,) + outputs return outputs else: __magic_name__ : List[Any] = self.drop_path(self.pooling(self.before_norm(lowerCAmelCase__ ) ) ) # First residual connection __magic_name__ : List[str] = pooling_output + hidden_states __magic_name__ : str = () # Second residual connection inside the PoolFormerOutput block __magic_name__ : Tuple = self.drop_path(self.output(self.after_norm(lowerCAmelCase__ ) ) ) __magic_name__ : Tuple = hidden_states + layer_output __magic_name__ : Dict = (output,) + outputs return outputs class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ ) -> Dict: super().__init__() __magic_name__ : int = config # stochastic depth decay rule __magic_name__ : Optional[Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings __magic_name__ : str = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) __magic_name__ : Dict = nn.ModuleList(lowerCAmelCase__ ) # Transformer blocks __magic_name__ : Union[str, Any] = [] __magic_name__ : Any = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers __magic_name__ : List[str] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( lowerCAmelCase__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(lowerCAmelCase__ ) ) __magic_name__ : str = nn.ModuleList(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=True ) -> int: __magic_name__ : Optional[Any] = () if output_hidden_states else None __magic_name__ : Optional[Any] = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): __magic_name__ ,__magic_name__ : Tuple = layers # Get patch embeddings from hidden_states __magic_name__ : Tuple = embedding_layer(lowerCAmelCase__ ) # Send the embeddings through the blocks for _, blk in enumerate(lowerCAmelCase__ ): __magic_name__ : List[str] = blk(lowerCAmelCase__ ) __magic_name__ : List[str] = layer_outputs[0] if output_hidden_states: __magic_name__ : Union[str, Any] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ ) class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = PoolFormerConfig lowercase__ : Union[str, Any] = '''poolformer''' lowercase__ : Union[str, Any] = '''pixel_values''' lowercase__ : Optional[Any] = True def __magic_name__ ( self , lowerCAmelCase__ ) -> List[Any]: if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Union[str, Any]: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = value __magic_name__: Tuple = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __magic_name__: List[Any] = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( '''The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.''' , _lowerCAmelCase , ) class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ ) -> Union[str, Any]: super().__init__(lowerCAmelCase__ ) __magic_name__ : List[Any] = config __magic_name__ : Optional[Any] = PoolFormerEncoder(lowerCAmelCase__ ) # Initialize weights and apply final processing self.post_init() def __magic_name__ ( self ) -> Tuple: return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __magic_name__ ( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: __magic_name__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __magic_name__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) __magic_name__ : Tuple = self.encoder( lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , ) __magic_name__ : Union[str, Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , ) class snake_case__ ( nn.Module ): def __init__( self , lowerCAmelCase__ ) -> Optional[Any]: super().__init__() __magic_name__ : Optional[Any] = nn.Linear(config.hidden_size , config.hidden_size ) def __magic_name__ ( self , lowerCAmelCase__ ) -> List[Any]: __magic_name__ : Union[str, Any] = self.dense(lowerCAmelCase__ ) return output @add_start_docstrings( ''' PoolFormer Model transformer with an image classification head on top ''' , _lowerCAmelCase , ) class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ ) -> Any: super().__init__(lowerCAmelCase__ ) __magic_name__ : Any = config.num_labels __magic_name__ : str = PoolFormerModel(lowerCAmelCase__ ) # Final norm __magic_name__ : Union[str, Any] = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head __magic_name__ : Optional[int] = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __magic_name__ ( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: __magic_name__ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __magic_name__ : List[str] = self.poolformer( lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , ) __magic_name__ : List[str] = outputs[0] __magic_name__ : Optional[int] = self.classifier(self.norm(lowerCAmelCase__ ).mean([-2, -1] ) ) __magic_name__ : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __magic_name__ : int = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __magic_name__ : Tuple = """single_label_classification""" else: __magic_name__ : str = """multi_label_classification""" if self.config.problem_type == "regression": __magic_name__ : Optional[int] = MSELoss() if self.num_labels == 1: __magic_name__ : int = loss_fct(logits.squeeze() , labels.squeeze() ) else: __magic_name__ : Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config.problem_type == "single_label_classification": __magic_name__ : Optional[int] = CrossEntropyLoss() __magic_name__ : str = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __magic_name__ : Tuple = BCEWithLogitsLoss() __magic_name__ : Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) if not return_dict: __magic_name__ : Optional[int] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states )
342
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__: Dict = logging.get_logger(__name__) __magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __magic_name__: Optional[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __magic_name__: List[Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Any = ( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) __magic_name__ : Any = bs[:] __magic_name__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 __magic_name__ : List[str] = [chr(_A ) for n in cs] return dict(zip(_A, _A ) ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = set() __magic_name__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[Any] = char return pairs class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict: __magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ ) __magic_name__ : Any = {v: k for k, v in self.encoder.items()} __magic_name__ : Tuple = errors # how to handle errors in decoding __magic_name__ : Tuple = bytes_to_unicode() __magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1] __magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : str = {} __magic_name__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __magic_name__ ( self ) -> Optional[Any]: return len(self.encoder ) def __magic_name__ ( self ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if token in self.cache: return self.cache[token] __magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ ,__magic_name__ : List[str] = bigram __magic_name__ : Any = [] __magic_name__ : Any = 0 while i < len(lowerCAmelCase__ ): try: __magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Optional[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : str = tuple(lowerCAmelCase__ ) __magic_name__ : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __magic_name__ : List[str] = get_pairs(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ ) __magic_name__ : str = word return word def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : str = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __magic_name__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Tuple = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __magic_name__ : Optional[Any] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : Optional[int] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] __magic_name__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : Dict = [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __magic_name__ : List[Any] = """ """ + text return (text, kwargs)
