code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : str = RoCBertTokenizer a__ : Union[str, Any] = None a__ : List[Any] = False a__ : str = True a__ : Optional[int] = filter_non_english def _lowercase (self : Union[str, Any] ): super().setUp() UpperCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] UpperCAmelCase_ = {} UpperCAmelCase_ = {} for i, value in enumerate(__a ): UpperCAmelCase_ = i UpperCAmelCase_ = i UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(__a , __a , ensure_ascii=__a ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(__a , __a , ensure_ascii=__a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCAmelCase_ = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(__a , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) , [5, 6, 2, 5, 7, 8] ) def _lowercase (self : Any ): UpperCAmelCase_ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _lowercase (self : Dict ): UpperCAmelCase_ = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _lowercase (self : Dict ): UpperCAmelCase_ = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowercase (self : Any ): UpperCAmelCase_ = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _lowercase (self : Any ): UpperCAmelCase_ = RoCBertBasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _lowercase (self : Tuple ): UpperCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] UpperCAmelCase_ = {} for i, token in enumerate(__a ): UpperCAmelCase_ = i UpperCAmelCase_ = RoCBertWordpieceTokenizer(vocab=__a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def _lowercase (self : Any ): self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _lowercase (self : Optional[int] ): self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _lowercase (self : Union[str, Any] ): self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: UpperCAmelCase_ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def _lowercase (self : List[str] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCAmelCase_ = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) UpperCAmelCase_ = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False UpperCAmelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def _lowercase (self : Dict ): UpperCAmelCase_ = ["的", "人", "有"] UpperCAmelCase_ = "".join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ = True UpperCAmelCase_ = self.tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = tokenizer_p.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_r.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_r.convert_ids_to_tokens(__a ) UpperCAmelCase_ = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = False UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = self.tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = tokenizer_r.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_p.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_r.convert_ids_to_tokens(__a ) UpperCAmelCase_ = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase_ = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) @slow def _lowercase (self : Tuple ): UpperCAmelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCAmelCase_ = tokenizer.encode("你好" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.encode("你是谁" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _lowercase (self : List[str] ): UpperCAmelCase_ = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase_ = "你好,你是谁" UpperCAmelCase_ = tokenizer.tokenize(__a ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(__a ) UpperCAmelCase_ = tokenizer.convert_tokens_to_shape_ids(__a ) UpperCAmelCase_ = tokenizer.convert_tokens_to_pronunciation_ids(__a ) UpperCAmelCase_ = tokenizer.prepare_for_model( __a , __a , __a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.encode_plus(__a , add_special_tokens=__a ) self.assertEqual(__a , __a )
1
from __future__ import annotations def UpperCamelCase ( _A ): # This function is recursive """simple docstring""" __magic_name__ : str = len(_A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __magic_name__ : Dict = array[0] __magic_name__ : Optional[Any] = False __magic_name__ : Tuple = 1 __magic_name__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __magic_name__ : Union[str, Any] = True __magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]] __magic_name__ : Dict = longest_subsequence(_A ) if len(_A ) > len(_A ): __magic_name__ : Tuple = temp_array else: i += 1 __magic_name__ : Any = [element for element in array[1:] if element >= pivot] __magic_name__ : Dict = [pivot, *longest_subsequence(_A )] if len(_A ) > len(_A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
342
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase : Any = abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def _SCREAMING_SNAKE_CASE (A ) -> Optional[Any]: """simple docstring""" config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def _SCREAMING_SNAKE_CASE (A ) -> Optional[Any]: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(A ) def _SCREAMING_SNAKE_CASE (A ) -> List[Any]: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main lowercase__ = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(A , id=A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" if exitstatus == 5: lowercase__ = 0 # Doctest custom flag to ignore output. lowerCamelCase : Optional[Any] = doctest.register_optionflag('IGNORE_RESULT') lowerCamelCase : Optional[Any] = doctest.OutputChecker class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def UpperCamelCase__ (self : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Optional[Any] ): '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase : int = CustomOutputChecker lowerCamelCase : List[Any] = HfDoctestModule lowerCamelCase : Any = HfDocTestParser
2
import argparse import os import re __magic_name__: Optional[Any] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings __magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def UpperCamelCase ( _A, _A = False ): """simple docstring""" with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : Any = f.read() __magic_name__ : List[Any] = content.split("""\n""" ) __magic_name__ : List[str] = [] __magic_name__ : Union[str, Any] = 0 while line_idx < len(_A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 __magic_name__ : List[Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __magic_name__ : List[str] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_A, """w""", encoding="""utf-8""" ) as f: f.write("""\n""".join(_A ) ) elif "\n".join(_A ) != content: return True def UpperCamelCase ( _A = False ): """simple docstring""" __magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )] __magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames] if not overwrite and any(_A ): __magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix' """ this.""" ) if __name__ == "__main__": __magic_name__: List[str] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __magic_name__: List[str] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
342
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase : Any = { 'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'], 'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ['VisionTextDualEncoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = ['FlaxVisionTextDualEncoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = ['TFVisionTextDualEncoderModel'] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
3
__magic_name__: str = [0, 2, 4, 6, 8] __magic_name__: Optional[int] = [1, 3, 5, 7, 9] def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __magic_name__ : List[Any] = 0 for digit in range(10 ): __magic_name__ : Optional[int] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, _A, _A ) return result __magic_name__ : str = 0 for digita in range(10 ): __magic_name__ : Optional[Any] = digita if (remainder + digita) % 2 == 0: __magic_name__ : Tuple = ODD_DIGITS else: __magic_name__ : str = EVEN_DIGITS for digita in other_parity_digits: __magic_name__ : Tuple = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, ) return result def UpperCamelCase ( _A = 9 ): """simple docstring""" __magic_name__ : List[str] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(_A, 0, [0] * length, _A ) return result if __name__ == "__main__": print(F"""{solution() = }""")
342
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case =logging.get_logger(__name__) __snake_case ={ """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCAmelCase_ ( __lowercase , __lowercase ): lowerCamelCase : Union[str, Any] = '''swin''' lowerCamelCase : Optional[Any] = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : int , UpperCAmelCase__ : List[Any]=2_2_4 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : Union[str, Any]=9_6 , UpperCAmelCase__ : Any=[2, 2, 6, 2] , UpperCAmelCase__ : List[str]=[3, 6, 1_2, 2_4] , UpperCAmelCase__ : List[Any]=7 , UpperCAmelCase__ : Dict=4.0 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : Dict="gelu" , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : Optional[Any]=1E-5 , UpperCAmelCase__ : List[str]=3_2 , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : Dict , ) -> int: super().__init__(**UpperCAmelCase__ ) lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = embed_dim lowerCAmelCase = depths lowerCAmelCase = len(UpperCAmelCase__ ) lowerCAmelCase = num_heads lowerCAmelCase = window_size lowerCAmelCase = mlp_ratio lowerCAmelCase = qkv_bias lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = drop_path_rate lowerCAmelCase = hidden_act lowerCAmelCase = use_absolute_embeddings lowerCAmelCase = layer_norm_eps lowerCAmelCase = initializer_range lowerCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase = int(embed_dim * 2 ** (len(UpperCAmelCase__ ) - 1) ) lowerCAmelCase = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(UpperCAmelCase__ ) + 1 )] lowerCAmelCase , lowerCAmelCase = get_aligned_output_features_output_indices( out_features=UpperCAmelCase__ , out_indices=UpperCAmelCase__ , stage_names=self.stage_names ) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Dict = version.parse('''1.11''' ) @property def __UpperCAmelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCAmelCase ( self : Dict ) -> float: return 1E-4
4
def UpperCamelCase ( _A ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) __magic_name__ : int = sorted(string.lower() ) return len(_A ) == len(set(_A ) ) if __name__ == "__main__": __magic_name__: Dict = input("Enter a string ").strip() __magic_name__: Union[str, Any] = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
342
0
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> bool: """simple docstring""" _lowercase =len(__snake_case ) + 1 _lowercase =len(__snake_case ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _lowercase =[[0 for i in range(__snake_case )] for j in range(__snake_case )] # since string of zero length match pattern of zero length _lowercase =1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __snake_case ): _lowercase =0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __snake_case ): _lowercase =dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __snake_case ): for j in range(1 , __snake_case ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _lowercase =dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _lowercase =1 elif pattern[j - 2] in (input_string[i - 1], "."): _lowercase =dp[i - 1][j] else: _lowercase =0 else: _lowercase =0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") UpperCAmelCase__ = '''aab''' UpperCAmelCase__ = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
5
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
342
0
def __lowerCAmelCase ( a__ , a__ , a__ ) -> list: __a = len(a__ ) __a = [[0] * n for i in range(a__ )] for i in range(a__ ): __a = y_points[i] for i in range(2 , a__ ): for j in range(a__ , a__ ): __a = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
6
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]: __magic_name__ : str = parent __magic_name__ : Dict = do_resize __magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88} __magic_name__ : Union[str, Any] = size_divisor __magic_name__ : Union[str, Any] = do_rescale __magic_name__ : Dict = rescale_factor __magic_name__ : Union[str, Any] = do_normalize __magic_name__ : List[str] = do_center_crop __magic_name__ : Tuple = image_mean __magic_name__ : Tuple = image_std __magic_name__ : Tuple = do_pad __magic_name__ : int = batch_size __magic_name__ : List[Any] = num_channels __magic_name__ : int = min_resolution __magic_name__ : str = max_resolution def __magic_name__ ( self ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int: if not batched: __magic_name__ : Dict = self.size["""shortest_edge"""] __magic_name__ : List[str] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): __magic_name__ ,__magic_name__ : List[Any] = image.size else: __magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2] __magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ ) if h < w: __magic_name__ ,__magic_name__ : str = size, scale * w else: __magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size __magic_name__ : Tuple = int((13_33 / 8_00) * size ) if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size: __magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = newh * scale __magic_name__ : Any = neww * scale __magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 ) __magic_name__ ,__magic_name__ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __magic_name__ : Union[str, Any] = [] for image in image_inputs: __magic_name__ ,__magic_name__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] __magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = BridgeTowerImageProcessingTester(self ) @property def __magic_name__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Any: __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) ) def __magic_name__ ( self ) -> Optional[int]: pass def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> str: # Initialize image processor __magic_name__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
342
0
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Optional[int] )-> Dict: '''simple docstring''' A__ = 0 @slow def snake_case__ ( self : List[str] )-> Any: '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): A__ = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_,(BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(lowercase_ ),0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): A__ = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_,(GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(lowercase_ ),0 ) def snake_case__ ( self : int )-> List[Any]: '''simple docstring''' A__ = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size,1_2 ) def snake_case__ ( self : Union[str, Any] )-> str: '''simple docstring''' A__ = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_,(RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size,2_0 ) def snake_case__ ( self : str )-> List[str]: '''simple docstring''' A__ = AutoConfig.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_,lowercase_ ) # Check that tokenizer_type ≠ model_type A__ = AutoTokenizer.from_pretrained(lowercase_,config=lowercase_ ) self.assertIsInstance(lowercase_,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size,1_2 ) def snake_case__ ( self : Tuple )-> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt',os.path.join(lowercase_,'vocab.txt' ) ) A__ = AutoTokenizer.from_pretrained(lowercase_,tokenizer_type='bert',use_fast=lowercase_ ) self.assertIsInstance(lowercase_,lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json',os.path.join(lowercase_,'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt',os.path.join(lowercase_,'merges.txt' ) ) A__ = AutoTokenizer.from_pretrained(lowercase_,tokenizer_type='gpt2',use_fast=lowercase_ ) self.assertIsInstance(lowercase_,lowercase_ ) @require_tokenizers def snake_case__ ( self : str )-> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt',os.path.join(lowercase_,'vocab.txt' ) ) A__ = AutoTokenizer.from_pretrained(lowercase_,tokenizer_type='bert' ) self.assertIsInstance(lowercase_,lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json',os.path.join(lowercase_,'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt',os.path.join(lowercase_,'merges.txt' ) ) A__ = AutoTokenizer.from_pretrained(lowercase_,tokenizer_type='gpt2' ) self.assertIsInstance(lowercase_,lowercase_ ) def snake_case__ ( self : str )-> Tuple: '''simple docstring''' with pytest.raises(lowercase_ ): AutoTokenizer.from_pretrained('./',tokenizer_type='xxx' ) @require_tokenizers def snake_case__ ( self : List[str] )-> List[str]: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: A__ = tokenizer_class.from_pretrained('wietsedv/bert-base-dutch-cased' ) self.assertIsInstance(lowercase_,(BertTokenizer, BertTokenizerFast) ) if isinstance(lowercase_,lowercase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case,lowercase_ ) else: self.assertEqual(tokenizer.do_lower_case,lowercase_ ) self.assertEqual(tokenizer.model_max_length,5_1_2 ) @require_tokenizers def snake_case__ ( self : Optional[int] )-> Union[str, Any]: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( lowercase_,'julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier',): A__ = tokenizer_class.from_pretrained('julien-c/herlolip-not-exists' ) def snake_case__ ( self : Tuple )-> int: '''simple docstring''' A__ = TOKENIZER_MAPPING.values() A__ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(lowercase_ ) @require_tokenizers def snake_case__ ( self : List[str] )-> Optional[Any]: '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased',use_fast=lowercase_ ),lowercase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' ),lowercase_ ) @require_tokenizers def snake_case__ ( self : Any )-> List[Any]: '''simple docstring''' A__ = AutoTokenizer.from_pretrained('distilbert-base-uncased',do_lower_case=lowercase_ ) A__ = 'Hello, world. How are you?' A__ = tokenizer.tokenize(lowercase_ ) self.assertEqual('[UNK]',tokens[0] ) A__ = AutoTokenizer.from_pretrained('microsoft/mpnet-base',do_lower_case=lowercase_ ) A__ = tokenizer.tokenize(lowercase_ ) self.assertEqual('[UNK]',tokens[0] ) @require_tokenizers def snake_case__ ( self : Optional[Any] )-> Tuple: '''simple docstring''' A__ = AutoTokenizer.from_pretrained('robot-test/dummy-tokenizer-fast-with-model-config' ) self.assertEqual(type(lowercase_ ),lowercase_ ) self.assertEqual(tokenizer.model_max_length,5_1_2 ) self.assertEqual(tokenizer.vocab_size,3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token,'[UNK]' ) self.assertEqual(tokenizer.padding_side,'right' ) self.assertEqual(tokenizer.truncation_side,'right' ) def snake_case__ ( self : str )-> List[str]: '''simple docstring''' A__ = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_,(BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ ) A__ = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_,tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size,1_2 ) def snake_case__ ( self : int )-> Optional[int]: '''simple docstring''' A__ = AutoTokenizer.from_pretrained('ctrl' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(lowercase_,lowercase_ ) def snake_case__ ( self : int )-> int: '''simple docstring''' A__ = get_tokenizer_config('bert-base-cased' ) A__ = config.pop('_commit_hash',lowercase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(lowercase_,{'do_lower_case': False} ) # This model does not have a tokenizer_config so we get back an empty dict. A__ = get_tokenizer_config(lowercase_ ) self.assertDictEqual(lowercase_,{} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. A__ = AutoTokenizer.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ ) A__ = get_tokenizer_config(lowercase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['tokenizer_class'],'BertTokenizer' ) def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' try: AutoConfig.register('custom',lowercase_ ) AutoTokenizer.register(lowercase_,slow_tokenizer_class=lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoTokenizer.register(lowercase_,slow_tokenizer_class=lowercase_ ) A__ = CustomTokenizer.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ ) A__ = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_,lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def snake_case__ ( self : List[str] )-> Any: '''simple docstring''' try: AutoConfig.register('custom',lowercase_ ) # Can register in two steps AutoTokenizer.register(lowercase_,slow_tokenizer_class=lowercase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig],(CustomTokenizer, None) ) AutoTokenizer.register(lowercase_,fast_tokenizer_class=lowercase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig],(CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( lowercase_,slow_tokenizer_class=lowercase_,fast_tokenizer_class=lowercase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig],(CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoTokenizer.register(lowercase_,fast_tokenizer_class=lowercase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: A__ = BertTokenizerFast.from_pretrained(lowercase_ ) bert_tokenizer.save_pretrained(lowercase_ ) A__ = CustomTokenizerFast.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ ) A__ = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_,lowercase_ ) A__ = AutoTokenizer.from_pretrained(lowercase_,use_fast=lowercase_ ) self.assertIsInstance(lowercase_,lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def snake_case__ ( self : Tuple )-> Optional[Any]: '''simple docstring''' with self.assertRaises(lowercase_ ): A__ = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): A__ = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer',trust_remote_code=lowercase_ ) A__ = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer',trust_remote_code=lowercase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ ) A__ = AutoTokenizer.from_pretrained(lowercase_,trust_remote_code=lowercase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__,'NewTokenizerFast' ) self.assertEqual(reloaded_tokenizer.__class__.__name__,'NewTokenizerFast' ) # Test we can also load the slow version A__ = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer',trust_remote_code=lowercase_,use_fast=lowercase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__,'NewTokenizer' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ ) A__ = AutoTokenizer.from_pretrained(lowercase_,trust_remote_code=lowercase_,use_fast=lowercase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__,'NewTokenizer' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__,'NewTokenizer' ) self.assertEqual(reloaded_tokenizer.__class__.__name__,'NewTokenizer' ) @require_tokenizers def snake_case__ ( self : Dict )-> int: '''simple docstring''' class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = False class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = NewTokenizer lowerCamelCase = False try: AutoConfig.register('custom',lowercase_ ) AutoTokenizer.register(lowercase_,slow_tokenizer_class=lowercase_ ) AutoTokenizer.register(lowercase_,fast_tokenizer_class=lowercase_ ) # If remote code is not set, the default is to use local A__ = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) self.assertEqual(tokenizer.__class__.__name__,'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) A__ = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer',use_fast=lowercase_ ) self.assertEqual(tokenizer.__class__.__name__,'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. A__ = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer',trust_remote_code=lowercase_ ) self.assertEqual(tokenizer.__class__.__name__,'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) A__ = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer',trust_remote_code=lowercase_,use_fast=lowercase_ ) self.assertEqual(tokenizer.__class__.__name__,'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub A__ = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer',trust_remote_code=lowercase_ ) self.assertEqual(tokenizer.__class__.__name__,'NewTokenizerFast' ) self.assertTrue(tokenizer.special_attribute_present ) A__ = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer',trust_remote_code=lowercase_,use_fast=lowercase_ ) self.assertEqual(tokenizer.__class__.__name__,'NewTokenizer' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def snake_case__ ( self : Optional[int] )-> Dict: '''simple docstring''' A__ = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy',trust_remote_code=lowercase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__,'NewTokenizerFast' ) # Test we can also load the slow version A__ = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy',trust_remote_code=lowercase_,use_fast=lowercase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__,'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__,'NewTokenizer' ) def snake_case__ ( self : Dict )-> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( lowercase_,'bert-base is not a local folder and is not a valid model identifier' ): A__ = AutoTokenizer.from_pretrained('bert-base' ) def snake_case__ ( self : Optional[int] )-> List[str]: '''simple docstring''' with self.assertRaisesRegex( lowercase_,r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): A__ = AutoTokenizer.from_pretrained(lowercase_,revision='aaaaaa' ) def snake_case__ ( self : List[str] )-> Dict: '''simple docstring''' A__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: A__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count,0 ) self.assertEqual(counter.head_request_count,1 ) self.assertEqual(counter.other_request_count,0 )
7
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__: Tuple = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Union[str, Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __magic_name__: Optional[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
342
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } lowerCAmelCase_ = { '''camembert-base''': 5_12, } lowerCAmelCase_ = '''▁''' class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : str = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Dict="<s>" , _UpperCamelCase : str="</s>" , _UpperCamelCase : Dict="</s>" , _UpperCamelCase : List[Any]="<s>" , _UpperCamelCase : Optional[Any]="<unk>" , _UpperCamelCase : List[str]="<pad>" , _UpperCamelCase : Dict="<mask>" , _UpperCamelCase : List[str]=["<s>NOTUSED", "</s>NOTUSED"] , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) ->None: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) snake_case_ = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> snake_case_ = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3} snake_case_ = len(self.fairseq_tokens_to_ids ) snake_case_ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def snake_case__( self : Dict , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__( self : str , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) + [1] def snake_case__( self : Any , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case__( self : Any ) ->Union[str, Any]: return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def snake_case__( self : Any ) ->List[Any]: snake_case_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case__( self : Tuple , _UpperCamelCase : str ) ->List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def snake_case__( self : List[str] , _UpperCamelCase : int ) ->Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_UpperCamelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_UpperCamelCase ) def snake_case__( self : List[Any] , _UpperCamelCase : Tuple ) ->Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case__( self : Any , _UpperCamelCase : str ) ->Any: snake_case_ = [] snake_case_ = '''''' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(_UpperCamelCase ) snake_case_ = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def __getstate__( self : List[Any] ) ->str: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : int , _UpperCamelCase : str ) ->str: snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
8
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__: Dict = logging.get_logger(__name__) __magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __magic_name__: Optional[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __magic_name__: List[Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Any = ( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) __magic_name__ : Any = bs[:] __magic_name__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 __magic_name__ : List[str] = [chr(_A ) for n in cs] return dict(zip(_A, _A ) ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = set() __magic_name__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[Any] = char return pairs class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict: __magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ ) __magic_name__ : Any = {v: k for k, v in self.encoder.items()} __magic_name__ : Tuple = errors # how to handle errors in decoding __magic_name__ : Tuple = bytes_to_unicode() __magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1] __magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : str = {} __magic_name__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __magic_name__ ( self ) -> Optional[Any]: return len(self.encoder ) def __magic_name__ ( self ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if token in self.cache: return self.cache[token] __magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ ,__magic_name__ : List[str] = bigram __magic_name__ : Any = [] __magic_name__ : Any = 0 while i < len(lowerCAmelCase__ ): try: __magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Optional[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : str = tuple(lowerCAmelCase__ ) __magic_name__ : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __magic_name__ : List[str] = get_pairs(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ ) __magic_name__ : str = word return word def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : str = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __magic_name__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Tuple = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __magic_name__ : Optional[Any] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : Optional[int] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] __magic_name__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : Dict = [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __magic_name__ : List[Any] = """ """ + text return (text, kwargs)
342
0
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : str =logging.get_logger(__name__) __lowerCAmelCase : Dict ={'vocab_file': 'spiece.model'} __lowerCAmelCase : int ={ 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } __lowerCAmelCase : Any ={ 'google/bigbird-roberta-base': 4_0_9_6, 'google/bigbird-roberta-large': 4_0_9_6, 'google/bigbird-base-trivia-itc': 4_0_9_6, } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Dict = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE__ : List[int] = [] def __init__( self :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any]="<unk>" , lowerCAmelCase__ :int="<s>" , lowerCAmelCase__ :int="</s>" , lowerCAmelCase__ :Any="<pad>" , lowerCAmelCase__ :int="[SEP]" , lowerCAmelCase__ :Any="[MASK]" , lowerCAmelCase__ :int="[CLS]" , lowerCAmelCase__ :Optional[Dict[str, Any]] = None , **lowerCAmelCase__ :Union[str, Any] , ) -> None: __SCREAMING_SNAKE_CASE : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __SCREAMING_SNAKE_CASE : List[str] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __SCREAMING_SNAKE_CASE : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token __SCREAMING_SNAKE_CASE : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __SCREAMING_SNAKE_CASE : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __SCREAMING_SNAKE_CASE : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = vocab_file __SCREAMING_SNAKE_CASE : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) @property def __magic_name__( self :Tuple ) -> List[str]: return self.sp_model.get_piece_size() def __magic_name__( self :List[str] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :int ) -> List[Any]: __SCREAMING_SNAKE_CASE : Any = self.__dict__.copy() __SCREAMING_SNAKE_CASE : Optional[Any] = None return state def __setstate__( self :Dict , lowerCAmelCase__ :Any ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __SCREAMING_SNAKE_CASE : List[Any] = {} __SCREAMING_SNAKE_CASE : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__( self :Dict , lowerCAmelCase__ :str ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Optional[Any] ) -> List[Any]: return self.sp_model.piece_to_id(lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Optional[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : List[Any] = self.sp_model.IdToPiece(lowerCAmelCase__ ) return token def __magic_name__( self :Any , lowerCAmelCase__ :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : List[Any] = [] __SCREAMING_SNAKE_CASE : str = '''''' __SCREAMING_SNAKE_CASE : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase__ ) + token __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : List[str] = [] else: current_sub_tokens.append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = False out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :bool = True , **lowerCAmelCase__ :List[Any] , ) -> str: __SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('''use_source_tokenizer''' , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __SCREAMING_SNAKE_CASE : Dict = [] __SCREAMING_SNAKE_CASE : Optional[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [] sub_texts.append(lowerCAmelCase__ ) else: current_sub_text.append(lowerCAmelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __SCREAMING_SNAKE_CASE : Any = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(lowerCAmelCase__ ) ) else: __SCREAMING_SNAKE_CASE : Optional[int] = ''''''.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __SCREAMING_SNAKE_CASE : Dict = self.clean_up_tokenization(lowerCAmelCase__ ) return clean_text else: return text def __magic_name__( self :Tuple , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __SCREAMING_SNAKE_CASE : Optional[int] = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , '''wb''' ) as fi: __SCREAMING_SNAKE_CASE : Any = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def __magic_name__( self :Dict , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] __SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __magic_name__( self :List[str] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None , lowerCAmelCase__ :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : str = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
9
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str: __magic_name__ : Optional[int] = parent __magic_name__ : Any = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[int] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : str = embed_dim __magic_name__ : int = hidden_sizes __magic_name__ : Union[str, Any] = depths __magic_name__ : List[str] = num_heads __magic_name__ : str = window_size __magic_name__ : Optional[Any] = mlp_ratio __magic_name__ : Dict = qkv_bias __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = drop_path_rate __magic_name__ : Optional[Any] = hidden_act __magic_name__ : int = use_absolute_embeddings __magic_name__ : Dict = patch_norm __magic_name__ : Tuple = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[int] = is_training __magic_name__ : Optional[Any] = scope __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = encoder_stride __magic_name__ : List[Any] = out_features __magic_name__ : Union[str, Any] = out_indices def __magic_name__ ( self ) -> str: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Dict = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Tuple = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __magic_name__ : Optional[Any] = None __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : str = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : int = self.type_sequence_label_size __magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> int: __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs __magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ : Any = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ : Dict = False lowercase__ : Dict = False lowercase__ : int = False lowercase__ : Tuple = False lowercase__ : Optional[Any] = False def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = FocalNetModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> List[str]: return def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __magic_name__ ( self ) -> List[str]: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self ) -> List[Any]: __magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : str = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # FocalNet has a different seq_length __magic_name__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ : str = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape __magic_name__ : Union[str, Any] = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __magic_name__ : List[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = 3 __magic_name__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __magic_name__ : Optional[int] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @slow def __magic_name__ ( self ) -> Union[str, Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: __magic_name__ : Any = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.default_image_processor __magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : List[Any] = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else () lowercase__ : Optional[int] = FocalNetConfig lowercase__ : Dict = False def __magic_name__ ( self ) -> int: __magic_name__ : Dict = FocalNetModelTester(self )
342
0
def lowerCAmelCase_ ( __a , __a ) -> Dict: """simple docstring""" lowerCamelCase__: Any =[0 for i in range(r + 1 )] # nc0 = 1 lowerCamelCase__: List[str] =1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowerCamelCase__: List[str] =min(__a , __a ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
10
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]: __magic_name__ : int = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = image_size __magic_name__ : str = num_channels __magic_name__ : Dict = patch_size __magic_name__ : Tuple = num_frames __magic_name__ : List[Any] = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : Dict = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Tuple = attention_type __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = scope __magic_name__ : Tuple = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __magic_name__ : str = (image_size // patch_size) ** 2 __magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : str = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> str: __magic_name__ : Dict = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __magic_name__ : Optional[Any] = self.num_labels return config def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[Any] = model(lowerCAmelCase__ ) # verify the logits shape __magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs __magic_name__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ : Union[str, Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : Any = False def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[Any] = TimesformerModelTester(self ) __magic_name__ : List[str] = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]: __magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Optional[int] = [*signature.parameters.keys()] __magic_name__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Optional[int]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: if not self.has_attentions: pass else: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True for model_class in self.all_model_classes: __magic_name__ : Tuple = self.model_tester.seq_length __magic_name__ : int = self.model_tester.num_frames __magic_name__ : Any = True __magic_name__ : Tuple = False __magic_name__ : Optional[int] = True __magic_name__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ : Optional[Any] = True __magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : int = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __magic_name__ : Union[str, Any] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : Optional[Any] = True __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) __magic_name__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" ) __magic_name__ : List[str] = np.load(_A ) return list(_A ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowerCAmelCase__ ) __magic_name__ : str = self.default_image_processor __magic_name__ : Any = prepare_video() __magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : int = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
342
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowerCAmelCase__ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase) -> Optional[Any]: super().__init__() _A : Any = torchvision.models.resnetaaa(pretrained=__lowerCamelCase) _A : Union[str, Any] = list(model.children())[:-2] _A : str = nn.Sequential(*__lowerCamelCase) _A : Any = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds]) def _lowerCamelCase ( self , __lowerCamelCase) -> str: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 _A : str = self.pool(self.model(__lowerCamelCase)) _A : int = torch.flatten(__lowerCamelCase , start_dim=2) _A : List[Any] = out.transpose(1 , 2).contiguous() return out # BxNx2048 class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[str]: _A : Dict = [json.loads(__lowerCamelCase) for l in open(__lowerCamelCase)] _A : Union[str, Any] = os.path.dirname(__lowerCamelCase) _A : Optional[Any] = tokenizer _A : Any = labels _A : str = len(__lowerCamelCase) _A : Optional[int] = max_seq_length _A : int = transforms def __len__( self) -> Optional[Any]: return len(self.data) def __getitem__( self , __lowerCamelCase) -> List[Any]: _A : str = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=__lowerCamelCase)) _A , _A , _A : List[str] = sentence[0], sentence[1:-1], sentence[-1] _A : int = sentence[: self.max_seq_length] _A : Any = torch.zeros(self.n_classes) _A : Tuple = 1 _A : List[Any] = Image.open(os.path.join(self.data_dir , self.data[index]["img"])).convert("RGB") _A : Optional[Any] = self.transforms(__lowerCamelCase) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _lowerCamelCase ( self) -> Union[str, Any]: _A : Any = Counter() for row in self.data: label_freqs.update(row["label"]) return label_freqs def _UpperCAmelCase (UpperCamelCase__ : List[Any] ): _A : List[str] = [len(row["sentence"] ) for row in batch] _A , _A : Union[str, Any] = len(UpperCamelCase__ ), max(UpperCamelCase__ ) _A : int = torch.zeros(UpperCamelCase__ , UpperCamelCase__ , dtype=torch.long ) _A : Tuple = torch.zeros(UpperCamelCase__ , UpperCamelCase__ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(UpperCamelCase__ , UpperCamelCase__ ) ): _A : Tuple = input_row["sentence"] _A : List[Any] = 1 _A : Optional[int] = torch.stack([row["image"] for row in batch] ) _A : Optional[Any] = torch.stack([row["label"] for row in batch] ) _A : List[Any] = torch.stack([row["image_start_token"] for row in batch] ) _A : Dict = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _UpperCAmelCase (): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _UpperCAmelCase (): return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ), ] )
11
def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = [0] * len(_A ) __magic_name__ : List[str] = [] __magic_name__ : List[str] = [1] * len(_A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: __magic_name__ : Dict = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __magic_name__ : int = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_A ) print(max(_A ) ) # Adjacency list of Graph __magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
0
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency UpperCAmelCase_ = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } UpperCAmelCase_ = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' UpperCAmelCase_ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def lowerCamelCase__ ( A__ : tuple ): '''simple docstring''' return x[0] def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = get_letter_count(A__ ) __lowerCamelCase = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(A__ ) __lowerCamelCase = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=A__ ) __lowerCamelCase = """""".join(freq_to_letter[freq] ) __lowerCamelCase = list(freq_to_letter_str.items() ) freq_pairs.sort(key=A__ , reverse=A__ ) __lowerCamelCase = [freq_pair[1] for freq_pair in freq_pairs] return "".join(A__ ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = get_frequency_order(A__ ) __lowerCamelCase = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
12
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: __magic_name__ : Tuple = """ylacombe/bark-small""" __magic_name__ : List[str] = tempfile.mkdtemp() __magic_name__ : Optional[Any] = """en_speaker_1""" __magic_name__ : Union[str, Any] = """This is a test string""" __magic_name__ : Optional[int] = """speaker_embeddings_path.json""" __magic_name__ : Any = """speaker_embeddings""" def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : str = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __magic_name__ : Union[str, Any] = 35 __magic_name__ : List[Any] = 2 __magic_name__ : Dict = 8 __magic_name__ : Tuple = { """semantic_prompt""": np.ones(lowerCAmelCase__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string ) __magic_name__ : List[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
342
0
lowerCAmelCase : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} lowerCAmelCase : str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = True SCREAMING_SNAKE_CASE_: Any = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) order.append(_UpperCAmelCase ) return order def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = True SCREAMING_SNAKE_CASE_: Any = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return component def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = len(_UpperCAmelCase ) * [False] SCREAMING_SNAKE_CASE_: dict[int, list[int]] = {vert: [] for vert in range(len(_UpperCAmelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: str = [] for i, was_visited in enumerate(_UpperCAmelCase ): if not was_visited: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = [] SCREAMING_SNAKE_CASE_: List[Any] = len(_UpperCAmelCase ) * [False] for i in range(len(_UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_: List[str] = order[len(_UpperCAmelCase ) - i - 1] if not visited[vert]: SCREAMING_SNAKE_CASE_: int = find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) components_list.append(_UpperCAmelCase ) return components_list
13
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]: __magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} __magic_name__ : str = parent __magic_name__ : Any = batch_size __magic_name__ : Any = num_channels __magic_name__ : List[str] = image_size __magic_name__ : Tuple = min_resolution __magic_name__ : Union[str, Any] = max_resolution __magic_name__ : List[str] = do_resize __magic_name__ : Optional[Any] = size __magic_name__ : Optional[Any] = do_normalize __magic_name__ : Any = image_mean __magic_name__ : List[str] = image_std def __magic_name__ ( self ) -> List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = DPTImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Dict = DPTImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __magic_name__ ( self ) -> str: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Optional[Any]: # Initialize image_processing __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
342
0
_lowerCamelCase : Tuple = { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 10: """a""", 11: """b""", 12: """c""", 13: """d""", 14: """e""", 15: """f""", } def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" assert type(lowercase_ ) in (int, float) and decimal == int(lowercase_ ) A__ = int(lowercase_ ) A__ = '''''' A__ = False if decimal < 0: A__ = True decimal *= -1 while decimal > 0: A__ , A__ = divmod(lowercase_ , 16 ) A__ = values[remainder] + hexadecimal A__ = '''0x''' + hexadecimal if negative: A__ = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
14
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__: Tuple = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M''' lowercase__ : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowercase__ : List[str] = '''translator''' lowercase__ : Optional[Any] = AutoTokenizer lowercase__ : int = AutoModelForSeqaSeqLM lowercase__ : List[Any] = LANGUAGE_CODES lowercase__ : str = ['''text''', '''text''', '''text'''] lowercase__ : Any = ['''text'''] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) __magic_name__ : Tuple = self.lang_to_code[src_lang] __magic_name__ : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
342
0
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar SCREAMING_SNAKE_CASE :Dict = TypeVar('T') class UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : List[str] ,A : bool = True ): __A = {} # dictionary of lists __A = directed def UpperCamelCase_ ( self : str ,A : T ,A : T ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) self.adj_list[destination_vertex].append(A ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) __A = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(A ) __A = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: __A = [destination_vertex] __A = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) __A = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: __A = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: __A = [destination_vertex] __A = [] return self def __repr__( self : Union[str, Any] ): return pformat(self.adj_list )
15
import math class snake_case__ : def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1 __magic_name__ : Tuple = n __magic_name__ : Union[str, Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # adjacency matrix for weight __magic_name__ : List[Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # dp[i][j] stores minimum distance from i to j def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Dict = w def __magic_name__ ( self ) -> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return self.dp[u][v] if __name__ == "__main__": __magic_name__: Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
342
0
"""simple docstring""" from datetime import datetime import requests def __UpperCAmelCase ( __lowerCamelCase ) -> bytes: lowercase__ : List[str] = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' lowercase__ : Optional[int] = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(__lowerCamelCase ).content if __name__ == "__main__": lowerCAmelCase_ = input('Enter Video/IGTV url: ').strip() lowerCAmelCase_ = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(F'''Done. Video saved to disk as {file_name}.''')