342
1
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification __magic_name__: int = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co __magic_name__: List[str] = "main" # Default branch name __magic_name__: str = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) __magic_name__: List[Any] = "aaaaaaa" # This commit does not exist, so we should 404. __magic_name__: Tuple = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes __magic_name__: Any = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def UpperCamelCase ( ): """simple docstring""" print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def UpperCamelCase ( ): """simple docstring""" print("""Bonjour!""" ) yield print("""Au revoir!""" ) class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Union[str, Any]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class snake_case__ ( unittest.TestCase ): @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def __magic_name__ ( self , lowerCAmelCase__ ) -> int: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def __magic_name__ ( self ) -> str: self.assertEqual(find_labels(lowerCAmelCase__ ) , ["""labels"""] ) self.assertEqual(find_labels(lowerCAmelCase__ ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(lowerCAmelCase__ ) , ["""start_positions""", """end_positions"""] ) class snake_case__ ( _lowerCAmelCase ): pass self.assertEqual(find_labels(lowerCAmelCase__ ) , ["""labels"""] ) @require_tf def __magic_name__ ( self ) -> Optional[Any]: self.assertEqual(find_labels(lowerCAmelCase__ ) , ["""labels"""] ) self.assertEqual(find_labels(lowerCAmelCase__ ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(lowerCAmelCase__ ) , ["""start_positions""", """end_positions"""] ) class snake_case__ ( _lowerCAmelCase ): pass self.assertEqual(find_labels(lowerCAmelCase__ ) , ["""labels"""] ) @require_flax def __magic_name__ ( self ) -> int: # Flax models don't have labels self.assertEqual(find_labels(lowerCAmelCase__ ) , [] ) self.assertEqual(find_labels(lowerCAmelCase__ ) , [] ) self.assertEqual(find_labels(lowerCAmelCase__ ) , [] ) class snake_case__ ( _lowerCAmelCase ): pass self.assertEqual(find_labels(lowerCAmelCase__ ) , [] )
342
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str: __magic_name__ : Optional[int] = parent __magic_name__ : Any = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[int] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : str = embed_dim __magic_name__ : int = hidden_sizes __magic_name__ : Union[str, Any] = depths __magic_name__ : List[str] = num_heads __magic_name__ : str = window_size __magic_name__ : Optional[Any] = mlp_ratio __magic_name__ : Dict = qkv_bias __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = drop_path_rate __magic_name__ : Optional[Any] = hidden_act __magic_name__ : int = use_absolute_embeddings __magic_name__ : Dict = patch_norm __magic_name__ : Tuple = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[int] = is_training __magic_name__ : Optional[Any] = scope __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = encoder_stride __magic_name__ : List[Any] = out_features __magic_name__ : Union[str, Any] = out_indices def __magic_name__ ( self ) -> str: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Dict = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Tuple = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __magic_name__ : Optional[Any] = None __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : str = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : int = self.type_sequence_label_size __magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> int: __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs __magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ : Any = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ : Dict = False lowercase__ : Dict = False lowercase__ : int = False lowercase__ : Tuple = False lowercase__ : Optional[Any] = False def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = FocalNetModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> List[str]: return def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __magic_name__ ( self ) -> List[str]: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self ) -> List[Any]: __magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : str = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # FocalNet has a different seq_length __magic_name__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ : str = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape __magic_name__ : Union[str, Any] = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __magic_name__ : List[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = 3 __magic_name__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __magic_name__ : Optional[int] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @slow def __magic_name__ ( self ) -> Union[str, Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: __magic_name__ : Any = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.default_image_processor __magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : List[Any] = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else () lowercase__ : Optional[int] = FocalNetConfig lowercase__ : Dict = False def __magic_name__ ( self ) -> int: __magic_name__ : Dict = FocalNetModelTester(self )
342
1
import flax.linen as nn import jax import jax.numpy as jnp class snake_case__ ( nn.Module ): lowercase__ : int lowercase__ : jnp.dtype = jnp.floataa def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Any = hidden_states.shape __magic_name__ : str = jax.image.resize( lowerCAmelCase__ , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) __magic_name__ : List[str] = self.conv(lowerCAmelCase__ ) return hidden_states class snake_case__ ( nn.Module ): lowercase__ : int lowercase__ : jnp.dtype = jnp.floataa def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , lowerCAmelCase__ ) -> Dict: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __magic_name__ : str = self.conv(lowerCAmelCase__ ) return hidden_states class snake_case__ ( nn.Module ): lowercase__ : int lowercase__ : int = None lowercase__ : float = 0.0 lowercase__ : bool = None lowercase__ : jnp.dtype = jnp.floataa def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.in_channels if self.out_channels is None else self.out_channels __magic_name__ : List[str] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __magic_name__ : List[Any] = nn.Conv( lowerCAmelCase__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __magic_name__ : List[Any] = nn.Dense(lowerCAmelCase__ , dtype=self.dtype ) __magic_name__ : List[str] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __magic_name__ : int = nn.Dropout(self.dropout_prob ) __magic_name__ : Dict = nn.Conv( lowerCAmelCase__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __magic_name__ : Dict = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __magic_name__ : Dict = None if use_nin_shortcut: __magic_name__ : List[Any] = nn.Conv( lowerCAmelCase__ , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=True ) -> Tuple: __magic_name__ : int = hidden_states __magic_name__ : str = self.norma(lowerCAmelCase__ ) __magic_name__ : Optional[int] = nn.swish(lowerCAmelCase__ ) __magic_name__ : Dict = self.conva(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.time_emb_proj(nn.swish(lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = jnp.expand_dims(jnp.expand_dims(lowerCAmelCase__ , 1 ) , 1 ) __magic_name__ : Union[str, Any] = hidden_states + temb __magic_name__ : Union[str, Any] = self.norma(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = nn.swish(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = self.dropout(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : str = self.conva(lowerCAmelCase__ ) if self.conv_shortcut is not None: __magic_name__ : Any = self.conv_shortcut(lowerCAmelCase__ ) return hidden_states + residual