16
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__ : def __init__( self , lowerCAmelCase__ = None ) -> None: if components is None: __magic_name__ : Any = [] __magic_name__ : List[str] = list(lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : Dict = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : int = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... @overload def __mul__( self , lowerCAmelCase__ ) -> float: ... def __mul__( self , lowerCAmelCase__ ) -> float | Vector: if isinstance(lowerCAmelCase__ , (float, int) ): __magic_name__ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): __magic_name__ : Optional[Any] = len(self ) __magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __magic_name__ ( self ) -> Vector: return Vector(self.__components ) def __magic_name__ ( self , lowerCAmelCase__ ) -> float: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ : Optional[int] = value def __magic_name__ ( self ) -> float: if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __magic_name__ : Dict = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: __magic_name__ : Optional[Any] = self * other __magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase ( _A ): """simple docstring""" assert isinstance(_A, _A ) return Vector([0] * dimension ) def UpperCamelCase ( _A, _A ): """simple docstring""" assert isinstance(_A, _A ) and (isinstance(_A, _A )) __magic_name__ : Union[str, Any] = [0] * dimension __magic_name__ : Optional[int] = 1 return Vector(_A ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" assert ( isinstance(_A, _A ) and isinstance(_A, _A ) and (isinstance(_A, (int, float) )) ) return x * scalar + y def UpperCamelCase ( _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )] return Vector(_A ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Dict = matrix __magic_name__ : Tuple = w __magic_name__ : Union[str, Any] = h def __str__( self ) -> str: __magic_name__ : Dict = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Tuple = [] for i in range(self.__height ): __magic_name__ : Tuple = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Optional[Any] = [] for i in range(self.__height ): __magic_name__ : int = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Matrix: ... @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: __magic_name__ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ : Optional[int] = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar __magic_name__ : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def __magic_name__ ( self ) -> int: return self.__height def __magic_name__ ( self ) -> int: return self.__width def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): __magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __magic_name__ ( self ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )] return Matrix(_A, _A, _A ) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : list[list[float]] = [ [random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A ) ] return Matrix(_A, _A, _A )
342
0
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _A ( UpperCamelCase_ : int, UpperCamelCase_ : Tuple=10) -> str: '''simple docstring''' __lowercase = [] for _ in range(UpperCamelCase_): lrs.append(scheduler.get_lr()[0]) scheduler.step() return lrs def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Tuple=10) -> Union[str, Any]: '''simple docstring''' __lowercase = [] for step in range(UpperCamelCase_): lrs.append(scheduler.get_lr()[0]) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = os.path.join(UpperCamelCase_, "schedule.bin") torch.save(scheduler.state_dict(), UpperCamelCase_) __lowercase = torch.load(UpperCamelCase_) scheduler.load_state_dict(UpperCamelCase_) return lrs @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : str, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Optional[Any] ): self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertAlmostEqual(UpperCAmelCase__, UpperCAmelCase__, delta=UpperCAmelCase__ ) def _lowercase ( self : List[Any] ): __lowercase = torch.tensor([0.1, -0.2, -0.1], requires_grad=UpperCAmelCase__ ) __lowercase = torch.tensor([0.4, 0.2, -0.5] ) __lowercase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __lowercase = AdamW(params=[w], lr=2E-1, weight_decay=0.0 ) for _ in range(1_0_0 ): __lowercase = criterion(UpperCAmelCase__, UpperCAmelCase__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1E-2 ) def _lowercase ( self : Tuple ): __lowercase = torch.tensor([0.1, -0.2, -0.1], requires_grad=UpperCAmelCase__ ) __lowercase = torch.tensor([0.4, 0.2, -0.5] ) __lowercase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __lowercase = Adafactor( params=[w], lr=1E-2, eps=(1E-30, 1E-3), clip_threshold=1.0, decay_rate=-0.8, betaa=UpperCAmelCase__, weight_decay=0.0, relative_step=UpperCAmelCase__, scale_parameter=UpperCAmelCase__, warmup_init=UpperCAmelCase__, ) for _ in range(1_0_0_0 ): __lowercase = criterion(UpperCAmelCase__, UpperCAmelCase__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1E-2 ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = nn.Linear(5_0 ,5_0 ) if is_torch_available() else None __UpperCAmelCase : Optional[Any] = AdamW(m.parameters() ,lr=10.0 ) if is_torch_available() else None __UpperCAmelCase : Tuple = 1_0 def _lowercase ( self : Any, UpperCAmelCase__ : str, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : str=None ): self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertAlmostEqual(UpperCAmelCase__, UpperCAmelCase__, delta=UpperCAmelCase__, msg=UpperCAmelCase__ ) def _lowercase ( self : Dict ): __lowercase = {"num_warmup_steps": 2, "num_training_steps": 1_0} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) __lowercase = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): __lowercase ,__lowercase = data __lowercase = scheduler_func(self.optimizer, **UpperCAmelCase__ ) self.assertEqual(len([scheduler.get_lr()[0]] ), 1 ) __lowercase = unwrap_schedule(UpperCAmelCase__, self.num_steps ) self.assertListAlmostEqual( UpperCAmelCase__, UpperCAmelCase__, tol=1E-2, msg=F"""failed for {scheduler_func} in normal scheduler""", ) __lowercase = scheduler_func(self.optimizer, **UpperCAmelCase__ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase__ ) # wrap to test picklability of the schedule __lowercase = unwrap_and_save_reload_schedule(UpperCAmelCase__, self.num_steps ) self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__, msg=F"""failed for {scheduler_func} in save and reload""" ) class _lowerCAmelCase : """simple docstring""" def __init__( self : Tuple, UpperCAmelCase__ : Dict ): __lowercase = fn def __call__( self : int, *UpperCAmelCase__ : Optional[Any], **UpperCAmelCase__ : List[Any] ): return self.fn(*UpperCAmelCase__, **UpperCAmelCase__ ) @classmethod def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Dict ): __lowercase = list(map(self, scheduler.lr_lambdas ) )
17
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: int = "▁" __magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"} __magic_name__: List[str] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __magic_name__: Tuple = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off __magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = ['''input_ids''', '''attention_mask'''] lowercase__ : List[int] = [] lowercase__ : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) __magic_name__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__ : List[Any] = 1 __magic_name__ : Dict = len(self.sp_model ) __magic_name__ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } __magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} __magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __magic_name__ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn""" __magic_name__ : Any = self.lang_code_to_id[self._src_lang] __magic_name__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Any: __magic_name__ : List[Any] = self.__dict__.copy() __magic_name__ : int = None __magic_name__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ : Any = {} __magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __magic_name__ ( self ) -> str: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self ) -> str: return self._src_lang @src_lang.setter def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __magic_name__ : Optional[int] = [1] * len(self.prefix_tokens ) __magic_name__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : str = [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__ : Dict = src_lang __magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Tuple = tgt_lang_id return inputs def __magic_name__ ( self ) -> int: __magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip() return out_string def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , """wb""" ) as fi: __magic_name__ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding: __magic_name__ : List[str] = src_lang __magic_name__ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : str = [self.cur_lang_code] __magic_name__ : List[Any] = [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : Optional[int] = [self.cur_lang_code] __magic_name__ : Union[str, Any] = [self.eos_token_id]
342
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : List[str] = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class a__ ( A__ ): A = 'rwkv' A = {'max_position_embeddings': 'context_length'} def __init__( self : List[Any],_A : int=5_0277,_A : Any=1024,_A : List[str]=4096,_A : Union[str, Any]=32,_A : List[str]=None,_A : List[str]=None,_A : Optional[int]=1E-5,_A : Any=0,_A : Any=0,_A : Any=6,_A : Any=False,_A : Any=True,**_A : Optional[Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = context_length SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : str = attention_hidden_size if attention_hidden_size is not None else hidden_size SCREAMING_SNAKE_CASE_ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size SCREAMING_SNAKE_CASE_ : Tuple = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : Optional[Any] = rescale_every SCREAMING_SNAKE_CASE_ : str = use_cache SCREAMING_SNAKE_CASE_ : Any = bos_token_id SCREAMING_SNAKE_CASE_ : int = eos_token_id super().__init__( tie_word_embeddings=_A,bos_token_id=_A,eos_token_id=_A,**_A )
18
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Dict = MobileBertConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ : Tuple = MobileBertForPreTraining(_A ) # Load weights from tf checkpoint __magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _A ) if __name__ == "__main__": __magic_name__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__: Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
342
0
import random def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = num - 1 lowerCamelCase_ = 0 while s % 2 == 0: lowerCamelCase_ = s // 2 t += 1 for _ in range(5 ): lowerCamelCase_ = random.randrange(2 , num - 1 ) lowerCamelCase_ = pow(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if v != 1: lowerCamelCase_ = 0 while v != (num - 1): if i == t - 1: return False else: lowerCamelCase_ = i + 1 lowerCamelCase_ = (v**2) % num return True def lowerCamelCase_ ( lowerCamelCase__ ): if num < 2: return False lowerCamelCase_ = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ = 1_0_2_4 ): while True: lowerCamelCase_ = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(lowerCamelCase__ ): return num if __name__ == "__main__": __A =generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
19
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = MgpstrTokenizer lowercase__ : int = False lowercase__ : Any = {} lowercase__ : Optional[int] = False def __magic_name__ ( self ) -> Optional[Any]: super().setUp() # fmt: off __magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = """tester""" __magic_name__ : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Dict = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) __magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) __magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __magic_name__ ( self ) -> Optional[Any]: pass
342
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : int = { """configuration_blenderbot_small""": [ """BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotSmallConfig""", """BlenderbotSmallOnnxConfig""", ], """tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ["""BlenderbotSmallTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ """BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotSmallForCausalLM""", """BlenderbotSmallForConditionalGeneration""", """BlenderbotSmallModel""", """BlenderbotSmallPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ """TFBlenderbotSmallForConditionalGeneration""", """TFBlenderbotSmallModel""", """TFBlenderbotSmallPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """FlaxBlenderbotSmallForConditionalGeneration""", """FlaxBlenderbotSmallModel""", """FlaxBlenderbotSmallPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys lowercase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
import re def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(_A, _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
342
0
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCamelCase_( lowerCamelCase_ ) -> Any: _lowercase : Any = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ ) -> str: _lowercase , _lowercase : List[str] = emb.weight.shape _lowercase : int = nn.Linear(lowerCamelCase_ , lowerCamelCase_ , bias=lowerCamelCase_ ) _lowercase : List[Any] = emb.weight.data return lin_layer def UpperCamelCase_( lowerCamelCase_ ) -> Dict: _lowercase : Optional[Any] = torch.load(lowerCamelCase_ , map_location='cpu' ) _lowercase : Union[str, Any] = mam_aaa['args'] or mam_aaa['cfg']['model'] _lowercase : Any = mam_aaa['model'] remove_ignore_keys_(lowerCamelCase_ ) _lowercase : List[Any] = state_dict['encoder.embed_tokens.weight'].shape[0] _lowercase : List[Any] = MaMaaaConfig( vocab_size=lowerCamelCase_ , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) _lowercase : Optional[Any] = state_dict['decoder.embed_tokens.weight'] _lowercase : Optional[int] = MaMaaaForConditionalGeneration(lowerCamelCase_ ) model.model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) _lowercase : List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE : Tuple = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
21
import doctest from collections import deque import numpy as np class snake_case__ : def __init__( self ) -> None: __magic_name__ : Any = [2, 1, 2, -1] __magic_name__ : Tuple = [1, 2, 3, 4] def __magic_name__ ( self ) -> list[float]: __magic_name__ : Optional[Any] = len(self.first_signal ) __magic_name__ : Dict = len(self.second_signal ) __magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ ) # create a zero matrix of max_length x max_length __magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__ ): __magic_name__ : List[str] = deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase__ ) for j, item in enumerate(lowerCAmelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal __magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
342
0
'''simple docstring''' import re from filelock import FileLock try: import nltk __SCREAMING_SNAKE_CASE :Optional[int] = True except (ImportError, ModuleNotFoundError): __SCREAMING_SNAKE_CASE :str = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def UpperCAmelCase_ ( __lowercase : str ) -> str: '''simple docstring''' re.sub("<n>" , "" , __lowercase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__lowercase ) )
22
from math import factorial def UpperCamelCase ( _A, _A, _A ): """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(_A, _A ) or not isinstance(_A, _A ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) __magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __magic_name__ : Any = float(factorial(_A ) ) coefficient /= factorial(_A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
342
0
'''simple docstring''' import os import sys import unittest UpperCamelCase__: int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path UpperCamelCase__: Optional[Any] = os.path.join(git_repo_path, "src", "transformers") UpperCamelCase__: List[Any] = "\n{0} = None\n" UpperCamelCase__: Optional[Any] = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" UpperCamelCase__: List[str] = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : List[str] ) -> Optional[int]: UpperCAmelCase : int = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(__snake_case ) UpperCAmelCase : List[Any] = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(__snake_case , '''tokenizers''' ) UpperCAmelCase : Any = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(__snake_case , '''tensorflow_text''' ) UpperCAmelCase : Union[str, Any] = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(__snake_case , '''sentencepiece_and_tokenizers''' ) UpperCAmelCase : Dict = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(__snake_case , '''sentencepiece_and_tensorflow_text''' ) UpperCAmelCase : int = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(__snake_case , '''sentencepiece_and_tokenizers_and_vision''' ) def A ( self : List[Any] ) -> Optional[int]: UpperCAmelCase : Optional[int] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , __snake_case ) self.assertIn('''tensorflow_text''' , __snake_case ) self.assertIn('''sentencepiece_and_tokenizers''' , __snake_case ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def A ( self : Union[str, Any] ) -> str: UpperCAmelCase : List[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(__snake_case , '''\nCONSTANT = None\n''' ) UpperCAmelCase : Any = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( __snake_case , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) UpperCAmelCase : List[Any] = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCAmelCase : Dict = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(__snake_case , __snake_case ) def A ( self : List[Any] ) -> Tuple: UpperCAmelCase : List[str] = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCAmelCase : List[Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , __snake_case )
23
from __future__ import annotations def UpperCamelCase ( _A ): # This function is recursive """simple docstring""" __magic_name__ : str = len(_A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __magic_name__ : Dict = array[0] __magic_name__ : Optional[Any] = False __magic_name__ : Tuple = 1 __magic_name__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __magic_name__ : Union[str, Any] = True __magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]] __magic_name__ : Dict = longest_subsequence(_A ) if len(_A ) > len(_A ): __magic_name__ : Tuple = temp_array else: i += 1 __magic_name__ : Any = [element for element in array[1:] if element >= pivot] __magic_name__ : Dict = [pivot, *longest_subsequence(_A )] if len(_A ) > len(_A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
342
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case_ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. snake_case_ = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING snake_case_ = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def lowerCamelCase__ ( snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : List[Any] ) -> Union[str, Any]: __snake_case = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"""config.{attribute}""" in modeling_source or f"""getattr(config, \"{attribute}\"""" in modeling_source or f"""getattr(self.config, \"{attribute}\"""" in modeling_source ): __snake_case = True # Deal with multi-line cases elif ( re.search( Rf"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , snake_case_ , ) is not None ): __snake_case = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: __snake_case = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files __snake_case = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] __snake_case = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed __snake_case = True if not attribute_used: __snake_case = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: __snake_case = True elif attribute in ["tie_word_embeddings"] and default_value is False: __snake_case = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: __snake_case = True elif attribute.endswith('''_token_id''' ): __snake_case = True # configuration class specific cases if not case_allowed: __snake_case = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) __snake_case = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowerCamelCase__ ( snake_case_ : Union[str, Any] ) -> Tuple: __snake_case = dict(inspect.signature(config_class.__init__ ).parameters ) __snake_case = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] __snake_case = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass __snake_case = {} if len(config_class.attribute_map ) > 0: __snake_case = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files __snake_case = inspect.getsourcefile(snake_case_ ) __snake_case = os.path.dirname(snake_case_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. __snake_case = [os.path.join(snake_case_ , snake_case_ ) for fn in os.listdir(snake_case_ ) if fn.startswith('''modeling_''' )] # Get the source code strings __snake_case = [] for path in modeling_paths: if os.path.isfile(snake_case_ ): with open(snake_case_ ) as fp: modeling_sources.append(fp.read() ) __snake_case = [] for config_param, default_value in zip(snake_case_ , snake_case_ ): # `attributes` here is all the variant names for `config_param` __snake_case = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): unused_attributes.append(attributes[0] ) return sorted(snake_case_ ) def lowerCamelCase__ ( ) -> Union[str, Any]: __snake_case = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) __snake_case = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda snake_case_ : inspect.isclass(snake_case_ ) and issubclass(snake_case_ , snake_case_ ) and inspect.getmodule(snake_case_ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: __snake_case = check_config_attributes_being_used(snake_case_ ) if len(snake_case_ ) > 0: __snake_case = unused_attributes if len(snake_case_ ) > 0: __snake_case = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f"""{name}: {attributes}\n""" raise ValueError(snake_case_ ) if __name__ == "__main__": check_config_attributes()
24
import argparse import os import re __magic_name__: Optional[Any] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings __magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def UpperCamelCase ( _A, _A = False ): """simple docstring""" with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : Any = f.read() __magic_name__ : List[Any] = content.split("""\n""" ) __magic_name__ : List[str] = [] __magic_name__ : Union[str, Any] = 0 while line_idx < len(_A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 __magic_name__ : List[Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __magic_name__ : List[str] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_A, """w""", encoding="""utf-8""" ) as f: f.write("""\n""".join(_A ) ) elif "\n".join(_A ) != content: return True def UpperCamelCase ( _A = False ): """simple docstring""" __magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )] __magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames] if not overwrite and any(_A ): __magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix' """ this.""" ) if __name__ == "__main__": __magic_name__: List[str] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __magic_name__: List[str] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
342
0
"""simple docstring""" UpperCAmelCase__ : List[str] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] UpperCAmelCase__ : int = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] UpperCAmelCase__ : int = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] UpperCAmelCase__ : int = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] UpperCAmelCase__ : Tuple = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] UpperCAmelCase__ : Union[str, Any] = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] UpperCAmelCase__ : str = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] UpperCAmelCase__ : str = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
25
__magic_name__: str = [0, 2, 4, 6, 8] __magic_name__: Optional[int] = [1, 3, 5, 7, 9] def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __magic_name__ : List[Any] = 0 for digit in range(10 ): __magic_name__ : Optional[int] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, _A, _A ) return result __magic_name__ : str = 0 for digita in range(10 ): __magic_name__ : Optional[Any] = digita if (remainder + digita) % 2 == 0: __magic_name__ : Tuple = ODD_DIGITS else: __magic_name__ : str = EVEN_DIGITS for digita in other_parity_digits: __magic_name__ : Tuple = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, ) return result def UpperCamelCase ( _A = 9 ): """simple docstring""" __magic_name__ : List[str] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(_A, 0, [0] * length, _A ) return result if __name__ == "__main__": print(F"""{solution() = }""")
342
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> int: super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a ) _A : Optional[int] = Sql( cache_dir=_a , features=_a , sql=_a , con=_a , **_a , ) def a__ ( self ) -> Optional[Any]: _A : Tuple = None _A : int = None _A : Tuple = None _A : Union[str, Any] = None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , ) # Build dataset for splits _A : int = self.builder.as_dataset( split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset class lowercase : def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> Union[str, Any]: if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) _A : Dict = dataset _A : int = name _A : Union[str, Any] = con _A : str = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _A : str = num_proc _A : Optional[Any] = to_sql_kwargs def a__ ( self ) -> int: _A : Any = self.to_sql_kwargs.pop("""sql""" , _a ) _A : List[str] = self.to_sql_kwargs.pop("""con""" , _a ) _A : int = self.to_sql_kwargs.pop("""index""" , _a ) _A : List[str] = self._write(index=_a , **self.to_sql_kwargs ) return written def a__ ( self , _a ) -> Optional[int]: _A , _A , _A : List[str] = args _A : int = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs _A : str = query_table( table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , ) _A : Tuple = batch.to_pandas() _A : Union[str, Any] = df.to_sql(self.name , self.con , index=_a , **_a ) return num_rows or len(_a ) def a__ ( self , _a , **_a ) -> int: _A : Any = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _A , _A : Tuple = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
26
def UpperCamelCase ( _A ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) __magic_name__ : int = sorted(string.lower() ) return len(_A ) == len(set(_A ) ) if __name__ == "__main__": __magic_name__: Dict = input("Enter a string ").strip() __magic_name__: Union[str, Any] = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
342
0
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __UpperCamelCase ( lowerCAmelCase_ ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def __UpperCAmelCase ( self ): '''simple docstring''' with self.assertRaises(__a ): __a : Any = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def __UpperCAmelCase ( self ): '''simple docstring''' with self.assertRaises(__a ): __a : Optional[Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value('bool' ) , type=Value('int64' ) ) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = pa.array(TypedSequence([1, 2, 3] , type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __UpperCAmelCase ( self ): '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): __a : Union[str, Any] = pa.array(TypedSequence(['foo', 'bar'] , type=Value('int64' ) ) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = pa.array(TypedSequence(['foo', 'bar'] , try_type=Value('int64' ) ) ) self.assertEqual(arr.type , pa.string() ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def __UpperCAmelCase ( self ): '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): __a : Any = pa.array(TypedSequence(['foo', 'bar'] , type=ArrayaD((1, 3) , 'int64' ) ) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = pa.array(TypedSequence(['foo', 'bar'] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def __UpperCAmelCase ( self ): '''simple docstring''' import PIL.Image __a : Union[str, Any] = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' , side_effect=__a ) as mock_cast_to_python_objects: __a : Union[str, Any] = pa.array(TypedSequence([{'path': None, 'bytes': b'image_bytes'}, pil_image] , type=Image() ) ) __a , __a : Optional[Any] = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' , __a ) self.assertFalse(kwargs['optimize_list_casting'] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int ): __a : str = pa.BufferReader(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , pa.Buffer ) else pa.memory_map(_SCREAMING_SNAKE_CASE ) __a : Dict = pa.ipc.open_stream(_SCREAMING_SNAKE_CASE ) __a : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] ): __a : str = pa.BufferOutputStream() __a : Any = pa.schema(_SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) __a , __a : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __a : List[Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowerCamelCase (): __a : int = pa.BufferOutputStream() __a : Optional[int] = Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) __a , __a : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata __a : int = pa.BufferReader(output.getvalue() ) __a : Tuple = pa.ipc.open_stream(_SCREAMING_SNAKE_CASE ) __a : pa.Table = f.read_all() __a : Optional[int] = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(_SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any ): __a : int = pa.BufferOutputStream() with ArrowWriter( stream=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE , hash_salt='split_name' , check_duplicates=_SCREAMING_SNAKE_CASE , ) as writer: with pytest.raises(_SCREAMING_SNAKE_CASE ): writer.write({'col_1': 'foo', 'col_2': 1} , key=[1, 2] ) __a , __a : Optional[Any] = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): __a : Tuple = pa.BufferOutputStream() with ArrowWriter( stream=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE , hash_salt='split_name' , check_duplicates=_SCREAMING_SNAKE_CASE , ) as writer: with pytest.raises(_SCREAMING_SNAKE_CASE ): writer.write({'col_1': 'foo', 'col_2': 1} , key=10 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=10 ) __a , __a : Optional[Any] = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] ): __a : List[str] = pa.BufferOutputStream() with ArrowWriter( stream=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE , hash_salt='split_name' , check_duplicates=_SCREAMING_SNAKE_CASE , ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} , key=1 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=2 ) __a , __a : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Dict ): __a : Optional[int] = pa.BufferOutputStream() __a : int = pa.schema(_SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) __a , __a : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __a : str = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] ): __a : Tuple = pa.BufferOutputStream() __a : str = pa.schema(_SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) __a , __a : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __a : List[str] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] ): __a : List[Any] = pa.BufferOutputStream() __a : List[Any] = pa.schema(_SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) __a , __a : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __a : List[Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowerCamelCase (): with tempfile.TemporaryDirectory() as tmp_dir: __a : List[Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} __a : Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE , 'test.arrow' ) with ArrowWriter(path=_SCREAMING_SNAKE_CASE , schema=pa.schema(_SCREAMING_SNAKE_CASE ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) __a , __a : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(_SCREAMING_SNAKE_CASE , 1 ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): if pa.types.is_list(_SCREAMING_SNAKE_CASE ): return get_base_dtype(arr_type.value_type ) else: return arr_type def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int ): if isinstance(lst[0] , _SCREAMING_SNAKE_CASE ): change_first_primitive_element_in_list(lst[0] , _SCREAMING_SNAKE_CASE ) else: __a : List[str] = value @pytest.mark.parametrize('optimized_int_type, expected_dtype' , [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): __a : Optional[Any] = pa.array(TypedSequence(_SCREAMING_SNAKE_CASE , optimized_int_type=_SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype' , [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ] , ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): # in range __a : Any = pa.array(OptimizedTypedSequence(_SCREAMING_SNAKE_CASE , col=_SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications __a : Optional[Any] = copy.deepcopy(_SCREAMING_SNAKE_CASE ) __a : List[str] = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Dict = pa.array(OptimizedTypedSequence(_SCREAMING_SNAKE_CASE , col=_SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception' , [False, True] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): __a : Union[str, Any] = str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=_SCREAMING_SNAKE_CASE ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): __a : Optional[Any] = 'mock://dataset-train.arrow' with ArrowWriter(path=_SCREAMING_SNAKE_CASE , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(_SCREAMING_SNAKE_CASE ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) __a , __a : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): __a : List[Any] = pa.BufferOutputStream() with ParquetWriter(stream=_SCREAMING_SNAKE_CASE ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) __a , __a : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 __a : Optional[Any] = pa.BufferReader(output.getvalue() ) __a : pa.Table = pq.read_table(_SCREAMING_SNAKE_CASE ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files' , [False, True] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): import PIL.Image __a : List[Any] = str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_SCREAMING_SNAKE_CASE , format='png' ) __a : Union[str, Any] = pa.BufferOutputStream() with ParquetWriter( stream=_SCREAMING_SNAKE_CASE , features=Features({'image': Image()} ) , embed_local_files=_SCREAMING_SNAKE_CASE ) as writer: writer.write({'image': image_path} ) writer.finalize() __a : Any = pa.BufferReader(output.getvalue() ) __a : pa.Table = pq.read_table(_SCREAMING_SNAKE_CASE ) __a : Union[str, Any] = pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'] , _SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def lowerCamelCase (): __a : Tuple = pa.schema([pa.field('col_1' , pa.string() , nullable=_SCREAMING_SNAKE_CASE )] ) __a : str = pa.BufferOutputStream() with ArrowWriter(stream=_SCREAMING_SNAKE_CASE ) as writer: writer._build_writer(inferred_schema=_SCREAMING_SNAKE_CASE ) assert writer._schema == pa.schema([pa.field('col_1' , pa.string() )] )
27
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
342
0
'''simple docstring''' from math import ceil def __lowerCamelCase ( A__ = 1_001 ) -> int: """simple docstring""" UpperCamelCase = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): UpperCamelCase = 2 * i + 1 UpperCamelCase = 2 * i UpperCamelCase = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _lowerCamelCase : Optional[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
28
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]: __magic_name__ : str = parent __magic_name__ : Dict = do_resize __magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88} __magic_name__ : Union[str, Any] = size_divisor __magic_name__ : Union[str, Any] = do_rescale __magic_name__ : Dict = rescale_factor __magic_name__ : Union[str, Any] = do_normalize __magic_name__ : List[str] = do_center_crop __magic_name__ : Tuple = image_mean __magic_name__ : Tuple = image_std __magic_name__ : Tuple = do_pad __magic_name__ : int = batch_size __magic_name__ : List[Any] = num_channels __magic_name__ : int = min_resolution __magic_name__ : str = max_resolution def __magic_name__ ( self ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int: if not batched: __magic_name__ : Dict = self.size["""shortest_edge"""] __magic_name__ : List[str] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): __magic_name__ ,__magic_name__ : List[Any] = image.size else: __magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2] __magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ ) if h < w: __magic_name__ ,__magic_name__ : str = size, scale * w else: __magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size __magic_name__ : Tuple = int((13_33 / 8_00) * size ) if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size: __magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = newh * scale __magic_name__ : Any = neww * scale __magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 ) __magic_name__ ,__magic_name__ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __magic_name__ : Union[str, Any] = [] for image in image_inputs: __magic_name__ ,__magic_name__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] __magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = BridgeTowerImageProcessingTester(self ) @property def __magic_name__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Any: __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) ) def __magic_name__ ( self ) -> Optional[int]: pass def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> str: # Initialize image processor __magic_name__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
342
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , **_UpperCamelCase ) -> Optional[int]: super().__init__(**_UpperCamelCase ) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) requires_backends(self , 'vision' ) self.check_model_type(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ) -> Any: if "text_queries" in kwargs: UpperCAmelCase_ : Tuple = kwargs.pop('text_queries' ) if isinstance(_UpperCamelCase , (str, Image.Image) ): UpperCAmelCase_ : Optional[Any] = {'image': image, 'candidate_labels': candidate_labels} else: UpperCAmelCase_ : Union[str, Any] = image UpperCAmelCase_ : Tuple = super().__call__(_UpperCamelCase , **_UpperCamelCase ) return results def __UpperCAmelCase ( self , **_UpperCamelCase ) -> str: UpperCAmelCase_ : Tuple = {} if "threshold" in kwargs: UpperCAmelCase_ : str = kwargs['threshold'] if "top_k" in kwargs: UpperCAmelCase_ : str = kwargs['top_k'] return {}, {}, postprocess_params def __UpperCAmelCase ( self , _UpperCamelCase ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = load_image(inputs['image'] ) UpperCAmelCase_ : List[Any] = inputs['candidate_labels'] if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Optional[Any] = candidate_labels.split(',' ) UpperCAmelCase_ : Optional[int] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_UpperCamelCase ): UpperCAmelCase_ : Tuple = self.tokenizer(_UpperCamelCase , return_tensors=self.framework ) UpperCAmelCase_ : Union[str, Any] = self.image_processor(_UpperCamelCase , return_tensors=self.framework ) yield { "is_last": i == len(_UpperCamelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : List[str] = model_inputs.pop('target_size' ) UpperCAmelCase_ : Dict = model_inputs.pop('candidate_label' ) UpperCAmelCase_ : Any = model_inputs.pop('is_last' ) UpperCAmelCase_ : Tuple = self.model(**_UpperCamelCase ) UpperCAmelCase_ : Any = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=0.1 , _UpperCamelCase=None ) -> Tuple: UpperCAmelCase_ : Optional[Any] = [] for model_output in model_outputs: UpperCAmelCase_ : Optional[Any] = model_output['candidate_label'] UpperCAmelCase_ : List[str] = BaseModelOutput(_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = self.image_processor.post_process_object_detection( outputs=_UpperCamelCase , threshold=_UpperCamelCase , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): UpperCAmelCase_ : List[Any] = outputs['scores'][index].item() UpperCAmelCase_ : Dict = self._get_bounding_box(outputs['boxes'][index][0] ) UpperCAmelCase_ : List[Any] = {'score': score, 'label': label, 'box': box} results.append(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = sorted(_UpperCamelCase , key=lambda _UpperCamelCase : x["score"] , reverse=_UpperCamelCase ) if top_k: UpperCAmelCase_ : List[str] = results[:top_k] return results def __UpperCAmelCase ( self , _UpperCamelCase ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = box.int().tolist() UpperCAmelCase_ : Optional[Any] = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
29
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__: Tuple = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Union[str, Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __magic_name__: Optional[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
342
0
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def a ( snake_case__: Dict[str, torch.Tensor] ): '''simple docstring''' lowercase_ = [] lowercase_ = [] lowercase_ = [] for rt in rc.restypes: lowercase_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) lowercase_ = {name: i for i, name in enumerate(snake_case__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) lowercase_ = torch.tensor( snake_case__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) lowercase_ = torch.tensor( snake_case__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) lowercase_ = torch.tensor( snake_case__ , dtype=torch.floataa , device=protein['''aatype'''].device , ) lowercase_ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowercase_ = restype_atomaa_to_atomaa[protein_aatype] lowercase_ = restype_atomaa_mask[protein_aatype] lowercase_ = residx_atomaa_mask lowercase_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowercase_ = restype_atomaa_to_atomaa[protein_aatype] lowercase_ = residx_atomaa_to_atomaa.long() # create the corresponding mask lowercase_ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): lowercase_ = rc.restype_atoa[restype_letter] lowercase_ = rc.residue_atoms[restype_name] for atom_name in atom_names: lowercase_ = rc.atom_order[atom_name] lowercase_ = 1 lowercase_ = restype_atomaa_mask[protein_aatype] lowercase_ = residx_atomaa_mask return protein def a ( snake_case__: Dict[str, torch.Tensor] ): '''simple docstring''' lowercase_ = tree_map(lambda snake_case__ : torch.tensor(snake_case__ , device=batch['''aatype'''].device ) , snake_case__ , np.ndarray ) lowercase_ = tensor_tree_map(lambda snake_case__ : np.array(snake_case__ ) , make_atomaa_masks(snake_case__ ) ) return out
30
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__: Dict = logging.get_logger(__name__) __magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __magic_name__: Optional[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __magic_name__: List[Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Any = ( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) __magic_name__ : Any = bs[:] __magic_name__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 __magic_name__ : List[str] = [chr(_A ) for n in cs] return dict(zip(_A, _A ) ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = set() __magic_name__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[Any] = char return pairs class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict: __magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ ) __magic_name__ : Any = {v: k for k, v in self.encoder.items()} __magic_name__ : Tuple = errors # how to handle errors in decoding __magic_name__ : Tuple = bytes_to_unicode() __magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1] __magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : str = {} __magic_name__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __magic_name__ ( self ) -> Optional[Any]: return len(self.encoder ) def __magic_name__ ( self ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if token in self.cache: return self.cache[token] __magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ ,__magic_name__ : List[str] = bigram __magic_name__ : Any = [] __magic_name__ : Any = 0 while i < len(lowerCAmelCase__ ): try: __magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Optional[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : str = tuple(lowerCAmelCase__ ) __magic_name__ : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __magic_name__ : List[str] = get_pairs(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ ) __magic_name__ : str = word return word def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : str = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __magic_name__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Tuple = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __magic_name__ : Optional[Any] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : Optional[int] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] __magic_name__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : Dict = [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __magic_name__ : List[Any] = """ """ + text return (text, kwargs)
342
0
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __SCREAMING_SNAKE_CASE : Union[str, Any] = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def UpperCamelCase_ ( _UpperCAmelCase : Optional[int]=True ) -> Tuple: """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=snake_case__ ) ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = None __UpperCamelCase: int = None def _A ( self : str , A : str , A : List[Any] ): with TemporaryDirectory() as tmp_dir: _UpperCAmelCase : int = dataset_module_factory(A , cache_dir=A ) _UpperCAmelCase : List[Any] = import_main_class(dataset_module.module_path , dataset=A ) _UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=A , config_name=A , hash=dataset_module.hash , ) _UpperCAmelCase : Tuple = "/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=A ).replace(os.sep , "/" ), config.DATASET_INFO_FILENAME, ] ) _UpperCAmelCase : Optional[Any] = cached_path(A , cache_dir=A ) self.assertTrue(os.path.exists(A ) ) @pytest.mark.integration def UpperCamelCase_ ( _UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : int = tmp_path_factory.mktemp("test_hf_gcp" ) / "test_wikipedia_simple" _UpperCAmelCase : Union[str, Any] = dataset_module_factory("wikipedia" , cache_dir=_UpperCAmelCase ) _UpperCAmelCase : str = import_main_class(dataset_module.module_path ) _UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=_UpperCAmelCase , config_name="20220301.frr" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _UpperCAmelCase : Dict = None builder_instance.download_and_prepare() _UpperCAmelCase : List[str] = builder_instance.as_dataset() assert ds @pytest.mark.integration def UpperCamelCase_ ( _UpperCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : List[str] = dataset_module_factory("wikipedia" , cache_dir=_UpperCAmelCase ) _UpperCAmelCase : List[Any] = import_main_class(dataset_module.module_path , dataset=_UpperCAmelCase ) _UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=_UpperCAmelCase , config_name="20220301.frr" , hash=dataset_module.hash , ) _UpperCAmelCase : Dict = builder_instance.as_streaming_dataset() assert ds assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert "train" in ds assert isinstance(ds["train"] , _UpperCAmelCase ) assert next(iter(ds["train"] ) )
31
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str: __magic_name__ : Optional[int] = parent __magic_name__ : Any = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[int] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : str = embed_dim __magic_name__ : int = hidden_sizes __magic_name__ : Union[str, Any] = depths __magic_name__ : List[str] = num_heads __magic_name__ : str = window_size __magic_name__ : Optional[Any] = mlp_ratio __magic_name__ : Dict = qkv_bias __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = drop_path_rate __magic_name__ : Optional[Any] = hidden_act __magic_name__ : int = use_absolute_embeddings __magic_name__ : Dict = patch_norm __magic_name__ : Tuple = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[int] = is_training __magic_name__ : Optional[Any] = scope __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = encoder_stride __magic_name__ : List[Any] = out_features __magic_name__ : Union[str, Any] = out_indices def __magic_name__ ( self ) -> str: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Dict = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Tuple = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __magic_name__ : Optional[Any] = None __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : str = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : int = self.type_sequence_label_size __magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> int: __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs __magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ : Any = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ : Dict = False lowercase__ : Dict = False lowercase__ : int = False lowercase__ : Tuple = False lowercase__ : Optional[Any] = False def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = FocalNetModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> List[str]: return def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __magic_name__ ( self ) -> List[str]: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self ) -> List[Any]: __magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : str = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # FocalNet has a different seq_length __magic_name__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ : str = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape __magic_name__ : Union[str, Any] = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __magic_name__ : List[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = 3 __magic_name__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __magic_name__ : Optional[int] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @slow def __magic_name__ ( self ) -> Union[str, Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: __magic_name__ : Any = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.default_image_processor __magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : List[Any] = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else () lowercase__ : Optional[int] = FocalNetConfig lowercase__ : Dict = False def __magic_name__ ( self ) -> int: __magic_name__ : Dict = FocalNetModelTester(self )
342
0
import math import sys def SCREAMING_SNAKE_CASE_ ( __A : str ) -> str: """simple docstring""" a_ : Any = '' try: with open(__A , 'rb' ) as binary_file: a_ : int = binary_file.read() for dat in data: a_ : Dict = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def SCREAMING_SNAKE_CASE_ ( __A : str ) -> str: """simple docstring""" a_ : List[Any] = {'0': '0', '1': '1'} a_ , a_ : Dict = '', '' a_ : Optional[Any] = len(__A ) for i in range(len(__A ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue a_ : str = lexicon[curr_string] result += last_match_id a_ : List[Any] = last_match_id + '0' if math.loga(__A ).is_integer(): a_ : List[Any] = {} for curr_key in list(__A ): a_ : Tuple = lexicon.pop(__A ) a_ : List[Any] = new_lex a_ : str = last_match_id + '1' index += 1 a_ : int = '' return result def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str ) -> None: """simple docstring""" a_ : Any = 8 try: with open(__A , 'wb' ) as opened_file: a_ : Optional[Any] = [ to_write[i : i + byte_length] for i in range(0 , len(__A ) , __A ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__A , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def SCREAMING_SNAKE_CASE_ ( __A : str ) -> str: """simple docstring""" a_ : Tuple = 0 for letter in data_bits: if letter == "1": break counter += 1 a_ : Any = data_bits[counter:] a_ : List[Any] = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str ) -> None: """simple docstring""" a_ : Dict = read_file_binary(__A ) a_ : Any = remove_prefix(__A ) a_ : Dict = decompress_data(__A ) write_file_binary(__A , __A ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
32
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]: __magic_name__ : int = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = image_size __magic_name__ : str = num_channels __magic_name__ : Dict = patch_size __magic_name__ : Tuple = num_frames __magic_name__ : List[Any] = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : Dict = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Tuple = attention_type __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = scope __magic_name__ : Tuple = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __magic_name__ : str = (image_size // patch_size) ** 2 __magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : str = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> str: __magic_name__ : Dict = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __magic_name__ : Optional[Any] = self.num_labels return config def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[Any] = model(lowerCAmelCase__ ) # verify the logits shape __magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs __magic_name__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ : Union[str, Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : Any = False def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[Any] = TimesformerModelTester(self ) __magic_name__ : List[str] = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]: __magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Optional[int] = [*signature.parameters.keys()] __magic_name__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Optional[int]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: if not self.has_attentions: pass else: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True for model_class in self.all_model_classes: __magic_name__ : Tuple = self.model_tester.seq_length __magic_name__ : int = self.model_tester.num_frames __magic_name__ : Any = True __magic_name__ : Tuple = False __magic_name__ : Optional[int] = True __magic_name__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ : Optional[Any] = True __magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : int = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __magic_name__ : Union[str, Any] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : Optional[Any] = True __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) __magic_name__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" ) __magic_name__ : List[str] = np.load(_A ) return list(_A ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowerCAmelCase__ ) __magic_name__ : str = self.default_image_processor __magic_name__ : Any = prepare_video() __magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : int = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
342
0
"""simple docstring""" from __future__ import annotations import requests __A : Optional[Any] = set( '''approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports'''.split() ) def lowercase ( __snake_case : str , __snake_case : int = 1 , __snake_case : str = "new" , __snake_case : list | None = None ): lowercase_ : Tuple = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): lowercase_ : Union[str, Any] = F'''Invalid search term: {invalid_search_terms}''' raise ValueError(__snake_case ) lowercase_ : Optional[Any] = requests.get( F'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 4_2_9: raise requests.HTTPError lowercase_ : Optional[int] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} lowercase_ : str = {} for id_ in range(__snake_case ): lowercase_ : Dict = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
33
def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = [0] * len(_A ) __magic_name__ : List[str] = [] __magic_name__ : List[str] = [1] * len(_A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: __magic_name__ : Dict = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __magic_name__ : int = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_A ) print(max(_A ) ) # Adjacency list of Graph __magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
0
'''simple docstring''' import math def snake_case_ (_a : float , _a : float ): return math.pow(_a , 2 ) - a def snake_case_ (_a : float ): return 2 * x def snake_case_ (_a : float ): UpperCAmelCase = 2.0 while start <= a: UpperCAmelCase = math.pow(_a , 2 ) return start def snake_case_ (_a : float , _a : int = 9_9_9_9 , _a : float = 0.00_0000_0000_0001 ): if a < 0: raise ValueError('''math domain error''' ) UpperCAmelCase = get_initial_point(_a ) for _ in range(_a ): UpperCAmelCase = value UpperCAmelCase = value - fx(_a , _a ) / fx_derivative(_a ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
34
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: __magic_name__ : Tuple = """ylacombe/bark-small""" __magic_name__ : List[str] = tempfile.mkdtemp() __magic_name__ : Optional[Any] = """en_speaker_1""" __magic_name__ : Union[str, Any] = """This is a test string""" __magic_name__ : Optional[int] = """speaker_embeddings_path.json""" __magic_name__ : Any = """speaker_embeddings""" def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : str = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __magic_name__ : Union[str, Any] = 35 __magic_name__ : List[Any] = 2 __magic_name__ : Dict = 8 __magic_name__ : Tuple = { """semantic_prompt""": np.ones(lowerCAmelCase__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string ) __magic_name__ : List[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
342
0
'''simple docstring''' from math import factorial __a = {str(d): factorial(d) for d in range(10)} def __snake_case( _lowerCAmelCase ) -> int: return sum(DIGIT_FACTORIAL[d] for d in str(_lowerCAmelCase ) ) def __snake_case( ) -> int: snake_case__ : Optional[Any] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , _lowerCAmelCase ) if sum_of_digit_factorial(_lowerCAmelCase ) == i ) if __name__ == "__main__": print(F"{solution() = }")
35
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]: __magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} __magic_name__ : str = parent __magic_name__ : Any = batch_size __magic_name__ : Any = num_channels __magic_name__ : List[str] = image_size __magic_name__ : Tuple = min_resolution __magic_name__ : Union[str, Any] = max_resolution __magic_name__ : List[str] = do_resize __magic_name__ : Optional[Any] = size __magic_name__ : Optional[Any] = do_normalize __magic_name__ : Any = image_mean __magic_name__ : List[str] = image_std def __magic_name__ ( self ) -> List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = DPTImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Dict = DPTImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __magic_name__ ( self ) -> str: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Optional[Any]: # Initialize image_processing __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
342
0
import datasets from .evaluate import evaluate _snake_case = "\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n" _snake_case = "\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n" _snake_case = "\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the CUAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\n 'aupr': Area Under the Precision-Recall curve\n 'prec_at_80_recall': Precision at 80% recall\n 'prec_at_90_recall': Precision at 90% recall\nExamples:\n >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": { "id": datasets.Value("string"), "prediction_text": datasets.features.Sequence(datasets.Value("string")), }, "references": { "id": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), }), }, }), codebase_urls=["https://www.atticusprojectai.org/cuad"], reference_urls=["https://www.atticusprojectai.org/cuad"], ) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} _lowerCAmelCase : Optional[Any] = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] _lowerCAmelCase : int = evaluate(dataset=__a, predictions=__a) return score
36
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__: Tuple = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M''' lowercase__ : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowercase__ : List[str] = '''translator''' lowercase__ : Optional[Any] = AutoTokenizer lowercase__ : int = AutoModelForSeqaSeqLM lowercase__ : List[Any] = LANGUAGE_CODES lowercase__ : str = ['''text''', '''text''', '''text'''] lowercase__ : Any = ['''text'''] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) __magic_name__ : Tuple = self.lang_to_code[src_lang] __magic_name__ : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
342
0
'''simple docstring''' from statistics import mean import numpy as np def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : str = 0 # Number of processes finished lowerCAmelCase__ : Tuple = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. lowerCAmelCase__ : List[str] = [0] * no_of_process # List to include calculation results lowerCAmelCase__ : str = [0] * no_of_process # Sort by arrival time. lowerCAmelCase__ : Optional[int] = [burst_time[i] for i in np.argsort(UpperCamelCase )] lowerCAmelCase__ : Tuple = [process_name[i] for i in np.argsort(UpperCamelCase )] arrival_time.sort() while no_of_process > finished_process_count: lowerCAmelCase__ : Union[str, Any] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: lowerCAmelCase__ : int = arrival_time[i] lowerCAmelCase__ : Dict = 0 # Index showing the location of the process being performed lowerCAmelCase__ : Tuple = 0 # Saves the current response ratio. lowerCAmelCase__ : List[str] = 0 for i in range(0 , UpperCamelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: lowerCAmelCase__ : Union[str, Any] = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: lowerCAmelCase__ : Tuple = temp lowerCAmelCase__ : Any = i # Calculate the turn around time lowerCAmelCase__ : Dict = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. lowerCAmelCase__ : str = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Any = [0] * no_of_process for i in range(0 , UpperCamelCase ): lowerCAmelCase__ : str = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _lowerCAmelCase = 5 _lowerCAmelCase = ['''A''', '''B''', '''C''', '''D''', '''E'''] _lowerCAmelCase = [1, 2, 3, 4, 5] _lowerCAmelCase = [1, 2, 3, 4, 5] _lowerCAmelCase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _lowerCAmelCase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F"""{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t""" F"""{turn_around_time[i]}\t\t\t{waiting_time[i]}""" ) print(F"""average waiting time : {mean(waiting_time):.5f}""") print(F"""average turn around time : {mean(turn_around_time):.5f}""")
37
import math class snake_case__ : def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1 __magic_name__ : Tuple = n __magic_name__ : Union[str, Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # adjacency matrix for weight __magic_name__ : List[Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # dp[i][j] stores minimum distance from i to j def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Dict = w def __magic_name__ ( self ) -> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return self.dp[u][v] if __name__ == "__main__": __magic_name__: Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
342
0
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _A ( self : Any ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__lowerCamelCase ): UpperCamelCase :List[str] = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Optional[int] = FlaxAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _A ( self : Optional[int] ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__lowerCamelCase ): UpperCamelCase :Dict = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = FlaxAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _A ( self : int ): for model_name in ["bert-base-cased", "bert-large-uncased"]: UpperCamelCase :str = AutoTokenizer.from_pretrained(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = FlaxBertModel.from_pretrained(__lowerCamelCase ) UpperCamelCase :List[Any] = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowerCamelCase : int ): return model(**__lowerCamelCase ) eval(**__lowerCamelCase ).block_until_ready() @slow def _A ( self : Union[str, Any] ): for model_name in ["roberta-base", "roberta-large"]: UpperCamelCase :Tuple = AutoTokenizer.from_pretrained(__lowerCamelCase ) UpperCamelCase :Any = FlaxRobertaModel.from_pretrained(__lowerCamelCase ) UpperCamelCase :List[str] = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowerCamelCase : Any ): return model(**__lowerCamelCase ) eval(**__lowerCamelCase ).block_until_ready() def _A ( self : Any ): with self.assertRaisesRegex( __lowerCamelCase , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase :Dict = FlaxAutoModel.from_pretrained("""bert-base""" ) def _A ( self : Union[str, Any] ): with self.assertRaisesRegex( __lowerCamelCase , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase :Optional[int] = FlaxAutoModel.from_pretrained(__lowerCamelCase , revision="""aaaaaa""" ) def _A ( self : Any ): with self.assertRaisesRegex( __lowerCamelCase , """hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack""" , ): UpperCamelCase :int = FlaxAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def _A ( self : List[Any] ): with self.assertRaisesRegex(__lowerCamelCase , """Use `from_pt=True` to load this model""" ): UpperCamelCase :str = FlaxAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" )
38
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__ : def __init__( self , lowerCAmelCase__ = None ) -> None: if components is None: __magic_name__ : Any = [] __magic_name__ : List[str] = list(lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : Dict = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : int = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... @overload def __mul__( self , lowerCAmelCase__ ) -> float: ... def __mul__( self , lowerCAmelCase__ ) -> float | Vector: if isinstance(lowerCAmelCase__ , (float, int) ): __magic_name__ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): __magic_name__ : Optional[Any] = len(self ) __magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __magic_name__ ( self ) -> Vector: return Vector(self.__components ) def __magic_name__ ( self , lowerCAmelCase__ ) -> float: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ : Optional[int] = value def __magic_name__ ( self ) -> float: if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __magic_name__ : Dict = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: __magic_name__ : Optional[Any] = self * other __magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase ( _A ): """simple docstring""" assert isinstance(_A, _A ) return Vector([0] * dimension ) def UpperCamelCase ( _A, _A ): """simple docstring""" assert isinstance(_A, _A ) and (isinstance(_A, _A )) __magic_name__ : Union[str, Any] = [0] * dimension __magic_name__ : Optional[int] = 1 return Vector(_A ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" assert ( isinstance(_A, _A ) and isinstance(_A, _A ) and (isinstance(_A, (int, float) )) ) return x * scalar + y def UpperCamelCase ( _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )] return Vector(_A ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Dict = matrix __magic_name__ : Tuple = w __magic_name__ : Union[str, Any] = h def __str__( self ) -> str: __magic_name__ : Dict = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Tuple = [] for i in range(self.__height ): __magic_name__ : Tuple = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Optional[Any] = [] for i in range(self.__height ): __magic_name__ : int = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Matrix: ... @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: __magic_name__ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ : Optional[int] = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar __magic_name__ : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def __magic_name__ ( self ) -> int: return self.__height def __magic_name__ ( self ) -> int: return self.__width def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): __magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __magic_name__ ( self ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )] return Matrix(_A, _A, _A ) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : list[list[float]] = [ [random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A ) ] return Matrix(_A, _A, _A )
342
0
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase ) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase ) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(UpperCAmelCase ) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase ) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(UpperCAmelCase ) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] _UpperCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase , variant=UpperCAmelCase ) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] _UpperCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase , variant=UpperCAmelCase ) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] _UpperCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase , variant=UpperCAmelCase ) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] _UpperCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(UpperCAmelCase , variant=UpperCAmelCase ) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] _UpperCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase , variant=UpperCAmelCase ) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] _UpperCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase , variant=UpperCAmelCase ) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] _UpperCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(UpperCAmelCase , variant=UpperCAmelCase ) )
39
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: int = "▁" __magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"} __magic_name__: List[str] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __magic_name__: Tuple = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off __magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = ['''input_ids''', '''attention_mask'''] lowercase__ : List[int] = [] lowercase__ : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) __magic_name__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__ : List[Any] = 1 __magic_name__ : Dict = len(self.sp_model ) __magic_name__ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } __magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} __magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __magic_name__ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn""" __magic_name__ : Any = self.lang_code_to_id[self._src_lang] __magic_name__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Any: __magic_name__ : List[Any] = self.__dict__.copy() __magic_name__ : int = None __magic_name__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ : Any = {} __magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __magic_name__ ( self ) -> str: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self ) -> str: return self._src_lang @src_lang.setter def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __magic_name__ : Optional[int] = [1] * len(self.prefix_tokens ) __magic_name__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : str = [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__ : Dict = src_lang __magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Tuple = tgt_lang_id return inputs def __magic_name__ ( self ) -> int: __magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip() return out_string def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , """wb""" ) as fi: __magic_name__ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding: __magic_name__ : List[str] = src_lang __magic_name__ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : str = [self.cur_lang_code] __magic_name__ : List[Any] = [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : Optional[int] = [self.cur_lang_code] __magic_name__ : Union[str, Any] = [self.eos_token_id]
342
0
"""simple docstring""" def lowercase ( A_ )-> bool: '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) a : Tuple = sorted(string.lower() ) return len(A_ ) == len(set(A_ ) ) if __name__ == "__main__": __lowercase = input("""Enter a string """).strip() __lowercase = is_isogram(input_str) print(f'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
40
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Dict = MobileBertConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ : Tuple = MobileBertForPreTraining(_A ) # Load weights from tf checkpoint __magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _A ) if __name__ == "__main__": __magic_name__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__: Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
342
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: return abs(UpperCamelCase ) if a == 0 else greatest_common_divisor(b % a , UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. lowerCamelCase__ , lowerCamelCase__ : Tuple = y, x % y return abs(UpperCamelCase ) def SCREAMING_SNAKE_CASE_ () -> Tuple: try: lowerCamelCase__ : Dict = input("""Enter two integers separated by comma (,): """ ).split(""",""" ) lowerCamelCase__ : Any = int(nums[0] ) lowerCamelCase__ : Optional[Any] = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(UpperCamelCase , UpperCamelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(UpperCamelCase , UpperCamelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print("""Wrong input""" ) if __name__ == "__main__": main()
41
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = MgpstrTokenizer lowercase__ : int = False lowercase__ : Any = {} lowercase__ : Optional[int] = False def __magic_name__ ( self ) -> Optional[Any]: super().setUp() # fmt: off __magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = """tester""" __magic_name__ : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Dict = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) __magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) __magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __magic_name__ ( self ) -> Optional[Any]: pass
342