342
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]: __magic_name__ : int = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = image_size __magic_name__ : str = num_channels __magic_name__ : Dict = patch_size __magic_name__ : Tuple = num_frames __magic_name__ : List[Any] = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : Dict = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Tuple = attention_type __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = scope __magic_name__ : Tuple = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __magic_name__ : str = (image_size // patch_size) ** 2 __magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : str = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> str: __magic_name__ : Dict = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __magic_name__ : Optional[Any] = self.num_labels return config def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[Any] = model(lowerCAmelCase__ ) # verify the logits shape __magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs __magic_name__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ : Union[str, Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : Any = False def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[Any] = TimesformerModelTester(self ) __magic_name__ : List[str] = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]: __magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Optional[int] = [*signature.parameters.keys()] __magic_name__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Optional[int]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: if not self.has_attentions: pass else: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True for model_class in self.all_model_classes: __magic_name__ : Tuple = self.model_tester.seq_length __magic_name__ : int = self.model_tester.num_frames __magic_name__ : Any = True __magic_name__ : Tuple = False __magic_name__ : Optional[int] = True __magic_name__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ : Optional[Any] = True __magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : int = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __magic_name__ : Union[str, Any] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : Optional[Any] = True __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) __magic_name__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" ) __magic_name__ : List[str] = np.load(_A ) return list(_A ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowerCAmelCase__ ) __magic_name__ : str = self.default_image_processor __magic_name__ : Any = prepare_video() __magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : int = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
342
1
from __future__ import annotations from scipy.special import comb # type: ignore class snake_case__ : def __init__( self , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Tuple = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __magic_name__ : List[Any] = len(lowerCAmelCase__ ) - 1 def __magic_name__ ( self , lowerCAmelCase__ ) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." __magic_name__ : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , lowerCAmelCase__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(lowerCAmelCase__ ) , 5 ) == 1 return output_values def __magic_name__ ( self , lowerCAmelCase__ ) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." __magic_name__ : Any = self.basis_function(lowerCAmelCase__ ) __magic_name__ : Tuple = 0.0 __magic_name__ : Dict = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __magic_name__ ( self , lowerCAmelCase__ = 0.0_1 ) -> Optional[Any]: from matplotlib import pyplot as plt # type: ignore __magic_name__ : list[float] = [] # x coordinates of points to plot __magic_name__ : list[float] = [] # y coordinates of points to plot __magic_name__ : List[Any] = 0.0 while t <= 1: __magic_name__ : List[Any] = self.bezier_curve_function(lowerCAmelCase__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __magic_name__ : Any = [i[0] for i in self.list_of_points] __magic_name__ : Tuple = [i[1] for i in self.list_of_points] plt.plot( lowerCAmelCase__ , lowerCAmelCase__ , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(lowerCAmelCase__ , lowerCAmelCase__ , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
342
def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = [0] * len(_A ) __magic_name__ : List[str] = [] __magic_name__ : List[str] = [1] * len(_A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: __magic_name__ : Dict = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __magic_name__ : int = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_A ) print(max(_A ) ) # Adjacency list of Graph __magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCamelCase ( _A, _A=0.999, _A="cosine", ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __magic_name__ : Union[str, Any] = [] for i in range(_A ): __magic_name__ : Optional[int] = i / num_diffusion_timesteps __magic_name__ : List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ), _A ) ) return torch.tensor(_A, dtype=torch.floataa ) class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase ): lowercase__ : List[str] = [e.name for e in KarrasDiffusionSchedulers] lowercase__ : Tuple = 2 @register_to_config def __init__( self , lowerCAmelCase__ = 10_00 , lowerCAmelCase__ = 0.0_0_0_8_5 , lowerCAmelCase__ = 0.0_1_2 , lowerCAmelCase__ = "linear" , lowerCAmelCase__ = None , lowerCAmelCase__ = "epsilon" , lowerCAmelCase__ = "linspace" , lowerCAmelCase__ = 0 , ) -> List[str]: if trained_betas is not None: __magic_name__ : Tuple = torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": __magic_name__ : Optional[Any] = torch.linspace(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __magic_name__ : List[str] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __magic_name__ : Optional[int] = betas_for_alpha_bar(lowerCAmelCase__ ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) __magic_name__ : List[str] = 1.0 - self.betas __magic_name__ : Tuple = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> List[Any]: if schedule_timesteps is None: __magic_name__ : Union[str, Any] = self.timesteps __magic_name__ : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __magic_name__ : Tuple = 1 if len(lowerCAmelCase__ ) > 1 else 0 else: __magic_name__ : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase__ ) else timestep __magic_name__ : Dict = self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__ ( self ) -> Optional[int]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , ) -> torch.FloatTensor: __magic_name__ : Union[str, Any] = self.index_for_timestep(lowerCAmelCase__ ) if self.state_in_first_order: __magic_name__ : Dict = self.sigmas[step_index] else: __magic_name__ : List[Any] = self.sigmas_interpol[step_index] __magic_name__ : str = sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> int: __magic_name__ : str = num_inference_steps __magic_name__ : int = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __magic_name__ : str = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase__ , dtype=lowerCAmelCase__ )[::-1].copy() elif self.config.timestep_spacing == "leading": __magic_name__ : Dict = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __magic_name__ : Tuple = (np.arange(0 , lowerCAmelCase__ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __magic_name__ : Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __magic_name__ : Tuple = (np.arange(lowerCAmelCase__ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase__ ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __magic_name__ : Dict = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __magic_name__ : Union[str, Any] = torch.from_numpy(np.log(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __magic_name__ : Tuple = np.interp(lowerCAmelCase__ , np.arange(0 , len(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) __magic_name__ : Any = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __magic_name__ : str = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ ) # interpolate sigmas __magic_name__ : Any = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __magic_name__ : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __magic_name__ : Union[str, Any] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(lowerCAmelCase__ ).startswith("""mps""" ): # mps does not support float64 __magic_name__ : Any = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ , dtype=torch.floataa ) else: __magic_name__ : Union[str, Any] = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) # interpolate timesteps __magic_name__ : List[Any] = self.sigma_to_t(lowerCAmelCase__ ).to(lowerCAmelCase__ , dtype=timesteps.dtype ) __magic_name__ : Any = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __magic_name__ : Optional[int] = torch.cat([timesteps[:1], interleaved_timesteps] ) __magic_name__ : Any = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __magic_name__ : List[str] = defaultdict(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: # get log sigma __magic_name__ : str = sigma.log() # get distribution __magic_name__ : str = log_sigma - self.log_sigmas[:, None] # get sigmas range __magic_name__ : Union[str, Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __magic_name__ : List[str] = low_idx + 1 __magic_name__ : Optional[int] = self.log_sigmas[low_idx] __magic_name__ : List[Any] = self.log_sigmas[high_idx] # interpolate sigmas __magic_name__ : Union[str, Any] = (low - log_sigma) / (low - high) __magic_name__ : str = w.clamp(0 , 1 ) # transform interpolation to time range __magic_name__ : Any = (1 - w) * low_idx + w * high_idx __magic_name__ : List[Any] = t.view(sigma.shape ) return t @property def __magic_name__ ( self ) -> List[str]: return self.sample is None def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = True , ) -> Union[SchedulerOutput, Tuple]: __magic_name__ : Optional[int] = self.index_for_timestep(lowerCAmelCase__ ) # advance index counter by 1 __magic_name__ : Optional[int] = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __magic_name__ : List[Any] = self.sigmas[step_index] __magic_name__ : List[Any] = self.sigmas_interpol[step_index + 1] __magic_name__ : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __magic_name__ : int = self.sigmas[step_index - 1] __magic_name__ : Tuple = self.sigmas_interpol[step_index] __magic_name__ : Optional[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __magic_name__ : Optional[Any] = 0 __magic_name__ : str = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __magic_name__ : Any = sigma_hat if self.state_in_first_order else sigma_interpol __magic_name__ : Any = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __magic_name__ : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol __magic_name__ : int = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __magic_name__ : int = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __magic_name__ : str = sigma_interpol - sigma_hat # store for 2nd order step __magic_name__ : Tuple = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __magic_name__ : Optional[int] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __magic_name__ : List[str] = sigma_next - sigma_hat __magic_name__ : Tuple = self.sample __magic_name__ : Tuple = None __magic_name__ : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __magic_name__ : List[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase__ ): # mps does not support float64 __magic_name__ : List[str] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __magic_name__ : Any = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __magic_name__ : int = self.timesteps.to(original_samples.device ) __magic_name__ : Optional[int] = timesteps.to(original_samples.device ) __magic_name__ : Dict = [self.index_for_timestep(lowerCAmelCase__ , lowerCAmelCase__ ) for t in timesteps] __magic_name__ : List[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __magic_name__ : int = sigma.unsqueeze(-1 ) __magic_name__ : Any = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Any: return self.config.num_train_timesteps
342
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: __magic_name__ : Tuple = """ylacombe/bark-small""" __magic_name__ : List[str] = tempfile.mkdtemp() __magic_name__ : Optional[Any] = """en_speaker_1""" __magic_name__ : Union[str, Any] = """This is a test string""" __magic_name__ : Optional[int] = """speaker_embeddings_path.json""" __magic_name__ : Any = """speaker_embeddings""" def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : str = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __magic_name__ : Union[str, Any] = 35 __magic_name__ : List[Any] = 2 __magic_name__ : Dict = 8 __magic_name__ : Tuple = { """semantic_prompt""": np.ones(lowerCAmelCase__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string ) __magic_name__ : List[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
342
1
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]: __magic_name__ : str = parent __magic_name__ : Dict = do_resize __magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88} __magic_name__ : Union[str, Any] = size_divisor __magic_name__ : Union[str, Any] = do_rescale __magic_name__ : Dict = rescale_factor __magic_name__ : Union[str, Any] = do_normalize __magic_name__ : List[str] = do_center_crop __magic_name__ : Tuple = image_mean __magic_name__ : Tuple = image_std __magic_name__ : Tuple = do_pad __magic_name__ : int = batch_size __magic_name__ : List[Any] = num_channels __magic_name__ : int = min_resolution __magic_name__ : str = max_resolution def __magic_name__ ( self ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int: if not batched: __magic_name__ : Dict = self.size["""shortest_edge"""] __magic_name__ : List[str] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): __magic_name__ ,__magic_name__ : List[Any] = image.size else: __magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2] __magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ ) if h < w: __magic_name__ ,__magic_name__ : str = size, scale * w else: __magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size __magic_name__ : Tuple = int((13_33 / 8_00) * size ) if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size: __magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = newh * scale __magic_name__ : Any = neww * scale __magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 ) __magic_name__ ,__magic_name__ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __magic_name__ : Union[str, Any] = [] for image in image_inputs: __magic_name__ ,__magic_name__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] __magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = BridgeTowerImageProcessingTester(self ) @property def __magic_name__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Any: __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) ) def __magic_name__ ( self ) -> Optional[int]: pass def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> str: # Initialize image processor __magic_name__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