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class __UpperCAmelCase ( unittest.TestCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=7 , lowerCAmelCase_=3 , lowerCAmelCase_=10 , lowerCAmelCase_=18 , lowerCAmelCase_=30 , lowerCAmelCase_=4_00 , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[0.5, 0.5, 0.5] , lowerCAmelCase_=[0.5, 0.5, 0.5] , lowerCAmelCase_=None , ): """simple docstring""" _snake_case = size if size is not None else {'shortest_edge': 18} _snake_case = crop_size if crop_size is not None else {'height': 18, 'width': 18} _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = num_frames _snake_case = image_size _snake_case = min_resolution _snake_case = max_resolution _snake_case = do_resize _snake_case = size _snake_case = do_normalize _snake_case = image_mean _snake_case = image_std _snake_case = crop_size def lowerCamelCase ( self ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): __lowercase = VivitImageProcessor if is_vision_available() else None def lowerCamelCase ( self ): """simple docstring""" _snake_case = VivitImageProcessingTester(self ) @property def lowerCamelCase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'image_std' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'size' ) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _snake_case = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _snake_case = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _snake_case = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _snake_case = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _snake_case = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _snake_case = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _snake_case = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
42
import re def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(_A, _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
342
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[str] = filter(lambda SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) __UpperCamelCase :List[str] = sum([np.prod(p.size() ) for p in model_parameters] ) return params __lowercase = logging.getLogger(__name__) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if metric == "rouge2": __UpperCamelCase :Any = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": __UpperCamelCase :List[Any] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": __UpperCamelCase :Union[str, Any] = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) __UpperCamelCase :List[Any] = ModelCheckpoint( dirpath=SCREAMING_SNAKE_CASE , filename=SCREAMING_SNAKE_CASE , monitor=f"""val_{metric}""" , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return EarlyStopping( monitor=f"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=SCREAMING_SNAKE_CASE , verbose=SCREAMING_SNAKE_CASE , ) class lowerCamelCase_ ( pl.Callback ): '''simple docstring''' def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Optional[Any]: __UpperCamelCase :List[str] = {f"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(__lowercase) @rank_zero_only def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase=True) -> None: logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""") __UpperCamelCase :Dict = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']}) # Log results __UpperCamelCase :Tuple = Path(pl_module.hparams.output_dir) if type_path == "test": __UpperCamelCase :str = od / '''test_results.txt''' __UpperCamelCase :Optional[Any] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCamelCase :List[Any] = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" __UpperCamelCase :Optional[int] = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=__lowercase) generations_file.parent.mkdir(exist_ok=__lowercase) with open(__lowercase , '''a+''') as writer: for key in sorted(__lowercase): if key in ["log", "progress_bar", "preds"]: continue __UpperCamelCase :Union[str, Any] = metrics[key] if isinstance(__lowercase , torch.Tensor): __UpperCamelCase :List[Any] = val.item() __UpperCamelCase :Optional[Any] = f"""{key}: {val:.6f}\n""" writer.write(__lowercase) if not save_generations: return if "preds" in metrics: __UpperCamelCase :Union[str, Any] = '''\n'''.join(metrics['''preds''']) generations_file.open('''w+''').write(__lowercase) @rank_zero_only def UpperCamelCase__ ( self , __lowercase , __lowercase) -> List[Any]: try: __UpperCamelCase :int = pl_module.model.model.num_parameters() except AttributeError: __UpperCamelCase :Tuple = pl_module.model.num_parameters() __UpperCamelCase :Optional[Any] = count_trainable_parameters(__lowercase) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6}) @rank_zero_only def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Optional[int]: save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(__lowercase , __lowercase , '''test''') @rank_zero_only def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
43
import doctest from collections import deque import numpy as np class snake_case__ : def __init__( self ) -> None: __magic_name__ : Any = [2, 1, 2, -1] __magic_name__ : Tuple = [1, 2, 3, 4] def __magic_name__ ( self ) -> list[float]: __magic_name__ : Optional[Any] = len(self.first_signal ) __magic_name__ : Dict = len(self.second_signal ) __magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ ) # create a zero matrix of max_length x max_length __magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__ ): __magic_name__ : List[str] = deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase__ ) for j, item in enumerate(lowerCAmelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal __magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
342
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class __A : def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=[1, 1, 2] , a__=1 , a__=32 , a__=4 , a__=8 , a__=37 , a__="gelu_new" , a__=0.1 , a__=0.1 , a__=0.0 , a__=512 , a__=3 , a__=0.0_2 , a__=3 , a__=4 , a__=None , a__=False , ): _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : Optional[Any] = batch_size _lowerCAmelCase : Optional[Any] = seq_length _lowerCAmelCase : Union[str, Any] = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : List[Any] = use_token_type_ids _lowerCAmelCase : List[Any] = use_labels _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = block_sizes _lowerCAmelCase : List[str] = num_decoder_layers _lowerCAmelCase : List[Any] = d_model _lowerCAmelCase : List[Any] = n_head _lowerCAmelCase : Any = d_head _lowerCAmelCase : Union[str, Any] = d_inner _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout _lowerCAmelCase : Optional[int] = attention_dropout _lowerCAmelCase : int = activation_dropout _lowerCAmelCase : str = max_position_embeddings _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : Dict = num_choices _lowerCAmelCase : Optional[int] = scope _lowerCAmelCase : List[str] = initializer_std # Used in the tests to check the size of the first attention layer _lowerCAmelCase : Dict = n_head # Used in the tests to check the size of the first hidden state _lowerCAmelCase : Union[str, Any] = self.d_model # Used in the tests to check the number of output hidden states/attentions _lowerCAmelCase : List[Any] = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: _lowerCAmelCase : List[Any] = self.num_hidden_layers + 2 def __A ( self ): _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Dict = None if self.use_input_mask: _lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : Dict = None if self.use_token_type_ids: _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : Dict = None _lowerCAmelCase : Dict = None _lowerCAmelCase : Tuple = None if self.use_labels: _lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : Tuple = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : List[str] = TFFunnelModel(config=a__ ) _lowerCAmelCase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase : List[Any] = model(a__ ) _lowerCAmelCase : Tuple = [input_ids, input_mask] _lowerCAmelCase : List[str] = model(a__ ) _lowerCAmelCase : Any = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) _lowerCAmelCase : str = False _lowerCAmelCase : List[str] = TFFunnelModel(config=a__ ) _lowerCAmelCase : Optional[int] = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) _lowerCAmelCase : int = False _lowerCAmelCase : Tuple = TFFunnelModel(config=a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Optional[Any] = TFFunnelBaseModel(config=a__ ) _lowerCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase : Any = model(a__ ) _lowerCAmelCase : Optional[int] = [input_ids, input_mask] _lowerCAmelCase : Any = model(a__ ) _lowerCAmelCase : Optional[int] = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) _lowerCAmelCase : List[Any] = False _lowerCAmelCase : int = TFFunnelBaseModel(config=a__ ) _lowerCAmelCase : List[str] = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) _lowerCAmelCase : Any = False _lowerCAmelCase : Optional[Any] = TFFunnelBaseModel(config=a__ ) _lowerCAmelCase : Dict = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Union[str, Any] = TFFunnelForPreTraining(config=a__ ) _lowerCAmelCase : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase : Optional[int] = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Any = TFFunnelForMaskedLM(config=a__ ) _lowerCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase : List[str] = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Optional[int] = self.num_labels _lowerCAmelCase : List[str] = TFFunnelForSequenceClassification(config=a__ ) _lowerCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase : List[Any] = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : List[str] = self.num_choices _lowerCAmelCase : Dict = TFFunnelForMultipleChoice(config=a__ ) _lowerCAmelCase : Any = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase : int = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase : str = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase : List[str] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Tuple = self.num_labels _lowerCAmelCase : List[Any] = TFFunnelForTokenClassification(config=a__ ) _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase : Dict = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Tuple = TFFunnelForQuestionAnswering(config=a__ ) _lowerCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase : Optional[Any] = model(a__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) _UpperCamelCase : int = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : List[str] = False _UpperCamelCase : List[str] = False def __A ( self ): _lowerCAmelCase : Dict = TFFunnelModelTester(self ) _lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=a__ ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a__ ) def __A ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a__ ) def __A ( self ): _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def __A ( self ): _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @require_tf class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : List[str] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Optional[Any] = False def __A ( self ): _lowerCAmelCase : Tuple = TFFunnelModelTester(self , base=a__ ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*a__ ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a__ )
44
from math import factorial def UpperCamelCase ( _A, _A, _A ): """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(_A, _A ) or not isinstance(_A, _A ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) __magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __magic_name__ : Any = float(factorial(_A ) ) coefficient /= factorial(_A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
342
0
"""simple docstring""" from bisect import bisect from itertools import accumulate def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple ) -> Optional[int]: __a = sorted(zip(lowerCAmelCase__ , lowerCAmelCase__ ) , key=lambda lowerCAmelCase__ : x[0] / x[1] , reverse=lowerCAmelCase__ ) __a , __a = [i[0] for i in r], [i[1] for i in r] __a = list(accumulate(lowerCAmelCase__ ) ) __a = bisect(lowerCAmelCase__ , lowerCAmelCase__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
45
from __future__ import annotations def UpperCamelCase ( _A ): # This function is recursive """simple docstring""" __magic_name__ : str = len(_A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __magic_name__ : Dict = array[0] __magic_name__ : Optional[Any] = False __magic_name__ : Tuple = 1 __magic_name__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __magic_name__ : Union[str, Any] = True __magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]] __magic_name__ : Dict = longest_subsequence(_A ) if len(_A ) > len(_A ): __magic_name__ : Tuple = temp_array else: i += 1 __magic_name__ : Any = [element for element in array[1:] if element >= pivot] __magic_name__ : Dict = [pivot, *longest_subsequence(_A )] if len(_A ) > len(_A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
342
0
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename SCREAMING_SNAKE_CASE__ = "http://www.mocksite.com/file1.txt" SCREAMING_SNAKE_CASE__ = "\"text\": [\"foo\", \"foo\"]" SCREAMING_SNAKE_CASE__ = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class lowercase : _SCREAMING_SNAKE_CASE = 200 _SCREAMING_SNAKE_CASE = {'Content-Length': '100'} _SCREAMING_SNAKE_CASE = {} def _snake_case ( self , **lowercase ) -> List[str]: return [bytes(lowercase , """utf-8""" )] def UpperCAmelCase__ ( *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' import requests monkeypatch.setattr(SCREAMING_SNAKE_CASE , """request""" , SCREAMING_SNAKE_CASE ) lowerCAmelCase = URL if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = url elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = [url] elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = {"""train""": url} lowerCAmelCase = """dummy""" lowerCAmelCase = """downloads""" lowerCAmelCase = tmp_path lowerCAmelCase = DownloadConfig( cache_dir=os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , use_etag=SCREAMING_SNAKE_CASE , ) lowerCAmelCase = DownloadManager(dataset_name=SCREAMING_SNAKE_CASE , download_config=SCREAMING_SNAKE_CASE ) lowerCAmelCase = dl_manager.download(SCREAMING_SNAKE_CASE ) lowerCAmelCase = urls for downloaded_paths in [downloaded_paths]: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = [downloaded_paths] lowerCAmelCase = [urls] elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert "train" in downloaded_paths.keys() lowerCAmelCase = downloaded_paths.values() lowerCAmelCase = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowerCAmelCase = Path(SCREAMING_SNAKE_CASE ) lowerCAmelCase = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowerCAmelCase = downloaded_path.read_text() assert content == CONTENT lowerCAmelCase = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() lowerCAmelCase = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase = str(SCREAMING_SNAKE_CASE ) if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = filename elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = [filename] elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = {"""train""": filename} lowerCAmelCase = """dummy""" lowerCAmelCase = xz_file.parent lowerCAmelCase = """extracted""" lowerCAmelCase = DownloadConfig( cache_dir=SCREAMING_SNAKE_CASE , use_etag=SCREAMING_SNAKE_CASE , ) lowerCAmelCase = DownloadManager(dataset_name=SCREAMING_SNAKE_CASE , download_config=SCREAMING_SNAKE_CASE ) lowerCAmelCase = dl_manager.extract(SCREAMING_SNAKE_CASE ) lowerCAmelCase = paths for extracted_paths in [extracted_paths]: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = [extracted_paths] lowerCAmelCase = [paths] elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert "train" in extracted_paths.keys() lowerCAmelCase = extracted_paths.values() lowerCAmelCase = paths.values() assert extracted_paths for extracted_path, input_path in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert extracted_path == dl_manager.extracted_paths[input_path] lowerCAmelCase = Path(SCREAMING_SNAKE_CASE ) lowerCAmelCase = extracted_path.parts assert parts[-1] == hash_url_to_filename(SCREAMING_SNAKE_CASE , etag=SCREAMING_SNAKE_CASE ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowerCAmelCase = extracted_path.read_text() lowerCAmelCase = text_file.read_text() assert extracted_file_content == expected_file_content def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(SCREAMING_SNAKE_CASE , start=1 ): lowerCAmelCase = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase = request.getfixturevalue(SCREAMING_SNAKE_CASE ) lowerCAmelCase = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase = request.getfixturevalue(SCREAMING_SNAKE_CASE ) lowerCAmelCase = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE ) , start=1 ): _test_jsonl(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert num_tar == 1 assert num_jsonl == 2 def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(SCREAMING_SNAKE_CASE ) , start=1 ): assert os.path.basename(SCREAMING_SNAKE_CASE ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
46
import argparse import os import re __magic_name__: Optional[Any] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings __magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def UpperCamelCase ( _A, _A = False ): """simple docstring""" with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : Any = f.read() __magic_name__ : List[Any] = content.split("""\n""" ) __magic_name__ : List[str] = [] __magic_name__ : Union[str, Any] = 0 while line_idx < len(_A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 __magic_name__ : List[Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __magic_name__ : List[str] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_A, """w""", encoding="""utf-8""" ) as f: f.write("""\n""".join(_A ) ) elif "\n".join(_A ) != content: return True def UpperCamelCase ( _A = False ): """simple docstring""" __magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )] __magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames] if not overwrite and any(_A ): __magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix' """ this.""" ) if __name__ == "__main__": __magic_name__: List[str] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __magic_name__: List[str] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
342
0
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowerCamelCase : List[Any] = logging.getLogger() def _lowerCAmelCase ( _UpperCamelCase : Path , _UpperCamelCase : list ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE ='\n'.join(_UpperCamelCase ) Path(_UpperCamelCase ).open('w' ).writelines(_UpperCamelCase ) lowerCamelCase : Tuple = "patrickvonplaten/t5-tiny-random" lowerCamelCase : Tuple = "sshleifer/bart-tiny-random" lowerCamelCase : List[Any] = "sshleifer/tiny-mbart" lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class A__ ( A__ ): def A ( self : Any , _a : Dict ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _SCREAMING_SNAKE_CASE =input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _SCREAMING_SNAKE_CASE =[' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(_a , _a ) _SCREAMING_SNAKE_CASE =str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _SCREAMING_SNAKE_CASE ='translation_en_to_de' if model == T5_TINY else 'summarization' _SCREAMING_SNAKE_CASE =f"\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n ".split() with patch.object(_a , 'argv' , _a ): run_generate() assert Path(_a ).exists() # os.remove(Path(output_file_name)) def A ( self : List[str] ) -> str: '''simple docstring''' self.run_eval_tester(_a ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def A ( self : Optional[Any] , _a : Tuple ) -> List[str]: '''simple docstring''' self.run_eval_tester(_a ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def A ( self : Dict , _a : Dict ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _SCREAMING_SNAKE_CASE =input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _SCREAMING_SNAKE_CASE ={ 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _SCREAMING_SNAKE_CASE =Path(self.get_auto_remove_tmp_dir() ) _SCREAMING_SNAKE_CASE =str(tmp_dir / 'scores.json' ) _SCREAMING_SNAKE_CASE =str(tmp_dir / 'val.target' ) _dump_articles(_a , text['en'] ) _dump_articles(_a , text['de'] ) _SCREAMING_SNAKE_CASE ='translation_en_to_de' if model == T5_TINY else 'summarization' _SCREAMING_SNAKE_CASE =f"\n run_eval_search.py\n {model}\n {str(_a )}\n {str(_a )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n ".split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(_a , 'argv' , _a ): with CaptureStdout() as cs: run_search() _SCREAMING_SNAKE_CASE =[' num_beams | length_penalty', model, 'Best score args'] _SCREAMING_SNAKE_CASE =['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(_a ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(_a ).exists() os.remove(Path(_a ) )
47
__magic_name__: str = [0, 2, 4, 6, 8] __magic_name__: Optional[int] = [1, 3, 5, 7, 9] def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __magic_name__ : List[Any] = 0 for digit in range(10 ): __magic_name__ : Optional[int] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, _A, _A ) return result __magic_name__ : str = 0 for digita in range(10 ): __magic_name__ : Optional[Any] = digita if (remainder + digita) % 2 == 0: __magic_name__ : Tuple = ODD_DIGITS else: __magic_name__ : str = EVEN_DIGITS for digita in other_parity_digits: __magic_name__ : Tuple = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, ) return result def UpperCamelCase ( _A = 9 ): """simple docstring""" __magic_name__ : List[str] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(_A, 0, [0] * length, _A ) return result if __name__ == "__main__": print(F"""{solution() = }""")
342
0
import requests SCREAMING_SNAKE_CASE__ : List[Any] = '' # <-- Put your OpenWeatherMap appid here! SCREAMING_SNAKE_CASE__ : List[Any] = 'https://api.openweathermap.org/data/2.5/' def A ( _SCREAMING_SNAKE_CASE = "Chicago" ,_SCREAMING_SNAKE_CASE = APPID ) -> dict: return requests.get(URL_BASE + "weather" ,params=locals() ).json() def A ( _SCREAMING_SNAKE_CASE = "Kolkata, India" ,_SCREAMING_SNAKE_CASE = APPID ) -> dict: return requests.get(URL_BASE + "forecast" ,params=locals() ).json() def A ( _SCREAMING_SNAKE_CASE = 55.68 ,_SCREAMING_SNAKE_CASE = 12.57 ,_SCREAMING_SNAKE_CASE = APPID ) -> dict: return requests.get(URL_BASE + "onecall" ,params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: SCREAMING_SNAKE_CASE__ : Dict = input('Enter a location:').strip() if location: pprint(current_weather(location)) else: break
48
def UpperCamelCase ( _A ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) __magic_name__ : int = sorted(string.lower() ) return len(_A ) == len(set(_A ) ) if __name__ == "__main__": __magic_name__: Dict = input("Enter a string ").strip() __magic_name__: Union[str, Any] = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
342
0
from __future__ import annotations import pandas as pd def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = [0] * no_of_processes __a = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(_UpperCAmelCase ): __a = burst_time[i] __a = 0 __a = 0 __a = 999999999 __a = 0 __a = False # Process until all processes are completed while complete != no_of_processes: for j in range(_UpperCAmelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __a = remaining_time[j] __a = j __a = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __a = remaining_time[short] if minm == 0: __a = 999999999 if remaining_time[short] == 0: complete += 1 __a = False # Find finish time of current process __a = increment_time + 1 # Calculate waiting time __a = finish_time - arrival_time[short] __a = finar - burst_time[short] if waiting_time[short] < 0: __a = 0 # Increment time increment_time += 1 return waiting_time def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = [0] * no_of_processes for i in range(_UpperCAmelCase ): __a = burst_time[i] + waiting_time[i] return turn_around_time def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = 0 __a = 0 for i in range(_UpperCAmelCase ): __a = total_waiting_time + waiting_time[i] __a = total_turn_around_time + turn_around_time[i] print(f'Average waiting time = {total_waiting_time / no_of_processes:.5f}' ) print('''Average turn around time =''' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') __snake_case :List[Any] = int(input()) __snake_case :Any = [0] * no_of_processes __snake_case :List[Any] = [0] * no_of_processes __snake_case :List[str] = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) __snake_case ,__snake_case :Union[str, Any] = map(int, input().split()) __snake_case :List[str] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case :Union[str, Any] = burst_time __snake_case :Union[str, Any] = no_of_processes __snake_case :List[str] = waiting_time __snake_case :Dict = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) __snake_case :List[str] = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
49
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
342
0
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
50
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]: __magic_name__ : str = parent __magic_name__ : Dict = do_resize __magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88} __magic_name__ : Union[str, Any] = size_divisor __magic_name__ : Union[str, Any] = do_rescale __magic_name__ : Dict = rescale_factor __magic_name__ : Union[str, Any] = do_normalize __magic_name__ : List[str] = do_center_crop __magic_name__ : Tuple = image_mean __magic_name__ : Tuple = image_std __magic_name__ : Tuple = do_pad __magic_name__ : int = batch_size __magic_name__ : List[Any] = num_channels __magic_name__ : int = min_resolution __magic_name__ : str = max_resolution def __magic_name__ ( self ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int: if not batched: __magic_name__ : Dict = self.size["""shortest_edge"""] __magic_name__ : List[str] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): __magic_name__ ,__magic_name__ : List[Any] = image.size else: __magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2] __magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ ) if h < w: __magic_name__ ,__magic_name__ : str = size, scale * w else: __magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size __magic_name__ : Tuple = int((13_33 / 8_00) * size ) if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size: __magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = newh * scale __magic_name__ : Any = neww * scale __magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 ) __magic_name__ ,__magic_name__ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __magic_name__ : Union[str, Any] = [] for image in image_inputs: __magic_name__ ,__magic_name__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] __magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = BridgeTowerImageProcessingTester(self ) @property def __magic_name__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Any: __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) ) def __magic_name__ ( self ) -> Optional[int]: pass def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> str: # Initialize image processor __magic_name__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
342
0
import os from collections import deque import torch from torch.utils.data import Dataset class __snake_case ( a ): def __init__( self : Optional[Any] , _snake_case : str="" , _snake_case : str="train"): """simple docstring""" assert os.path.isdir(_snake_case) UpperCAmelCase_ = [] UpperCAmelCase_ = os.listdir(_snake_case) for story_filename in story_filenames_list: if "summary" in story_filename: continue UpperCAmelCase_ = os.path.join(_snake_case , _snake_case) if not os.path.isfile(_snake_case): continue self.documents.append(_snake_case) def __len__( self : List[Any]): """simple docstring""" return len(self.documents) def __getitem__( self : List[str] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = self.documents[idx] UpperCAmelCase_ = document_path.split('''/''')[-1] with open(_snake_case , encoding='''utf-8''') as source: UpperCAmelCase_ = source.read() UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) return document_name, story_lines, summary_lines def A (__A : Dict ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = list(filter(lambda __A : len(__A ) != 0 , [line.strip() for line in raw_story.split('''\n''' )] ) ) # for some unknown reason some lines miss a period, add it UpperCAmelCase_ = [_add_missing_period(__A ) for line in nonempty_lines] # gather article lines UpperCAmelCase_ = [] UpperCAmelCase_ = deque(__A ) while True: try: UpperCAmelCase_ = lines.popleft() if element.startswith('''@highlight''' ): break story_lines.append(__A ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines UpperCAmelCase_ = list(filter(lambda __A : not t.startswith('''@highlight''' ) , __A ) ) return story_lines, summary_lines def A (__A : Optional[int] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = ['''.''', '''!''', '''?''', '''...''', '''\'''', '''`''', '''"''', '''\u2019''', '''\u2019''', ''')'''] if line.startswith('''@highlight''' ): return line if line[-1] in END_TOKENS: return line return line + "." def A (__A : List[Any] , __A : str , __A : List[Any] ) -> List[str]: """simple docstring""" if len(__A ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(__A )) ) return sequence def A (__A : str , __A : Dict ) -> Any: """simple docstring""" UpperCAmelCase_ = torch.ones_like(__A ) UpperCAmelCase_ = sequence == pad_token_id UpperCAmelCase_ = 0 return mask def A (__A : int , __A : Dict , __A : List[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = [tokenizer.encode(__A ) for line in story_lines] UpperCAmelCase_ = [token for sentence in story_lines_token_ids for token in sentence] UpperCAmelCase_ = [tokenizer.encode(__A ) for line in summary_lines] UpperCAmelCase_ = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def A (__A : int , __A : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = [] for sequence in batch: UpperCAmelCase_ = -1 UpperCAmelCase_ = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(__A ) return torch.tensor(__A )
51
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__: Tuple = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Union[str, Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __magic_name__: Optional[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
342
0
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCamelCase : str = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : Tuple = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowerCamelCase : List[str] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCamelCase : Optional[Any] = re.compile(r"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") __lowerCamelCase : List[str] = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def A_ ( _lowerCAmelCase ) -> List[str]: UpperCamelCase : Optional[Any] = None # source code of `config_class` UpperCamelCase : Tuple = inspect.getsource(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = _re_checkpoint.findall(_lowerCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): UpperCamelCase : Dict = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase : Any = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: UpperCamelCase : List[Any] = ckpt_name break return checkpoint def A_ ( ) -> List[str]: UpperCamelCase : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue UpperCamelCase : Union[str, Any] = get_checkpoint_from_config_class(_lowerCAmelCase ) UpperCamelCase : Optional[int] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: UpperCamelCase : Any = "\n".join(sorted(_lowerCAmelCase ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
52
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__: Dict = logging.get_logger(__name__) __magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __magic_name__: Optional[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __magic_name__: List[Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Any = ( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) __magic_name__ : Any = bs[:] __magic_name__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 __magic_name__ : List[str] = [chr(_A ) for n in cs] return dict(zip(_A, _A ) ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = set() __magic_name__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[Any] = char return pairs class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict: __magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ ) __magic_name__ : Any = {v: k for k, v in self.encoder.items()} __magic_name__ : Tuple = errors # how to handle errors in decoding __magic_name__ : Tuple = bytes_to_unicode() __magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1] __magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : str = {} __magic_name__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __magic_name__ ( self ) -> Optional[Any]: return len(self.encoder ) def __magic_name__ ( self ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if token in self.cache: return self.cache[token] __magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ ,__magic_name__ : List[str] = bigram __magic_name__ : Any = [] __magic_name__ : Any = 0 while i < len(lowerCAmelCase__ ): try: __magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Optional[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : str = tuple(lowerCAmelCase__ ) __magic_name__ : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __magic_name__ : List[str] = get_pairs(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ ) __magic_name__ : str = word return word def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : str = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __magic_name__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Tuple = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __magic_name__ : Optional[Any] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : Optional[int] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] __magic_name__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : Dict = [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __magic_name__ : List[Any] = """ """ + text return (text, kwargs)
342
0
'''simple docstring''' import os def lowercase__ ( __lowercase : str = "matrix.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(__lowercase ) , __lowercase ) ) as in_file: __UpperCamelCase = in_file.read() __UpperCamelCase = [[int(__lowercase ) for cell in row.split(',' )] for row in data.strip().splitlines()] __UpperCamelCase = [[0 for cell in row] for row in grid] __UpperCamelCase = len(grid[0] ) __UpperCamelCase = [[0 for i in range(__lowercase )] for j in range(__lowercase )] __UpperCamelCase = grid[0][0] for i in range(1 , __lowercase ): __UpperCamelCase = grid[0][i] + dp[0][i - 1] for i in range(1 , __lowercase ): __UpperCamelCase = grid[i][0] + dp[i - 1][0] for i in range(1 , __lowercase ): for j in range(1 , __lowercase ): __UpperCamelCase = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f'{solution() = }')
53
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str: __magic_name__ : Optional[int] = parent __magic_name__ : Any = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[int] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : str = embed_dim __magic_name__ : int = hidden_sizes __magic_name__ : Union[str, Any] = depths __magic_name__ : List[str] = num_heads __magic_name__ : str = window_size __magic_name__ : Optional[Any] = mlp_ratio __magic_name__ : Dict = qkv_bias __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = drop_path_rate __magic_name__ : Optional[Any] = hidden_act __magic_name__ : int = use_absolute_embeddings __magic_name__ : Dict = patch_norm __magic_name__ : Tuple = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[int] = is_training __magic_name__ : Optional[Any] = scope __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = encoder_stride __magic_name__ : List[Any] = out_features __magic_name__ : Union[str, Any] = out_indices def __magic_name__ ( self ) -> str: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Dict = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Tuple = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __magic_name__ : Optional[Any] = None __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : str = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : int = self.type_sequence_label_size __magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> int: __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs __magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ : Any = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ : Dict = False lowercase__ : Dict = False lowercase__ : int = False lowercase__ : Tuple = False lowercase__ : Optional[Any] = False def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = FocalNetModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> List[str]: return def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __magic_name__ ( self ) -> List[str]: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self ) -> List[Any]: __magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : str = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # FocalNet has a different seq_length __magic_name__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ : str = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape __magic_name__ : Union[str, Any] = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __magic_name__ : List[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = 3 __magic_name__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __magic_name__ : Optional[int] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @slow def __magic_name__ ( self ) -> Union[str, Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: __magic_name__ : Any = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.default_image_processor __magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : List[Any] = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else () lowercase__ : Optional[int] = FocalNetConfig lowercase__ : Dict = False def __magic_name__ ( self ) -> int: __magic_name__ : Dict = FocalNetModelTester(self )
342
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Tuple = logging.get_logger(__name__) a__ : Optional[Any] = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Union[str, Any] = "vit" def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict=7_6_8 , UpperCAmelCase__ : Tuple=1_2 , UpperCAmelCase__ : str=1_2 , UpperCAmelCase__ : Dict=3_0_7_2 , UpperCAmelCase__ : List[Any]="gelu" , UpperCAmelCase__ : Optional[int]=0.0 , UpperCAmelCase__ : int=0.0 , UpperCAmelCase__ : Optional[Any]=0.02 , UpperCAmelCase__ : str=1E-12 , UpperCAmelCase__ : List[str]=2_2_4 , UpperCAmelCase__ : List[str]=1_6 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1_6 , **UpperCAmelCase__ : Optional[Any] , ) -> List[Any]: super().__init__(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = qkv_bias __SCREAMING_SNAKE_CASE = encoder_stride class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : List[Any] = version.parse("1.11") @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase_ ( self : Any ) -> float: return 1E-4
54
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]: __magic_name__ : int = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = image_size __magic_name__ : str = num_channels __magic_name__ : Dict = patch_size __magic_name__ : Tuple = num_frames __magic_name__ : List[Any] = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : Dict = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Tuple = attention_type __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = scope __magic_name__ : Tuple = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __magic_name__ : str = (image_size // patch_size) ** 2 __magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : str = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> str: __magic_name__ : Dict = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __magic_name__ : Optional[Any] = self.num_labels return config def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[Any] = model(lowerCAmelCase__ ) # verify the logits shape __magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs __magic_name__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ : Union[str, Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : Any = False def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[Any] = TimesformerModelTester(self ) __magic_name__ : List[str] = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]: __magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Optional[int] = [*signature.parameters.keys()] __magic_name__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Optional[int]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: if not self.has_attentions: pass else: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True for model_class in self.all_model_classes: __magic_name__ : Tuple = self.model_tester.seq_length __magic_name__ : int = self.model_tester.num_frames __magic_name__ : Any = True __magic_name__ : Tuple = False __magic_name__ : Optional[int] = True __magic_name__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ : Optional[Any] = True __magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : int = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __magic_name__ : Union[str, Any] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : Optional[Any] = True __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) __magic_name__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" ) __magic_name__ : List[str] = np.load(_A ) return list(_A ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowerCAmelCase__ ) __magic_name__ : str = self.default_image_processor __magic_name__ : Any = prepare_video() __magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : int = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
342
0
'''simple docstring''' def __snake_case ( UpperCAmelCase_ : list ): def merge(UpperCAmelCase_ : list , UpperCAmelCase_ : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(UpperCAmelCase_ ) <= 1: return collection lowerCamelCase_ = len(UpperCAmelCase_ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() a_ : str = input("""Enter numbers separated by a comma:\n""").strip() a_ : Tuple = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
55
def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = [0] * len(_A ) __magic_name__ : List[str] = [] __magic_name__ : List[str] = [1] * len(_A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: __magic_name__ : Dict = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __magic_name__ : int = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_A ) print(max(_A ) ) # Adjacency list of Graph __magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = CycleDiffusionPipeline snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } snake_case_ = PipelineTesterMixin.required_optional_params - {"latents"} snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) snake_case_ = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def A_ ( self : Tuple ): torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) snake_case_ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=1000 , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) snake_case_ = CLIPTextModel(lowercase_ ) snake_case_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A_ ( self : Any , lowercase_ : int , lowercase_ : Optional[Any]=0 ): snake_case_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) snake_case_ = image / 2 + 0.5 if str(lowercase_ ).startswith('''mps''' ): snake_case_ = torch.manual_seed(lowercase_ ) else: snake_case_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) snake_case_ = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def A_ ( self : Union[str, Any] ): snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = CycleDiffusionPipeline(**lowercase_ ) snake_case_ = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ = self.get_dummy_inputs(lowercase_ ) snake_case_ = pipe(**lowercase_ ) snake_case_ = output.images snake_case_ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) snake_case_ = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def A_ ( self : Union[str, Any] ): snake_case_ = self.get_dummy_components() for name, module in components.items(): if hasattr(lowercase_ , '''half''' ): snake_case_ = module.half() snake_case_ = CycleDiffusionPipeline(**lowercase_ ) snake_case_ = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ = self.get_dummy_inputs(lowercase_ ) snake_case_ = pipe(**lowercase_ ) snake_case_ = output.images snake_case_ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) snake_case_ = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def A_ ( self : Optional[int] ): return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def A_ ( self : List[Any] ): return super().test_inference_batch_single_identical() @skip_mps def A_ ( self : Union[str, Any] ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def A_ ( self : Union[str, Any] ): return super().test_save_load_optional_components() @skip_mps def A_ ( self : Union[str, Any] ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class a ( unittest.TestCase ): def A_ ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Union[str, Any] ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) snake_case_ = init_image.resize((512, 512) ) snake_case_ = '''CompVis/stable-diffusion-v1-4''' snake_case_ = DDIMScheduler.from_pretrained(lowercase_ , subfolder='''scheduler''' ) snake_case_ = CycleDiffusionPipeline.from_pretrained( lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() snake_case_ = '''A black colored car''' snake_case_ = '''A blue colored car''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=lowercase_ , source_prompt=lowercase_ , image=lowercase_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase_ , output_type='''np''' , ) snake_case_ = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def A_ ( self : List[str] ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) snake_case_ = init_image.resize((512, 512) ) snake_case_ = '''CompVis/stable-diffusion-v1-4''' snake_case_ = DDIMScheduler.from_pretrained(lowercase_ , subfolder='''scheduler''' ) snake_case_ = CycleDiffusionPipeline.from_pretrained(lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() snake_case_ = '''A black colored car''' snake_case_ = '''A blue colored car''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=lowercase_ , source_prompt=lowercase_ , image=lowercase_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase_ , output_type='''np''' , ) snake_case_ = output.images assert np.abs(image - expected_image ).max() < 2e-2
56
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: __magic_name__ : Tuple = """ylacombe/bark-small""" __magic_name__ : List[str] = tempfile.mkdtemp() __magic_name__ : Optional[Any] = """en_speaker_1""" __magic_name__ : Union[str, Any] = """This is a test string""" __magic_name__ : Optional[int] = """speaker_embeddings_path.json""" __magic_name__ : Any = """speaker_embeddings""" def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : str = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __magic_name__ : Union[str, Any] = 35 __magic_name__ : List[Any] = 2 __magic_name__ : Dict = 8 __magic_name__ : Tuple = { """semantic_prompt""": np.ones(lowerCAmelCase__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string ) __magic_name__ : List[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
342
0
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": A : Optional[int] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) A : Optional[int] = parser.parse_args() A : Dict = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) A : List[Any] = CLIPImageProcessor() A : Union[str, Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") A : str = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
57
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]: __magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} __magic_name__ : str = parent __magic_name__ : Any = batch_size __magic_name__ : Any = num_channels __magic_name__ : List[str] = image_size __magic_name__ : Tuple = min_resolution __magic_name__ : Union[str, Any] = max_resolution __magic_name__ : List[str] = do_resize __magic_name__ : Optional[Any] = size __magic_name__ : Optional[Any] = do_normalize __magic_name__ : Any = image_mean __magic_name__ : List[str] = image_std def __magic_name__ ( self ) -> List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = DPTImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Dict = DPTImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __magic_name__ ( self ) -> str: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Optional[Any]: # Initialize image_processing __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
342
0
'''simple docstring''' lowercase_ = [ """Audio""", """Array2D""", """Array3D""", """Array4D""", """Array5D""", """ClassLabel""", """Features""", """Sequence""", """Value""", """Image""", """Translation""", """TranslationVariableLanguages""", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
58
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__: Tuple = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M''' lowercase__ : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowercase__ : List[str] = '''translator''' lowercase__ : Optional[Any] = AutoTokenizer lowercase__ : int = AutoModelForSeqaSeqLM lowercase__ : List[Any] = LANGUAGE_CODES lowercase__ : str = ['''text''', '''text''', '''text'''] lowercase__ : Any = ['''text'''] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) __magic_name__ : Tuple = self.lang_to_code[src_lang] __magic_name__ : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
342
0
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer __lowerCamelCase = logging.getLogger(__name__) def UpperCamelCase ( ): snake_case : Tuple = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" , type=__lowerCamelCase , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , ) parser.add_argument( "--dataset_config" , type=__lowerCamelCase , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" , type=__lowerCamelCase , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , ) parser.add_argument( "--shard_size" , type=__lowerCamelCase , default=1000 , help="Number of entries to go in a single shard." , ) parser.add_argument("--split" , type=__lowerCamelCase , default="train" , choices=["train", "test", "validation"] ) parser.add_argument( "--limit" , default=__lowerCamelCase , type=__lowerCamelCase , help="Limit the number of shards (used for debugging)." , ) parser.add_argument( "--max_length" , type=__lowerCamelCase , default=512 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." , ) parser.add_argument( "--output_dir" , default="tf-tpu" , type=__lowerCamelCase , help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." , ) snake_case : Dict = parser.parse_args() return args def UpperCamelCase ( __lowerCamelCase : Union[str, Any] ): def fn(__lowerCamelCase : Union[str, Any] ): return tokenizer(examples["text"] ) return fn def UpperCamelCase ( __lowerCamelCase : Optional[int] ): snake_case : Optional[int] = [] for i in range(len(tokenized_data["input_ids"] ) ): snake_case : str = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } snake_case : Optional[int] = tf.train.Features(feature=__lowerCamelCase ) snake_case : List[str] = tf.train.Example(features=__lowerCamelCase ) snake_case : Union[str, Any] = example.SerializeToString() records.append(__lowerCamelCase ) return records def UpperCamelCase ( __lowerCamelCase : List[Any] ): snake_case : Any = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: snake_case : Optional[Any] = min(len(__lowerCamelCase ) , args.limit ) snake_case : Tuple = dataset.select(range(__lowerCamelCase ) ) print(f"""Limiting the dataset to {args.limit} entries.""" ) snake_case : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) snake_case : List[Any] = os.path.join(args.output_dir , args.split ) if not os.path.exists(__lowerCamelCase ): os.makedirs(__lowerCamelCase ) else: snake_case : Tuple = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. snake_case : Any = tokenize_function(__lowerCamelCase ) snake_case : Optional[Any] = dataset.map(__lowerCamelCase , batched=__lowerCamelCase , num_proc=4 , remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(__lowerCamelCase : List[str] ): # Concatenate all texts. snake_case : Optional[Any] = {k: sum(examples[k] , [] ) for k in examples.keys()} snake_case : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 snake_case : Any = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. snake_case : Union[str, Any] = { k: [t[i : i + args.max_length] for i in range(0 , __lowerCamelCase , args.max_length )] for k, t in concatenated_examples.items() } return result snake_case : Any = dataset_tokenized.map(__lowerCamelCase , batched=__lowerCamelCase , batch_size=1000 , num_proc=4 ) snake_case : Dict = 0 snake_case : Optional[int] = 0 for shard in range(0 , len(__lowerCamelCase ) , args.shard_size ): snake_case : int = grouped_dataset[shard : shard + args.shard_size] snake_case : Any = len(dataset_snapshot["input_ids"] ) snake_case : List[Any] = os.path.join(__lowerCamelCase , f"""dataset-{shard_count}-{records_containing}.tfrecord""" ) snake_case : Tuple = get_serialized_examples(__lowerCamelCase ) with tf.io.TFRecordWriter(__lowerCamelCase ) as out_file: for i in range(len(__lowerCamelCase ) ): snake_case : Dict = serialized_examples[i] out_file.write(__lowerCamelCase ) print("Wrote file {} containing {} records".format(__lowerCamelCase , __lowerCamelCase ) ) shard_count += 1 total_records += records_containing with open(f"""split-{args.split}-records-count.txt""" , "w" ) as f: print(f"""Total {args.split} records: {total_records}""" , file=__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = parse_args() main(args)
59
import math class snake_case__ : def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1 __magic_name__ : Tuple = n __magic_name__ : Union[str, Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # adjacency matrix for weight __magic_name__ : List[Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # dp[i][j] stores minimum distance from i to j def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Dict = w def __magic_name__ ( self ) -> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return self.dp[u][v] if __name__ == "__main__": __magic_name__: Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
342
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_( a__ , a__ , unittest.TestCase ): __UpperCamelCase = StableDiffusionXLImgaImgPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} __UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase__ ( self : int ): torch.manual_seed(0 ) lowerCAmelCase : str = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) lowerCAmelCase : Optional[Any] = EulerDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) lowerCAmelCase : Dict = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=3_2 , ) lowerCAmelCase : int = CLIPTextModel(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=UpperCamelCase_ ) lowerCAmelCase : str = CLIPTextModelWithProjection(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int=0 ): lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = image / 2 + 0.5 if str(UpperCamelCase_ ).startswith('''mps''' ): lowerCAmelCase : Any = torch.manual_seed(UpperCamelCase_ ) else: lowerCAmelCase : str = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowerCAmelCase : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[int] = StableDiffusionXLImgaImgPipeline(**UpperCamelCase_ ) lowerCAmelCase : Tuple = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase : List[str] = self.get_dummy_inputs(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = sd_pipe(**UpperCamelCase_ ).images lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCAmelCase : Optional[Any] = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : int ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowerCamelCase__ ( self : int ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCamelCase__ ( self : str ): pass def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = self.get_dummy_components() lowerCAmelCase : int = StableDiffusionXLImgaImgPipeline(**UpperCamelCase_ ) lowerCAmelCase : int = sd_pipe.to(UpperCamelCase_ ) lowerCAmelCase : Any = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) # forward without prompt embeds lowerCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ ) lowerCAmelCase : Tuple = 3 * ['''this is a negative prompt'''] lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Tuple = 3 * [inputs['''prompt''']] lowerCAmelCase : Union[str, Any] = sd_pipe(**UpperCamelCase_ ) lowerCAmelCase : str = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(UpperCamelCase_ ) lowerCAmelCase : int = 3 * ['''this is a negative prompt'''] lowerCAmelCase : Optional[int] = 3 * [inputs.pop('''prompt''' )] ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) : Tuple = sd_pipe.encode_prompt(UpperCamelCase_ , negative_prompt=UpperCamelCase_ ) lowerCAmelCase : Any = sd_pipe( **UpperCamelCase_ , prompt_embeds=UpperCamelCase_ , negative_prompt_embeds=UpperCamelCase_ , pooled_prompt_embeds=UpperCamelCase_ , negative_pooled_prompt_embeds=UpperCamelCase_ , ) lowerCAmelCase : str = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any]="cpu" , UpperCamelCase_ : Optional[int]=torch.floataa , UpperCamelCase_ : int=0 ): lowerCAmelCase : Union[str, Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = np.random.RandomState(UpperCamelCase_ ).standard_normal((1, 4, 6_4, 6_4) ) lowerCAmelCase : Dict = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ , dtype=UpperCamelCase_ ) lowerCAmelCase : str = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase : List[str] = self.get_inputs(UpperCamelCase_ ) lowerCAmelCase : Any = pipe(**UpperCamelCase_ ).images lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase : Dict = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
60
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__ : def __init__( self , lowerCAmelCase__ = None ) -> None: if components is None: __magic_name__ : Any = [] __magic_name__ : List[str] = list(lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : Dict = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : int = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... @overload def __mul__( self , lowerCAmelCase__ ) -> float: ... def __mul__( self , lowerCAmelCase__ ) -> float | Vector: if isinstance(lowerCAmelCase__ , (float, int) ): __magic_name__ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): __magic_name__ : Optional[Any] = len(self ) __magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __magic_name__ ( self ) -> Vector: return Vector(self.__components ) def __magic_name__ ( self , lowerCAmelCase__ ) -> float: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ : Optional[int] = value def __magic_name__ ( self ) -> float: if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __magic_name__ : Dict = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: __magic_name__ : Optional[Any] = self * other __magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase ( _A ): """simple docstring""" assert isinstance(_A, _A ) return Vector([0] * dimension ) def UpperCamelCase ( _A, _A ): """simple docstring""" assert isinstance(_A, _A ) and (isinstance(_A, _A )) __magic_name__ : Union[str, Any] = [0] * dimension __magic_name__ : Optional[int] = 1 return Vector(_A ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" assert ( isinstance(_A, _A ) and isinstance(_A, _A ) and (isinstance(_A, (int, float) )) ) return x * scalar + y def UpperCamelCase ( _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )] return Vector(_A ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Dict = matrix __magic_name__ : Tuple = w __magic_name__ : Union[str, Any] = h def __str__( self ) -> str: __magic_name__ : Dict = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Tuple = [] for i in range(self.__height ): __magic_name__ : Tuple = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Optional[Any] = [] for i in range(self.__height ): __magic_name__ : int = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Matrix: ... @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: __magic_name__ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ : Optional[int] = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar __magic_name__ : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def __magic_name__ ( self ) -> int: return self.__height def __magic_name__ ( self ) -> int: return self.__width def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): __magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __magic_name__ ( self ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )] return Matrix(_A, _A, _A ) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : list[list[float]] = [ [random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A ) ] return Matrix(_A, _A, _A )
342
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _a = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } _a = { 'roberta-base': 512, 'roberta-large': 512, 'roberta-large-mnli': 512, 'distilroberta-base': 512, 'roberta-base-openai-detector': 512, 'roberta-large-openai-detector': 512, } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Any = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE__ : Optional[Any] = RobertaTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="replace" , lowercase_="<s>" , lowercase_="</s>" , lowercase_="</s>" , lowercase_="<s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_="<mask>" , lowercase_=False , lowercase_=True , **lowercase_ , ): """simple docstring""" super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , errors=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ , **lowercase_ , ) UpperCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowercase_ ) != add_prefix_space: UpperCAmelCase_ : Union[str, Any] = getattr(lowercase_ , pre_tok_state.pop("type" ) ) UpperCAmelCase_ : Any = add_prefix_space UpperCAmelCase_ : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase_ : List[Any] = add_prefix_space UpperCAmelCase_ : List[Any] = "post_processor" UpperCAmelCase_ : Union[str, Any] = getattr(self.backend_tokenizer , lowercase_ , lowercase_ ) if tokenizer_component_instance: UpperCAmelCase_ : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase_ : Any = tuple(state["sep"] ) if "cls" in state: UpperCAmelCase_ : Optional[int] = tuple(state["cls"] ) UpperCAmelCase_ : List[Any] = False if state.get("add_prefix_space" , lowercase_ ) != add_prefix_space: UpperCAmelCase_ : int = add_prefix_space UpperCAmelCase_ : Optional[int] = True if state.get("trim_offsets" , lowercase_ ) != trim_offsets: UpperCAmelCase_ : List[str] = trim_offsets UpperCAmelCase_ : List[str] = True if changes_to_apply: UpperCAmelCase_ : Optional[Any] = getattr(lowercase_ , state.pop("type" ) ) UpperCAmelCase_ : Any = component_class(**lowercase_ ) setattr(self.backend_tokenizer , lowercase_ , lowercase_ ) @property def UpperCamelCase__ ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else value UpperCAmelCase_ : Optional[Any] = value def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = kwargs.get("is_split_into_words" , lowercase_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = kwargs.get("is_split_into_words" , lowercase_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_=None ): """simple docstring""" UpperCAmelCase_ : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = [self.sep_token_id] UpperCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
61
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: int = "▁" __magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"} __magic_name__: List[str] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __magic_name__: Tuple = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off __magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = ['''input_ids''', '''attention_mask'''] lowercase__ : List[int] = [] lowercase__ : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) __magic_name__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__ : List[Any] = 1 __magic_name__ : Dict = len(self.sp_model ) __magic_name__ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } __magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} __magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __magic_name__ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn""" __magic_name__ : Any = self.lang_code_to_id[self._src_lang] __magic_name__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Any: __magic_name__ : List[Any] = self.__dict__.copy() __magic_name__ : int = None __magic_name__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ : Any = {} __magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __magic_name__ ( self ) -> str: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self ) -> str: return self._src_lang @src_lang.setter def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __magic_name__ : Optional[int] = [1] * len(self.prefix_tokens ) __magic_name__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : str = [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__ : Dict = src_lang __magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Tuple = tgt_lang_id return inputs def __magic_name__ ( self ) -> int: __magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip() return out_string def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , """wb""" ) as fi: __magic_name__ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding: __magic_name__ : List[str] = src_lang __magic_name__ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : str = [self.cur_lang_code] __magic_name__ : List[Any] = [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : Optional[int] = [self.cur_lang_code] __magic_name__ : Union[str, Any] = [self.eos_token_id]
342
0
import math def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =F'Input value of [number={number}] must be an integer' raise TypeError(SCREAMING_SNAKE_CASE__ ) if number < 1: __UpperCamelCase =F'Input value of [number={number}] must be > 0' raise ValueError(SCREAMING_SNAKE_CASE__ ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase =int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase =[3, 5] __UpperCamelCase =2 __UpperCamelCase =3 for block in range(1 , SCREAMING_SNAKE_CASE__ ): for _ in range(SCREAMING_SNAKE_CASE__ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): _A = 0 try: _A = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
62
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Dict = MobileBertConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ : Tuple = MobileBertForPreTraining(_A ) # Load weights from tf checkpoint __magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _A ) if __name__ == "__main__": __magic_name__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__: Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
342
0
'''simple docstring''' def _lowerCamelCase ( ) -> list[list[int]]: return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase_ : Tuple = generate_large_matrix() lowerCAmelCase_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _lowerCamelCase ( lowercase : list[list[int]] ) -> None: assert all(row == sorted(lowercase , reverse=lowercase ) for row in grid ) assert all(list(lowercase ) == sorted(lowercase , reverse=lowercase ) for col in zip(*lowercase ) ) def _lowerCamelCase ( lowercase : list[int] ) -> int: _a = 0 _a = len(lowercase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _a = (left + right) // 2 _a = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _a = mid + 1 else: _a = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase ) def _lowerCamelCase ( lowercase : list[list[int]] ) -> int: _a = 0 _a = len(grid[0] ) for i in range(len(lowercase ) ): _a = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase ) * len(grid[0] )) - total def _lowerCamelCase ( lowercase : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def _lowerCamelCase ( lowercase : list[list[int]] ) -> int: _a = 0 for row in grid: for i, number in enumerate(lowercase ): if number < 0: total += len(lowercase ) - i break return total def _lowerCamelCase ( ) -> None: from timeit import timeit print("Running benchmarks" ) _a = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _a = timeit(F'{func}(grid=grid)' , setup=lowercase , number=500 ) print(F'{func}() took {time:0.4f} seconds' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
63
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = MgpstrTokenizer lowercase__ : int = False lowercase__ : Any = {} lowercase__ : Optional[int] = False def __magic_name__ ( self ) -> Optional[Any]: super().setUp() # fmt: off __magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = """tester""" __magic_name__ : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Dict = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) __magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) __magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __magic_name__ ( self ) -> Optional[Any]: pass
342
0
"""simple docstring""" import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : List[Any] ): """simple docstring""" _snake_case : Optional[Any] = R"""\w+[.]\d+""" _snake_case : Union[str, Any] = re.findall(snake_case__ , snake_case__ ) for pat in pats: _snake_case : str = key.replace(snake_case__ , """_""".join(pat.split(""".""" ) ) ) return key def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Dict , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Optional[int] = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _snake_case : List[str] = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _snake_case : Tuple = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _snake_case : Tuple = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer _snake_case : Tuple = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _snake_case : Dict = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _snake_case : Any = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": _snake_case : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _snake_case : Dict = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _snake_case : Tuple = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Union[str, Any]=42 ): """simple docstring""" _snake_case : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _snake_case : List[str] = flax_model.init_weights(PRNGKey(snake_case__ ) ) _snake_case : int = flatten_dict(snake_case__ ) _snake_case : List[str] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _snake_case : List[str] = rename_key(snake_case__ ) _snake_case : List[Any] = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters _snake_case , _snake_case : int = rename_key_and_reshape_tensor(snake_case__ , snake_case__ , snake_case__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown _snake_case : Optional[Any] = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ )
64
import re def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(_A, _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
342
0
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowerCAmelCase_ ( __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(__A, __A ) def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = emb.weight.shape UpperCAmelCase__ = nn.Linear(__A, __A, bias=__A ) UpperCAmelCase__ = emb.weight.data return lin_layer def lowerCAmelCase_ ( __A, __A="facebook/mbart-large-en-ro", __A=False, __A=False ) -> Tuple: '''simple docstring''' UpperCAmelCase__ = torch.load(__A, map_location="cpu" )["model"] remove_ignore_keys_(__A ) UpperCAmelCase__ = state_dict["encoder.embed_tokens.weight"].shape[0] UpperCAmelCase__ = MBartConfig.from_pretrained(__A, vocab_size=__A ) if mbart_aa and finetuned: UpperCAmelCase__ = "relu" UpperCAmelCase__ = state_dict["decoder.embed_tokens.weight"] UpperCAmelCase__ = MBartForConditionalGeneration(__A ) model.model.load_state_dict(__A ) if finetuned: UpperCAmelCase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
65
import doctest from collections import deque import numpy as np class snake_case__ : def __init__( self ) -> None: __magic_name__ : Any = [2, 1, 2, -1] __magic_name__ : Tuple = [1, 2, 3, 4] def __magic_name__ ( self ) -> list[float]: __magic_name__ : Optional[Any] = len(self.first_signal ) __magic_name__ : Dict = len(self.second_signal ) __magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ ) # create a zero matrix of max_length x max_length __magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__ ): __magic_name__ : List[str] = deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase__ ) for j, item in enumerate(lowerCAmelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal __magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
342
0
"""simple docstring""" import math class lowerCamelCase : '''simple docstring''' def lowerCAmelCase_ ( self: Tuple , snake_case: list[list[float]] , snake_case: list[int] ) -> int: snake_case_ :Any = 0.0 snake_case_ :Tuple = 0.0 for i in range(len(snake_case ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowerCAmelCase_ ( self: Optional[int] , snake_case: list[list[int | float]] , snake_case: list[int] , snake_case: int , snake_case: float ) -> list[list[int | float]]: for i in range(len(snake_case ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def A_ ( ): '''simple docstring''' snake_case_ :Dict = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case_ :List[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case_ :Optional[Any] = SelfOrganizingMap() snake_case_ :Dict = 3 snake_case_ :Dict = 0.5 for _ in range(_lowercase ): for j in range(len(_lowercase ) ): # training sample snake_case_ :List[Any] = training_samples[j] # Compute the winning vector snake_case_ :Optional[int] = self_organizing_map.get_winner(_lowercase, _lowercase ) # Update the winning vector snake_case_ :List[str] = self_organizing_map.update(_lowercase, _lowercase, _lowercase, _lowercase ) # classify test sample snake_case_ :str = [0, 0, 0, 1] snake_case_ :List[Any] = self_organizing_map.get_winner(_lowercase, _lowercase ) # results print(f"""Clusters that the test sample belongs to : {winner}""" ) print(f"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
66
from math import factorial def UpperCamelCase ( _A, _A, _A ): """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(_A, _A ) or not isinstance(_A, _A ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) __magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __magic_name__ : Any = float(factorial(_A ) ) coefficient /= factorial(_A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
342
0
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ ) -> list: __lowerCamelCase = len(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __lowerCamelCase , __lowerCamelCase = arr[i + 1], arr[i] return arr if __name__ == "__main__": __UpperCAmelCase =list(range(1_0, 0, -1)) print(f'Original: {arr}. Sorted: {odd_even_transposition(arr)}')
67
from __future__ import annotations def UpperCamelCase ( _A ): # This function is recursive """simple docstring""" __magic_name__ : str = len(_A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __magic_name__ : Dict = array[0] __magic_name__ : Optional[Any] = False __magic_name__ : Tuple = 1 __magic_name__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __magic_name__ : Union[str, Any] = True __magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]] __magic_name__ : Dict = longest_subsequence(_A ) if len(_A ) > len(_A ): __magic_name__ : Tuple = temp_array else: i += 1 __magic_name__ : Any = [element for element in array[1:] if element >= pivot] __magic_name__ : Dict = [pivot, *longest_subsequence(_A )] if len(_A ) > len(_A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