342
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]: __magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} __magic_name__ : str = parent __magic_name__ : Any = batch_size __magic_name__ : Any = num_channels __magic_name__ : List[str] = image_size __magic_name__ : Tuple = min_resolution __magic_name__ : Union[str, Any] = max_resolution __magic_name__ : List[str] = do_resize __magic_name__ : Optional[Any] = size __magic_name__ : Optional[Any] = do_normalize __magic_name__ : Any = image_mean __magic_name__ : List[str] = image_std def __magic_name__ ( self ) -> List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = DPTImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Dict = DPTImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __magic_name__ ( self ) -> str: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Optional[Any]: # Initialize image_processing __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
342
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() __magic_name__: Union[str, Any] = logging.get_logger(__name__) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Dict = UniSpeechSatForSequenceClassification.from_pretrained(_A, config=_A ) __magic_name__ : int = downstream_dict["""projector.weight"""] __magic_name__ : int = downstream_dict["""projector.bias"""] __magic_name__ : int = downstream_dict["""model.post_net.linear.weight"""] __magic_name__ : List[Any] = downstream_dict["""model.post_net.linear.bias"""] return model def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : List[str] = UniSpeechSatForAudioFrameClassification.from_pretrained(_A, config=_A ) __magic_name__ : Optional[int] = downstream_dict["""model.linear.weight"""] __magic_name__ : Any = downstream_dict["""model.linear.bias"""] return model def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : str = UniSpeechSatForXVector.from_pretrained(_A, config=_A ) __magic_name__ : Optional[Any] = downstream_dict["""connector.weight"""] __magic_name__ : List[str] = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __magic_name__ : List[Any] = downstream_dict[ f'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] __magic_name__ : Any = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias'] __magic_name__ : Any = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] __magic_name__ : Dict = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] __magic_name__ : Any = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] __magic_name__ : List[Any] = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] __magic_name__ : int = downstream_dict["""objective.W"""] return model @torch.no_grad() def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" __magic_name__ : Any = torch.load(_A, map_location="""cpu""" ) __magic_name__ : Dict = checkpoint["""Downstream"""] __magic_name__ : Dict = UniSpeechSatConfig.from_pretrained(_A ) __magic_name__ : int = WavaVecaFeatureExtractor.from_pretrained( _A, return_attention_mask=_A, do_normalize=_A ) __magic_name__ : Dict = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): __magic_name__ : List[str] = convert_classification(_A, _A, _A ) elif arch.endswith("""ForAudioFrameClassification""" ): __magic_name__ : List[Any] = convert_diarization(_A, _A, _A ) elif arch.endswith("""ForXVector""" ): __magic_name__ : Optional[Any] = convert_xvector(_A, _A, _A ) else: raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: __magic_name__ : str = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(_A ) hf_model.save_pretrained(_A ) if __name__ == "__main__": __magic_name__: Tuple = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") __magic_name__: List[Any] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
342
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__: Tuple = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M''' lowercase__ : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowercase__ : List[str] = '''translator''' lowercase__ : Optional[Any] = AutoTokenizer lowercase__ : int = AutoModelForSeqaSeqLM lowercase__ : List[Any] = LANGUAGE_CODES lowercase__ : str = ['''text''', '''text''', '''text'''] lowercase__ : Any = ['''text'''] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) __magic_name__ : Tuple = self.lang_to_code[src_lang] __magic_name__ : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
342
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__: Optional[int] = logging.get_logger(__name__) __magic_name__: Union[str, Any] = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[Any] = '''open-llama''' def __init__( self , lowerCAmelCase__=10_00_00 , lowerCAmelCase__=40_96 , lowerCAmelCase__=1_10_08 , lowerCAmelCase__=32 , lowerCAmelCase__=32 , lowerCAmelCase__="silu" , lowerCAmelCase__=20_48 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-6 , lowerCAmelCase__=True , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> List[Any]: __magic_name__ : int = vocab_size __magic_name__ : List[str] = max_position_embeddings __magic_name__ : str = hidden_size __magic_name__ : List[Any] = intermediate_size __magic_name__ : int = num_hidden_layers __magic_name__ : List[Any] = num_attention_heads __magic_name__ : Tuple = hidden_act __magic_name__ : str = initializer_range __magic_name__ : int = rms_norm_eps __magic_name__ : Dict = use_cache __magic_name__ : Optional[int] = kwargs.pop( """use_memorry_efficient_attention""" , lowerCAmelCase__ ) __magic_name__ : Optional[int] = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_dropout_prob __magic_name__ : List[Any] = use_stable_embedding __magic_name__ : List[str] = shared_input_output_embedding __magic_name__ : str = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , tie_word_embeddings=lowerCAmelCase__ , **lowerCAmelCase__ , ) def __magic_name__ ( self ) -> Optional[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCAmelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'got {self.rope_scaling}' ) __magic_name__ : Optional[Any] = self.rope_scaling.get("""type""" , lowerCAmelCase__ ) __magic_name__ : Optional[int] = self.rope_scaling.get("""factor""" , lowerCAmelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
342
import math class snake_case__ : def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1 __magic_name__ : Tuple = n __magic_name__ : Union[str, Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # adjacency matrix for weight __magic_name__ : List[Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # dp[i][j] stores minimum distance from i to j def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Dict = w def __magic_name__ ( self ) -> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return self.dp[u][v] if __name__ == "__main__": __magic_name__: Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