342
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
68
import argparse import os import re __magic_name__: Optional[Any] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings __magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def UpperCamelCase ( _A, _A = False ): """simple docstring""" with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : Any = f.read() __magic_name__ : List[Any] = content.split("""\n""" ) __magic_name__ : List[str] = [] __magic_name__ : Union[str, Any] = 0 while line_idx < len(_A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 __magic_name__ : List[Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __magic_name__ : List[str] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_A, """w""", encoding="""utf-8""" ) as f: f.write("""\n""".join(_A ) ) elif "\n".join(_A ) != content: return True def UpperCamelCase ( _A = False ): """simple docstring""" __magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )] __magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames] if not overwrite and any(_A ): __magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix' """ this.""" ) if __name__ == "__main__": __magic_name__: List[str] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __magic_name__: List[str] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
342
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> str: if not (isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(UpperCAmelCase , UpperCAmelCase )): raise ValueError('longest_common_substring() takes two strings for inputs' ) snake_case_ = len(UpperCAmelCase ) snake_case_ = len(UpperCAmelCase ) snake_case_ = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] snake_case_ = 0 snake_case_ = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: snake_case_ = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: snake_case_ = i snake_case_ = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
69
__magic_name__: str = [0, 2, 4, 6, 8] __magic_name__: Optional[int] = [1, 3, 5, 7, 9] def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __magic_name__ : List[Any] = 0 for digit in range(10 ): __magic_name__ : Optional[int] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, _A, _A ) return result __magic_name__ : str = 0 for digita in range(10 ): __magic_name__ : Optional[Any] = digita if (remainder + digita) % 2 == 0: __magic_name__ : Tuple = ODD_DIGITS else: __magic_name__ : str = EVEN_DIGITS for digita in other_parity_digits: __magic_name__ : Tuple = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, ) return result def UpperCamelCase ( _A = 9 ): """simple docstring""" __magic_name__ : List[str] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(_A, 0, [0] * length, _A ) return result if __name__ == "__main__": print(F"""{solution() = }""")
342
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A__ : Any =logging.get_logger(__name__) A__ : List[Any] ='''▁''' A__ : Optional[int] ={'''vocab_file''': '''sentencepiece.bpe.model'''} A__ : Union[str, Any] ={ '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } A__ : Dict ={ '''facebook/nllb-200-distilled-600M''': 10_24, } # fmt: off A__ : Union[str, Any] =['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class UpperCAmelCase ( snake_case_ ): _lowercase: int = VOCAB_FILES_NAMES _lowercase: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase: Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase: str = ['''input_ids''', '''attention_mask'''] _lowercase: List[int] = [] _lowercase: List[int] = [] def __init__( self : int , __snake_case : Optional[Any] , __snake_case : Dict="<s>" , __snake_case : Optional[int]="</s>" , __snake_case : Dict="</s>" , __snake_case : str="<s>" , __snake_case : Optional[int]="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : List[Any]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Optional[Dict[str, Any]] = None , __snake_case : str=None , __snake_case : str=False , **__snake_case : List[Any] , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase = legacy_behaviour super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , tokenizer_file=__snake_case , src_lang=__snake_case , tgt_lang=__snake_case , additional_special_tokens=__snake_case , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__snake_case , **__snake_case , ) _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) _lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase = 1 _lowerCAmelCase = len(self.sp_model ) _lowerCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__snake_case ) } _lowerCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} _lowerCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowerCAmelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _lowerCAmelCase = src_lang if src_lang is not None else """eng_Latn""" _lowerCAmelCase = self.lang_code_to_id[self._src_lang] _lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[str] ) -> List[str]: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None _lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict , __snake_case : Optional[Any] ) -> Dict: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowercase__ ( self : List[Any] ) -> Any: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase__ ( self : int ) -> str: return self._src_lang @src_lang.setter def lowercase__ ( self : Dict , __snake_case : str ) -> None: _lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase__ ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) _lowerCAmelCase = [1] * len(self.prefix_tokens ) _lowerCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__snake_case )) + suffix_ones return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones def lowercase__ ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase__ ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self : List[str] , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Optional[str] , __snake_case : Optional[str] , **__snake_case : Optional[int] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase = src_lang _lowerCAmelCase = self(__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , **__snake_case ) _lowerCAmelCase = self.convert_tokens_to_ids(__snake_case ) _lowerCAmelCase = tgt_lang_id return inputs def lowercase__ ( self : List[Any] ) -> Optional[int]: _lowerCAmelCase = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self : Optional[int] , __snake_case : str ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def lowercase__ ( self : Optional[Any] , __snake_case : Union[str, Any] ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase = self.sp_model.PieceToId(__snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase__ ( self : List[Any] , __snake_case : Union[str, Any] ) -> Optional[int]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase__ ( self : Optional[int] , __snake_case : Union[str, Any] ) -> str: _lowerCAmelCase = """""".join(__snake_case ).replace(__snake_case , """ """ ).strip() return out_string def lowercase__ ( self : str , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , """wb""" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,) def lowercase__ ( self : Optional[Any] , __snake_case : List[str] , __snake_case : str = "eng_Latn" , __snake_case : Optional[List[str]] = None , __snake_case : str = "fra_Latn" , **__snake_case : Optional[int] , ) -> BatchEncoding: _lowerCAmelCase = src_lang _lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(__snake_case , __snake_case , **__snake_case ) def lowercase__ ( self : str ) -> Tuple: return self.set_src_lang_special_tokens(self.src_lang ) def lowercase__ ( self : Dict ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase__ ( self : str , __snake_case : int ) -> None: _lowerCAmelCase = self.lang_code_to_id[src_lang] if self.legacy_behaviour: _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase = [self.cur_lang_code] _lowerCAmelCase = [self.eos_token_id] def lowercase__ ( self : Any , __snake_case : str ) -> None: _lowerCAmelCase = self.lang_code_to_id[lang] if self.legacy_behaviour: _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase = [self.cur_lang_code] _lowerCAmelCase = [self.eos_token_id]
70
def UpperCamelCase ( _A ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) __magic_name__ : int = sorted(string.lower() ) return len(_A ) == len(set(_A ) ) if __name__ == "__main__": __magic_name__: Dict = input("Enter a string ").strip() __magic_name__: Union[str, Any] = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
342
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( a_ ) -> int: __UpperCamelCase : Optional[Any] =filter(lambda a_ : p.requires_grad ,model.parameters() ) __UpperCamelCase : Tuple =sum([np.prod(p.size() ) for p in model_parameters] ) return params A_ :Tuple = logging.getLogger(__name__) def A ( a_ ,a_ ) -> str: if metric == "rouge2": __UpperCamelCase : str ='{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __UpperCamelCase : Optional[int] ='{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __UpperCamelCase : Optional[Any] ='{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __UpperCamelCase : Optional[Any] =ModelCheckpoint( dirpath=a_ ,filename=a_ ,monitor=F'val_{metric}' ,mode='max' ,save_top_k=3 ,every_n_epochs=1 ,) return checkpoint_callback def A ( a_ ,a_ ) -> List[Any]: return EarlyStopping( monitor=F'val_{metric}' ,mode='min' if 'loss' in metric else 'max' ,patience=a_ ,verbose=a_ ,) class __A ( pl.Callback ): """simple docstring""" def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] ={f'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCamelCase__ ) @rank_zero_only def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=True ): """simple docstring""" logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) __UpperCamelCase : Tuple =trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __UpperCamelCase : Optional[Any] =Path(pl_module.hparams.output_dir ) if type_path == "test": __UpperCamelCase : int =od / 'test_results.txt' __UpperCamelCase : Union[str, Any] =od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCamelCase : Optional[Any] =od / f'{type_path}_results/{trainer.global_step:05d}.txt' __UpperCamelCase : Any =od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=lowerCamelCase__ ) generations_file.parent.mkdir(exist_ok=lowerCamelCase__ ) with open(lowerCamelCase__ , 'a+' ) as writer: for key in sorted(lowerCamelCase__ ): if key in ["log", "progress_bar", "preds"]: continue __UpperCamelCase : Optional[Any] =metrics[key] if isinstance(lowerCamelCase__ , torch.Tensor ): __UpperCamelCase : Dict =val.item() __UpperCamelCase : int =f'{key}: {val:.6f}\n' writer.write(lowerCamelCase__ ) if not save_generations: return if "preds" in metrics: __UpperCamelCase : List[str] ='\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(lowerCamelCase__ ) @rank_zero_only def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" try: __UpperCamelCase : Optional[Any] =pl_module.model.model.num_parameters() except AttributeError: __UpperCamelCase : Optional[Any] =pl_module.model.num_parameters() __UpperCamelCase : Optional[Any] =count_trainable_parameters(lowerCamelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCamelCase__ , lowerCamelCase__ , 'test' ) @rank_zero_only def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
71
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
342
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __snake_case : def __init__( self : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Any=3 , __lowerCAmelCase : List[Any]=7 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Optional[Any]=9_9 , __lowerCAmelCase : List[Any]=3_2 , __lowerCAmelCase : Any=5 , __lowerCAmelCase : Any=4 , __lowerCAmelCase : Union[str, Any]=3_7 , __lowerCAmelCase : Optional[Any]="gelu" , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Optional[int]=5_1_2 , __lowerCAmelCase : List[Any]=1_6 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : List[Any]=0.02 , __lowerCAmelCase : List[str]=3 , __lowerCAmelCase : Any=4 , __lowerCAmelCase : int=None , ): """simple docstring""" _lowerCamelCase : Dict = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : Union[str, Any] = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_input_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : Any = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : int = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : List[Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Tuple = type_sequence_label_size _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : Any = num_labels _lowerCamelCase : List[Any] = num_choices _lowerCamelCase : Union[str, Any] = scope def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Optional[Any] = None if self.use_input_mask: _lowerCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Dict = None _lowerCamelCase : Any = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : int = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = FalconModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) _lowerCamelCase : int = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , ): """simple docstring""" _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Any = FalconModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : List[str] = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , ) _lowerCamelCase : Optional[int] = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , ) _lowerCamelCase : int = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , ): """simple docstring""" _lowerCamelCase : List[Any] = FalconForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : str = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[str] , ): """simple docstring""" _lowerCamelCase : Optional[int] = True _lowerCamelCase : int = True _lowerCamelCase : List[Any] = FalconForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # first forward pass _lowerCamelCase : Optional[Any] = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , use_cache=__lowerCAmelCase , ) _lowerCamelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCamelCase : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowerCamelCase : int = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCamelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) _lowerCamelCase : str = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , )['''hidden_states'''][0] _lowerCamelCase : str = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , )['''hidden_states'''][0] # select random slice _lowerCamelCase : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCamelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Optional[int] = config_and_inputs _lowerCamelCase : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( _lowercase , _lowercase , _lowercase , unittest.TestCase): snake_case__ : Tuple = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) snake_case__ : Tuple = (FalconForCausalLM,) if is_torch_available() else () snake_case__ : Optional[Any] = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : Optional[Any] = False snake_case__ : int = False def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Tuple = FalconModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase , *_lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: _lowerCamelCase : Dict = alibi self.model_tester.create_and_check_model(__lowerCAmelCase , *__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Dict = input_dict['''input_ids'''] _lowerCamelCase : Dict = input_ids.ne(1 ).to(__lowerCAmelCase ) _lowerCamelCase : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCamelCase : List[Any] = FalconForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Any = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Dict = 3 _lowerCamelCase : Any = '''single_label_classification''' _lowerCamelCase : Tuple = input_dict['''input_ids'''] _lowerCamelCase : Tuple = input_ids.ne(1 ).to(__lowerCAmelCase ) _lowerCamelCase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCamelCase : Optional[int] = FalconForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : List[Any] = input_dict['''input_ids'''] _lowerCamelCase : Dict = FalconForCausalLM(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : str = model(__lowerCAmelCase , use_cache=__lowerCAmelCase ) _lowerCamelCase : List[str] = input_ids.shape[0] _lowerCamelCase : Optional[int] = model._convert_to_rw_cache(result.past_key_values ) _lowerCamelCase : List[Any] = model._convert_cache_to_standard_format(__lowerCAmelCase , __lowerCAmelCase ) for layer in range(len(__lowerCAmelCase ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : str = 3 _lowerCamelCase : List[str] = '''multi_label_classification''' _lowerCamelCase : Tuple = input_dict['''input_ids'''] _lowerCamelCase : str = input_ids.ne(1 ).to(__lowerCAmelCase ) _lowerCamelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _lowerCamelCase : str = FalconForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[int] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" for model_class in self.all_generative_model_classes: _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(__lowerCAmelCase , '''use_cache''' ): return _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ).to(__lowerCAmelCase ) if "use_cache" not in inputs: _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[int] = model(**__lowerCAmelCase ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return _lowerCamelCase : Dict = ( getattr(__lowerCAmelCase , '''decoder_layers''' , __lowerCAmelCase ) or getattr(__lowerCAmelCase , '''num_decoder_layers''' , __lowerCAmelCase ) or config.num_hidden_layers ) _lowerCamelCase : Any = getattr(__lowerCAmelCase , '''num_kv_heads''' , config.num_attention_heads ) _lowerCamelCase : int = getattr(__lowerCAmelCase , '''d_model''' , config.hidden_size ) _lowerCamelCase : Any = embed_dim // num_attention_heads _lowerCamelCase : Tuple = outputs['''past_key_values'''] self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Any = inputs['''input_ids'''].shape for i in range(__lowerCAmelCase ): if config.new_decoder_architecture: _lowerCamelCase : Optional[int] = config.num_attention_heads elif config.multi_query: _lowerCamelCase : List[Any] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __snake_case ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) _lowerCamelCase : List[Any] = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) _lowerCamelCase : Tuple = model.generate(**__lowerCAmelCase , do_sample=__lowerCAmelCase , max_new_tokens=1_9 ) _lowerCamelCase : Optional[Any] = tokenizer.batch_decode(__lowerCAmelCase )[0] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : int = FalconForCausalLM.from_pretrained(__lowerCAmelCase ) model.eval() model.to(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__lowerCAmelCase ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**__lowerCAmelCase , do_sample=__lowerCAmelCase , max_new_tokens=4 ) model.generate(**__lowerCAmelCase , do_sample=__lowerCAmelCase , max_new_tokens=4 ) model.generate(**__lowerCAmelCase , num_beams=2 , max_new_tokens=4 ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: _lowerCamelCase : Dict = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = FalconForCausalLM.from_pretrained(__lowerCAmelCase ) model.eval() model.to(device=__lowerCAmelCase ) _lowerCamelCase : str = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__lowerCAmelCase ) # Test results are the same with and without cache _lowerCamelCase : Dict = model.generate(**__lowerCAmelCase , do_sample=__lowerCAmelCase , max_new_tokens=2_0 , use_cache=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model.generate(**__lowerCAmelCase , do_sample=__lowerCAmelCase , max_new_tokens=2_0 , use_cache=__lowerCAmelCase ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
72
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]: __magic_name__ : str = parent __magic_name__ : Dict = do_resize __magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88} __magic_name__ : Union[str, Any] = size_divisor __magic_name__ : Union[str, Any] = do_rescale __magic_name__ : Dict = rescale_factor __magic_name__ : Union[str, Any] = do_normalize __magic_name__ : List[str] = do_center_crop __magic_name__ : Tuple = image_mean __magic_name__ : Tuple = image_std __magic_name__ : Tuple = do_pad __magic_name__ : int = batch_size __magic_name__ : List[Any] = num_channels __magic_name__ : int = min_resolution __magic_name__ : str = max_resolution def __magic_name__ ( self ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int: if not batched: __magic_name__ : Dict = self.size["""shortest_edge"""] __magic_name__ : List[str] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): __magic_name__ ,__magic_name__ : List[Any] = image.size else: __magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2] __magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ ) if h < w: __magic_name__ ,__magic_name__ : str = size, scale * w else: __magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size __magic_name__ : Tuple = int((13_33 / 8_00) * size ) if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size: __magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = newh * scale __magic_name__ : Any = neww * scale __magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 ) __magic_name__ ,__magic_name__ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __magic_name__ : Union[str, Any] = [] for image in image_inputs: __magic_name__ ,__magic_name__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] __magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = BridgeTowerImageProcessingTester(self ) @property def __magic_name__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Any: __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) ) def __magic_name__ ( self ) -> Optional[int]: pass def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> str: # Initialize image processor __magic_name__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
342
0
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image a =["""text""", """image""", """audio"""] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[Any]: __lowerCamelCase : List[Any] = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): inputs.append(create_inputs(lowerCamelCase__ ) ) else: raise ValueError(F"Invalid type requested: {input_type}" ) return inputs def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[Any]: __lowerCamelCase : List[Any] = [] for output in outputs: if isinstance(lowerCamelCase__ , (str, AgentText) ): output_types.append('text' ) elif isinstance(lowerCamelCase__ , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(lowerCamelCase__ , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(F"Invalid output: {output}" ) return output_types @is_tool_test class A_ : def lowerCAmelCase ( self : Union[str, Any]): self.assertTrue(hasattr(self.tool ,'inputs')) self.assertTrue(hasattr(self.tool ,'outputs')) __lowerCamelCase : Dict = self.tool.inputs for _input in inputs: if isinstance(_input ,SCREAMING_SNAKE_CASE__): for __input in _input: self.assertTrue(__input in authorized_types) else: self.assertTrue(_input in authorized_types) __lowerCamelCase : Dict = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types) def lowerCAmelCase ( self : List[str]): __lowerCamelCase : Optional[int] = create_inputs(self.tool.inputs) __lowerCamelCase : Tuple = self.tool(*SCREAMING_SNAKE_CASE__) # There is a single output if len(self.tool.outputs) == 1: __lowerCamelCase : Optional[int] = [outputs] self.assertListEqual(output_types(SCREAMING_SNAKE_CASE__) ,self.tool.outputs) def lowerCAmelCase ( self : Union[str, Any]): self.assertTrue(hasattr(self.tool ,'description')) self.assertTrue(hasattr(self.tool ,'default_checkpoint')) self.assertTrue(self.tool.description.startswith('This is a tool that')) def lowerCAmelCase ( self : Dict): __lowerCamelCase : Union[str, Any] = create_inputs(self.tool.inputs) __lowerCamelCase : List[str] = self.tool(*SCREAMING_SNAKE_CASE__) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): __lowerCamelCase : List[str] = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE__) ,len(self.tool.outputs)) for output, output_type in zip(SCREAMING_SNAKE_CASE__ ,self.tool.outputs): __lowerCamelCase : List[str] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)) def lowerCAmelCase ( self : Any): __lowerCamelCase : Optional[Any] = create_inputs(self.tool.inputs) __lowerCamelCase : Optional[Any] = [] for _input, input_type in zip(SCREAMING_SNAKE_CASE__ ,self.tool.inputs): if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error __lowerCamelCase : Tuple = self.tool(*SCREAMING_SNAKE_CASE__) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): __lowerCamelCase : int = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE__) ,len(self.tool.outputs))
73
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__: Tuple = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Union[str, Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __magic_name__: Optional[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
342
0
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(snake_case__ , 2 ) - pow(snake_case__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(snake_case__ , 2 ) - pow(snake_case__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(snake_case__ , 2 ) + pow(snake_case__ , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
74
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__: Dict = logging.get_logger(__name__) __magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __magic_name__: Optional[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __magic_name__: List[Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Any = ( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) __magic_name__ : Any = bs[:] __magic_name__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 __magic_name__ : List[str] = [chr(_A ) for n in cs] return dict(zip(_A, _A ) ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = set() __magic_name__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[Any] = char return pairs class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict: __magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ ) __magic_name__ : Any = {v: k for k, v in self.encoder.items()} __magic_name__ : Tuple = errors # how to handle errors in decoding __magic_name__ : Tuple = bytes_to_unicode() __magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1] __magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : str = {} __magic_name__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __magic_name__ ( self ) -> Optional[Any]: return len(self.encoder ) def __magic_name__ ( self ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if token in self.cache: return self.cache[token] __magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ ,__magic_name__ : List[str] = bigram __magic_name__ : Any = [] __magic_name__ : Any = 0 while i < len(lowerCAmelCase__ ): try: __magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Optional[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : str = tuple(lowerCAmelCase__ ) __magic_name__ : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __magic_name__ : List[str] = get_pairs(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ ) __magic_name__ : str = word return word def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : str = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __magic_name__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Tuple = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __magic_name__ : Optional[Any] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : Optional[int] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] __magic_name__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : Dict = [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __magic_name__ : List[Any] = """ """ + text return (text, kwargs)
342
0
'''simple docstring''' def a_ ( __snake_case : int | float | str ) -> tuple[int, int]: """simple docstring""" try: lowerCamelCase_ =float(__snake_case ) except ValueError: raise ValueError('''Please enter a valid number''' ) lowerCamelCase_ =decimal - int(__snake_case ) if fractional_part == 0: return int(__snake_case ), 1 else: lowerCamelCase_ =len(str(__snake_case ).split('''.''' )[1] ) lowerCamelCase_ =int(decimal * (10**number_of_frac_digits) ) lowerCamelCase_ =10**number_of_frac_digits lowerCamelCase_, lowerCamelCase_ =denominator, numerator while True: lowerCamelCase_ =dividend % divisor if remainder == 0: break lowerCamelCase_, lowerCamelCase_ =divisor, remainder lowerCamelCase_, lowerCamelCase_ =numerator / divisor, denominator / divisor return int(__snake_case ), int(__snake_case ) if __name__ == "__main__": print(F"""{decimal_to_fraction(2) = }""") print(F"""{decimal_to_fraction(89.0) = }""") print(F"""{decimal_to_fraction("67") = }""") print(F"""{decimal_to_fraction("45.0") = }""") print(F"""{decimal_to_fraction(1.5) = }""") print(F"""{decimal_to_fraction("6.25") = }""") print(F"""{decimal_to_fraction("78td") = }""")
75
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str: __magic_name__ : Optional[int] = parent __magic_name__ : Any = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[int] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : str = embed_dim __magic_name__ : int = hidden_sizes __magic_name__ : Union[str, Any] = depths __magic_name__ : List[str] = num_heads __magic_name__ : str = window_size __magic_name__ : Optional[Any] = mlp_ratio __magic_name__ : Dict = qkv_bias __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = drop_path_rate __magic_name__ : Optional[Any] = hidden_act __magic_name__ : int = use_absolute_embeddings __magic_name__ : Dict = patch_norm __magic_name__ : Tuple = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[int] = is_training __magic_name__ : Optional[Any] = scope __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = encoder_stride __magic_name__ : List[Any] = out_features __magic_name__ : Union[str, Any] = out_indices def __magic_name__ ( self ) -> str: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Dict = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Tuple = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __magic_name__ : Optional[Any] = None __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : str = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : int = self.type_sequence_label_size __magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> int: __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs __magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ : Any = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ : Dict = False lowercase__ : Dict = False lowercase__ : int = False lowercase__ : Tuple = False lowercase__ : Optional[Any] = False def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = FocalNetModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> List[str]: return def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __magic_name__ ( self ) -> List[str]: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self ) -> List[Any]: __magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : str = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # FocalNet has a different seq_length __magic_name__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ : str = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape __magic_name__ : Union[str, Any] = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __magic_name__ : List[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = 3 __magic_name__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __magic_name__ : Optional[int] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @slow def __magic_name__ ( self ) -> Union[str, Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: __magic_name__ : Any = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.default_image_processor __magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : List[Any] = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else () lowercase__ : Optional[int] = FocalNetConfig lowercase__ : Dict = False def __magic_name__ ( self ) -> int: __magic_name__ : Dict = FocalNetModelTester(self )
342
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
76
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]: __magic_name__ : int = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = image_size __magic_name__ : str = num_channels __magic_name__ : Dict = patch_size __magic_name__ : Tuple = num_frames __magic_name__ : List[Any] = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : Dict = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Tuple = attention_type __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = scope __magic_name__ : Tuple = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __magic_name__ : str = (image_size // patch_size) ** 2 __magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : str = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> str: __magic_name__ : Dict = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __magic_name__ : Optional[Any] = self.num_labels return config def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[Any] = model(lowerCAmelCase__ ) # verify the logits shape __magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs __magic_name__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ : Union[str, Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : Any = False def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[Any] = TimesformerModelTester(self ) __magic_name__ : List[str] = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]: __magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Optional[int] = [*signature.parameters.keys()] __magic_name__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Optional[int]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: if not self.has_attentions: pass else: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True for model_class in self.all_model_classes: __magic_name__ : Tuple = self.model_tester.seq_length __magic_name__ : int = self.model_tester.num_frames __magic_name__ : Any = True __magic_name__ : Tuple = False __magic_name__ : Optional[int] = True __magic_name__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ : Optional[Any] = True __magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : int = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __magic_name__ : Union[str, Any] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : Optional[Any] = True __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) __magic_name__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" ) __magic_name__ : List[str] = np.load(_A ) return list(_A ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowerCAmelCase__ ) __magic_name__ : str = self.default_image_processor __magic_name__ : Any = prepare_video() __magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : int = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
342
0
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): lowerCamelCase__ : Optional[int] = ["pixel_values"] def __init__( self , a = True , a = None , a = PILImageResampling.BICUBIC , a = True , a = None , a = True , a = 1 / 2_5_5 , a = True , a = IMAGENET_DEFAULT_MEAN , a = IMAGENET_DEFAULT_STD , **a , ) -> None: super().__init__(**a ) lowercase__ : int = size if size is not None else {'shortest_edge': 2_2_4} lowercase__ : List[Any] = get_size_dict(a , default_to_square=a ) lowercase__ : Tuple = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} lowercase__ : int = get_size_dict(a , param_name='crop_size' ) lowercase__ : int = do_resize lowercase__ : Optional[Any] = size lowercase__ : int = resample lowercase__ : Union[str, Any] = do_center_crop lowercase__ : str = crop_size lowercase__ : Union[str, Any] = do_rescale lowercase__ : Optional[int] = rescale_factor lowercase__ : Tuple = do_normalize lowercase__ : Dict = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _UpperCAmelCase ( self , a , a , a = PILImageResampling.BICUBIC , a = None , **a , ) -> np.ndarray: lowercase__ : int = get_size_dict(a , default_to_square=a ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowercase__ : int = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) lowercase__ : Tuple = get_resize_output_image_size(a , size=a , default_to_square=a ) lowercase__ : Any = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( a , size=(size_dict['height'], size_dict['width']) , resample=a , data_format=a , **a ) def _UpperCAmelCase ( self , a , a , a = None , **a , ) -> np.ndarray: lowercase__ : Optional[Any] = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(a , size=(size['height'], size['width']) , data_format=a , **a ) def _UpperCAmelCase ( self , a , a , a = None , **a , ) -> np.ndarray: return rescale(a , scale=a , data_format=a , **a ) def _UpperCAmelCase ( self , a , a , a , a = None , **a , ) -> np.ndarray: return normalize(a , mean=a , std=a , data_format=a , **a ) def _UpperCAmelCase ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> BatchFeature: lowercase__ : int = do_resize if do_resize is not None else self.do_resize lowercase__ : Optional[Any] = resample if resample is not None else self.resample lowercase__ : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Any = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : str = image_mean if image_mean is not None else self.image_mean lowercase__ : Any = image_std if image_std is not None else self.image_std lowercase__ : Dict = size if size is not None else self.size lowercase__ : Tuple = get_size_dict(a , default_to_square=a ) lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : Tuple = get_size_dict(a , param_name='crop_size' ) lowercase__ : List[str] = make_list_of_images(a ) if not valid_images(a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowercase__ : Optional[Any] = [to_numpy_array(a ) for image in images] if do_resize: lowercase__ : Optional[int] = [self.resize(a , a , a ) for image in images] if do_center_crop: lowercase__ : List[Any] = [self.center_crop(a , a ) for image in images] if do_rescale: lowercase__ : Optional[Any] = [self.rescale(a , a ) for image in images] if do_normalize: lowercase__ : Dict = [self.normalize(a , a , a ) for image in images] lowercase__ : List[Any] = [to_channel_dimension_format(a , a ) for image in images] lowercase__ : Any = {'pixel_values': images} return BatchFeature(data=a , tensor_type=a )
77
def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = [0] * len(_A ) __magic_name__ : List[str] = [] __magic_name__ : List[str] = [1] * len(_A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: __magic_name__ : Dict = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __magic_name__ : int = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_A ) print(max(_A ) ) # Adjacency list of Graph __magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case_ = logging.get_logger(__name__) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = ["""pixel_values"""] def __init__( self :int , lowercase_ :bool = True , lowercase_ :Dict[str, int] = None , lowercase_ :PILImageResampling = PILImageResampling.BICUBIC , lowercase_ :bool = True , lowercase_ :Union[int, float] = 1 / 2_55 , lowercase_ :bool = True , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :bool = True , **lowercase_ :Union[str, Any] , ) -> None: super().__init__(**lowercase_ ) UpperCAmelCase = size if size is not None else {'height': 3_84, 'width': 3_84} UpperCAmelCase = get_size_dict(lowercase_ , default_to_square=lowercase_ ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase = do_convert_rgb def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :np.ndarray , lowercase_ :Dict[str, int] , lowercase_ :PILImageResampling = PILImageResampling.BICUBIC , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :Any , ) -> np.ndarray: UpperCAmelCase = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) UpperCAmelCase = (size['height'], size['width']) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :np.ndarray , lowercase_ :Union[int, float] , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :Optional[int] , ) -> int: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :Any , lowercase_ :np.ndarray , lowercase_ :Union[float, List[float]] , lowercase_ :Union[float, List[float]] , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :Optional[Any] , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :ImageInput , lowercase_ :Optional[bool] = None , lowercase_ :Optional[Dict[str, int]] = None , lowercase_ :PILImageResampling = None , lowercase_ :Optional[bool] = None , lowercase_ :Optional[float] = None , lowercase_ :Optional[bool] = None , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :Optional[Union[str, TensorType]] = None , lowercase_ :bool = None , lowercase_ :ChannelDimension = ChannelDimension.FIRST , **lowercase_ :Tuple , ) -> PIL.Image.Image: UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(lowercase_ , default_to_square=lowercase_ ) UpperCAmelCase = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase = [convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(lowercase_ ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] UpperCAmelCase = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] UpperCAmelCase = BatchFeature(data={'pixel_values': images} , tensor_type=lowercase_ ) return encoded_outputs
78
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: __magic_name__ : Tuple = """ylacombe/bark-small""" __magic_name__ : List[str] = tempfile.mkdtemp() __magic_name__ : Optional[Any] = """en_speaker_1""" __magic_name__ : Union[str, Any] = """This is a test string""" __magic_name__ : Optional[int] = """speaker_embeddings_path.json""" __magic_name__ : Any = """speaker_embeddings""" def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : str = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __magic_name__ : Union[str, Any] = 35 __magic_name__ : List[Any] = 2 __magic_name__ : Dict = 8 __magic_name__ : Tuple = { """semantic_prompt""": np.ones(lowerCAmelCase__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string ) __magic_name__ : List[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
342
0
'''simple docstring''' from datetime import datetime import requests def __lowercase ( __lowercase ) -> bytes: '''simple docstring''' _A = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" _A = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(__lowercase ).content if __name__ == "__main__": lowerCamelCase_ = input('''Enter Video/IGTV url: ''').strip() lowerCamelCase_ = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
79
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]: __magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} __magic_name__ : str = parent __magic_name__ : Any = batch_size __magic_name__ : Any = num_channels __magic_name__ : List[str] = image_size __magic_name__ : Tuple = min_resolution __magic_name__ : Union[str, Any] = max_resolution __magic_name__ : List[str] = do_resize __magic_name__ : Optional[Any] = size __magic_name__ : Optional[Any] = do_normalize __magic_name__ : Any = image_mean __magic_name__ : List[str] = image_std def __magic_name__ ( self ) -> List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = DPTImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Dict = DPTImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __magic_name__ ( self ) -> str: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Optional[Any]: # Initialize image_processing __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
342
0
'''simple docstring''' a__ : List[Any] = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
80
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__: Tuple = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M''' lowercase__ : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowercase__ : List[str] = '''translator''' lowercase__ : Optional[Any] = AutoTokenizer lowercase__ : int = AutoModelForSeqaSeqLM lowercase__ : List[Any] = LANGUAGE_CODES lowercase__ : str = ['''text''', '''text''', '''text'''] lowercase__ : Any = ['''text'''] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) __magic_name__ : Tuple = self.lang_to_code[src_lang] __magic_name__ : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
342
0
"""simple docstring""" lowerCamelCase_ : int = range(2, 2_0 + 1) lowerCamelCase_ : Tuple = [1_0**k for k in range(ks[-1] + 1)] lowerCamelCase_ : dict[int, dict[int, list[list[int]]]] = {} def _A ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" a =sum(a_i[j] for j in range(lowercase , len(lowercase ) ) ) a =sum(a_i[j] * base[j] for j in range(min(len(lowercase ) , lowercase ) ) ) a , a =0, 0 a =n - i a =memo.get(lowercase ) if sub_memo is not None: a =sub_memo.get(lowercase ) if jumps is not None and len(lowercase ) > 0: # find and make the largest jump without going over a =-1 for _k in range(len(lowercase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: a =_k break if max_jump >= 0: a , a , a =jumps[max_jump] # since the difference between jumps is cached, add c a =diff + c for j in range(min(lowercase , len(lowercase ) ) ): a , a =divmod(lowercase , 10 ) if new_c > 0: add(lowercase , lowercase , lowercase ) else: a =[] else: a ={c: []} a =sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps a , a =next_term(lowercase , k - 1 , i + dn , lowercase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead a , a =compute(lowercase , lowercase , i + dn , lowercase ) diff += _diff dn += terms_jumped a =sub_memo[c] # keep jumps sorted by # of terms skipped a =0 while j < len(lowercase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowercase , (diff, dn, k) ) return (diff, dn) def _A ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" if i >= n: return 0, i if k > len(lowercase ): a_i.extend([0 for _ in range(k - len(lowercase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) a =i a , a , a =0, 0, 0 for j in range(len(lowercase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 a =ds_c + ds_b diff += addend a =0 for j in range(lowercase ): a =a_i[j] + addend a , a =divmod(lowercase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowercase , lowercase , lowercase ) return diff, i - start_i def _A ( lowercase , lowercase , lowercase ): """simple docstring""" for j in range(lowercase , len(lowercase ) ): a =digits[j] + addend if s >= 10: a , a =divmod(lowercase , 10 ) a =addend // 10 + quotient else: a =s a =addend // 10 if addend == 0: break while addend > 0: a , a =divmod(lowercase , 10 ) digits.append(lowercase ) def _A ( lowercase = 10**15 ): """simple docstring""" a =[1] a =1 a =0 while True: a , a =next_term(lowercase , 20 , i + dn , lowercase ) dn += terms_jumped if dn == n - i: break a =0 for j in range(len(lowercase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'{solution() = }')
81
import math class snake_case__ : def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1 __magic_name__ : Tuple = n __magic_name__ : Union[str, Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # adjacency matrix for weight __magic_name__ : List[Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # dp[i][j] stores minimum distance from i to j def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Dict = w def __magic_name__ ( self ) -> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return self.dp[u][v] if __name__ == "__main__": __magic_name__: Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
342
0
def _UpperCAmelCase ( snake_case ): """simple docstring""" if not isinstance(snake_case , snake_case ): _lowerCAmelCase = F'Input value of [number={number}] must be an integer' raise TypeError(snake_case ) if number < 0: return False _lowerCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
82
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__ : def __init__( self , lowerCAmelCase__ = None ) -> None: if components is None: __magic_name__ : Any = [] __magic_name__ : List[str] = list(lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : Dict = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : int = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... @overload def __mul__( self , lowerCAmelCase__ ) -> float: ... def __mul__( self , lowerCAmelCase__ ) -> float | Vector: if isinstance(lowerCAmelCase__ , (float, int) ): __magic_name__ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): __magic_name__ : Optional[Any] = len(self ) __magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __magic_name__ ( self ) -> Vector: return Vector(self.__components ) def __magic_name__ ( self , lowerCAmelCase__ ) -> float: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ : Optional[int] = value def __magic_name__ ( self ) -> float: if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __magic_name__ : Dict = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: __magic_name__ : Optional[Any] = self * other __magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase ( _A ): """simple docstring""" assert isinstance(_A, _A ) return Vector([0] * dimension ) def UpperCamelCase ( _A, _A ): """simple docstring""" assert isinstance(_A, _A ) and (isinstance(_A, _A )) __magic_name__ : Union[str, Any] = [0] * dimension __magic_name__ : Optional[int] = 1 return Vector(_A ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" assert ( isinstance(_A, _A ) and isinstance(_A, _A ) and (isinstance(_A, (int, float) )) ) return x * scalar + y def UpperCamelCase ( _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )] return Vector(_A ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Dict = matrix __magic_name__ : Tuple = w __magic_name__ : Union[str, Any] = h def __str__( self ) -> str: __magic_name__ : Dict = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Tuple = [] for i in range(self.__height ): __magic_name__ : Tuple = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Optional[Any] = [] for i in range(self.__height ): __magic_name__ : int = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Matrix: ... @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: __magic_name__ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ : Optional[int] = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar __magic_name__ : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def __magic_name__ ( self ) -> int: return self.__height def __magic_name__ ( self ) -> int: return self.__width def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): __magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __magic_name__ ( self ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )] return Matrix(_A, _A, _A ) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : list[list[float]] = [ [random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A ) ] return Matrix(_A, _A, _A )
342
0
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase__ : def __init__( self : Tuple ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Any=13 ,lowerCamelCase__ : Any=30 ,lowerCamelCase__ : Any=2 ,lowerCamelCase__ : Union[str, Any]=3 ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : Any=32 ,lowerCamelCase__ : Any=5 ,lowerCamelCase__ : Union[str, Any]=4 ,lowerCamelCase__ : Optional[Any]=37 ,lowerCamelCase__ : int="gelu" ,lowerCamelCase__ : Any=0.1 ,lowerCamelCase__ : Any=0.1 ,lowerCamelCase__ : Optional[int]=10 ,lowerCamelCase__ : Union[str, Any]=0.0_2 ,lowerCamelCase__ : List[str]=None ,lowerCamelCase__ : Any=2 ,): '''simple docstring''' _UpperCamelCase : int = parent _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : str = patch_size _UpperCamelCase : Union[str, Any] = num_channels _UpperCamelCase : Any = is_training _UpperCamelCase : str = use_labels _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : List[Any] = hidden_act _UpperCamelCase : List[Any] = hidden_dropout_prob _UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCamelCase : int = type_sequence_label_size _UpperCamelCase : Optional[int] = initializer_range _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Tuple = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : Dict = (image_size // patch_size) ** 2 _UpperCamelCase : Any = num_patches + 1 def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : int = None if self.use_labels: _UpperCamelCase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _UpperCamelCase : List[str] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase__ ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : List[Any] ): '''simple docstring''' _UpperCamelCase : Optional[int] = ViTModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : Dict = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : str ,lowerCamelCase__ : Any ,lowerCamelCase__ : Optional[int] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = ViTForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : str = model(lowerCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCamelCase : Any = 1 _UpperCamelCase : Union[str, Any] = ViTForMaskedImageModeling(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : int = model(lowerCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : Dict = self.type_sequence_label_size _UpperCamelCase : Optional[Any] = ViTForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : List[str] = model(lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : Any = ViTForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : str = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Union[str, Any] = config_and_inputs _UpperCamelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( lowercase , lowercase , unittest.TestCase ): lowercase__ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) lowercase__ = ( {"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification} if is_torch_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Dict = ViTModelTester(self ) _UpperCamelCase : int = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ,hidden_size=37 ) def UpperCamelCase_ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _UpperCamelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ ,nn.Linear ) ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Dict = model_class(lowerCamelCase__ ) _UpperCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Any = [*signature.parameters.keys()] _UpperCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase__ ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : int = ViTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A__ ( ): _UpperCamelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : str = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(lowerCamelCase__ ) _UpperCamelCase : int = self.default_image_processor _UpperCamelCase : int = prepare_img() _UpperCamelCase : Dict = image_processor(images=lowerCamelCase__ ,return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase : Any = model(**lowerCamelCase__ ) # verify the logits _UpperCamelCase : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. _UpperCamelCase : Tuple = ViTModel.from_pretrained('facebook/dino-vits8' ).to(lowerCamelCase__ ) _UpperCamelCase : str = ViTImageProcessor.from_pretrained('facebook/dino-vits8' ,size=480 ) _UpperCamelCase : str = prepare_img() _UpperCamelCase : Optional[int] = image_processor(images=lowerCamelCase__ ,return_tensors='pt' ) _UpperCamelCase : List[Any] = inputs.pixel_values.to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase : Dict = model(lowerCamelCase__ ,interpolate_pos_encoding=lowerCamelCase__ ) # verify the logits _UpperCamelCase : Tuple = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape ,lowerCamelCase__ ) _UpperCamelCase : str = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowerCamelCase__ ,atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : str = ViTModel.from_pretrained('facebook/dino-vits8' ,torch_dtype=torch.floataa ,device_map='auto' ) _UpperCamelCase : List[Any] = self.default_image_processor _UpperCamelCase : Optional[Any] = prepare_img() _UpperCamelCase : List[Any] = image_processor(images=lowerCamelCase__ ,return_tensors='pt' ) _UpperCamelCase : str = inputs.pixel_values.to(lowerCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCamelCase : List[Any] = model(lowerCamelCase__ )
83
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: int = "▁" __magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"} __magic_name__: List[str] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __magic_name__: Tuple = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off __magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = ['''input_ids''', '''attention_mask'''] lowercase__ : List[int] = [] lowercase__ : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) __magic_name__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__ : List[Any] = 1 __magic_name__ : Dict = len(self.sp_model ) __magic_name__ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } __magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} __magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __magic_name__ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn""" __magic_name__ : Any = self.lang_code_to_id[self._src_lang] __magic_name__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Any: __magic_name__ : List[Any] = self.__dict__.copy() __magic_name__ : int = None __magic_name__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ : Any = {} __magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __magic_name__ ( self ) -> str: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self ) -> str: return self._src_lang @src_lang.setter def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __magic_name__ : Optional[int] = [1] * len(self.prefix_tokens ) __magic_name__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : str = [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__ : Dict = src_lang __magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Tuple = tgt_lang_id return inputs def __magic_name__ ( self ) -> int: __magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip() return out_string def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , """wb""" ) as fi: __magic_name__ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding: __magic_name__ : List[str] = src_lang __magic_name__ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : str = [self.cur_lang_code] __magic_name__ : List[Any] = [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : Optional[int] = [self.cur_lang_code] __magic_name__ : Union[str, Any] = [self.eos_token_id]
342
0
"""simple docstring""" def _snake_case ( lowercase__ : list[int] ) -> list[list[int]]: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = [] if len(lowercase__ ) == 1: return [nums.copy()] for _ in range(len(lowercase__ ) ): lowerCAmelCase_ :Optional[Any] = nums.pop(0 ) lowerCAmelCase_ :str = permute(lowercase__ ) for perm in permutations: perm.append(lowercase__ ) result.extend(lowercase__ ) nums.append(lowercase__ ) return result def _snake_case ( lowercase__ : Tuple ) -> List[str]: '''simple docstring''' def backtrack(lowercase__ : str ): if start == len(lowercase__ ) - 1: output.append(nums[:] ) else: for i in range(lowercase__ , len(lowercase__ ) ): lowerCAmelCase_ , lowerCAmelCase_ :str = nums[i], nums[start] backtrack(start + 1 ) lowerCAmelCase_ , lowerCAmelCase_ :str = nums[i], nums[start] # backtrack lowerCAmelCase_ :int = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __UpperCAmelCase = permutea([1, 2, 3]) print(res) doctest.testmod()
84
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Dict = MobileBertConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ : Tuple = MobileBertForPreTraining(_A ) # Load weights from tf checkpoint __magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _A ) if __name__ == "__main__": __magic_name__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__: Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
342
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class _snake_case ( lowercase_ ): lowerCAmelCase_ : Tuple = "ctrl" lowerCAmelCase_ : List[str] = ["past_key_values"] lowerCAmelCase_ : int = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , a__=246_534 , a__=256 , a__=1_280 , a__=8_192 , a__=48 , a__=16 , a__=0.1 , a__=0.1 , a__=1e-6 , a__=0.0_2 , a__=True , **a__ , ) -> Any: '''simple docstring''' snake_case_ = vocab_size snake_case_ = n_positions snake_case_ = n_embd snake_case_ = n_layer snake_case_ = n_head snake_case_ = dff snake_case_ = resid_pdrop snake_case_ = embd_pdrop snake_case_ = layer_norm_epsilon snake_case_ = initializer_range snake_case_ = use_cache super().__init__(**a__ )
85
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = MgpstrTokenizer lowercase__ : int = False lowercase__ : Any = {} lowercase__ : Optional[int] = False def __magic_name__ ( self ) -> Optional[Any]: super().setUp() # fmt: off __magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = """tester""" __magic_name__ : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Dict = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) __magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) __magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __magic_name__ ( self ) -> Optional[Any]: pass
342
0
"""simple docstring""" import numpy as np def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Any = int(np.ceil((x_end - xa) / h ) ) __lowerCAmelCase : Union[str, Any] = np.zeros((n + 1,) ) __lowerCAmelCase : Union[str, Any] = ya __lowerCAmelCase : List[str] = xa for k in range(_UpperCamelCase ): __lowerCAmelCase : Tuple = f(_UpperCamelCase , y[k] ) __lowerCAmelCase : List[str] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __lowerCAmelCase : Union[str, Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __lowerCAmelCase : Optional[Any] = f(x + h , y[k] + h * ka ) __lowerCAmelCase : Optional[int] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
86
import re def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(_A, _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
342
0
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : int): assert isinstance(_lowerCamelCase , _lowerCamelCase) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True]) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : str): lowercase__ : Optional[int] = tmp_path / "cache" lowercase__ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ : Union[str, Any] = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Dict , _lowerCamelCase : Dict): lowercase__ : List[Any] = tmp_path / "cache" lowercase__ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : List[Any] = features.copy() if features else default_expected_features lowercase__ : List[Any] = ( Features({feature: Value(_lowerCamelCase) for feature, dtype in features.items()}) if features is not None else None ) lowercase__ : Any = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase) @pytest.mark.parametrize( "features" , [ None, {"col_3": "float64", "col_1": "string", "col_2": "int64"}, ] , ) def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : List[str]): lowercase__ : Optional[Any] = tmp_path / "cache" lowercase__ : Tuple = {"col_3": "float64", "col_1": "string", "col_2": "int64"} lowercase__ : List[Any] = features.copy() if features else default_expected_features lowercase__ : int = ( Features({feature: Value(_lowerCamelCase) for feature, dtype in features.items()}) if features is not None else None ) lowercase__ : Any = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase).read() assert isinstance(_lowerCamelCase , _lowerCamelCase) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int]): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} lowercase__ : Any = {"col_2": "int64", "col_3": "float64", "col_1": "string"} lowercase__ : str = features.copy() lowercase__ : str = ( Features({feature: Value(_lowerCamelCase) for feature, dtype in features.items()}) if features is not None else None ) lowercase__ : Optional[int] = tmp_path / "cache" lowercase__ : Any = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase).read() assert isinstance(_lowerCamelCase , _lowerCamelCase) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("split" , [None, NamedSplit("train"), "train", "test"]) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str]): lowercase__ : Union[str, Any] = tmp_path / "cache" lowercase__ : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : Union[str, Any] = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , split=_lowerCamelCase).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list]) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : int): if issubclass(_lowerCamelCase , _lowerCamelCase): lowercase__ : Tuple = jsonl_path elif issubclass(_lowerCamelCase , _lowerCamelCase): lowercase__ : str = [jsonl_path] lowercase__ : str = tmp_path / "cache" lowercase__ : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : Tuple = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int]=("train",)): assert isinstance(_lowerCamelCase , _lowerCamelCase) for split in splits: lowercase__ : Optional[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True]) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : str): lowercase__ : List[str] = tmp_path / "cache" lowercase__ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ : Optional[Any] = JsonDatasetReader({"train": jsonl_path} , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : List[str]): lowercase__ : str = tmp_path / "cache" lowercase__ : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : Tuple = features.copy() if features else default_expected_features lowercase__ : Union[str, Any] = ( Features({feature: Value(_lowerCamelCase) for feature, dtype in features.items()}) if features is not None else None ) lowercase__ : Tuple = JsonDatasetReader({"train": jsonl_path} , features=_lowerCamelCase , cache_dir=_lowerCamelCase).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase) @pytest.mark.parametrize("split" , [None, NamedSplit("train"), "train", "test"]) def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Tuple): if split: lowercase__ : Tuple = {split: jsonl_path} else: lowercase__ : Tuple = "train" lowercase__ : int = {"train": jsonl_path, "test": jsonl_path} lowercase__ : Dict = tmp_path / "cache" lowercase__ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : Union[str, Any] = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase , splits=list(path.keys())) assert all(dataset[split].split == split for split in path.keys()) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return json.load(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Optional[int]): return [json.loads(_lowerCamelCase) for line in buffer] class snake_case_ : @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def __UpperCamelCase ( self : List[Any] , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Dict ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ ).write() buffer.seek(0 ) lowercase__ : Optional[int] = load_json_function(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) assert isinstance(exported_content[0] , lowercase_ ) assert len(lowercase_ ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def __UpperCamelCase ( self : str , lowercase_ : int , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Tuple ) -> List[str]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ , orient=lowercase_ ).write() buffer.seek(0 ) lowercase__ : str = load_json(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowercase_ , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowercase_ ) == 10 @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def __UpperCamelCase ( self : List[Any] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Dict ) -> Optional[int]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ , num_proc=2 ).write() buffer.seek(0 ) lowercase__ : str = load_json_function(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) assert isinstance(exported_content[0] , lowercase_ ) assert len(lowercase_ ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Dict ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ , orient=lowercase_ , num_proc=2 ).write() buffer.seek(0 ) lowercase__ : Optional[Any] = load_json(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowercase_ , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowercase_ ) == 10 def __UpperCamelCase ( self : Dict , lowercase_ : List[str] ) -> str: with pytest.raises(lowercase_ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , num_proc=0 ) @pytest.mark.parametrize("compression, extension" , [("gzip", "gz"), ("bz2", "bz2"), ("xz", "xz")] ) def __UpperCamelCase ( self : List[Any] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : List[Any] ) -> Any: lowercase__ : Dict = tmp_path_factory.mktemp("data" ) / F'''test.json.{extension}''' lowercase__ : Optional[int] = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(lowercase_ , lowercase_ , compression=lowercase_ ).write() with fsspec.open(lowercase_ , "rb" , compression="infer" ) as f: lowercase__ : List[Any] = f.read() with fsspec.open(lowercase_ , "rb" , compression="infer" ) as f: lowercase__ : str = f.read() assert exported_content == original_content
87
import doctest from collections import deque import numpy as np class snake_case__ : def __init__( self ) -> None: __magic_name__ : Any = [2, 1, 2, -1] __magic_name__ : Tuple = [1, 2, 3, 4] def __magic_name__ ( self ) -> list[float]: __magic_name__ : Optional[Any] = len(self.first_signal ) __magic_name__ : Dict = len(self.second_signal ) __magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ ) # create a zero matrix of max_length x max_length __magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__ ): __magic_name__ : List[str] = deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase__ ) for j, item in enumerate(lowerCAmelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal __magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
342
0
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance __lowerCAmelCase : str = 637_8137.0 __lowerCAmelCase : Optional[Any] = 635_6752.31_4245 __lowerCAmelCase : List[str] = 6378137 def a__ ( A_, A_, A_, A_ ): '''simple docstring''' __magic_name__ = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __magic_name__ = atan((1 - flattening) * tan(radians(A_ ) ) ) __magic_name__ = atan((1 - flattening) * tan(radians(A_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __magic_name__ = haversine_distance(A_, A_, A_, A_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values __magic_name__ = (b_lata + b_lata) / 2 __magic_name__ = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __magic_name__ = (sin(A_ ) ** 2) * (cos(A_ ) ** 2) __magic_name__ = cos(sigma / 2 ) ** 2 __magic_name__ = (sigma - sin(A_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __magic_name__ = (cos(A_ ) ** 2) * (sin(A_ ) ** 2) __magic_name__ = sin(sigma / 2 ) ** 2 __magic_name__ = (sigma + sin(A_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
88
from math import factorial def UpperCamelCase ( _A, _A, _A ): """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(_A, _A ) or not isinstance(_A, _A ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) __magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __magic_name__ : Any = float(factorial(_A ) ) coefficient /= factorial(_A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
342
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def __lowerCamelCase ( lowerCAmelCase_ ) -> list[list[float]]: _a : Optional[int] = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _a : List[str] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements _a : List[Any] = [[0.0, 0.0], [0.0, 0.0]] _a , _a : Dict = matrix[1][1], matrix[0][0] _a , _a : Optional[int] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _a : List[str] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix _a : Any = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _a : Optional[Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _a : str = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _a : str = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _a : Any = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _a : Any = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _a : Dict = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _a : int = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _a : Optional[Any] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _a : Dict = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _a : Dict = array(lowerCAmelCase_ ) for i in range(3 ): for j in range(3 ): _a : int = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _a : Union[str, Any] = array(lowerCAmelCase_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase_ ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
89
from __future__ import annotations def UpperCamelCase ( _A ): # This function is recursive """simple docstring""" __magic_name__ : str = len(_A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __magic_name__ : Dict = array[0] __magic_name__ : Optional[Any] = False __magic_name__ : Tuple = 1 __magic_name__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __magic_name__ : Union[str, Any] = True __magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]] __magic_name__ : Dict = longest_subsequence(_A ) if len(_A ) > len(_A ): __magic_name__ : Tuple = temp_array else: i += 1 __magic_name__ : Any = [element for element in array[1:] if element >= pivot] __magic_name__ : Dict = [pivot, *longest_subsequence(_A )] if len(_A ) > len(_A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
342
0
import math import os import sys def lowerCamelCase_ ( UpperCamelCase__ : str ) -> str: """simple docstring""" __lowerCamelCase = '' try: with open(UpperCamelCase__ , 'rb' ) as binary_file: __lowerCamelCase = binary_file.read() for dat in data: __lowerCamelCase = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def lowerCamelCase_ ( UpperCamelCase__ : dict[str, str] , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : str ) -> None: """simple docstring""" lexicon.pop(UpperCamelCase__ ) __lowerCamelCase = last_match_id if math.loga(UpperCamelCase__ ).is_integer(): for curr_key in lexicon: __lowerCamelCase = '0' + lexicon[curr_key] __lowerCamelCase = bin(UpperCamelCase__ )[2:] def lowerCamelCase_ ( UpperCamelCase__ : str ) -> str: """simple docstring""" __lowerCamelCase = {'0': '0', '1': '1'} __lowerCamelCase , __lowerCamelCase = '', '' __lowerCamelCase = len(UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __lowerCamelCase = lexicon[curr_string] result += last_match_id add_key_to_lexicon(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) index += 1 __lowerCamelCase = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __lowerCamelCase = lexicon[curr_string] result += last_match_id return result def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> str: """simple docstring""" __lowerCamelCase = os.path.getsize(UpperCamelCase__ ) __lowerCamelCase = bin(UpperCamelCase__ )[2:] __lowerCamelCase = len(UpperCamelCase__ ) return "0" * (length_length - 1) + file_length_binary + compressed def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = 8 try: with open(UpperCamelCase__ , 'wb' ) as opened_file: __lowerCamelCase = [ to_write[i : i + byte_length] for i in range(0 , len(UpperCamelCase__ ) , UpperCamelCase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(UpperCamelCase__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = read_file_binary(UpperCamelCase__ ) __lowerCamelCase = compress_data(UpperCamelCase__ ) __lowerCamelCase = add_file_length(UpperCamelCase__ , UpperCamelCase__ ) write_file_binary(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