342
1
from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__: Dict = logging.get_logger(__name__) __magic_name__: Optional[Any] = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class snake_case__ ( _lowerCAmelCase ): lowercase__ : Optional[int] = '''mctct''' def __init__( self , lowerCAmelCase__=80_65 , lowerCAmelCase__=15_36 , lowerCAmelCase__=36 , lowerCAmelCase__=61_44 , lowerCAmelCase__=4 , lowerCAmelCase__=3_84 , lowerCAmelCase__=9_20 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=0.3 , lowerCAmelCase__="relu" , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=0.3 , lowerCAmelCase__=0.3 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0.3 , lowerCAmelCase__=1 , lowerCAmelCase__=(7,) , lowerCAmelCase__=(3,) , lowerCAmelCase__=80 , lowerCAmelCase__=1 , lowerCAmelCase__=None , lowerCAmelCase__="sum" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict: super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) __magic_name__ : int = vocab_size __magic_name__ : int = hidden_size __magic_name__ : int = num_hidden_layers __magic_name__ : str = intermediate_size __magic_name__ : Optional[int] = num_attention_heads __magic_name__ : int = attention_head_dim __magic_name__ : Tuple = max_position_embeddings __magic_name__ : List[Any] = layer_norm_eps __magic_name__ : List[str] = layerdrop __magic_name__ : Dict = hidden_act __magic_name__ : int = initializer_range __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Union[str, Any] = pad_token_id __magic_name__ : int = bos_token_id __magic_name__ : List[Any] = eos_token_id __magic_name__ : List[Any] = conv_glu_dim __magic_name__ : str = conv_dropout __magic_name__ : List[Any] = num_conv_layers __magic_name__ : Any = input_feat_per_channel __magic_name__ : Optional[Any] = input_channels __magic_name__ : int = conv_channels __magic_name__ : List[Any] = ctc_loss_reduction __magic_name__ : str = ctc_zero_infinity # prevents config testing fail with exporting to json __magic_name__ : Union[str, Any] = list(lowerCAmelCase__ ) __magic_name__ : List[Any] = list(lowerCAmelCase__ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ F'but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ' F'`config.num_conv_layers = {self.num_conv_layers}`.' )
342
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__ : def __init__( self , lowerCAmelCase__ = None ) -> None: if components is None: __magic_name__ : Any = [] __magic_name__ : List[str] = list(lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : Dict = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : int = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... @overload def __mul__( self , lowerCAmelCase__ ) -> float: ... def __mul__( self , lowerCAmelCase__ ) -> float | Vector: if isinstance(lowerCAmelCase__ , (float, int) ): __magic_name__ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): __magic_name__ : Optional[Any] = len(self ) __magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __magic_name__ ( self ) -> Vector: return Vector(self.__components ) def __magic_name__ ( self , lowerCAmelCase__ ) -> float: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ : Optional[int] = value def __magic_name__ ( self ) -> float: if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __magic_name__ : Dict = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: __magic_name__ : Optional[Any] = self * other __magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase ( _A ): """simple docstring""" assert isinstance(_A, _A ) return Vector([0] * dimension ) def UpperCamelCase ( _A, _A ): """simple docstring""" assert isinstance(_A, _A ) and (isinstance(_A, _A )) __magic_name__ : Union[str, Any] = [0] * dimension __magic_name__ : Optional[int] = 1 return Vector(_A ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" assert ( isinstance(_A, _A ) and isinstance(_A, _A ) and (isinstance(_A, (int, float) )) ) return x * scalar + y def UpperCamelCase ( _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )] return Vector(_A ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Dict = matrix __magic_name__ : Tuple = w __magic_name__ : Union[str, Any] = h def __str__( self ) -> str: __magic_name__ : Dict = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Tuple = [] for i in range(self.__height ): __magic_name__ : Tuple = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Optional[Any] = [] for i in range(self.__height ): __magic_name__ : int = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Matrix: ... @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: __magic_name__ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ : Optional[int] = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar __magic_name__ : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def __magic_name__ ( self ) -> int: return self.__height def __magic_name__ ( self ) -> int: return self.__width def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): __magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __magic_name__ ( self ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )] return Matrix(_A, _A, _A ) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : list[list[float]] = [ [random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A ) ] return Matrix(_A, _A, _A )
342
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __magic_name__: int = get_logger() __magic_name__: Optional[dict] = None class snake_case__ ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Tuple: super().__init__(features=lowerCAmelCase__ ) import jax from jaxlib.xla_client import Device if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError( F'Expected {device} to be a `str` not {type(lowerCAmelCase__ )}, as `jaxlib.xla_extension.Device` ' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) __magic_name__ : Any = device if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __magic_name__ : int = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'Device with string identifier {self.device} not listed among the available ' F'devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ' F'device: {str(jax.devices()[0] )}.' ) __magic_name__ : str = str(jax.devices()[0] ) __magic_name__ : Optional[int] = jnp_array_kwargs @staticmethod def __magic_name__ ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(lowerCAmelCase__ ): device for device in jax.devices()} def __magic_name__ ( self , lowerCAmelCase__ ) -> str: import jax import jax.numpy as jnp if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and column: if all( isinstance(lowerCAmelCase__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(lowerCAmelCase__ , axis=0 ) return column def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: import jax import jax.numpy as jnp if isinstance(lowerCAmelCase__ , (str, bytes, type(lowerCAmelCase__ )) ): return value elif isinstance(lowerCAmelCase__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __magic_name__ : List[Any] = {} if isinstance(lowerCAmelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: __magic_name__ : List[str] = {"""dtype""": jnp.intaa} else: __magic_name__ : Any = {"""dtype""": jnp.intaa} elif isinstance(lowerCAmelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __magic_name__ : int = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowerCAmelCase__ , PIL.Image.Image ): __magic_name__ : Union[str, Any] = np.asarray(lowerCAmelCase__ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __magic_name__ : Tuple = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(lowerCAmelCase__ , **{**default_dtype, **self.jnp_array_kwargs} ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(lowerCAmelCase__ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(lowerCAmelCase__ , """__array__""" ) and not isinstance(lowerCAmelCase__ , jax.Array ): __magic_name__ : Tuple = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowerCAmelCase__ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowerCAmelCase__ ) for substruct in data_struct] ) elif isinstance(lowerCAmelCase__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(lowerCAmelCase__ ) for substruct in data_struct] ) return self._tensorize(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return map_nested(self._recursive_tensorize , lowerCAmelCase__ , map_list=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Mapping: __magic_name__ : Any = self.numpy_arrow_extractor().extract_row(lowerCAmelCase__ ) __magic_name__ : int = self.python_features_decoder.decode_row(lowerCAmelCase__ ) return self.recursive_tensorize(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> "jax.Array": __magic_name__ : List[Any] = self.numpy_arrow_extractor().extract_column(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = self.python_features_decoder.decode_column(lowerCAmelCase__ , pa_table.column_names[0] ) __magic_name__ : Union[str, Any] = self.recursive_tensorize(lowerCAmelCase__ ) __magic_name__ : List[Any] = self._consolidate(lowerCAmelCase__ ) return column def __magic_name__ ( self , lowerCAmelCase__ ) -> Mapping: __magic_name__ : Optional[Any] = self.numpy_arrow_extractor().extract_batch(lowerCAmelCase__ ) __magic_name__ : Any = self.python_features_decoder.decode_batch(lowerCAmelCase__ ) __magic_name__ : Optional[int] = self.recursive_tensorize(lowerCAmelCase__ ) for column_name in batch: __magic_name__ : str = self._consolidate(batch[column_name] ) return batch
342
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: int = "▁" __magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"} __magic_name__: List[str] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __magic_name__: Tuple = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off __magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = ['''input_ids''', '''attention_mask'''] lowercase__ : List[int] = [] lowercase__ : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) __magic_name__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__ : List[Any] = 1 __magic_name__ : Dict = len(self.sp_model ) __magic_name__ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } __magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} __magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __magic_name__ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn""" __magic_name__ : Any = self.lang_code_to_id[self._src_lang] __magic_name__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Any: __magic_name__ : List[Any] = self.__dict__.copy() __magic_name__ : int = None __magic_name__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ : Any = {} __magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __magic_name__ ( self ) -> str: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self ) -> str: return self._src_lang @src_lang.setter def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __magic_name__ : Optional[int] = [1] * len(self.prefix_tokens ) __magic_name__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : str = [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__ : Dict = src_lang __magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Tuple = tgt_lang_id return inputs def __magic_name__ ( self ) -> int: __magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip() return out_string def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , """wb""" ) as fi: __magic_name__ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding: __magic_name__ : List[str] = src_lang __magic_name__ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : str = [self.cur_lang_code] __magic_name__ : List[Any] = [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : Optional[int] = [self.cur_lang_code] __magic_name__ : Union[str, Any] = [self.eos_token_id]
342
1
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=3 , lowerCAmelCase__=32 , lowerCAmelCase__=3 , lowerCAmelCase__=10 , lowerCAmelCase__=[10, 20, 30, 40] , lowerCAmelCase__=[1, 1, 2, 1] , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="relu" , lowerCAmelCase__=3 , lowerCAmelCase__=None , ) -> Tuple: __magic_name__ : int = parent __magic_name__ : Dict = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Any = num_channels __magic_name__ : Dict = embeddings_size __magic_name__ : Union[str, Any] = hidden_sizes __magic_name__ : Any = depths __magic_name__ : List[Any] = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : Any = hidden_act __magic_name__ : int = num_labels __magic_name__ : Optional[Any] = scope __magic_name__ : Dict = len(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Tuple = None if self.use_labels: __magic_name__ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : int = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> Optional[int]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: __magic_name__ : Optional[Any] = TFRegNetModel(config=lowerCAmelCase__ ) __magic_name__ : Optional[int] = model(lowerCAmelCase__ , training=lowerCAmelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: __magic_name__ : List[str] = self.num_labels __magic_name__ : Any = TFRegNetForImageClassification(lowerCAmelCase__ ) __magic_name__ : Any = model(lowerCAmelCase__ , labels=lowerCAmelCase__ , training=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[int] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs __magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowercase__ : Optional[int] = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowercase__ : List[str] = False lowercase__ : List[str] = False lowercase__ : Optional[Any] = False lowercase__ : Tuple = False lowercase__ : int = False def __magic_name__ ( self ) -> Dict: __magic_name__ : Any = TFRegNetModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def __magic_name__ ( self ) -> Any: super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple = model_class(lowerCAmelCase__ ) __magic_name__ : List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : List[str] = [*signature.parameters.keys()] __magic_name__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Optional[int] = model_class(lowerCAmelCase__ ) __magic_name__ : Tuple = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) , training=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __magic_name__ : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __magic_name__ ,__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : List[Any] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __magic_name__ : Optional[int] = layer_type __magic_name__ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Any = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__={} ): __magic_name__ : Any = model(lowerCAmelCase__ , return_dict=lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ , return_dict=lowerCAmelCase__ , **lowerCAmelCase__ ).to_tuple() def recursive_check(lowerCAmelCase__ , lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCAmelCase__ , lowerCAmelCase__ ): recursive_check(lowerCAmelCase__ , lowerCAmelCase__ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(lowerCAmelCase__ , lowerCAmelCase__ ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}' ) , ) recursive_check(lowerCAmelCase__ , lowerCAmelCase__ ) for model_class in self.all_model_classes: __magic_name__ : int = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[str] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __magic_name__ : Any = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : str = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , {"""output_hidden_states""": True} ) __magic_name__ : List[str] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __magic_name__ : List[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , {"""output_hidden_states""": True} ) def __magic_name__ ( self ) -> str: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Optional[int]: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Union[str, Any] = TFRegNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Optional[Any] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __magic_name__ : Dict = self.default_image_processor __magic_name__ : str = prepare_img() __magic_name__ : Dict = image_processor(images=lowerCAmelCase__ , return_tensors="""tf""" ) # forward pass __magic_name__ : Any = model(**lowerCAmelCase__ , training=lowerCAmelCase__ ) # verify the logits __magic_name__ : Any = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : int = tf.constant([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 )
342
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Dict = MobileBertConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ : Tuple = MobileBertForPreTraining(_A ) # Load weights from tf checkpoint __magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _A ) if __name__ == "__main__": __magic_name__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__: Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
342
1
def UpperCamelCase ( _A = 2000000 ): """simple docstring""" __magic_name__ : Union[str, Any] = [0 for i in range(n + 1 )] __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, _A ): __magic_name__ : Union[str, Any] = 1 __magic_name__ : Optional[int] = 0 for i in range(_A ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
342
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = MgpstrTokenizer lowercase__ : int = False lowercase__ : Any = {} lowercase__ : Optional[int] = False def __magic_name__ ( self ) -> Optional[Any]: super().setUp() # fmt: off __magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = """tester""" __magic_name__ : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Dict = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) __magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) __magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __magic_name__ ( self ) -> Optional[Any]: pass
342
1
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def UpperCamelCase ( _A = "laptop" ): """simple docstring""" __magic_name__ : str = f'https://www.amazon.in/laptop/s?k={product}' __magic_name__ : Optional[int] = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } __magic_name__ : str = BeautifulSoup(requests.get(_A, headers=_A ).text ) # Initialize a Pandas dataframe with the column titles __magic_name__ : Tuple = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""", attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""}, ), soup.find_all("""div""", attrs={"""class""": """a-row a-size-base a-color-base"""} ), ): try: __magic_name__ : Optional[int] = item.ha.text __magic_name__ : Dict = """https://www.amazon.in/""" + item.ha.a["""href"""] __magic_name__ : str = item.find("""span""", attrs={"""class""": """a-offscreen"""} ).text try: __magic_name__ : str = item.find("""span""", attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: __magic_name__ : str = """Not available""" try: __magic_name__ : Any = ( """₹""" + item.find( """span""", attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: __magic_name__ : str = """""" try: __magic_name__ : str = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""", """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""", """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""", """""" ) ) ) * 100 ) except ValueError: __magic_name__ : Optional[Any] = float("""nan""" ) except AttributeError: pass __magic_name__ : Dict = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] __magic_name__ : Dict = """ """ __magic_name__ : int = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": __magic_name__: int = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
342
import re def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(_A, _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
342
1
from __future__ import annotations from math import pow, sqrt def UpperCamelCase ( _A, _A, _A ): """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance == 0: return {"resistance": sqrt(pow(_A, 2 ) - pow(_A, 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(_A, 2 ) - pow(_A, 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(_A, 2 ) + pow(_A, 2 ) )} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
342
import doctest from collections import deque import numpy as np class snake_case__ : def __init__( self ) -> None: __magic_name__ : Any = [2, 1, 2, -1] __magic_name__ : Tuple = [1, 2, 3, 4] def __magic_name__ ( self ) -> list[float]: __magic_name__ : Optional[Any] = len(self.first_signal ) __magic_name__ : Dict = len(self.second_signal ) __magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ ) # create a zero matrix of max_length x max_length __magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__ ): __magic_name__ : List[str] = deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase__ ) for j, item in enumerate(lowerCAmelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal __magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
342
1
from __future__ import annotations from scipy.special import comb # type: ignore class lowercase_ : '''simple docstring''' def __init__( self : Tuple , __UpperCAmelCase : list[tuple[float, float]] ) ->Optional[Any]: """simple docstring""" a = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. a = len(__UpperCAmelCase ) - 1 def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : float ) ->list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." a = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __UpperCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__UpperCAmelCase ) , 5 ) == 1 return output_values def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : float ) ->tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." a = self.basis_function(__UpperCAmelCase ) a = 0.0 a = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __lowerCAmelCase ( self : int , __UpperCAmelCase : float = 0.01 ) ->Optional[int]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore a = [] # x coordinates of points to plot a = [] # y coordinates of points to plot a = 0.0 while t <= 1: a = self.bezier_curve_function(__UpperCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size a = [i[0] for i in self.list_of_points] a = [i[1] for i in self.list_of_points] plt.plot( __UpperCAmelCase , __UpperCAmelCase , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(__UpperCAmelCase , __UpperCAmelCase , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
0
from math import factorial def UpperCamelCase ( _A, _A, _A ): """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(_A, _A ) or not isinstance(_A, _A ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) __magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __magic_name__ : Any = float(factorial(_A ) ) coefficient /= factorial(_A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
342
0