90
import argparse import os import re __magic_name__: Optional[Any] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings __magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def UpperCamelCase ( _A, _A = False ): """simple docstring""" with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : Any = f.read() __magic_name__ : List[Any] = content.split("""\n""" ) __magic_name__ : List[str] = [] __magic_name__ : Union[str, Any] = 0 while line_idx < len(_A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 __magic_name__ : List[Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __magic_name__ : List[str] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_A, """w""", encoding="""utf-8""" ) as f: f.write("""\n""".join(_A ) ) elif "\n".join(_A ) != content: return True def UpperCamelCase ( _A = False ): """simple docstring""" __magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )] __magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames] if not overwrite and any(_A ): __magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix' """ this.""" ) if __name__ == "__main__": __magic_name__: List[str] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __magic_name__: List[str] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
342
0
"""simple docstring""" from math import factorial def _A (__a , __a , __a ) -> float: """simple docstring""" if successes > trials: raise ValueError('''successes must be lower or equal to trials''' ) if trials < 0 or successes < 0: raise ValueError('''the function is defined for non-negative integers''' ) if not isinstance(__a , __a ) or not isinstance(__a , __a ): raise ValueError('''the function is defined for non-negative integers''' ) if not 0 < prob < 1: raise ValueError('''prob has to be in range of 1 - 0''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! SCREAMING_SNAKE_CASE_ : Optional[int] = float(factorial(__a ) ) coefficient /= factorial(__a ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.7_5))
91
__magic_name__: str = [0, 2, 4, 6, 8] __magic_name__: Optional[int] = [1, 3, 5, 7, 9] def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __magic_name__ : List[Any] = 0 for digit in range(10 ): __magic_name__ : Optional[int] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, _A, _A ) return result __magic_name__ : str = 0 for digita in range(10 ): __magic_name__ : Optional[Any] = digita if (remainder + digita) % 2 == 0: __magic_name__ : Tuple = ODD_DIGITS else: __magic_name__ : str = EVEN_DIGITS for digita in other_parity_digits: __magic_name__ : Tuple = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, ) return result def UpperCamelCase ( _A = 9 ): """simple docstring""" __magic_name__ : List[str] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(_A, 0, [0] * length, _A ) return result if __name__ == "__main__": print(F"""{solution() = }""")
342
0
from __future__ import annotations UpperCamelCase__ = 10 def _a ( SCREAMING_SNAKE_CASE_ : list[int] ): __lowerCAmelCase = 1 __lowerCAmelCase = max(SCREAMING_SNAKE_CASE_ ) while placement <= max_digit: # declare and initialize empty buckets __lowerCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE_ )] # split list_of_ints between the buckets for i in list_of_ints: __lowerCAmelCase = int((i / placement) % RADIX ) buckets[tmp].append(SCREAMING_SNAKE_CASE_ ) # put each buckets' contents into list_of_ints __lowerCAmelCase = 0 for b in range(SCREAMING_SNAKE_CASE_ ): for i in buckets[b]: __lowerCAmelCase = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
92
def UpperCamelCase ( _A ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) __magic_name__ : int = sorted(string.lower() ) return len(_A ) == len(set(_A ) ) if __name__ == "__main__": __magic_name__: Dict = input("Enter a string ").strip() __magic_name__: Union[str, Any] = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
342
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black _lowercase : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowercase : Union[str, Any] = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase__ ( unittest.TestCase ): def _snake_case ( self ): """simple docstring""" lowercase_ : Union[str, Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) lowercase_ : str = self.diffusers_dir shutil.copy( os.path.join(__SCREAMING_SNAKE_CASE , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def _snake_case ( self ): """simple docstring""" lowercase_ : Any = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" lowercase_ : str = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase_ : Union[str, Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase_ : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase_ : Union[str, Any] = black.format_str(__SCREAMING_SNAKE_CASE , mode=__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(__SCREAMING_SNAKE_CASE , '''w''' , newline='''\n''' ) as f: f.write(__SCREAMING_SNAKE_CASE ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__SCREAMING_SNAKE_CASE ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: self.assertTrue(f.read() , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : int = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , __SCREAMING_SNAKE_CASE , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , __SCREAMING_SNAKE_CASE ) , ) # Copy consistency with a really long name lowercase_ : List[str] = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub('''Bert''' , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , __SCREAMING_SNAKE_CASE , overwrite_result=re.sub('''DDPM''' , '''Test''' , __SCREAMING_SNAKE_CASE ) , )
93
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
342
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig snake_case : Tuple = logging.get_logger(__name__) class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase ): a :List[Any] = question_encoder a :Any = generator a :List[str] = self.question_encoder def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if os.path.isfile(_lowerCamelCase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) a :Tuple = os.path.join(_lowerCamelCase , '''question_encoder_tokenizer''' ) a :List[str] = os.path.join(_lowerCamelCase , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(_lowerCamelCase ) self.generator.save_pretrained(_lowerCamelCase ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , _lowerCamelCase , **_lowerCamelCase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer a :Optional[int] = kwargs.pop('''config''' , _lowerCamelCase ) if config is None: a :Any = RagConfig.from_pretrained(_lowerCamelCase ) a :List[Any] = AutoTokenizer.from_pretrained( _lowerCamelCase , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) a :str = AutoTokenizer.from_pretrained( _lowerCamelCase , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=_lowerCamelCase , generator=_lowerCamelCase ) def __call__( self , *_lowerCamelCase , **_lowerCamelCase ): return self.current_tokenizer(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.generator.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.generator.decode(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.question_encoder def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = self.generator def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "longest" , _lowerCamelCase = None , _lowerCamelCase = True , **_lowerCamelCase , ): warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _lowerCamelCase , ) if max_length is None: a :Any = self.current_tokenizer.model_max_length a :Dict = self( _lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , max_length=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , **_lowerCamelCase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: a :Union[str, Any] = self.current_tokenizer.model_max_length a :Union[str, Any] = self( text_target=_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , truncation=_lowerCamelCase , **_lowerCamelCase , ) a :Optional[int] = labels['''input_ids'''] return model_inputs
94
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]: __magic_name__ : str = parent __magic_name__ : Dict = do_resize __magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88} __magic_name__ : Union[str, Any] = size_divisor __magic_name__ : Union[str, Any] = do_rescale __magic_name__ : Dict = rescale_factor __magic_name__ : Union[str, Any] = do_normalize __magic_name__ : List[str] = do_center_crop __magic_name__ : Tuple = image_mean __magic_name__ : Tuple = image_std __magic_name__ : Tuple = do_pad __magic_name__ : int = batch_size __magic_name__ : List[Any] = num_channels __magic_name__ : int = min_resolution __magic_name__ : str = max_resolution def __magic_name__ ( self ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int: if not batched: __magic_name__ : Dict = self.size["""shortest_edge"""] __magic_name__ : List[str] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): __magic_name__ ,__magic_name__ : List[Any] = image.size else: __magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2] __magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ ) if h < w: __magic_name__ ,__magic_name__ : str = size, scale * w else: __magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size __magic_name__ : Tuple = int((13_33 / 8_00) * size ) if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size: __magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = newh * scale __magic_name__ : Any = neww * scale __magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 ) __magic_name__ ,__magic_name__ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __magic_name__ : Union[str, Any] = [] for image in image_inputs: __magic_name__ ,__magic_name__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] __magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = BridgeTowerImageProcessingTester(self ) @property def __magic_name__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Any: __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) ) def __magic_name__ ( self ) -> Optional[int]: pass def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> str: # Initialize image processor __magic_name__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
342
0
from argparse import ArgumentParser from . import BaseTransformersCLICommand def _A ( SCREAMING_SNAKE_CASE : Any ): """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __lowerCAmelCase ( UpperCamelCase__): @staticmethod def _lowercase ( lowerCAmelCase__ ) -> Tuple: '''simple docstring''' a__ : List[str] =parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=lowerCAmelCase__ , help="Name of the model to download" ) download_parser.set_defaults(func=lowerCAmelCase__ ) def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' a__ : Tuple =model a__ : Optional[int] =cache a__ : Any =force a__ : Dict =trust_remote_code def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
95
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__: Tuple = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Union[str, Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __magic_name__: Optional[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
342
0
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def _snake_case ( lowercase__ ): _lowerCamelCase : str = SwinConfig() _lowerCamelCase : str = swin_name.split('_' ) _lowerCamelCase : Union[str, Any] = name_split[1] _lowerCamelCase : str = int(name_split[4] ) _lowerCamelCase : List[Any] = int(name_split[3][-1] ) if model_size == "tiny": _lowerCamelCase : Any = 96 _lowerCamelCase : Optional[Any] = (2, 2, 6, 2) _lowerCamelCase : Dict = (3, 6, 12, 24) elif model_size == "small": _lowerCamelCase : Tuple = 96 _lowerCamelCase : Tuple = (2, 2, 18, 2) _lowerCamelCase : Tuple = (3, 6, 12, 24) elif model_size == "base": _lowerCamelCase : Tuple = 128 _lowerCamelCase : int = (2, 2, 18, 2) _lowerCamelCase : Tuple = (4, 8, 16, 32) else: _lowerCamelCase : Any = 192 _lowerCamelCase : Tuple = (2, 2, 18, 2) _lowerCamelCase : str = (6, 12, 24, 48) if "in22k" in swin_name: _lowerCamelCase : Any = 21841 else: _lowerCamelCase : str = 1000 _lowerCamelCase : List[Any] = 'huggingface/label-files' _lowerCamelCase : List[str] = 'imagenet-1k-id2label.json' _lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase : int = {int(lowercase__ ): v for k, v in idalabel.items()} _lowerCamelCase : str = idalabel _lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = img_size _lowerCamelCase : List[Any] = num_classes _lowerCamelCase : Any = embed_dim _lowerCamelCase : Any = depths _lowerCamelCase : Dict = num_heads _lowerCamelCase : Any = window_size return config def _snake_case ( lowercase__ ): if "patch_embed.proj" in name: _lowerCamelCase : Optional[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowerCamelCase : Union[str, Any] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: _lowerCamelCase : Tuple = 'encoder.' + name if "attn.proj" in name: _lowerCamelCase : List[str] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _lowerCamelCase : str = name.replace('attn' , 'attention.self' ) if "norm1" in name: _lowerCamelCase : List[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowerCamelCase : List[Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _lowerCamelCase : Optional[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowerCamelCase : str = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": _lowerCamelCase : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": _lowerCamelCase : Any = 'layernorm.bias' if "head" in name: _lowerCamelCase : Dict = name.replace('head' , 'classifier' ) else: _lowerCamelCase : Tuple = 'swin.' + name return name def _snake_case ( lowercase__ , lowercase__ ): for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(lowercase__ ) if "mask" in key: continue elif "qkv" in key: _lowerCamelCase : Dict = key.split('.' ) _lowerCamelCase : Optional[Any] = int(key_split[1] ) _lowerCamelCase : Any = int(key_split[3] ) _lowerCamelCase : Union[str, Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase : Union[str, Any] = val[:dim, :] _lowerCamelCase : int = val[ dim : dim * 2, : ] _lowerCamelCase : int = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[ :dim ] _lowerCamelCase : Dict = val[ dim : dim * 2 ] _lowerCamelCase : Optional[Any] = val[ -dim: ] else: _lowerCamelCase : str = val return orig_state_dict def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : List[str] = timm.create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() _lowerCamelCase : Tuple = get_swin_config(lowercase__ ) _lowerCamelCase : Optional[int] = SwinForImageClassification(lowercase__ ) model.eval() _lowerCamelCase : int = convert_state_dict(timm_model.state_dict() , lowercase__ ) model.load_state_dict(lowercase__ ) _lowerCamelCase : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCamelCase : List[str] = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) _lowerCamelCase : Optional[int] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) _lowerCamelCase : Dict = image_processor(images=lowercase__ , return_tensors='pt' ) _lowerCamelCase : Tuple = timm_model(inputs['pixel_values'] ) _lowerCamelCase : List[Any] = model(**lowercase__ ).logits assert torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) print(f'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase__ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
96
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__: Dict = logging.get_logger(__name__) __magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __magic_name__: Optional[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __magic_name__: List[Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Any = ( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) __magic_name__ : Any = bs[:] __magic_name__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 __magic_name__ : List[str] = [chr(_A ) for n in cs] return dict(zip(_A, _A ) ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = set() __magic_name__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[Any] = char return pairs class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict: __magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ ) __magic_name__ : Any = {v: k for k, v in self.encoder.items()} __magic_name__ : Tuple = errors # how to handle errors in decoding __magic_name__ : Tuple = bytes_to_unicode() __magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1] __magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : str = {} __magic_name__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __magic_name__ ( self ) -> Optional[Any]: return len(self.encoder ) def __magic_name__ ( self ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if token in self.cache: return self.cache[token] __magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ ,__magic_name__ : List[str] = bigram __magic_name__ : Any = [] __magic_name__ : Any = 0 while i < len(lowerCAmelCase__ ): try: __magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Optional[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : str = tuple(lowerCAmelCase__ ) __magic_name__ : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __magic_name__ : List[str] = get_pairs(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ ) __magic_name__ : str = word return word def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : str = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __magic_name__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Tuple = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __magic_name__ : Optional[Any] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : Optional[int] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] __magic_name__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : Dict = [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __magic_name__ : List[Any] = """ """ + text return (text, kwargs)
342
0
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def a ( __a , __a , __a=1e-12 ) -> str: '''simple docstring''' UpperCamelCase__ :Optional[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T UpperCamelCase__ :Optional[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T return jnp.matmul(__a , norm_emb_a.T ) class lowercase ( nn.Module ): """simple docstring""" _a = 42 _a = jnp.floataa def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = FlaxCLIPVisionModule(self.config.vision_config ) UpperCamelCase__ :Tuple = nn.Dense(self.config.projection_dim , use_bias=UpperCamelCase_ , dtype=self.dtype ) UpperCamelCase__ :Optional[Any] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) UpperCamelCase__ :Optional[Any] = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) UpperCamelCase__ :Tuple = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) UpperCamelCase__ :List[str] = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[str] = self.vision_model(UpperCamelCase_ )[1] UpperCamelCase__ :Optional[int] = self.visual_projection(UpperCamelCase_ ) UpperCamelCase__ :List[Any] = jax_cosine_distance(UpperCamelCase_ , self.special_care_embeds ) UpperCamelCase__ :List[str] = jax_cosine_distance(UpperCamelCase_ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs UpperCamelCase__ :int = 0.0 UpperCamelCase__ :int = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment UpperCamelCase__ :Optional[int] = jnp.round(UpperCamelCase_ , 3 ) UpperCamelCase__ :Union[str, Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=UpperCamelCase_ ) # Use a lower threshold if an image has any special care concept UpperCamelCase__ :Union[str, Any] = is_special_care * 0.01 UpperCamelCase__ :List[str] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment UpperCamelCase__ :Optional[int] = jnp.round(UpperCamelCase_ , 3 ) UpperCamelCase__ :int = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class lowercase ( A__ ): """simple docstring""" _a = CLIPConfig _a = 'clip_input' _a = FlaxStableDiffusionSafetyCheckerModule def __init__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = 0 , UpperCamelCase_ = jnp.floataa , UpperCamelCase_ = True , **UpperCamelCase_ , ): '''simple docstring''' if input_shape is None: UpperCamelCase__ :Union[str, Any] = (1, 224, 224, 3) UpperCamelCase__ :Dict = self.module_class(config=UpperCamelCase_ , dtype=UpperCamelCase_ , **UpperCamelCase_ ) super().__init__(UpperCamelCase_ , UpperCamelCase_ , input_shape=UpperCamelCase_ , seed=UpperCamelCase_ , dtype=UpperCamelCase_ , _do_init=_do_init ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' UpperCamelCase__ :Dict = jax.random.normal(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ , UpperCamelCase__ :List[Any] = jax.random.split(UpperCamelCase_ ) UpperCamelCase__ :Tuple = {'''params''': params_rng, '''dropout''': dropout_rng} UpperCamelCase__ :List[str] = self.module.init(UpperCamelCase_ , UpperCamelCase_ )['''params'''] return random_params def __call__( self , UpperCamelCase_ , UpperCamelCase_ = None , ): '''simple docstring''' UpperCamelCase__ :Any = jnp.transpose(UpperCamelCase_ , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(UpperCamelCase_ , dtype=jnp.floataa ) , rngs={} , )
97
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str: __magic_name__ : Optional[int] = parent __magic_name__ : Any = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[int] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : str = embed_dim __magic_name__ : int = hidden_sizes __magic_name__ : Union[str, Any] = depths __magic_name__ : List[str] = num_heads __magic_name__ : str = window_size __magic_name__ : Optional[Any] = mlp_ratio __magic_name__ : Dict = qkv_bias __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = drop_path_rate __magic_name__ : Optional[Any] = hidden_act __magic_name__ : int = use_absolute_embeddings __magic_name__ : Dict = patch_norm __magic_name__ : Tuple = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[int] = is_training __magic_name__ : Optional[Any] = scope __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = encoder_stride __magic_name__ : List[Any] = out_features __magic_name__ : Union[str, Any] = out_indices def __magic_name__ ( self ) -> str: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Dict = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Tuple = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __magic_name__ : Optional[Any] = None __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : str = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : int = self.type_sequence_label_size __magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> int: __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs __magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ : Any = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ : Dict = False lowercase__ : Dict = False lowercase__ : int = False lowercase__ : Tuple = False lowercase__ : Optional[Any] = False def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = FocalNetModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> List[str]: return def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __magic_name__ ( self ) -> List[str]: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self ) -> List[Any]: __magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : str = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # FocalNet has a different seq_length __magic_name__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ : str = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape __magic_name__ : Union[str, Any] = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __magic_name__ : List[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = 3 __magic_name__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __magic_name__ : Optional[int] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @slow def __magic_name__ ( self ) -> Union[str, Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: __magic_name__ : Any = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.default_image_processor __magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : List[Any] = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else () lowercase__ : Optional[int] = FocalNetConfig lowercase__ : Dict = False def __magic_name__ ( self ) -> int: __magic_name__ : Dict = FocalNetModelTester(self )
342
0
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase__ : Dict = '<<<<<<< This should probably be modified because it mentions: ' lowerCAmelCase__ : int = '=======\n>>>>>>>\n' lowerCAmelCase__ : Optional[int] = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] lowerCAmelCase__ : Dict = [ # (pattern, replacement) # Order is important here for some replacements (r'tfds\.core', r'datasets'), (r'tf\.io\.gfile\.GFile', r'open'), (r'tf\.([\w\d]+)', r'datasets.Value(\'\1\')'), (r'tfds\.features\.Text\(\)', r'datasets.Value(\'string\')'), (r'tfds\.features\.Text\(', r'datasets.Value(\'string\'),'), (r'features\s*=\s*tfds.features.FeaturesDict\(', r'features=datasets.Features('), (r'tfds\.features\.FeaturesDict\(', r'dict('), (r'The TensorFlow Datasets Authors', r'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (r'tfds\.', r'datasets.'), (r'dl_manager\.manual_dir', r'self.config.data_dir'), (r'self\.builder_config', r'self.config'), ] def a_ ( lowerCamelCase ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class snake_case ( __UpperCAmelCase ): """simple docstring""" @staticmethod def __lowerCAmelCase ( lowerCamelCase__ : ArgumentParser ): UpperCAmelCase__ = parser.add_parser( 'convert' ,help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' ,) train_parser.add_argument( '--tfds_path' ,type=lowerCamelCase__ ,required=lowerCamelCase__ ,help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' ,) train_parser.add_argument( '--datasets_directory' ,type=lowerCamelCase__ ,required=lowerCamelCase__ ,help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self : List[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,*lowerCamelCase__ : Union[str, Any] ): UpperCAmelCase__ = get_logger('datasets-cli/converting' ) UpperCAmelCase__ = tfds_path UpperCAmelCase__ = datasets_directory def __lowerCAmelCase ( self : List[Any] ): if os.path.isdir(self._tfds_path ): UpperCAmelCase__ = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): UpperCAmelCase__ = os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) UpperCAmelCase__ = os.path.abspath(self._datasets_directory ) self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = {} if os.path.isdir(self._tfds_path ): UpperCAmelCase__ = os.listdir(lowerCamelCase__ ) else: UpperCAmelCase__ = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'''Looking at file {f_name}''' ) UpperCAmelCase__ = os.path.join(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = os.path.join(lowerCamelCase__ ,lowerCamelCase__ ) if not os.path.isfile(lowerCamelCase__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(lowerCamelCase__ ,encoding='utf-8' ) as f: UpperCAmelCase__ = f.readlines() UpperCAmelCase__ = [] UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = [] for line in lines: UpperCAmelCase__ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: UpperCAmelCase__ = 'import datasets\n' elif "import tensorflow" in out_line: # order is important here UpperCAmelCase__ = '' continue elif "from absl import logging" in out_line: UpperCAmelCase__ = 'from datasets import logging\n' elif "getLogger" in out_line: UpperCAmelCase__ = out_line.replace('getLogger' ,'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): UpperCAmelCase__ = True UpperCAmelCase__ = list(filter(lambda lowerCamelCase__ : e in out_line ,lowerCamelCase__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCamelCase__ ) + '\n' ) out_lines.append(lowerCamelCase__ ) out_lines.append(lowerCamelCase__ ) continue else: for pattern, replacement in TO_CONVERT: UpperCAmelCase__ = re.sub(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: UpperCAmelCase__ = re.match(R'from\stensorflow_datasets.*import\s([^\.\r\n]+)' ,lowerCamelCase__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) UpperCAmelCase__ = 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: UpperCAmelCase__ = True out_lines.append(lowerCamelCase__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset UpperCAmelCase__ = f_name.replace('.py' ,'' ) UpperCAmelCase__ = os.path.join(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = os.path.join(lowerCamelCase__ ,lowerCamelCase__ ) os.makedirs(lowerCamelCase__ ,exist_ok=lowerCamelCase__ ) self._logger.info(f'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCamelCase__ ) if needs_manual_update: with_manual_update.append(lowerCamelCase__ ) with open(lowerCamelCase__ ,'w' ,encoding='utf-8' ) as f: f.writelines(lowerCamelCase__ ) self._logger.info(f'''Converted in {output_file}''' ) for utils_file in utils_files: try: UpperCAmelCase__ = os.path.basename(lowerCamelCase__ ) UpperCAmelCase__ = imports_to_builder_map[f_name.replace('.py' ,'' )] self._logger.info(f'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(lowerCamelCase__ ,lowerCamelCase__ ) except KeyError: self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
98
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]: __magic_name__ : int = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = image_size __magic_name__ : str = num_channels __magic_name__ : Dict = patch_size __magic_name__ : Tuple = num_frames __magic_name__ : List[Any] = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : Dict = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Tuple = attention_type __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = scope __magic_name__ : Tuple = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __magic_name__ : str = (image_size // patch_size) ** 2 __magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : str = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> str: __magic_name__ : Dict = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __magic_name__ : Optional[Any] = self.num_labels return config def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[Any] = model(lowerCAmelCase__ ) # verify the logits shape __magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs __magic_name__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ : Union[str, Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : Any = False def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[Any] = TimesformerModelTester(self ) __magic_name__ : List[str] = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]: __magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Optional[int] = [*signature.parameters.keys()] __magic_name__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Optional[int]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: if not self.has_attentions: pass else: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True for model_class in self.all_model_classes: __magic_name__ : Tuple = self.model_tester.seq_length __magic_name__ : int = self.model_tester.num_frames __magic_name__ : Any = True __magic_name__ : Tuple = False __magic_name__ : Optional[int] = True __magic_name__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ : Optional[Any] = True __magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : int = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __magic_name__ : Union[str, Any] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : Optional[Any] = True __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) __magic_name__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" ) __magic_name__ : List[str] = np.load(_A ) return list(_A ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowerCAmelCase__ ) __magic_name__ : str = self.default_image_processor __magic_name__ : Any = prepare_video() __magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : int = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
342
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer lowercase : Optional[int] = logging.get_logger(__name__) lowercase : Optional[int] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart lowercase : Union[str, Any] = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } lowercase : Union[str, Any] = { """facebook/bart-base""": 1_0_2_4, """facebook/bart-large""": 1_0_2_4, """facebook/bart-large-mnli""": 1_0_2_4, """facebook/bart-large-cnn""": 1_0_2_4, """facebook/bart-large-xsum""": 1_0_2_4, """yjernite/bart_eli5""": 1_0_2_4, } class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Any = VOCAB_FILES_NAMES __A : str = PRETRAINED_VOCAB_FILES_MAP __A : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Union[str, Any] = ['''input_ids''', '''attention_mask'''] __A : Union[str, Any] = BartTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="replace" , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=False , lowercase=True , **lowercase , ) -> int: '''simple docstring''' super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) a__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , lowercase) != add_prefix_space: a__ : Any = getattr(lowercase , pre_tok_state.pop('type')) a__ : List[Any] = add_prefix_space a__ : Dict = pre_tok_class(**lowercase) a__ : List[str] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a__ : str = 'post_processor' a__ : List[str] = getattr(self.backend_tokenizer , lowercase , lowercase) if tokenizer_component_instance: a__ : Dict = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : Dict = tuple(state['sep']) if "cls" in state: a__ : List[str] = tuple(state['cls']) a__ : str = False if state.get('add_prefix_space' , lowercase) != add_prefix_space: a__ : Tuple = add_prefix_space a__ : Tuple = True if state.get('trim_offsets' , lowercase) != trim_offsets: a__ : List[Any] = trim_offsets a__ : Tuple = True if changes_to_apply: a__ : Optional[int] = getattr(lowercase , state.pop('type')) a__ : Optional[int] = component_class(**lowercase) setattr(self.backend_tokenizer , lowercase , lowercase) @property def __lowercase ( self) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def __lowercase ( self , lowercase) -> Optional[Any]: '''simple docstring''' a__ : Tuple = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else value a__ : Union[str, Any] = value def __lowercase ( self , *lowercase , **lowercase) -> BatchEncoding: '''simple docstring''' a__ : List[str] = kwargs.get('is_split_into_words' , lowercase) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowercase , **lowercase) def __lowercase ( self , *lowercase , **lowercase) -> BatchEncoding: '''simple docstring''' a__ : Any = kwargs.get('is_split_into_words' , lowercase) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowercase , **lowercase) def __lowercase ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' a__ : List[Any] = self._tokenizer.model.save(lowercase , name=lowercase) return tuple(lowercase) def __lowercase ( self , lowercase , lowercase=None) -> List[str]: '''simple docstring''' a__ : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowercase ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__ : Dict = [self.sep_token_id] a__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
99
def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = [0] * len(_A ) __magic_name__ : List[str] = [] __magic_name__ : List[str] = [1] * len(_A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: __magic_name__ : Dict = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __magic_name__ : int = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_A ) print(max(_A ) ) # Adjacency list of Graph __magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Tuple = '''dandelin/vilt-b32-finetuned-vqa''' __lowercase : str = ( '''This is a tool that answers a question about an image. It takes an input named `image` which should be the ''' '''image containing the information, as well as a `question` which should be the question in English. It ''' '''returns a text that is the answer to the question.''' ) __lowercase : Optional[int] = '''image_qa''' __lowercase : Union[str, Any] = AutoProcessor __lowercase : Optional[Any] = AutoModelForVisualQuestionAnswering __lowercase : List[str] = ['''image''', '''text'''] __lowercase : Optional[Any] = ['''text'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""vision"""]) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__): return self.pre_processor(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors="""pt""") def snake_case_ ( self , lowerCAmelCase__): with torch.no_grad(): return self.model(**lowerCAmelCase__).logits def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = outputs.argmax(-1).item() return self.model.config.idalabel[idx]
100
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: __magic_name__ : Tuple = """ylacombe/bark-small""" __magic_name__ : List[str] = tempfile.mkdtemp() __magic_name__ : Optional[Any] = """en_speaker_1""" __magic_name__ : Union[str, Any] = """This is a test string""" __magic_name__ : Optional[int] = """speaker_embeddings_path.json""" __magic_name__ : Any = """speaker_embeddings""" def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : str = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __magic_name__ : Union[str, Any] = 35 __magic_name__ : List[Any] = 2 __magic_name__ : Dict = 8 __magic_name__ : Tuple = { """semantic_prompt""": np.ones(lowerCAmelCase__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string ) __magic_name__ : List[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
342
0